bgfx/src/vertexdecl.cpp
2013-02-23 20:43:31 -08:00

465 lines
11 KiB
C++

/*
* Copyright 2011-2013 Branimir Karadzic. All rights reserved.
* License: http://www.opensource.org/licenses/BSD-2-Clause
*/
#include <string.h>
#include <bx/hash.h>
#include <bx/uint32_t.h>
#include "vertexdecl.h"
extern void dbgPrintf(const char* _format, ...);
extern void dbgPrintfData(const void* _data, uint32_t _size, const char* _format, ...);
namespace bgfx
{
static const uint8_t s_attribTypeSizeDx9[AttribType::Count][4] =
{
{ 4, 4, 4, 4 },
{ 4, 4, 8, 8 },
{ 4, 4, 8, 8 },
{ 4, 8, 12, 16 },
};
static const uint8_t s_attribTypeSizeDx11[AttribType::Count][4] =
{
{ 1, 2, 4, 4 },
{ 2, 4, 8, 8 },
{ 2, 4, 8, 8 },
{ 4, 8, 12, 16 },
};
static const uint8_t s_attribTypeSizeGl[AttribType::Count][4] =
{
{ 1, 2, 4, 4 },
{ 2, 4, 6, 8 },
{ 2, 4, 6, 8 },
{ 4, 8, 12, 16 },
};
static const uint8_t (*s_attribTypeSize[RendererType::Count])[AttribType::Count][4] =
{
#if BGFX_CONFIG_RENDERER_DIRECT3D9
&s_attribTypeSizeDx9,
#elif BGFX_CONFIG_RENDERER_DIRECT3D11
&s_attribTypeSizeDx11,
#elif BGFX_CONFIG_RENDERER_OPENGL|BGFX_CONFIG_RENDERER_OPENGLES2|BGFX_CONFIG_RENDERER_OPENGLES3
&s_attribTypeSizeGl,
#else
&s_attribTypeSizeDx9,
#endif // BGFX_CONFIG_RENDERER_
&s_attribTypeSizeDx9,
&s_attribTypeSizeDx11,
&s_attribTypeSizeGl,
&s_attribTypeSizeGl,
&s_attribTypeSizeGl,
};
void VertexDecl::begin(RendererType::Enum _renderer)
{
m_hash = _renderer; // use hash to store renderer type while building VertexDecl.
m_stride = 0;
memset(m_attributes, 0xff, sizeof(m_attributes) );
memset(m_offset, 0, sizeof(m_offset) );
}
void VertexDecl::end()
{
m_hash = bx::hashMurmur2A(m_attributes);
}
void VertexDecl::add(Attrib::Enum _attrib, uint8_t _num, AttribType::Enum _type, bool _normalized, bool _asInt)
{
const uint8_t encodedNorm = (_normalized&1)<<6;
const uint8_t encodedType = (_type&3)<<3;
const uint8_t encodedNum = (_num-1)&3;
const uint8_t encodeAsInt = (_asInt&(!!"\x1\x1\x0\x0"[_type]) )<<7;
m_attributes[_attrib] = encodedNorm|encodedType|encodedNum|encodeAsInt;
m_offset[_attrib] = m_stride;
m_stride += (*s_attribTypeSize[m_hash])[_type][_num-1];
}
void VertexDecl::decode(Attrib::Enum _attrib, uint8_t& _num, AttribType::Enum& _type, bool& _normalized, bool& _asInt) const
{
uint8_t val = m_attributes[_attrib];
_num = (val&3)+1;
_type = AttribType::Enum((val>>3)&3);
_normalized = !!(val&(1<<6) );
_asInt = !!(val&(1<<7) );
}
static const char* s_attrName[Attrib::Count] =
{
"Attrib::Position",
"Attrib::Normal",
"Attrib::Tangent",
"Attrib::Color0",
"Attrib::Color1",
"Attrib::Indices",
"Attrib::Weights",
"Attrib::TexCoord0",
"Attrib::TexCoord1",
"Attrib::TexCoord2",
"Attrib::TexCoord3",
"Attrib::TexCoord4",
"Attrib::TexCoord5",
"Attrib::TexCoord6",
"Attrib::TexCoord7",
};
const char* getAttribName(Attrib::Enum _attr)
{
return s_attrName[_attr];
}
void dump(const VertexDecl& _decl)
{
#if BGFX_CONFIG_DEBUG
dbgPrintf("vertexdecl %08x (%08x), stride %d\n"
, _decl.m_hash
, bx::hashMurmur2A(_decl.m_attributes)
, _decl.m_stride
);
for (uint32_t attr = 0; attr < Attrib::Count; ++attr)
{
if (0xff != _decl.m_attributes[attr])
{
uint8_t num;
AttribType::Enum type;
bool normalized;
bool asInt;
_decl.decode(Attrib::Enum(attr), num, type, normalized, asInt);
