bgfx/src/renderer_gl.cpp
2015-04-26 15:23:33 -07:00

5648 lines
169 KiB
C++

/*
* Copyright 2011-2015 Branimir Karadzic. All rights reserved.
* License: http://www.opensource.org/licenses/BSD-2-Clause
*/
#include "bgfx_p.h"
#if (BGFX_CONFIG_RENDERER_OPENGLES || BGFX_CONFIG_RENDERER_OPENGL)
# include "renderer_gl.h"
# include <bx/timer.h>
# include <bx/uint32_t.h>
namespace bgfx { namespace gl
{
static char s_viewName[BGFX_CONFIG_MAX_VIEWS][BGFX_CONFIG_MAX_VIEW_NAME];
struct PrimInfo
{
GLenum m_type;
uint32_t m_min;
uint32_t m_div;
uint32_t m_sub;
};
static const PrimInfo s_primInfo[] =
{
{ GL_TRIANGLES, 3, 3, 0 },
{ GL_TRIANGLE_STRIP, 3, 1, 2 },
{ GL_LINES, 2, 2, 0 },
{ GL_LINE_STRIP, 2, 1, 1 },
{ GL_POINTS, 1, 1, 0 },
};
static const char* s_primName[] =
{
"TriList",
"TriStrip",
"Line",
"LineStrip",
"Point",
};
static const char* s_attribName[] =
{
"a_position",
"a_normal",
"a_tangent",
"a_bitangent",
"a_color0",
"a_color1",
"a_indices",
"a_weight",
"a_texcoord0",
"a_texcoord1",
"a_texcoord2",
"a_texcoord3",
"a_texcoord4",
"a_texcoord5",
"a_texcoord6",
"a_texcoord7",
};
BX_STATIC_ASSERT(Attrib::Count == BX_COUNTOF(s_attribName) );
static const char* s_instanceDataName[] =
{
"i_data0",
"i_data1",
"i_data2",
"i_data3",
"i_data4",
};
BX_STATIC_ASSERT(BGFX_CONFIG_MAX_INSTANCE_DATA_COUNT == BX_COUNTOF(s_instanceDataName) );
static const GLenum s_access[] =
{
GL_READ_ONLY,
GL_WRITE_ONLY,
GL_READ_WRITE,
};
BX_STATIC_ASSERT(Access::Count == BX_COUNTOF(s_access) );
static const GLenum s_attribType[] =
{
GL_UNSIGNED_BYTE,
GL_SHORT,
GL_HALF_FLOAT,
GL_FLOAT,
};
BX_STATIC_ASSERT(AttribType::Count == BX_COUNTOF(s_attribType) );
struct Blend
{
GLenum m_src;
GLenum m_dst;
bool m_factor;
};
static const Blend s_blendFactor[] =
{
{ 0, 0, false }, // ignored
{ GL_ZERO, GL_ZERO, false }, // ZERO
{ GL_ONE, GL_ONE, false }, // ONE
{ GL_SRC_COLOR, GL_SRC_COLOR, false }, // SRC_COLOR
{ GL_ONE_MINUS_SRC_COLOR, GL_ONE_MINUS_SRC_COLOR, false }, // INV_SRC_COLOR
{ GL_SRC_ALPHA, GL_SRC_ALPHA, false }, // SRC_ALPHA
{ GL_ONE_MINUS_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, false }, // INV_SRC_ALPHA
{ GL_DST_ALPHA, GL_DST_ALPHA, false }, // DST_ALPHA
{ GL_ONE_MINUS_DST_ALPHA, GL_ONE_MINUS_DST_ALPHA, false }, // INV_DST_ALPHA
{ GL_DST_COLOR, GL_DST_COLOR, false }, // DST_COLOR
{ GL_ONE_MINUS_DST_COLOR, GL_ONE_MINUS_DST_COLOR, false }, // INV_DST_COLOR
{ GL_SRC_ALPHA_SATURATE, GL_ONE, false }, // SRC_ALPHA_SAT
{ GL_CONSTANT_COLOR, GL_CONSTANT_COLOR, true }, // FACTOR
{ GL_ONE_MINUS_CONSTANT_COLOR, GL_ONE_MINUS_CONSTANT_COLOR, true }, // INV_FACTOR
};
static const GLenum s_blendEquation[] =
{
GL_FUNC_ADD,
GL_FUNC_SUBTRACT,
GL_FUNC_REVERSE_SUBTRACT,
GL_MIN,
GL_MAX,
};
static const GLenum s_cmpFunc[] =
{
0, // ignored
GL_LESS,
GL_LEQUAL,
GL_EQUAL,
GL_GEQUAL,
GL_GREATER,
GL_NOTEQUAL,
GL_NEVER,
GL_ALWAYS,
};
static const GLenum s_stencilOp[] =
{
GL_ZERO,
GL_KEEP,
GL_REPLACE,
GL_INCR_WRAP,
GL_INCR,
GL_DECR_WRAP,
GL_DECR,
GL_INVERT,
};
static const GLenum s_stencilFace[] =
{
GL_FRONT_AND_BACK,
GL_FRONT,
GL_BACK,
};
static const GLenum s_textureAddress[] =
{
GL_REPEAT,
GL_MIRRORED_REPEAT,
GL_CLAMP_TO_EDGE,
};
static const GLenum s_textureFilterMag[] =
{
GL_LINEAR,
GL_NEAREST,
GL_LINEAR,
};
static const GLenum s_textureFilterMin[][3] =
{
{ GL_LINEAR, GL_LINEAR_MIPMAP_LINEAR, GL_NEAREST_MIPMAP_LINEAR },
{ GL_NEAREST, GL_LINEAR_MIPMAP_NEAREST, GL_NEAREST_MIPMAP_NEAREST },
{ GL_LINEAR, GL_LINEAR_MIPMAP_LINEAR, GL_NEAREST_MIPMAP_LINEAR },
};
struct TextureFormatInfo
{
GLenum m_internalFmt;
GLenum m_fmt;
GLenum m_type;
bool m_supported;
};
static TextureFormatInfo s_textureFormat[] =
{
{ GL_COMPRESSED_RGBA_S3TC_DXT1_EXT, GL_COMPRESSED_RGBA_S3TC_DXT1_EXT, GL_ZERO, false }, // BC1
{ GL_COMPRESSED_RGBA_S3TC_DXT3_EXT, GL_COMPRESSED_RGBA_S3TC_DXT3_EXT, GL_ZERO, false }, // BC2
{ GL_COMPRESSED_RGBA_S3TC_DXT5_EXT, GL_COMPRESSED_RGBA_S3TC_DXT5_EXT, GL_ZERO, false }, // BC3
{ GL_COMPRESSED_LUMINANCE_LATC1_EXT, GL_COMPRESSED_LUMINANCE_LATC1_EXT, GL_ZERO, false }, // BC4
{ GL_COMPRESSED_LUMINANCE_ALPHA_LATC2_EXT, GL_COMPRESSED_LUMINANCE_ALPHA_LATC2_EXT, GL_ZERO, false }, // BC5
{ GL_COMPRESSED_RGB_BPTC_SIGNED_FLOAT_ARB, GL_COMPRESSED_RGB_BPTC_SIGNED_FLOAT_ARB, GL_ZERO, false }, // BC6H
{ GL_COMPRESSED_RGBA_BPTC_UNORM_ARB, GL_COMPRESSED_RGBA_BPTC_UNORM_ARB, GL_ZERO, false }, // BC7
{ GL_ETC1_RGB8_OES, GL_ETC1_RGB8_OES, GL_ZERO, false }, // ETC1
{ GL_COMPRESSED_RGB8_ETC2, GL_COMPRESSED_RGB8_ETC2, GL_ZERO, false }, // ETC2
{ GL_COMPRESSED_RGBA8_ETC2_EAC, GL_COMPRESSED_RGBA8_ETC2_EAC, GL_ZERO, false }, // ETC2A
{ GL_COMPRESSED_RGB8_PUNCHTHROUGH_ALPHA1_ETC2, GL_COMPRESSED_RGB8_PUNCHTHROUGH_ALPHA1_ETC2, GL_ZERO, false }, // ETC2A1
{ GL_COMPRESSED_RGB_PVRTC_2BPPV1_IMG, GL_COMPRESSED_RGB_PVRTC_2BPPV1_IMG, GL_ZERO, false }, // PTC12
{ GL_COMPRESSED_RGB_PVRTC_4BPPV1_IMG, GL_COMPRESSED_RGB_PVRTC_4BPPV1_IMG, GL_ZERO, false }, // PTC14
{ GL_COMPRESSED_RGBA_PVRTC_2BPPV1_IMG, GL_COMPRESSED_RGBA_PVRTC_2BPPV1_IMG, GL_ZERO, false }, // PTC12A
{ GL_COMPRESSED_RGBA_PVRTC_4BPPV1_IMG, GL_COMPRESSED_RGBA_PVRTC_4BPPV1_IMG, GL_ZERO, false }, // PTC14A
{ GL_COMPRESSED_RGBA_PVRTC_2BPPV2_IMG, GL_COMPRESSED_RGBA_PVRTC_2BPPV2_IMG, GL_ZERO, false }, // PTC22
{ GL_COMPRESSED_RGBA_PVRTC_4BPPV2_IMG, GL_COMPRESSED_RGBA_PVRTC_4BPPV2_IMG, GL_ZERO, false }, // PTC24
{ GL_ZERO, GL_ZERO, GL_ZERO, false }, // Unknown
{ GL_ZERO, GL_ZERO, GL_ZERO, false }, // R1
{ GL_R8, GL_RED, GL_UNSIGNED_BYTE, false }, // R8
{ GL_R16, GL_RED, GL_UNSIGNED_SHORT, false }, // R16
{ GL_R16F, GL_RED, GL_HALF_FLOAT, false }, // R16F
{ GL_R32UI, GL_RED, GL_UNSIGNED_INT, false }, // R32
{ GL_R32F, GL_RED, GL_FLOAT, false }, // R32F
{ GL_RG8, GL_RG, GL_UNSIGNED_BYTE, false }, // RG8
{ GL_RG16, GL_RG, GL_UNSIGNED_SHORT, false }, // RG16
{ GL_RG16F, GL_RG, GL_FLOAT, false }, // RG16F
{ GL_RG32UI, GL_RG, GL_UNSIGNED_INT, false }, // RG32
{ GL_RG32F, GL_RG, GL_FLOAT, false }, // RG32F
{ GL_RGBA8, GL_BGRA, GL_UNSIGNED_BYTE, false }, // BGRA8
{ GL_RGBA8, GL_RGBA, GL_UNSIGNED_BYTE, false }, // RGBA8
{ GL_RGBA16, GL_RGBA, GL_UNSIGNED_BYTE, false }, // RGBA16
{ GL_RGBA16F, GL_RGBA, GL_HALF_FLOAT, false }, // RGBA16F
{ GL_RGBA32UI, GL_RGBA, GL_UNSIGNED_INT, false }, // RGBA32
{ GL_RGBA32F, GL_RGBA, GL_FLOAT, false }, // RGBA32F
{ GL_RGB565, GL_RGB, GL_UNSIGNED_SHORT_5_6_5, false }, // R5G6B5
{ GL_RGBA4, GL_RGBA, GL_UNSIGNED_SHORT_4_4_4_4, false }, // RGBA4
{ GL_RGB5_A1, GL_RGBA, GL_UNSIGNED_SHORT_5_5_5_1, false }, // RGB5A1
{ GL_RGB10_A2, GL_RGBA, GL_UNSIGNED_INT_2_10_10_10_REV, false }, // RGB10A2
{ GL_R11F_G11F_B10F, GL_RGB, GL_UNSIGNED_INT_10F_11F_11F_REV, false }, // R11G11B10F
