diff --git a/src/path/PathFitter.js b/src/path/PathFitter.js index 34d456c8..b9d10300 100644 --- a/src/path/PathFitter.js +++ b/src/path/PathFitter.js @@ -145,7 +145,8 @@ var PathFitter = Base.extend({ // Compute the determinants of C and X var detC0C1 = C[0][0] * C[1][1] - C[1][0] * C[0][1], - alpha1, alpha2; + alpha1, + alpha2; if (abs(detC0C1) > epsilon) { // Kramer's rule var detC0X = C[0][0] * X[1] - C[1][0] * X[0], @@ -157,14 +158,9 @@ var PathFitter = Base.extend({ // Matrix is under-determined, try assuming alpha1 == alpha2 var c0 = C[0][0] + C[0][1], c1 = C[1][0] + C[1][1]; - if (abs(c0) > epsilon) { - alpha1 = alpha2 = X[0] / c0; - } else if (abs(c1) > epsilon) { - alpha1 = alpha2 = X[1] / c1; - } else { - // Handle below - alpha1 = alpha2 = 0; - } + alpha1 = alpha2 = abs(c0) > epsilon ? X[0] / c0 + : abs(c1) > epsilon ? X[1] / c1 + : 0; } // If alpha negative, use the Wu/Barsky heuristic (see text) @@ -234,11 +230,8 @@ var PathFitter = Base.extend({ pt2 = this.evaluate(1, curve2, u), diff = pt.subtract(point), df = pt1.dot(pt1) + diff.dot(pt2); - // Compute f(u) / f'(u) - if (Math.abs(df) < /*#=*/Numerical.TOLERANCE) - return u; // u = u - f(u) / f'(u) - return u - diff.dot(pt1) / df; + return Numerical.isZero(df) ? u : u - diff.dot(pt1) / df; }, // Evaluate a bezier curve at a particular parameter value