dbgPrintf("\tattr %d - %s, num %d, type %d, norm %d, asint %d, offset %d\n"
, attr
, getAttribName(Attrib::Enum(attr) )
, num
, type
, normalized
, asInt
, _decl.m_offset[attr]
);
}
}
#else
BX_UNUSED(_decl);
#endif // BGFX_CONFIG_DEBUG
}
void vertexPack(const float _input[4], bool _inputNormalized, Attrib::Enum _attr, const VertexDecl& _decl, void* _data, uint32_t _index)
{
if (!_decl.has(_attr) )
{
return;
}
uint32_t stride = _decl.getStride();
uint8_t* data = (uint8_t*)_data + _index*stride + _decl.getOffset(_attr);
uint8_t num;
AttribType::Enum type;
bool normalized;
bool asInt;
_decl.decode(_attr, num, type, normalized, asInt);
switch (type)
{
default:
case AttribType::Uint8:
{
uint8_t* packed = (uint8_t*)data;
if (_inputNormalized)
{
if (asInt)
{
switch (num)
{
default: *packed++ = uint8_t(*_input++ * 127.0f + 128.0f);
case 3: *packed++ = uint8_t(*_input++ * 127.0f + 128.0f);
case 2: *packed++ = uint8_t(*_input++ * 127.0f + 128.0f);
case 1: *packed++ = uint8_t(*_input++ * 127.0f + 128.0f);
}
}
else
{
switch (num)
{
default: *packed++ = uint8_t(*_input++ * 255.0f);
case 3: *packed++ = uint8_t(*_input++ * 255.0f);
case 2: *packed++ = uint8_t(*_input++ * 255.0f);
case 1: *packed++ = uint8_t(*_input++ * 255.0f);
}
}
}
else
{
switch (num)
{
default: *packed++ = uint8_t(*_input++);
case 3: *packed++ = uint8_t(*_input++);
case 2: *packed++ = uint8_t(*_input++);
case 1: *packed++ = uint8_t(*_input++);
}
}
}
break;
case AttribType::Int16:
{
int16_t* packed = (int16_t*)data;
if (_inputNormalized)
{
if (asInt)
{
switch (num)
{
default: *packed++ = int16_t(*_input++ * 32767.0f);
case 3: *packed++ = int16_t(*_input++ * 32767.0f);
case 2: *packed++ = int16_t(*_input++ * 32767.0f);
case 1: *packed++ = int16_t(*_input++ * 32767.0f);
}
}
else
{
switch (num)
{
default: *packed++ = int16_t(*_input++ * 65535.0f - 32768.0f);
case 3: *packed++ = int16_t(*_input++ * 65535.0f - 32768.0f);
case 2: *packed++ = int16_t(*_input++ * 65535.0f - 32768.0f);
case 1: *packed++ = int16_t(*_input++ * 65535.0f - 32768.0f);
}
}
}
else
{
switch (num)
{
default: *packed++ = int16_t(*_input++);
case 3: *packed++ = int16_t(*_input++);
case 2: *packed++ = int16_t(*_input++);
case 1: *packed++ = int16_t(*_input++);
}
}
}
break;
case AttribType::Half:
{
uint16_t* packed = (uint16_t*)data;
switch (num)
{
default: *packed++ = bx::halfFromFloat(*_input++);
case 3: *packed++ = bx::halfFromFloat(*_input++);
case 2: *packed++ = bx::halfFromFloat(*_input++);
case 1: *packed++ = bx::halfFromFloat(*_input++);
}
}
break;
case AttribType::Float:
memcpy(data, _input, num*sizeof(float) );
break;
}
}
void vertexUnpack(float _output[4], Attrib::Enum _attr, const VertexDecl& _decl, const void* _data, uint32_t _index)
{
if (!_decl.has(_attr) )
{
memset(_output, 0, 4*sizeof(float) );
return;
}
uint32_t stride = _decl.getStride();
uint8_t* data = (uint8_t*)_data + _index*stride + _decl.getOffset(_attr);
uint8_t num;
AttribType::Enum type;
bool normalized;
bool asInt;
_decl.decode(_attr, num, type, normalized, asInt);
switch (type)
{
default:
case AttribType::Uint8:
{
uint8_t* packed = (uint8_t*)data;
if (asInt)
{
switch (num)
{
default: *_output++ = (float(*packed++) - 128.0f)*1.0f/127.0f;