{ GL_ZERO, GL_ZERO, GL_ZERO, false }, // UnknownDepth
{ GL_DEPTH_COMPONENT16, GL_DEPTH_COMPONENT, GL_UNSIGNED_SHORT, false }, // D16
{ GL_DEPTH_COMPONENT24, GL_DEPTH_COMPONENT, GL_UNSIGNED_INT, false }, // D24
{ GL_DEPTH24_STENCIL8, GL_DEPTH_STENCIL, GL_UNSIGNED_INT_24_8, false }, // D24S8
{ GL_DEPTH_COMPONENT32, GL_DEPTH_COMPONENT, GL_UNSIGNED_INT, false }, // D32
{ GL_DEPTH_COMPONENT32F, GL_DEPTH_COMPONENT, GL_FLOAT, false }, // D16F
{ GL_DEPTH_COMPONENT32F, GL_DEPTH_COMPONENT, GL_FLOAT, false }, // D24F
{ GL_DEPTH_COMPONENT32F, GL_DEPTH_COMPONENT, GL_FLOAT, false }, // D32F
{ GL_STENCIL_INDEX8, GL_STENCIL_INDEX, GL_UNSIGNED_BYTE, false }, // D0S8
};
BX_STATIC_ASSERT(TextureFormat::Count == BX_COUNTOF(s_textureFormat) );
static bool s_textureFilter[TextureFormat::Count+1];
static GLenum s_rboFormat[] =
{
GL_ZERO, // BC1
GL_ZERO, // BC2
GL_ZERO, // BC3
GL_ZERO, // BC4
GL_ZERO, // BC5
GL_ZERO, // BC6H
GL_ZERO, // BC7
GL_ZERO, // ETC1
GL_ZERO, // ETC2
GL_ZERO, // ETC2A
GL_ZERO, // ETC2A1
GL_ZERO, // PTC12
GL_ZERO, // PTC14
GL_ZERO, // PTC12A
GL_ZERO, // PTC14A
GL_ZERO, // PTC22
GL_ZERO, // PTC24
GL_ZERO, // Unknown
GL_ZERO, // R1
GL_R8, // R8
GL_R16, // R16
GL_R16F, // R16F
GL_R32UI, // R32
GL_R32F, // R32F
GL_RG8, // RG8
GL_RG16, // RG16
GL_RG16F, // RG16F
GL_RG32UI, // RG32
GL_RG32F, // RG32F
GL_RGBA8, // BGRA8
GL_RGBA8, // RGBA8
GL_RGBA16, // RGBA16
GL_RGBA16F, // RGBA16F
GL_RGBA32UI, // RGBA32
GL_RGBA32F, // RGBA32F
GL_RGB565, // R5G6B5
GL_RGBA4, // RGBA4
GL_RGB5_A1, // RGB5A1
GL_RGB10_A2, // RGB10A2
GL_R11F_G11F_B10F, // R11G11B10F
GL_ZERO, // UnknownDepth
GL_DEPTH_COMPONENT16, // D16
GL_DEPTH_COMPONENT24, // D24
GL_DEPTH24_STENCIL8, // D24S8
GL_DEPTH_COMPONENT32, // D32
GL_DEPTH_COMPONENT32F, // D16F
GL_DEPTH_COMPONENT32F, // D24F
GL_DEPTH_COMPONENT32F, // D32F
GL_STENCIL_INDEX8, // D0S8
};
BX_STATIC_ASSERT(TextureFormat::Count == BX_COUNTOF(s_rboFormat) );
static GLenum s_imageFormat[] =
{
GL_ZERO, // BC1
GL_ZERO, // BC2
GL_ZERO, // BC3
GL_ZERO, // BC4
GL_ZERO, // BC5
GL_ZERO, // BC6H
GL_ZERO, // BC7
GL_ZERO, // ETC1
GL_ZERO, // ETC2
GL_ZERO, // ETC2A
GL_ZERO, // ETC2A1
GL_ZERO, // PTC12
GL_ZERO, // PTC14
GL_ZERO, // PTC12A
GL_ZERO, // PTC14A
GL_ZERO, // PTC22
GL_ZERO, // PTC24
GL_ZERO, // Unknown
GL_ZERO, // R1
GL_R8, // R8
GL_R16, // R16
GL_R16F, // R16F
GL_R32UI, // R32
GL_R32F, // R32F
GL_RG8, // RG8
GL_RG16, // RG16
GL_RG16F, // RG16F
GL_RG32UI, // RG32
GL_RG32F, // RG32F
GL_RGBA8, // BGRA8
GL_RGBA8, // RGBA8
GL_RGBA16, // RGBA16
GL_RGBA16F, // RGBA16F
GL_RGBA32UI, // RGBA32
GL_RGBA32F, // RGBA32F
GL_RGB565, // R5G6B5
GL_RGBA4, // RGBA4
GL_RGB5_A1, // RGB5A1
GL_RGB10_A2, // RGB10A2
GL_R11F_G11F_B10F, // R11G11B10F
GL_ZERO, // UnknownDepth
GL_ZERO, // D16
GL_ZERO, // D24
GL_ZERO, // D24S8
GL_ZERO, // D32
GL_ZERO, // D16F
GL_ZERO, // D24F
GL_ZERO, // D32F
GL_ZERO, // D0S8
};
BX_STATIC_ASSERT(TextureFormat::Count == BX_COUNTOF(s_imageFormat) );
struct Extension
{
enum Enum
{
AMD_conservative_depth,
ANGLE_depth_texture,
ANGLE_framebuffer_blit,
ANGLE_framebuffer_multisample,
ANGLE_instanced_arrays,
ANGLE_texture_compression_dxt1,
ANGLE_texture_compression_dxt3,
ANGLE_texture_compression_dxt5,
ANGLE_timer_query,
ANGLE_translated_shader_source,
APPLE_texture_format_BGRA8888,
APPLE_texture_max_level,
ARB_compute_shader,
ARB_conservative_depth,
ARB_debug_label,
ARB_debug_output,
ARB_depth_buffer_float,
ARB_depth_clamp,
ARB_draw_buffers_blend,
ARB_draw_instanced,
ARB_ES3_compatibility,
ARB_framebuffer_object,
ARB_framebuffer_sRGB,
ARB_get_program_binary,
ARB_half_float_pixel,
ARB_half_float_vertex,
ARB_instanced_arrays,
ARB_invalidate_subdata,
ARB_map_buffer_range,
ARB_multisample,
ARB_occlusion_query,
ARB_occlusion_query2,
ARB_program_interface_query,
ARB_sampler_objects,
ARB_seamless_cube_map,
ARB_shader_bit_encoding,
ARB_shader_image_load_store,
ARB_shader_storage_buffer_object,
ARB_shader_texture_lod,
ARB_texture_compression_bptc,
ARB_texture_compression_rgtc,
ARB_texture_float,
ARB_texture_multisample,
ARB_texture_rg,
ARB_texture_rgb10_a2ui,
ARB_texture_stencil8,
ARB_texture_storage,
ARB_texture_swizzle,
ARB_timer_query,
ARB_uniform_buffer_object,
ARB_vertex_array_object,
ARB_vertex_type_2_10_10_10_rev,
ATI_meminfo,
CHROMIUM_color_buffer_float_rgb,
CHROMIUM_color_buffer_float_rgba,
CHROMIUM_depth_texture,
CHROMIUM_framebuffer_multisample,
CHROMIUM_texture_compression_dxt3,
CHROMIUM_texture_compression_dxt5,
EXT_bgra,
EXT_blend_color,
EXT_blend_minmax,
EXT_blend_subtract,
EXT_color_buffer_half_float,
EXT_color_buffer_float,
EXT_compressed_ETC1_RGB8_sub_texture,
EXT_debug_label,
EXT_debug_marker,
EXT_discard_framebuffer,
EXT_disjoint_timer_query,
EXT_draw_buffers,
EXT_frag_depth,
EXT_framebuffer_blit,
EXT_framebuffer_object,
EXT_framebuffer_sRGB,
EXT_occlusion_query_boolean,
EXT_packed_float,
EXT_read_format_bgra,
EXT_shader_image_load_store,
EXT_shader_texture_lod,
EXT_shadow_samplers,
EXT_texture_array,
EXT_texture_compression_dxt1,
EXT_texture_compression_latc,
EXT_texture_compression_rgtc,
EXT_texture_compression_s3tc,
EXT_texture_filter_anisotropic,
EXT_texture_format_BGRA8888,
EXT_texture_rg,
EXT_texture_sRGB,
EXT_texture_storage,
EXT_texture_swizzle,
EXT_texture_type_2_10_10_10_REV,
EXT_timer_query,
EXT_unpack_subimage,
GOOGLE_depth_texture,
GREMEDY_string_marker,
GREMEDY_frame_terminator,
IMG_multisampled_render_to_texture,
IMG_read_format,
IMG_shader_binary,
IMG_texture_compression_pvrtc,
IMG_texture_compression_pvrtc2,
IMG_texture_format_BGRA8888,
INTEL_fragment_shader_ordering,
KHR_debug,
MOZ_WEBGL_compressed_texture_s3tc,
MOZ_WEBGL_depth_texture,
NV_draw_buffers,
NVX_gpu_memory_info,
OES_compressed_ETC1_RGB8_texture,
OES_depth24,
OES_depth32,
OES_depth_texture,
OES_element_index_uint,
OES_fragment_precision_high,
OES_get_program_binary,
OES_required_internalformat,
OES_packed_depth_stencil,
OES_read_format,
OES_rgb8_rgba8,
OES_standard_derivatives,
OES_texture_3D,
OES_texture_float,
OES_texture_float_linear,
OES_texture_npot,
OES_texture_half_float,
OES_texture_half_float_linear,
OES_texture_stencil8,
OES_vertex_array_object,
OES_vertex_half_float,
OES_vertex_type_10_10_10_2,
WEBGL_color_buffer_float,
WEBGL_compressed_texture_etc1,
WEBGL_compressed_texture_s3tc,
WEBGL_compressed_texture_pvrtc,
WEBGL_depth_texture,
WEBGL_draw_buffers,
WEBKIT_EXT_texture_filter_anisotropic,
WEBKIT_WEBGL_compressed_texture_s3tc,
WEBKIT_WEBGL_depth_texture,
Count
};
const char* m_name;
bool m_supported;
bool m_initialize;
};
// Extension registry
//
// ANGLE:
// https://github.com/google/angle/tree/master/extensions
//
// CHROMIUM:
// https://chromium.googlesource.com/chromium/src.git/+/refs/heads/git-svn/gpu/GLES2/extensions/CHROMIUM
//
// EGL:
// https://www.khronos.org/registry/egl/extensions/
//
// GL:
// https://www.opengl.org/registry/
//
// GLES:
// https://www.khronos.org/registry/gles/extensions/
//
// WEBGL:
// https://www.khronos.org/registry/webgl/extensions/
//
static Extension s_extension[] =
{
{ "AMD_conservative_depth", false, true },
{ "ANGLE_depth_texture", false, true },
{ "ANGLE_framebuffer_blit", false, true },
{ "ANGLE_framebuffer_multisample", false, false },
{ "ANGLE_instanced_arrays", false, true },
{ "ANGLE_texture_compression_dxt1", false, true },
{ "ANGLE_texture_compression_dxt3", false, true },
{ "ANGLE_texture_compression_dxt5", false, true },
{ "ANGLE_timer_query", false, true },
{ "ANGLE_translated_shader_source", false, true },
{ "APPLE_texture_format_BGRA8888", false, true },
{ "APPLE_texture_max_level", false, true },
{ "ARB_compute_shader", BGFX_CONFIG_RENDERER_OPENGL >= 43, true },
{ "ARB_conservative_depth", BGFX_CONFIG_RENDERER_OPENGL >= 42, true },
{ "ARB_debug_label", false, true },
{ "ARB_debug_output", BGFX_CONFIG_RENDERER_OPENGL >= 43, true },
{ "ARB_depth_buffer_float", BGFX_CONFIG_RENDERER_OPENGL >= 33, true },
{ "ARB_depth_clamp", BGFX_CONFIG_RENDERER_OPENGL >= 32, true },
{ "ARB_draw_buffers_blend", BGFX_CONFIG_RENDERER_OPENGL >= 40, true },
{ "ARB_draw_instanced", BGFX_CONFIG_RENDERER_OPENGL >= 33, true },
{ "ARB_ES3_compatibility", BGFX_CONFIG_RENDERER_OPENGL >= 43, true },
{ "ARB_framebuffer_object", BGFX_CONFIG_RENDERER_OPENGL >= 30, true },
{ "ARB_framebuffer_sRGB", BGFX_CONFIG_RENDERER_OPENGL >= 30, true },
{ "ARB_get_program_binary", BGFX_CONFIG_RENDERER_OPENGL >= 41, true },
{ "ARB_half_float_pixel", BGFX_CONFIG_RENDERER_OPENGL >= 30, true },
{ "ARB_half_float_vertex", BGFX_CONFIG_RENDERER_OPENGL >= 30, true },
{ "ARB_instanced_arrays", BGFX_CONFIG_RENDERER_OPENGL >= 33, true },
{ "ARB_invalidate_subdata", BGFX_CONFIG_RENDERER_OPENGL >= 43, true },
{ "ARB_map_buffer_range", BGFX_CONFIG_RENDERER_OPENGL >= 30, true },
{ "ARB_multisample", false, true },
{ "ARB_occlusion_query", BGFX_CONFIG_RENDERER_OPENGL >= 33, true },
{ "ARB_occlusion_query2", BGFX_CONFIG_RENDERER_OPENGL >= 33, true },
{ "ARB_program_interface_query", BGFX_CONFIG_RENDERER_OPENGL >= 43, true },
{ "ARB_sampler_objects", BGFX_CONFIG_RENDERER_OPENGL >= 33, true },
{ "ARB_seamless_cube_map", BGFX_CONFIG_RENDERER_OPENGL >= 32, true },
{ "ARB_shader_bit_encoding", BGFX_CONFIG_RENDERER_OPENGL >= 33, true },
{ "ARB_shader_image_load_store", BGFX_CONFIG_RENDERER_OPENGL >= 42, true },
{ "ARB_shader_storage_buffer_object", BGFX_CONFIG_RENDERER_OPENGL >= 43, true },
{ "ARB_shader_texture_lod", BGFX_CONFIG_RENDERER_OPENGL >= 30, true },
{ "ARB_texture_compression_bptc", BGFX_CONFIG_RENDERER_OPENGL >= 44, true },
{ "ARB_texture_compression_rgtc", BGFX_CONFIG_RENDERER_OPENGL >= 30, true },
{ "ARB_texture_float", BGFX_CONFIG_RENDERER_OPENGL >= 30, true },
{ "ARB_texture_multisample", BGFX_CONFIG_RENDERER_OPENGL >= 32, true },
{ "ARB_texture_rg", BGFX_CONFIG_RENDERER_OPENGL >= 30, true },
{ "ARB_texture_rgb10_a2ui", BGFX_CONFIG_RENDERER_OPENGL >= 33, true },
{ "ARB_texture_stencil8", false, true },
{ "ARB_texture_storage", BGFX_CONFIG_RENDERER_OPENGL >= 42, true },
{ "ARB_texture_swizzle", BGFX_CONFIG_RENDERER_OPENGL >= 33, true },
{ "ARB_timer_query", BGFX_CONFIG_RENDERER_OPENGL >= 33, true },
{ "ARB_uniform_buffer_object", BGFX_CONFIG_RENDERER_OPENGL >= 31, true },
{ "ARB_vertex_array_object", BGFX_CONFIG_RENDERER_OPENGL >= 30, true },
{ "ARB_vertex_type_2_10_10_10_rev", false, true },
{ "ATI_meminfo", false, true },
{ "CHROMIUM_color_buffer_float_rgb", false, true },
{ "CHROMIUM_color_buffer_float_rgba", false, true },
{ "CHROMIUM_depth_texture", false, true },
{ "CHROMIUM_framebuffer_multisample", false, true },
{ "CHROMIUM_texture_compression_dxt3", false, true },
{ "CHROMIUM_texture_compression_dxt5", false, true },
{ "EXT_bgra", false, true },
{ "EXT_blend_color", BGFX_CONFIG_RENDERER_OPENGL >= 31, true },
{ "EXT_blend_minmax", BGFX_CONFIG_RENDERER_OPENGL >= 14, true },
{ "EXT_blend_subtract", BGFX_CONFIG_RENDERER_OPENGL >= 14, true },
{ "EXT_color_buffer_half_float", false, true }, // GLES2 extension.
{ "EXT_color_buffer_float", false, true }, // GLES2 extension.
{ "EXT_compressed_ETC1_RGB8_sub_texture", false, true }, // GLES2 extension.
{ "EXT_debug_label", false, true },
{ "EXT_debug_marker", false, true },
{ "EXT_discard_framebuffer", false, true }, // GLES2 extension.
{ "EXT_disjoint_timer_query", false, true }, // GLES2 extension.
{ "EXT_draw_buffers", false, true }, // GLES2 extension.
{ "EXT_frag_depth", false, true }, // GLES2 extension.
{ "EXT_framebuffer_blit", BGFX_CONFIG_RENDERER_OPENGL >= 30, true },
{ "EXT_framebuffer_object", BGFX_CONFIG_RENDERER_OPENGL >= 30, true },
{ "EXT_framebuffer_sRGB", BGFX_CONFIG_RENDERER_OPENGL >= 30, true },
{ "EXT_occlusion_query_boolean", false, true },
{ "EXT_packed_float", BGFX_CONFIG_RENDERER_OPENGL >= 33, true },
{ "EXT_read_format_bgra", false, true },
{ "EXT_shader_image_load_store", false, true },
{ "EXT_shader_texture_lod", false, true }, // GLES2 extension.
{ "EXT_shadow_samplers", false, true },
{ "EXT_texture_array", BGFX_CONFIG_RENDERER_OPENGL >= 30, true },
{ "EXT_texture_compression_dxt1", false, true },
{ "EXT_texture_compression_latc", false, true },
{ "EXT_texture_compression_rgtc", BGFX_CONFIG_RENDERER_OPENGL >= 30, true },
{ "EXT_texture_compression_s3tc", false, true },
{ "EXT_texture_filter_anisotropic", false, true },
{ "EXT_texture_format_BGRA8888", false, true },
{ "EXT_texture_rg", false, true }, // GLES2 extension.
{ "EXT_texture_sRGB", false, true },
{ "EXT_texture_storage", false, true },
{ "EXT_texture_swizzle", false, true },
{ "EXT_texture_type_2_10_10_10_REV", false, true },
{ "EXT_timer_query", BGFX_CONFIG_RENDERER_OPENGL >= 33, true },
{ "EXT_unpack_subimage", false, true },
{ "GOOGLE_depth_texture", false, true },
{ "GREMEDY_string_marker", false, true },
{ "GREMEDY_frame_terminator", false, true },
{ "IMG_multisampled_render_to_texture", false, true },
{ "IMG_read_format", false, true },
{ "IMG_shader_binary", false, true },
{ "IMG_texture_compression_pvrtc", false, true },
{ "IMG_texture_compression_pvrtc2", false, true },
{ "IMG_texture_format_BGRA8888", false, true },
{ "INTEL_fragment_shader_ordering", false, true },
{ "KHR_debug", BGFX_CONFIG_RENDERER_OPENGL >= 43, true },
{ "MOZ_WEBGL_compressed_texture_s3tc", false, true },
{ "MOZ_WEBGL_depth_texture", false, true },
{ "NV_draw_buffers", false, true }, // GLES2 extension.
