diff --git a/src/path/Curve.js b/src/path/Curve.js index 00d8dcc1..de00c8c6 100644 --- a/src/path/Curve.js +++ b/src/path/Curve.js @@ -1535,11 +1535,9 @@ new function() { // Scope for intersection using bezier fat-line clipping p1 = [ 1 / 3, dq1 ], p2 = [ 2 / 3, dq2 ], p3 = [ 1, dq3 ], - // Find signed distance of p1 and p2 from line [ p0, p3 ] - getSignedDistance = Line.getSignedDistance, - dist1 = getSignedDistance(0, dq0, 1, dq3, 1 / 3, dq1), - dist2 = getSignedDistance(0, dq0, 1, dq3, 2 / 3, dq2), - flip = false, + // Find vertical signed distance of p1 and p2 from line [ p0, p3 ] + dist1 = dq1 - (dq0 + (dq3 - dq0) / 3), + dist2 = dq2 - (dq0 + 2 * (dq3 - dq0) / 3), hull; // Check if p1 and p2 are on the same side of the line [ p0, p3 ] if (dist1 * dist2 < 0) { @@ -1549,40 +1547,27 @@ new function() { // Scope for intersection using bezier fat-line clipping // The top part includes p1, // we will reverse it later if that is not the case hull = [[p0, p1, p3], [p0, p2, p3]]; - flip = dist1 < 0; } else { // p1 and p2 lie on the same sides of [ p0, p3 ]. The hull can be // a triangle or a quadrilateral and line [ p0, p3 ] is part of the - // hull. Check if the hull is a triangle or a quadrilateral. - // Also, if at least one of the distances for p1 or p2, from line - // [p0, p3] is zero then hull must at most have 3 vertices. - var pmax, cross = 0, - distZero = dist1 === 0 || dist2 === 0; - if (Math.abs(dist1) > Math.abs(dist2)) { - pmax = p1; - // apex is dq3 and the other apex point is dq0 vector dqapex -> - // dqapex2 or base vector which is already part of the hull. - cross = (dq3 - dq2 - (dq3 - dq0) / 3) - * (2 * (dq3 - dq2) - dq3 + dq1) / 3; - } else { - pmax = p2; - // apex is dq0 in this case, and the other apex point is dq3 - // vector dqapex -> dqapex2 or base vector which is already part - // of the hull. - cross = (dq1 - dq0 + (dq0 - dq3) / 3) - * (-2 * (dq0 - dq1) + dq0 - dq2) / 3; + // hull. Check if the hull is a triangle or a quadrilateral. We have a + // triangle if the vertical distance of one of the middle points (p1, p2) + // is equal or less than half the vertical distance of the other middle point. + var distRatio = dist1 / dist2; + hull = [ + // p2 is inside, the hull is a triangle. + distRatio >= 2 ? [p0, p1, p3] + // p1 is inside, the hull is a triangle. + : distRatio <= .5 ? [p0, p2, p3] + // Hull is a quadrilateral, we need all lines in correct order. + : [p0, p1, p2, p3], + // Line [p0, p3] is part of the hull. + [p0, p3] + ]; } - // Compare cross products of these vectors to determine if the point - // is in the triangle [ p3, pmax, p0 ], or if it is a quadrilateral. - hull = cross < 0 || distZero - // p2 is inside the triangle, hull is a triangle. - ? [[p0, pmax, p3], [p0, p3]] - // Convex hull is a quadrilateral and we need all lines in - // correct order where line [ p0, p3 ] is part of the hull. - : [[p0, p1, p2, p3], [p0, p3]]; - flip = dist1 ? dist1 < 0 : dist2 < 0; } - return flip ? hull.reverse() : hull; + // flip hull if dist1 is negative or if it is zero and dist2 is negative + return (dist1 || dist2) < 0 ? hull.reverse() : hull; } /**