diff --git a/src/path/Curve.js b/src/path/Curve.js index 2fd35144..c45df4a6 100644 --- a/src/path/Curve.js +++ b/src/path/Curve.js @@ -582,7 +582,27 @@ statics: { c = 3 * (c1 - p1), b = 3 * (c2 - c1) - c, a = p2 - p1 - c - b; - return Numerical.solveCubic(a, b, c, p1 - val, roots, min, max); + var roots2 = []; + var res1 = Numerical.solveCubic(a, b, c, p1 - val, roots, min, max); + var res2 = Numerical._solveCubic(a, b, c, p1 - val, roots2, min, max); + var ok = true; + if (res1 == res2) { + for (var i = 0; i < res1 && ok; i++) { + if (Math.abs(roots[i] - roots2[i]) > 0.01) + ok = false; + } + } else { + ok = false; + } + function f(val) { + return (val + '').replace(/e/, '*10^'); + } + if (!ok) { + console.log('a = ' + f(a) + '; b = ' + f(b) + '; c = ' + f(c) + '; d = ' + f(p1 - val) + + '; // old:', roots2, 'new:', roots); + } + + return res1; //Numerical.solveCubic(a, b, c, p1 - val, roots, min, max); }, getParameterOf: function(v, x, y) { diff --git a/src/util/Numerical.js b/src/util/Numerical.js index 2238ae79..af3e9b33 100644 --- a/src/util/Numerical.js +++ b/src/util/Numerical.js @@ -67,6 +67,21 @@ var Numerical = new function() { EPSILON = 1e-14, MACHINE_EPSILON = 2.220446049250313e-16; + // Sets up min and max values for roots and returns a add() function that + // handles bounds checks and itself returns the amount of added roots. + function setupRoots(roots, min, max) { + var unbound = min === undefined, + minE = min - EPSILON, + maxE = max + EPSILON, + count = 0; + // Returns a function that adds roots with checks + return function(root) { + if (unbound || root > minE && root < maxE) + roots[count++] = root < min ? min : root > max ? max : root; + return count; + }; + } + return /** @lends Numerical */{ TOLERANCE: TOLERANCE, // Precision when comparing against 0 @@ -305,6 +320,97 @@ var Numerical = new function() { && x < max + MACHINE_EPSILON))) roots[nRoots++] = x < min ? min : x > max ? max : x; return nRoots; + }, + + /** + * Solves the quadratic polynomial with coefficients a, b, c for roots + * (zero crossings) and and returns the solutions in an array. + * + * a*x^2 + b*x + c = 0 + */ + _solveQuadratic: function(a, b, c, roots, min, max) { + var add = setupRoots(roots, min, max); + + // Code ported over and adapted from Uintah library (MIT license). + // If a is 0, equation is actually linear, return 0 or 1 easy roots. + if (abs(a) < EPSILON) { + if (abs(b) >= EPSILON) + return add(-c / b); + // If all the coefficients are 0, we have infinite solutions! + return abs(c) < EPSILON ? -1 : 0; // Infinite or 0 solutions + } + // Convert to normal form: x^2 + px + q = 0 + var p = b / (2 * a); + var q = c / a; + var p2 = p * p; + if (p2 < q - EPSILON) + return 0; + var s = p2 > q ? sqrt(p2 - q) : 0, + count = add(s - p); + if (s > 0) + count = add(-s - p); + return count; + }, + + /** + * Solves the cubic polynomial with coefficients a, b, c, d for roots + * (zero crossings) and and returns the solutions in an array. + * + * a*x^3 + b*x^2 + c*x + d = 0 + */ + _solveCubic: function(a, b, c, d, roots, min, max) { + // If a is 0, equation is actually quadratic. + if (abs(a) < EPSILON) + return Numerical._solveQuadratic(b, c, d, roots, min, max); + + // Code ported over and adapted from Uintah library (MIT license). + // Normalize to form: x^3 + b x^2 + c x + d = 0: + b /= a; + c /= a; + d /= a; + var add = setupRoots(roots, min, max), + // Compute discriminants + bb = b * b, + p = (bb - 3 * c) / 9, + q = (2 * bb * b - 9 * b * c + 27 * d) / 54, + // Use Cardano's formula + ppp = p * p * p, + D = q * q - ppp; + // Substitute x = y - b/3 to eliminate quadric term: x^3 +px + q = 0 + b /= 3; + if (abs(D) < EPSILON) { + if (abs(q) < EPSILON) // One triple solution. + return add(-b); + // One single and one double solution. + var sqp = sqrt(p), + snq = q > 0 ? 1 : -1; + add(-snq * 2 * sqp - b); + return add(snq * sqp - b); + } + if (D < 0) { // Casus irreducibilis: three real solutions + var sqp = sqrt(p), + phi = Math.acos(q / (sqp * sqp * sqp)) / 3, + t = -2 * sqp, + o = 2 * PI / 3; + add(t * cos(phi) - b); + add(t * cos(phi + o) - b); + return add(t * cos(phi - o) - b); + } + // One real solution + var A = (q > 0 ? -1 : 1) * pow(abs(q) + sqrt(D), 1 / 3); + return add(A + p / A - b); } }; }; + +/* + * Paper.js - The Swiss Army Knife of Vector Graphics Scripting. + * http://paperjs.org/ + * + * Copyright (c) 2011 - 2014, Juerg Lehni & Jonathan Puckey + * http://scratchdisk.com/ & http://jonathanpuckey.com/ + * + * Distributed under the MIT license. See LICENSE file for details. + * + * All rights reserved. + */