{ "NVX_gpu_memory_info", false, true },
{ "OES_compressed_ETC1_RGB8_texture", false, true },
{ "OES_depth24", false, true },
{ "OES_depth32", false, true },
{ "OES_depth_texture", false, true },
{ "OES_element_index_uint", false, true },
{ "OES_fragment_precision_high", false, true },
{ "OES_get_program_binary", false, true },
{ "OES_required_internalformat", false, true },
{ "OES_packed_depth_stencil", false, true },
{ "OES_read_format", false, true },
{ "OES_rgb8_rgba8", false, true },
{ "OES_standard_derivatives", false, true },
{ "OES_texture_3D", false, true },
{ "OES_texture_float", false, true },
{ "OES_texture_float_linear", false, true },
{ "OES_texture_npot", false, true },
{ "OES_texture_half_float", false, true },
{ "OES_texture_half_float_linear", false, true },
{ "OES_texture_stencil8", false, true },
{ "OES_vertex_array_object", false, !BX_PLATFORM_IOS },
{ "OES_vertex_half_float", false, true },
{ "OES_vertex_type_10_10_10_2", false, true },
{ "WEBGL_color_buffer_float", false, true },
{ "WEBGL_compressed_texture_etc1", false, true },
{ "WEBGL_compressed_texture_s3tc", false, true },
{ "WEBGL_compressed_texture_pvrtc", false, true },
{ "WEBGL_depth_texture", false, true },
{ "WEBGL_draw_buffers", false, true },
{ "WEBKIT_EXT_texture_filter_anisotropic", false, true },
{ "WEBKIT_WEBGL_compressed_texture_s3tc", false, true },
{ "WEBKIT_WEBGL_depth_texture", false, true },
};
BX_STATIC_ASSERT(Extension::Count == BX_COUNTOF(s_extension) );
static const char* s_ARB_shader_texture_lod[] =
{
"texture2DLod",
"texture2DProjLod",
"texture3DLod",
"texture3DProjLod",
"textureCubeLod",
"shadow2DLod",
"shadow2DProjLod",
NULL
// "texture1DLod",
// "texture1DProjLod",
// "shadow1DLod",
// "shadow1DProjLod",
};
static const char* s_EXT_shader_texture_lod[] =
{
"texture2DLod",
"texture2DProjLod",
"textureCubeLod",
NULL
// "texture2DGrad",
// "texture2DProjGrad",
// "textureCubeGrad",
};
static const char* s_EXT_shadow_samplers[] =
{
"shadow2D",
"shadow2DProj",
NULL
};
static const char* s_OES_standard_derivatives[] =
{
"dFdx",
"dFdy",
"fwidth",
NULL
};
static const char* s_OES_texture_3D[] =
{
"texture3D",
"texture3DProj",
"texture3DLod",
"texture3DProjLod",
NULL
};
static const char* s_uisamplers[] =
{
"isampler2D",
"usampler2D",
"isampler3D",
"usampler3D",
"isamplerCube",
"usamplerCube",
NULL
};
static void GL_APIENTRY stubVertexAttribDivisor(GLuint /*_index*/, GLuint /*_divisor*/)
{
}
static void GL_APIENTRY stubDrawArraysInstanced(GLenum _mode, GLint _first, GLsizei _count, GLsizei /*_primcount*/)
{
GL_CHECK(glDrawArrays(_mode, _first, _count) );
}
static void GL_APIENTRY stubDrawElementsInstanced(GLenum _mode, GLsizei _count, GLenum _type, const GLvoid* _indices, GLsizei /*_primcount*/)
{
GL_CHECK(glDrawElements(_mode, _count, _type, _indices) );
}
static void GL_APIENTRY stubFrameTerminatorGREMEDY()
{
}
static void GL_APIENTRY stubInsertEventMarker(GLsizei /*_length*/, const char* /*_marker*/)
{
}
static void GL_APIENTRY stubInsertEventMarkerGREMEDY(GLsizei _length, const char* _marker)
{
// If <marker> is a null-terminated string then <length> should not
// include the terminator.
//
// If <length> is 0 then <marker> is assumed to be null-terminated.
uint32_t size = (0 == _length ? (uint32_t)strlen(_marker) : _length) + 1;
size *= sizeof(wchar_t);
wchar_t* name = (wchar_t*)alloca(size);
mbstowcs(name, _marker, size-2);
GL_CHECK(glStringMarkerGREMEDY(_length, _marker) );
}
static void GL_APIENTRY stubObjectLabel(GLenum /*_identifier*/, GLuint /*_name*/, GLsizei /*_length*/, const char* /*_label*/)
{
}
static void GL_APIENTRY stubInvalidateFramebuffer(GLenum /*_target*/, GLsizei /*_numAttachments*/, const GLenum* /*_attachments*/)
{
}
typedef void (*PostSwapBuffersFn)(uint32_t _width, uint32_t _height);
static const char* getGLString(GLenum _name)
{
const char* str = (const char*)glGetString(_name);
glGetError(); // ignore error if glGetString returns NULL.
if (NULL != str)
{
return str;
}
return "<unknown>";
}
static uint32_t getGLStringHash(GLenum _name)
{
const char* str = (const char*)glGetString(_name);
glGetError(); // ignore error if glGetString returns NULL.
if (NULL != str)
{
return bx::hashMurmur2A(str, (uint32_t)strlen(str) );
}
return 0;
}
void dumpExtensions(const char* _extensions)
{
if (NULL != _extensions)
{
char name[1024];
const char* pos = _extensions;
const char* end = _extensions + strlen(_extensions);
while (pos < end)
{
uint32_t len;
const char* space = strchr(pos, ' ');
if (NULL != space)
{
len = bx::uint32_min(sizeof(name), (uint32_t)(space - pos) );
}
else
{
len = bx::uint32_min(sizeof(name), (uint32_t)strlen(pos) );
}
strncpy(name, pos, len);
name[len] = '\0';
BX_TRACE("\t%s", name);
pos += len+1;
}
}
}
const char* toString(GLenum _enum)
{
switch (_enum)
{
case GL_DEBUG_SOURCE_API: return "API";
case GL_DEBUG_SOURCE_WINDOW_SYSTEM: return "WinSys";
case GL_DEBUG_SOURCE_SHADER_COMPILER: return "Shader";
case GL_DEBUG_SOURCE_THIRD_PARTY: return "3rdparty";
case GL_DEBUG_SOURCE_APPLICATION: return "Application";
case GL_DEBUG_SOURCE_OTHER: return "Other";
case GL_DEBUG_TYPE_ERROR: return "Error";
case GL_DEBUG_TYPE_DEPRECATED_BEHAVIOR: return "Deprecated behavior";
case GL_DEBUG_TYPE_UNDEFINED_BEHAVIOR: return "Undefined behavior";
case GL_DEBUG_TYPE_PORTABILITY: return "Portability";
case GL_DEBUG_TYPE_PERFORMANCE: return "Performance";
case GL_DEBUG_TYPE_OTHER: return "Other";
case GL_DEBUG_SEVERITY_HIGH: return "High";
case GL_DEBUG_SEVERITY_MEDIUM: return "Medium";
case GL_DEBUG_SEVERITY_LOW: return "Low";
default:
break;
}
return "<unknown>";
}
void GL_APIENTRY debugProcCb(GLenum _source, GLenum _type, GLuint _id, GLenum _severity, GLsizei /*_length*/, const GLchar* _message, const void* /*_userParam*/)
{
BX_TRACE("src %s, type %s, id %d, severity %s, '%s'"
, toString(_source)
, toString(_type)
, _id
, toString(_severity)
, _message
);
BX_UNUSED(_source, _type, _id, _severity, _message);
}
GLint glGet(GLenum _pname)
{
GLint result = 0;
glGetIntegerv(_pname, &result);
GLenum err = glGetError();
BX_WARN(0 == err, "glGetIntegerv(0x%04x, ...) failed with GL error: 0x%04x.", _pname, err);
return 0 == err ? result : 0;
}
void setTextureFormat(TextureFormat::Enum _format, GLenum _internalFmt, GLenum _fmt, GLenum _type = GL_ZERO)
{
TextureFormatInfo& tfi = s_textureFormat[_format];
tfi.m_internalFmt = _internalFmt;
tfi.m_fmt = _fmt;
tfi.m_type = _type;
}
bool isTextureFormatValid(TextureFormat::Enum _format)
{
const TextureFormatInfo& tfi = s_textureFormat[_format];
if (GL_ZERO == tfi.m_internalFmt)
{
return false;
}
GLuint id;
GL_CHECK(glGenTextures(1, &id) );
GL_CHECK(glBindTexture(GL_TEXTURE_2D, id) );
GLsizei size = (16*16*getBitsPerPixel(_format) )/8;
void* data = alloca(size);
if (isCompressed(_format) )
{
glCompressedTexImage2D(GL_TEXTURE_2D, 0, tfi.m_internalFmt, 16, 16, 0, size, data);
}
else
{
glTexImage2D(GL_TEXTURE_2D, 0, tfi.m_internalFmt, 16, 16, 0, tfi.m_fmt, tfi.m_type, data);
}
GLenum err = glGetError();
BX_WARN(0 == err, "TextureFormat::%s is not supported (%x: %s).", getName(_format), err, glEnumName(err) );
GL_CHECK(glDeleteTextures(1, &id) );
return 0 == err;
}
static void getFilters(uint32_t _flags, bool _hasMips, GLenum& _magFilter, GLenum& _minFilter)
{
const uint32_t mag = (_flags&BGFX_TEXTURE_MAG_MASK)>>BGFX_TEXTURE_MAG_SHIFT;
const uint32_t min = (_flags&BGFX_TEXTURE_MIN_MASK)>>BGFX_TEXTURE_MIN_SHIFT;
const uint32_t mip = (_flags&BGFX_TEXTURE_MIP_MASK)>>BGFX_TEXTURE_MIP_SHIFT;
_magFilter = s_textureFilterMag[mag];
_minFilter = s_textureFilterMin[min][_hasMips ? mip+1 : 0];
}
struct RendererContextGL : public RendererContextI
{
RendererContextGL()
: m_numWindows(1)
, m_rtMsaa(false)
, m_fbDiscard(BGFX_CLEAR_NONE)
, m_capture(NULL)
, m_captureSize(0)
, m_maxAnisotropy(0.0f)
, m_maxAnisotropyDefault(0.0f)
, m_maxMsaa(0)
, m_vao(0)
, m_vaoSupport(false)
, m_samplerObjectSupport(false)
, m_shadowSamplersSupport(false)
, m_programBinarySupport(false)
, m_textureSwizzleSupport(false)
, m_depthTextureSupport(false)
, m_timerQuerySupport(false)
, m_flip(false)
, m_hash( (BX_PLATFORM_WINDOWS<<1) | BX_ARCH_64BIT)
, m_backBufferFbo(0)
, m_msaaBackBufferFbo(0)
, m_ovrFbo(0)
{
memset(m_msaaBackBufferRbos, 0, sizeof(m_msaaBackBufferRbos) );
}
~RendererContextGL()
{
}
void init()
{
m_renderdocdll = loadRenderDoc();
m_fbh.idx = invalidHandle;
memset(m_uniforms, 0, sizeof(m_uniforms) );
memset(&m_resolution, 0, sizeof(m_resolution) );
setRenderContextSize(BGFX_DEFAULT_WIDTH, BGFX_DEFAULT_HEIGHT);
// Must be after context is initialized?!