case 3: *_output++ = (float(*packed++) - 128.0f)*1.0f/127.0f;
case 2: *_output++ = (float(*packed++) - 128.0f)*1.0f/127.0f;
case 1: *_output++ = (float(*packed++) - 128.0f)*1.0f/127.0f;
}
}
else
{
switch (num)
{
default: *_output++ = float(*packed++)*1.0f/255.0f;
case 3: *_output++ = float(*packed++)*1.0f/255.0f;
case 2: *_output++ = float(*packed++)*1.0f/255.0f;
case 1: *_output++ = float(*packed++)*1.0f/255.0f;
}
}
}
break;
case AttribType::Int16:
{
int16_t* packed = (int16_t*)data;
if (asInt)
{
switch (num)
{
default: *_output++ = float(*packed++)*1.0f/32767.0f;
case 3: *_output++ = float(*packed++)*1.0f/32767.0f;
case 2: *_output++ = float(*packed++)*1.0f/32767.0f;
case 1: *_output++ = float(*packed++)*1.0f/32767.0f;
}
}
else
{
switch (num)
{
default: *_output++ = (float(*packed++) + 32768.0f)*1.0f/65535.0f;
case 3: *_output++ = (float(*packed++) + 32768.0f)*1.0f/65535.0f;
case 2: *_output++ = (float(*packed++) + 32768.0f)*1.0f/65535.0f;
case 1: *_output++ = (float(*packed++) + 32768.0f)*1.0f/65535.0f;
}
}
}
break;
case AttribType::Half:
{
uint16_t* packed = (uint16_t*)data;
switch (num)
{
default: *_output++ = bx::halfToFloat(*packed++);
case 3: *_output++ = bx::halfToFloat(*packed++);
case 2: *_output++ = bx::halfToFloat(*packed++);
case 1: *_output++ = bx::halfToFloat(*packed++);
}
}
break;
case AttribType::Float:
memcpy(_output, data, num*sizeof(float) );
_output += num;
break;
}
switch (num)
{
case 1: *_output++ = 0.0f;
case 2: *_output++ = 0.0f;
case 3: *_output++ = 0.0f;
default: break;
}
}
void vertexConvert(const VertexDecl& _destDecl, void* _destData, const VertexDecl& _srcDecl, const void* _srcData, uint32_t _num)
{
if (_destDecl.m_hash == _srcDecl.m_hash)
{
memcpy(_destData, _srcData, _srcDecl.getSize(_num) );
return;
}
struct ConvertOp
{
enum Enum
{
Set,
Copy,
Convert,
};
Attrib::Enum attr;
Enum op;
uint32_t src;
uint32_t dest;
uint32_t size;
};
ConvertOp convertOp[Attrib::Count];
uint32_t numOps = 0;
for (uint32_t ii = 0; ii < Attrib::Count; ++ii)
{
Attrib::Enum attr = (Attrib::Enum)ii;
if (_destDecl.has(attr) )
{
ConvertOp& cop = convertOp[numOps];
cop.attr = attr;
cop.dest = _destDecl.getOffset(attr);
uint8_t num;
AttribType::Enum type;
bool normalized;
bool asInt;
_destDecl.decode(attr, num, type, normalized, asInt);
cop.size = (*s_attribTypeSize[0])[type][num-1];
if (_srcDecl.has(attr) )
{
cop.src = _srcDecl.getOffset(attr);
cop.op = _destDecl.m_attributes[attr] == _srcDecl.m_attributes[attr] ? ConvertOp::Copy : ConvertOp::Convert;
}
else
{
cop.op = ConvertOp::Set;
}
++numOps;
}
}
if (0 < numOps)
{
const uint8_t* src = (const uint8_t*)_srcData;
uint32_t srcStride = _srcDecl.getStride();
uint8_t* dest = (uint8_t*)_destData;
uint32_t destStride = _destDecl.getStride();
float unpacked[4];
for (uint32_t ii = 0; ii < _num; ++ii)
{
for (uint32_t jj = 0; jj < numOps; ++jj)
{
const ConvertOp& cop = convertOp[jj];
switch (cop.op)
{
case ConvertOp::Set:
memset(dest + cop.dest, 0, cop.size);
break;
case ConvertOp::Copy:
memcpy(dest + cop.dest, src + cop.src, cop.size);
break;
case ConvertOp::Convert:
vertexUnpack(unpacked, cop.attr, _srcDecl, src);
vertexPack(unpacked, true, cop.attr, _destDecl, dest);
break;
}
}
src += srcStride;
dest += destStride;
}
}
}
} // namespace bgfx