m_ovr.init();
m_vendor = getGLString(GL_VENDOR);
m_renderer = getGLString(GL_RENDERER);
m_version = getGLString(GL_VERSION);
m_glslVersion = getGLString(GL_SHADING_LANGUAGE_VERSION);
GLint numCmpFormats = 0;
GL_CHECK(glGetIntegerv(GL_NUM_COMPRESSED_TEXTURE_FORMATS, &numCmpFormats) );
BX_TRACE("GL_NUM_COMPRESSED_TEXTURE_FORMATS %d", numCmpFormats);
GLint* cmpFormat = NULL;
if (0 < numCmpFormats)
{
numCmpFormats = numCmpFormats > 256 ? 256 : numCmpFormats;
cmpFormat = (GLint*)alloca(sizeof(GLint)*numCmpFormats);
GL_CHECK(glGetIntegerv(GL_COMPRESSED_TEXTURE_FORMATS, cmpFormat) );
for (GLint ii = 0; ii < numCmpFormats; ++ii)
{
GLint internalFmt = cmpFormat[ii];
uint32_t fmt = uint32_t(TextureFormat::Unknown);
for (uint32_t jj = 0; jj < fmt; ++jj)
{
if (s_textureFormat[jj].m_internalFmt == (GLenum)internalFmt)
{
s_textureFormat[jj].m_supported = true;
fmt = jj;
}
}
BX_TRACE(" %3d: %8x %s", ii, internalFmt, getName( (TextureFormat::Enum)fmt) );
}
}
if (BX_ENABLED(BGFX_CONFIG_DEBUG) )
{
#define GL_GET(_pname, _min) BX_TRACE(" " #_pname " %d (min: %d)", glGet(_pname), _min)
BX_TRACE("Defaults:");
#if BGFX_CONFIG_RENDERER_OPENGL >= 41 || BGFX_CONFIG_RENDERER_OPENGLES
GL_GET(GL_MAX_FRAGMENT_UNIFORM_VECTORS, 16);
GL_GET(GL_MAX_VERTEX_UNIFORM_VECTORS, 128);
GL_GET(GL_MAX_VARYING_VECTORS, 8);
#else
GL_GET(GL_MAX_FRAGMENT_UNIFORM_COMPONENTS, 16 * 4);
GL_GET(GL_MAX_VERTEX_UNIFORM_COMPONENTS, 128 * 4);
GL_GET(GL_MAX_VARYING_FLOATS, 8 * 4);
#endif // BGFX_CONFIG_RENDERER_OPENGL >= 41 || BGFX_CONFIG_RENDERER_OPENGLES
GL_GET(GL_MAX_VERTEX_ATTRIBS, 8);
GL_GET(GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS, 8);
GL_GET(GL_MAX_CUBE_MAP_TEXTURE_SIZE, 16);
GL_GET(GL_MAX_TEXTURE_IMAGE_UNITS, 8);
GL_GET(GL_MAX_TEXTURE_SIZE, 64);
GL_GET(GL_MAX_VERTEX_TEXTURE_IMAGE_UNITS, 0);
GL_GET(GL_MAX_RENDERBUFFER_SIZE, 1);
#undef GL_GET
BX_TRACE(" Vendor: %s", m_vendor);
BX_TRACE(" Renderer: %s", m_renderer);
BX_TRACE(" Version: %s", m_version);
BX_TRACE("GLSL version: %s", m_glslVersion);
}
// Initial binary shader hash depends on driver version.
m_hash = ( (BX_PLATFORM_WINDOWS<<1) | BX_ARCH_64BIT)
^ (uint64_t(getGLStringHash(GL_VENDOR ) )<<32)
^ (uint64_t(getGLStringHash(GL_RENDERER) )<<0 )
^ (uint64_t(getGLStringHash(GL_VERSION ) )<<16)
;
if (BX_ENABLED(BGFX_CONFIG_RENDERER_USE_EXTENSIONS) )
{
const char* extensions = (const char*)glGetString(GL_EXTENSIONS);
glGetError(); // ignore error if glGetString returns NULL.
if (NULL != extensions)
{
char name[1024];
const char* pos = extensions;
const char* end = extensions + strlen(extensions);
uint32_t index = 0;
while (pos < end)
{
uint32_t len;
const char* space = strchr(pos, ' ');
if (NULL != space)
{
len = bx::uint32_min(sizeof(name), (uint32_t)(space - pos) );
}
else
{
len = bx::uint32_min(sizeof(name), (uint32_t)strlen(pos) );
}
strncpy(name, pos, len);
name[len] = '\0';
bool supported = false;
for (uint32_t ii = 0; ii < Extension::Count; ++ii)
{
Extension& extension = s_extension[ii];
if (!extension.m_supported
&& extension.m_initialize)
{
const char* ext = name;
if (0 == strncmp(ext, "GL_", 3) ) // skip GL_
{
ext += 3;
}
if (0 == strcmp(ext, extension.m_name) )
{
extension.m_supported = true;
supported = true;
break;
}
}
}
BX_TRACE("GL_EXTENSION %3d%s: %s", index, supported ? " (supported)" : "", name);
BX_UNUSED(supported);
pos += len+1;
++index;
}
BX_TRACE("Supported extensions:");
for (uint32_t ii = 0; ii < Extension::Count; ++ii)
{
if (s_extension[ii].m_supported)
{
BX_TRACE("\t%2d: %s", ii, s_extension[ii].m_name);
}
}
}
}
// Allow all texture filters.
memset(s_textureFilter, true, BX_COUNTOF(s_textureFilter) );
bool bc123Supported = 0
|| s_extension[Extension::EXT_texture_compression_s3tc ].m_supported
|| s_extension[Extension::MOZ_WEBGL_compressed_texture_s3tc ].m_supported
|| s_extension[Extension::WEBGL_compressed_texture_s3tc ].m_supported
|| s_extension[Extension::WEBKIT_WEBGL_compressed_texture_s3tc].m_supported
;
s_textureFormat[TextureFormat::BC1].m_supported |= bc123Supported
|| s_extension[Extension::ANGLE_texture_compression_dxt1].m_supported
|| s_extension[Extension::EXT_texture_compression_dxt1 ].m_supported
;
if (!s_textureFormat[TextureFormat::BC1].m_supported
&& ( s_textureFormat[TextureFormat::BC2].m_supported || s_textureFormat[TextureFormat::BC3].m_supported) )
{
// If RGBA_S3TC_DXT1 is not supported, maybe RGB_S3TC_DXT1 is?
for (GLint ii = 0; ii < numCmpFormats; ++ii)
{
if (GL_COMPRESSED_RGB_S3TC_DXT1_EXT == cmpFormat[ii])
{
setTextureFormat(TextureFormat::BC1, GL_COMPRESSED_RGB_S3TC_DXT1_EXT, GL_COMPRESSED_RGB_S3TC_DXT1_EXT);
s_textureFormat[TextureFormat::BC1].m_supported = true;
break;
}
}
}
s_textureFormat[TextureFormat::BC2].m_supported |= bc123Supported
|| s_extension[Extension::ANGLE_texture_compression_dxt3 ].m_supported
|| s_extension[Extension::CHROMIUM_texture_compression_dxt3].m_supported
;
s_textureFormat[TextureFormat::BC3].m_supported |= bc123Supported
|| s_extension[Extension::ANGLE_texture_compression_dxt5 ].m_supported
|| s_extension[Extension::CHROMIUM_texture_compression_dxt5].m_supported
;
if (s_extension[Extension::EXT_texture_compression_latc].m_supported)
{
setTextureFormat(TextureFormat::BC4, GL_COMPRESSED_LUMINANCE_LATC1_EXT, GL_COMPRESSED_LUMINANCE_LATC1_EXT);
setTextureFormat(TextureFormat::BC5, GL_COMPRESSED_LUMINANCE_ALPHA_LATC2_EXT, GL_COMPRESSED_LUMINANCE_ALPHA_LATC2_EXT);
}
if (s_extension[Extension::ARB_texture_compression_rgtc].m_supported
|| s_extension[Extension::EXT_texture_compression_rgtc].m_supported)
{
setTextureFormat(TextureFormat::BC4, GL_COMPRESSED_RED_RGTC1, GL_COMPRESSED_RED_RGTC1);
setTextureFormat(TextureFormat::BC5, GL_COMPRESSED_RG_RGTC2, GL_COMPRESSED_RG_RGTC2);
}
bool etc1Supported = 0
|| s_extension[Extension::OES_compressed_ETC1_RGB8_texture].m_supported
|| s_extension[Extension::WEBGL_compressed_texture_etc1 ].m_supported
;
s_textureFormat[TextureFormat::ETC1].m_supported |= etc1Supported;
bool etc2Supported = !!(BGFX_CONFIG_RENDERER_OPENGLES >= 30)
|| s_extension[Extension::ARB_ES3_compatibility].m_supported
;
s_textureFormat[TextureFormat::ETC2 ].m_supported |= etc2Supported;
s_textureFormat[TextureFormat::ETC2A ].m_supported |= etc2Supported;
s_textureFormat[TextureFormat::ETC2A1].m_supported |= etc2Supported;
if (!s_textureFormat[TextureFormat::ETC1].m_supported
&& s_textureFormat[TextureFormat::ETC2].m_supported)
{
// When ETC2 is supported override ETC1 texture format settings.
s_textureFormat[TextureFormat::ETC1].m_internalFmt = GL_COMPRESSED_RGB8_ETC2;
s_textureFormat[TextureFormat::ETC1].m_fmt = GL_COMPRESSED_RGB8_ETC2;
s_textureFormat[TextureFormat::ETC1].m_supported = true;
}
bool ptc1Supported = 0
|| s_extension[Extension::IMG_texture_compression_pvrtc ].m_supported
|| s_extension[Extension::WEBGL_compressed_texture_pvrtc].m_supported
;
s_textureFormat[TextureFormat::PTC12 ].m_supported |= ptc1Supported;
s_textureFormat[TextureFormat::PTC14 ].m_supported |= ptc1Supported;
s_textureFormat[TextureFormat::PTC12A].m_supported |= ptc1Supported;
s_textureFormat[TextureFormat::PTC14A].m_supported |= ptc1Supported;
bool ptc2Supported = s_extension[Extension::IMG_texture_compression_pvrtc2].m_supported;
s_textureFormat[TextureFormat::PTC22].m_supported |= ptc2Supported;
s_textureFormat[TextureFormat::PTC24].m_supported |= ptc2Supported;
if (BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGLES) )
{
setTextureFormat(TextureFormat::D32, GL_DEPTH_COMPONENT, GL_DEPTH_COMPONENT, GL_UNSIGNED_INT);
if (BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGLES < 30) )
{
setTextureFormat(TextureFormat::RGBA16F, GL_RGBA, GL_RGBA, GL_HALF_FLOAT);
if (s_extension[Extension::OES_texture_half_float].m_supported
|| s_extension[Extension::OES_texture_float ].m_supported)
{
// https://www.khronos.org/registry/gles/extensions/OES/OES_texture_float.txt
// When half/float is available via extensions texture will be marked as
// incomplete if it uses anything other than nearest filter.
const bool linear16F = s_extension[Extension::OES_texture_half_float_linear].m_supported;
const bool linear32F = s_extension[Extension::OES_texture_float_linear ].m_supported;
s_textureFilter[TextureFormat::R16F] = linear16F;
s_textureFilter[TextureFormat::RG16F] = linear16F;
s_textureFilter[TextureFormat::RGBA16F] = linear16F;
s_textureFilter[TextureFormat::R32F] = linear32F;
s_textureFilter[TextureFormat::RG32F] = linear32F;
s_textureFilter[TextureFormat::RGBA32F] = linear32F;
}
if (BX_ENABLED(BX_PLATFORM_IOS) )
{
setTextureFormat(TextureFormat::D16, GL_DEPTH_COMPONENT, GL_DEPTH_COMPONENT, GL_UNSIGNED_SHORT);
setTextureFormat(TextureFormat::D24S8, GL_DEPTH_STENCIL, GL_DEPTH_STENCIL, GL_UNSIGNED_INT_24_8);
}
}
}
if (BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGL)
|| BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGLES >= 30) )
{
setTextureFormat(TextureFormat::R16, GL_R16UI, GL_RED_INTEGER, GL_UNSIGNED_SHORT);
setTextureFormat(TextureFormat::RG16, GL_RG16UI, GL_RG_INTEGER, GL_UNSIGNED_SHORT);
setTextureFormat(TextureFormat::RGBA16, GL_RGBA16UI, GL_RGBA_INTEGER, GL_UNSIGNED_SHORT);
setTextureFormat(TextureFormat::R32, GL_R32UI, GL_RED_INTEGER, GL_UNSIGNED_INT);
setTextureFormat(TextureFormat::RG32, GL_RG32UI, GL_RG_INTEGER, GL_UNSIGNED_INT);
setTextureFormat(TextureFormat::RGBA32, GL_RGBA32UI, GL_RGBA_INTEGER, GL_UNSIGNED_INT);
}
if (s_extension[Extension::EXT_texture_format_BGRA8888 ].m_supported
|| s_extension[Extension::EXT_bgra ].m_supported
|| s_extension[Extension::IMG_texture_format_BGRA8888 ].m_supported
|| s_extension[Extension::APPLE_texture_format_BGRA8888].m_supported)
{
if (BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGL) )
{
m_readPixelsFmt = GL_BGRA;
}
// Mixing GLES and GL extensions here. OpenGL EXT_bgra and
// APPLE_texture_format_BGRA8888 wants
// format to be BGRA but internal format to stay RGBA, but
// EXT_texture_format_BGRA8888 wants both format and internal
// format to be BGRA.
//
// Reference:
// https://www.khronos.org/registry/gles/extensions/EXT/EXT_texture_format_BGRA8888.txt
// https://www.opengl.org/registry/specs/EXT/bgra.txt
// https://www.khronos.org/registry/gles/extensions/APPLE/APPLE_texture_format_BGRA8888.txt
if (!s_extension[Extension::EXT_bgra ].m_supported
&& !s_extension[Extension::APPLE_texture_format_BGRA8888].m_supported)
{
s_textureFormat[TextureFormat::BGRA8].m_internalFmt = GL_BGRA;
}
if (!isTextureFormatValid(TextureFormat::BGRA8) )
{
// Revert back to RGBA if texture can't be created.
setTextureFormat(TextureFormat::BGRA8, GL_RGBA, GL_BGRA, GL_UNSIGNED_BYTE);
}
}
if (BX_ENABLED(BX_PLATFORM_EMSCRIPTEN)
|| !isTextureFormatValid(TextureFormat::R8) )
{
// GL core has to use GL_R8 Issue#208, GLES2 has to use GL_LUMINANCE issue#226
s_textureFormat[TextureFormat::R8].m_internalFmt = GL_LUMINANCE;
s_textureFormat[TextureFormat::R8].m_fmt = GL_LUMINANCE;
}
if (!BX_ENABLED(BX_PLATFORM_EMSCRIPTEN) )
{
for (uint32_t ii = 0; ii < TextureFormat::Count; ++ii)
{
if (TextureFormat::Unknown != ii
&& TextureFormat::UnknownDepth != ii)
{
s_textureFormat[ii].m_supported = isTextureFormatValid( (TextureFormat::Enum)ii);
}
}
}
if (BX_ENABLED(0) )
{
// Disable all compressed texture formats. For testing only.
for (uint32_t ii = 0; ii < TextureFormat::Unknown; ++ii)
{
s_textureFormat[ii].m_supported = false;
}
}
const bool computeSupport = false
|| !!(BGFX_CONFIG_RENDERER_OPENGLES >= 31)
|| s_extension[Extension::ARB_compute_shader].m_supported
;
for (uint32_t ii = 0; ii < TextureFormat::Count; ++ii)
{
uint8_t supported = 0;
supported |= s_textureFormat[ii].m_supported
? BGFX_CAPS_FORMAT_TEXTURE_COLOR
: BGFX_CAPS_FORMAT_TEXTURE_NONE
;
supported |= computeSupport
&& GL_ZERO != s_imageFormat[ii]
? BGFX_CAPS_FORMAT_TEXTURE_IMAGE
: BGFX_CAPS_FORMAT_TEXTURE_NONE
;
g_caps.formats[ii] = supported;
}
g_caps.supported |= !!(BGFX_CONFIG_RENDERER_OPENGL || BGFX_CONFIG_RENDERER_OPENGLES >= 30)
|| s_extension[Extension::OES_texture_3D].m_supported
? BGFX_CAPS_TEXTURE_3D
: 0
;
g_caps.supported |= !!(BGFX_CONFIG_RENDERER_OPENGL || BGFX_CONFIG_RENDERER_OPENGLES >= 30)
|| s_extension[Extension::EXT_shadow_samplers].m_supported
? BGFX_CAPS_TEXTURE_COMPARE_ALL
: 0
;
g_caps.supported |= !!(BGFX_CONFIG_RENDERER_OPENGL || BGFX_CONFIG_RENDERER_OPENGLES >= 30)
|| s_extension[Extension::OES_vertex_half_float].m_supported
? BGFX_CAPS_VERTEX_ATTRIB_HALF
: 0
;
g_caps.supported |= !!(BGFX_CONFIG_RENDERER_OPENGL || BGFX_CONFIG_RENDERER_OPENGLES >= 30)
|| s_extension[Extension::EXT_frag_depth].m_supported
? BGFX_CAPS_FRAGMENT_DEPTH
: 0
;
g_caps.supported |= s_extension[Extension::ARB_draw_buffers_blend].m_supported
? BGFX_CAPS_BLEND_INDEPENDENT
: 0
;
g_caps.supported |= s_extension[Extension::INTEL_fragment_shader_ordering].m_supported
? BGFX_CAPS_FRAGMENT_ORDERING
: 0
;
g_caps.supported |= !!(BGFX_CONFIG_RENDERER_OPENGL || BGFX_CONFIG_RENDERER_OPENGLES >= 30)
|| s_extension[Extension::OES_element_index_uint].m_supported
? BGFX_CAPS_INDEX32
: 0
;
g_caps.maxTextureSize = uint16_t(glGet(GL_MAX_TEXTURE_SIZE) );
if (BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGL)
|| BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGLES >= 30)
|| s_extension[Extension::EXT_draw_buffers ].m_supported
|| s_extension[Extension::WEBGL_draw_buffers].m_supported)
{
g_caps.maxFBAttachments = uint8_t(bx::uint32_min(glGet(GL_MAX_COLOR_ATTACHMENTS), BGFX_CONFIG_MAX_FRAME_BUFFER_ATTACHMENTS) );
}
m_vaoSupport = !!(BGFX_CONFIG_RENDERER_OPENGLES >= 30)
|| s_extension[Extension::ARB_vertex_array_object].m_supported
|| s_extension[Extension::OES_vertex_array_object].m_supported
;
if (BX_ENABLED(BX_PLATFORM_NACL) )
{
m_vaoSupport &= true
&& NULL != glGenVertexArrays
&& NULL != glDeleteVertexArrays
&& NULL != glBindVertexArray
;
}
if (m_vaoSupport)
{
GL_CHECK(glGenVertexArrays(1, &m_vao) );
}
m_samplerObjectSupport = !!(BGFX_CONFIG_RENDERER_OPENGLES >= 30)
|| s_extension[Extension::ARB_sampler_objects].m_supported
;
m_shadowSamplersSupport = !!(BGFX_CONFIG_RENDERER_OPENGL || BGFX_CONFIG_RENDERER_OPENGLES >= 30)
|| s_extension[Extension::EXT_shadow_samplers].m_supported
;
m_programBinarySupport = !!(BGFX_CONFIG_RENDERER_OPENGLES >= 30)
|| s_extension[Extension::ARB_get_program_binary].m_supported
|| s_extension[Extension::OES_get_program_binary].m_supported
|| s_extension[Extension::IMG_shader_binary ].m_supported
;
m_textureSwizzleSupport = false
|| s_extension[Extension::ARB_texture_swizzle].m_supported
|| s_extension[Extension::EXT_texture_swizzle].m_supported
;
m_depthTextureSupport = !!(BGFX_CONFIG_RENDERER_OPENGL || BGFX_CONFIG_RENDERER_OPENGLES >= 30)
|| s_extension[Extension::ANGLE_depth_texture ].m_supported
|| s_extension[Extension::CHROMIUM_depth_texture ].m_supported
|| s_extension[Extension::GOOGLE_depth_texture ].m_supported
|| s_extension[Extension::OES_depth_texture ].m_supported
|| s_extension[Extension::MOZ_WEBGL_depth_texture ].m_supported
|| s_extension[Extension::WEBGL_depth_texture ].m_supported
|| s_extension[Extension::WEBKIT_WEBGL_depth_texture].m_supported
;
m_timerQuerySupport = 0
|| s_extension[Extension::ANGLE_timer_query ].m_supported
|| s_extension[Extension::ARB_timer_query ].m_supported
|| s_extension[Extension::EXT_disjoint_timer_query].m_supported
|| s_extension[Extension::EXT_timer_query ].m_supported
;
m_timerQuerySupport &= NULL != glGetQueryObjectui64v;
g_caps.supported |= m_depthTextureSupport
? BGFX_CAPS_TEXTURE_COMPARE_LEQUAL
: 0
;
g_caps.supported |= computeSupport
? BGFX_CAPS_COMPUTE
: 0
;
g_caps.supported |= GlContext::isSwapChainSupported()
? BGFX_CAPS_SWAP_CHAIN
: 0
;
if (s_extension[Extension::EXT_texture_filter_anisotropic].m_supported)
{
GL_CHECK(glGetFloatv(GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT, &m_maxAnisotropyDefault) );
}
if (s_extension[Extension::ARB_texture_multisample].m_supported
|| s_extension[Extension::ANGLE_framebuffer_multisample].m_supported)
{
GL_CHECK(glGetIntegerv(GL_MAX_SAMPLES, &m_maxMsaa) );
}
if (s_extension[Extension::OES_read_format].m_supported
&& (s_extension[Extension::IMG_read_format].m_supported || s_extension[Extension::EXT_read_format_bgra].m_supported) )
{
m_readPixelsFmt = GL_BGRA;
}
else
{
m_readPixelsFmt = GL_RGBA;
}
if (BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGLES >= 30) )
{
g_caps.supported |= BGFX_CAPS_INSTANCING;
}
else
{
if (!BX_ENABLED(BX_PLATFORM_IOS) )
{
if (s_extension[Extension::ARB_instanced_arrays].m_supported
|| s_extension[Extension::ANGLE_instanced_arrays].m_supported)
{
if (NULL != glVertexAttribDivisor
&& NULL != glDrawArraysInstanced
&& NULL != glDrawElementsInstanced)
{
g_caps.supported |= BGFX_CAPS_INSTANCING;
}
}
}
if (0 == (g_caps.supported & BGFX_CAPS_INSTANCING) )
{
glVertexAttribDivisor = stubVertexAttribDivisor;
glDrawArraysInstanced = stubDrawArraysInstanced;
glDrawElementsInstanced = stubDrawElementsInstanced;
}
}
if (s_extension[Extension::ARB_debug_output].m_supported
|| s_extension[Extension::KHR_debug].m_supported)
{
if (NULL != glDebugMessageControl
&& NULL != glDebugMessageInsert
&& NULL != glDebugMessageCallback
&& NULL != glGetDebugMessageLog)
{
GL_CHECK(glDebugMessageCallback(debugProcCb, NULL) );
GL_CHECK(glDebugMessageControl(GL_DONT_CARE
, GL_DONT_CARE
, GL_DEBUG_SEVERITY_MEDIUM
, 0
, NULL
, GL_TRUE
) );
}
}
if (s_extension[Extension::ARB_seamless_cube_map].m_supported)
{
GL_CHECK(glEnable(GL_TEXTURE_CUBE_MAP_SEAMLESS) );
}
if (s_extension[Extension::ARB_depth_clamp].m_supported)
{
GL_CHECK(glEnable(GL_DEPTH_CLAMP) );
}
if (NULL == glFrameTerminatorGREMEDY
|| !s_extension[Extension::GREMEDY_frame_terminator].m_supported)
{
glFrameTerminatorGREMEDY = stubFrameTerminatorGREMEDY;
}
if (NULL == glInsertEventMarker
|| !s_extension[Extension::EXT_debug_marker].m_supported)
{
glInsertEventMarker = (NULL != glStringMarkerGREMEDY && s_extension[Extension::GREMEDY_string_marker].m_supported)
? stubInsertEventMarkerGREMEDY
: stubInsertEventMarker
;
}
if (NULL == glObjectLabel)
{
glObjectLabel = stubObjectLabel;
}
if (NULL == glInvalidateFramebuffer)
{
glInvalidateFramebuffer = stubInvalidateFramebuffer;
}
if (BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGL)
&& m_timerQuerySupport)
{
m_queries.create();
}
// Init reserved part of view name.
for (uint32_t ii = 0; ii < BGFX_CONFIG_MAX_VIEWS; ++ii)
{
bx::snprintf(s_viewName[ii], BGFX_CONFIG_MAX_VIEW_NAME_RESERVED+1, "%3d ", ii);
}
ovrPostReset();
}
void shutdown()
{
ovrPreReset();
m_ovr.shutdown();
if (m_vaoSupport)
{
GL_CHECK(glBindVertexArray(0) );
GL_CHECK(glDeleteVertexArrays(1, &m_vao) );
m_vao = 0;
}
captureFinish();
invalidateCache();
if (BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGL)
&& m_timerQuerySupport)
{
m_queries.destroy();
}
destroyMsaaFbo();
m_glctx.destroy();
m_flip = false;
unloadRenderDoc(m_renderdocdll);
}
RendererType::Enum getRendererType() const BX_OVERRIDE
{
if (BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGL) )
{
return RendererType::OpenGL;
}
return RendererType::OpenGLES;
}
const char* getRendererName() const BX_OVERRIDE
{
return BGFX_RENDERER_OPENGL_NAME;
}
void flip(HMD& _hmd)
{
if (m_flip)
{
for (uint32_t ii = 1, num = m_numWindows; ii < num; ++ii)
{
m_glctx.swap(m_frameBuffers[m_windows[ii].idx].m_swapChain);
}
if (!m_ovr.swap(_hmd) )
{
m_glctx.swap();
}
}
}
void createIndexBuffer(IndexBufferHandle _handle, Memory* _mem, uint8_t _flags) BX_OVERRIDE
{
m_indexBuffers[_handle.idx].create(_mem->size, _mem->data, _flags);
}
void destroyIndexBuffer(IndexBufferHandle _handle) BX_OVERRIDE
{
m_indexBuffers[_handle.idx].destroy();
}
void createVertexDecl(VertexDeclHandle _handle, const VertexDecl& _decl) BX_OVERRIDE
{
VertexDecl& decl = m_vertexDecls[_handle.idx];
memcpy(&decl, &_decl, sizeof(VertexDecl) );
dump(decl);
}
void destroyVertexDecl(VertexDeclHandle /*_handle*/) BX_OVERRIDE
{
}
void createVertexBuffer(VertexBufferHandle _handle, Memory* _mem, VertexDeclHandle _declHandle, uint8_t /*_flags*/) BX_OVERRIDE
{
m_vertexBuffers[_handle.idx].create(_mem->size, _mem->data, _declHandle);
}
void destroyVertexBuffer(VertexBufferHandle _handle) BX_OVERRIDE
{
m_vertexBuffers[_handle.idx].destroy();
}
void createDynamicIndexBuffer(IndexBufferHandle _handle, uint32_t _size, uint8_t _flags) BX_OVERRIDE
{
m_indexBuffers[_handle.idx].create(_size, NULL, _flags);
}
void updateDynamicIndexBuffer(IndexBufferHandle _handle, uint32_t _offset, uint32_t _size, Memory* _mem) BX_OVERRIDE
{
m_indexBuffers[_handle.idx].update(_offset, bx::uint32_min(_size, _mem->size), _mem->data);
}
void destroyDynamicIndexBuffer(IndexBufferHandle _handle) BX_OVERRIDE
{
m_indexBuffers[_handle.idx].destroy();
}
void createDynamicVertexBuffer(VertexBufferHandle _handle, uint32_t _size, uint8_t /*_flags*/) BX_OVERRIDE
{
VertexDeclHandle decl = BGFX_INVALID_HANDLE;
m_vertexBuffers[_handle.idx].create(_size, NULL, decl);
}
void updateDynamicVertexBuffer(VertexBufferHandle _handle, uint32_t _offset, uint32_t _size, Memory* _mem) BX_OVERRIDE
{
m_vertexBuffers[_handle.idx].update(_offset, bx::uint32_min(_size, _mem->size), _mem->data);
}
void destroyDynamicVertexBuffer(VertexBufferHandle _handle) BX_OVERRIDE
{
m_vertexBuffers[_handle.idx].destroy();
}
void createShader(ShaderHandle _handle, Memory* _mem) BX_OVERRIDE
{
m_shaders[_handle.idx].create(_mem);
}
void destroyShader(ShaderHandle _handle) BX_OVERRIDE
{
m_shaders[_handle.idx].destroy();
}
void createProgram(ProgramHandle _handle, ShaderHandle _vsh, ShaderHandle _fsh) BX_OVERRIDE
{
ShaderGL dummyFragmentShader;
m_program[_handle.idx].create(m_shaders[_vsh.idx], isValid(_fsh) ? m_shaders[_fsh.idx] : dummyFragmentShader);
}
void destroyProgram(ProgramHandle _handle) BX_OVERRIDE
{
m_program[_handle.idx].destroy();
}
void createTexture(TextureHandle _handle, Memory* _mem, uint32_t _flags, uint8_t _skip) BX_OVERRIDE
{
m_textures[_handle.idx].create(_mem, _flags, _skip);
}
void updateTextureBegin(TextureHandle /*_handle*/, uint8_t /*_side*/, uint8_t /*_mip*/) BX_OVERRIDE
{
}
void updateTexture(TextureHandle _handle, uint8_t _side, uint8_t _mip, const Rect& _rect, uint16_t _z, uint16_t _depth, uint16_t _pitch, const Memory* _mem) BX_OVERRIDE
{
m_textures[_handle.idx].update(_side, _mip, _rect, _z, _depth, _pitch, _mem);
}
void updateTextureEnd() BX_OVERRIDE
{
}
void resizeTexture(TextureHandle _handle, uint16_t _width, uint16_t _height) BX_OVERRIDE
{
TextureGL& texture = m_textures[_handle.idx];
uint32_t size = sizeof(uint32_t) + sizeof(TextureCreate);
const Memory* mem = alloc(size);
bx::StaticMemoryBlockWriter writer(mem->data, mem->size);
uint32_t magic = BGFX_CHUNK_MAGIC_TEX;
bx::write(&writer, magic);
TextureCreate tc;
tc.m_flags = texture.m_flags;
tc.m_width = _width;
tc.m_height = _height;
tc.m_sides = 0;
tc.m_depth = 0;
tc.m_numMips = 1;
tc.m_format = texture.m_requestedFormat;
tc.m_cubeMap = false;
tc.m_mem = NULL;
bx::write(&writer, tc);
texture.destroy();
texture.create(mem, tc.m_flags, 0);
release(mem);
}
void destroyTexture(TextureHandle _handle) BX_OVERRIDE
{
m_textures[_handle.idx].destroy();
}
void createFrameBuffer(FrameBufferHandle _handle, uint8_t _num, const TextureHandle* _textureHandles) BX_OVERRIDE
{
m_frameBuffers[_handle.idx].create(_num, _textureHandles);
}
void createFrameBuffer(FrameBufferHandle _handle, void* _nwh, uint32_t _width, uint32_t _height, TextureFormat::Enum _depthFormat) BX_OVERRIDE
{
uint16_t denseIdx = m_numWindows++;
m_windows[denseIdx] = _handle;
m_frameBuffers[_handle.idx].create(denseIdx, _nwh, _width, _height, _depthFormat);
}
void destroyFrameBuffer(FrameBufferHandle _handle) BX_OVERRIDE
{
uint16_t denseIdx = m_frameBuffers[_handle.idx].destroy();
if (UINT16_MAX != denseIdx)
{
--m_numWindows;
if (m_numWindows > 1)
{
FrameBufferHandle handle = m_windows[m_numWindows];
m_windows[denseIdx] = handle;
m_frameBuffers[handle.idx].m_denseIdx = denseIdx;
}
}
}
void createUniform(UniformHandle _handle, UniformType::Enum _type, uint16_t _num, const char* _name) BX_OVERRIDE
{
if (NULL != m_uniforms[_handle.idx])
{
BX_FREE(g_allocator, m_uniforms[_handle.idx]);
}
uint32_t size = g_uniformTypeSize[_type]*_num;
void* data = BX_ALLOC(g_allocator, size);
memset(data, 0, size);
m_uniforms[_handle.idx] = data;
m_uniformReg.add(_handle, _name, m_uniforms[_handle.idx]);
}
void destroyUniform(UniformHandle _handle) BX_OVERRIDE
{
BX_FREE(g_allocator, m_uniforms[_handle.idx]);
m_uniforms[_handle.idx] = NULL;
}
void saveScreenShot(const char* _filePath) BX_OVERRIDE
{
uint32_t length = m_resolution.m_width*m_resolution.m_height*4;
uint8_t* data = (uint8_t*)BX_ALLOC(g_allocator, length);
uint32_t width = m_resolution.m_width;
uint32_t height = m_resolution.m_height;
GL_CHECK(glReadPixels(0
, 0
, width
, height
, m_readPixelsFmt
, GL_UNSIGNED_BYTE
, data
) );
if (GL_RGBA == m_readPixelsFmt)
{
imageSwizzleBgra8(width, height, width*4, data, data);
}
g_callback->screenShot(_filePath
, width
, height
, width*4
, data
, length
, true
);
BX_FREE(g_allocator, data);
}
void updateViewName(uint8_t _id, const char* _name) BX_OVERRIDE
{
if (BX_ENABLED(BGFX_CONFIG_DEBUG_PIX) )
{
bx::strlcpy(&s_viewName[_id][BGFX_CONFIG_MAX_VIEW_NAME_RESERVED]
, _name
, BX_COUNTOF(s_viewName[0])-BGFX_CONFIG_MAX_VIEW_NAME_RESERVED
);
}
}
void updateUniform(uint16_t _loc, const void* _data, uint32_t _size) BX_OVERRIDE
{
memcpy(m_uniforms[_loc], _data, _size);
}
void setMarker(const char* _marker, uint32_t _size) BX_OVERRIDE
{
GL_CHECK(glInsertEventMarker(_size, _marker) );
}
void submit(Frame* _render, ClearQuad& _clearQuad, TextVideoMemBlitter& _textVideoMemBlitter) BX_OVERRIDE;
void blitSetup(TextVideoMemBlitter& _blitter) BX_OVERRIDE
{
if (0 != m_vao)
{
GL_CHECK(glBindVertexArray(m_vao) );
}
uint32_t width = m_resolution.m_width;
uint32_t height = m_resolution.m_height;
if (m_ovr.isEnabled() )
{
m_ovr.getSize(width, height);
}
GL_CHECK(glBindFramebuffer(GL_FRAMEBUFFER, m_backBufferFbo) );
GL_CHECK(glViewport(0, 0, width, height) );
GL_CHECK(glDisable(GL_SCISSOR_TEST) );
GL_CHECK(glDisable(GL_STENCIL_TEST) );
GL_CHECK(glDisable(GL_DEPTH_TEST) );
GL_CHECK(glDepthFunc(GL_ALWAYS) );
GL_CHECK(glDisable(GL_CULL_FACE) );
GL_CHECK(glDisable(GL_BLEND) );
GL_CHECK(glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE) );
ProgramGL& program = m_program[_blitter.m_program.idx];
GL_CHECK(glUseProgram(program.m_id) );
GL_CHECK(glUniform1i(program.m_sampler[0], 0) );
float proj[16];
bx::mtxOrtho(proj, 0.0f, (float)width, (float)height, 0.0f, 0.0f, 1000.0f);
GL_CHECK(glUniformMatrix4fv(program.m_predefined[0].m_loc
, 1
, GL_FALSE
, proj
) );
GL_CHECK(glActiveTexture(GL_TEXTURE0) );
GL_CHECK(glBindTexture(GL_TEXTURE_2D, m_textures[_blitter.m_texture.idx].m_id) );
}
void blitRender(TextVideoMemBlitter& _blitter, uint32_t _numIndices) BX_OVERRIDE
{
const uint32_t numVertices = _numIndices*4/6;
if (0 < numVertices)
{
m_indexBuffers[_blitter.m_ib->handle.idx].update(0, _numIndices*2, _blitter.m_ib->data);
m_vertexBuffers[_blitter.m_vb->handle.idx].update(0, numVertices*_blitter.m_decl.m_stride, _blitter.m_vb->data);
VertexBufferGL& vb = m_vertexBuffers[_blitter.m_vb->handle.idx];
GL_CHECK(glBindBuffer(GL_ARRAY_BUFFER, vb.m_id) );
IndexBufferGL& ib = m_indexBuffers[_blitter.m_ib->handle.idx];
GL_CHECK(glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ib.m_id) );
ProgramGL& program = m_program[_blitter.m_program.idx];
program.bindAttributes(_blitter.m_decl, 0);
GL_CHECK(glDrawElements(GL_TRIANGLES
, _numIndices
, GL_UNSIGNED_SHORT
, (void*)0
) );
}
}
void updateResolution(const Resolution& _resolution)
{
bool recenter = !!(_resolution.m_flags & BGFX_RESET_HMD_RECENTER);
m_maxAnisotropy = !!(_resolution.m_flags & BGFX_RESET_MAXANISOTROPY)
? m_maxAnisotropyDefault
: 0.0f
;
uint32_t flags = _resolution.m_flags & ~(BGFX_RESET_HMD_RECENTER | BGFX_RESET_MAXANISOTROPY);
if (m_resolution.m_width != _resolution.m_width
|| m_resolution.m_height != _resolution.m_height
|| m_resolution.m_flags != flags)
{
m_textVideoMem.resize(false, _resolution.m_width, _resolution.m_height);
m_textVideoMem.clear();
m_resolution = _resolution;
m_resolution.m_flags = flags;
setRenderContextSize(m_resolution.m_width
, m_resolution.m_height
, m_resolution.m_flags
);
updateCapture();
for (uint32_t ii = 0; ii < BX_COUNTOF(m_frameBuffers); ++ii)
{
m_frameBuffers[ii].postReset();
}
ovrPreReset();
ovrPostReset();
}
if (recenter)
{
m_ovr.recenter();
}
}
void setShaderUniform4f(uint8_t /*_flags*/, uint32_t _regIndex, const void* _val, uint32_t _numRegs)
{
GL_CHECK(glUniform4fv(_regIndex
, _numRegs
, (const GLfloat*)_val
) );
}
void setShaderUniform4x4f(uint8_t /*_flags*/, uint32_t _regIndex, const void* _val, uint32_t _numRegs)
{
GL_CHECK(glUniformMatrix4fv(_regIndex
, _numRegs
, GL_FALSE
, (const GLfloat*)_val
) );
}
uint32_t setFrameBuffer(FrameBufferHandle _fbh, uint32_t _height, uint16_t _discard = BGFX_CLEAR_NONE, bool _msaa = true)
{
if (isValid(m_fbh)
&& m_fbh.idx != _fbh.idx
&& (BGFX_CLEAR_NONE != m_fbDiscard || m_rtMsaa) )
{
FrameBufferGL& frameBuffer = m_frameBuffers[m_fbh.idx];
if (m_rtMsaa)
{
frameBuffer.resolve();
}
if (BGFX_CLEAR_NONE != m_fbDiscard)
{
frameBuffer.discard(m_fbDiscard);
}
m_fbDiscard = BGFX_CLEAR_NONE;
}
m_glctx.makeCurrent(NULL);
if (!isValid(_fbh) )
{
GL_CHECK(glBindFramebuffer(GL_FRAMEBUFFER, m_msaaBackBufferFbo) );
}
else
{
FrameBufferGL& frameBuffer = m_frameBuffers[_fbh.idx];
_height = frameBuffer.m_height;
if (UINT16_MAX != frameBuffer.m_denseIdx)
{
m_glctx.makeCurrent(frameBuffer.m_swapChain);
GL_CHECK(glBindFramebuffer(GL_FRAMEBUFFER, 0) );
}
else
{
m_glctx.makeCurrent(NULL);
GL_CHECK(glBindFramebuffer(GL_FRAMEBUFFER, frameBuffer.m_fbo[0]) );
}
}
m_fbh = _fbh;
m_fbDiscard = _discard;
m_rtMsaa = _msaa;
return _height;
}
uint32_t getNumRt() const
{
if (isValid(m_fbh) )
{
const FrameBufferGL& frameBuffer = m_frameBuffers[m_fbh.idx];
return frameBuffer.m_num;
}
return 1;
}
void createMsaaFbo(uint32_t _width, uint32_t _height, uint32_t _msaa)
{
if (0 == m_msaaBackBufferFbo // iOS
&& 1 < _msaa)
{
GL_CHECK(glGenFramebuffers(1, &m_msaaBackBufferFbo) );
GL_CHECK(glBindFramebuffer(GL_FRAMEBUFFER, m_msaaBackBufferFbo) );
GL_CHECK(glGenRenderbuffers(BX_COUNTOF(m_msaaBackBufferRbos), m_msaaBackBufferRbos) );
GL_CHECK(glBindRenderbuffer(GL_RENDERBUFFER, m_msaaBackBufferRbos[0]) );
GL_CHECK(glRenderbufferStorageMultisample(GL_RENDERBUFFER, _msaa, GL_RGBA8, _width, _height) );
GL_CHECK(glBindRenderbuffer(GL_RENDERBUFFER, m_msaaBackBufferRbos[1]) );
GL_CHECK(glRenderbufferStorageMultisample(GL_RENDERBUFFER, _msaa, GL_DEPTH24_STENCIL8, _width, _height) );
GL_CHECK(glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_RENDERBUFFER, m_msaaBackBufferRbos[0]) );
GLenum attachment = BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGL) || BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGLES >= 30)
? GL_DEPTH_STENCIL_ATTACHMENT
: GL_DEPTH_ATTACHMENT
;
GL_CHECK(glFramebufferRenderbuffer(GL_FRAMEBUFFER, attachment, GL_RENDERBUFFER, m_msaaBackBufferRbos[1]) );
BX_CHECK(GL_FRAMEBUFFER_COMPLETE == glCheckFramebufferStatus(GL_FRAMEBUFFER)
, "glCheckFramebufferStatus failed 0x%08x"
, glCheckFramebufferStatus(GL_FRAMEBUFFER)
);
GL_CHECK(glBindFramebuffer(GL_FRAMEBUFFER, m_msaaBackBufferFbo) );
}
}
void destroyMsaaFbo()
{
if (m_backBufferFbo != m_msaaBackBufferFbo // iOS
&& 0 != m_msaaBackBufferFbo)
{
GL_CHECK(glDeleteFramebuffers(1, &m_msaaBackBufferFbo) );
m_msaaBackBufferFbo = 0;
if (0 != m_msaaBackBufferRbos[0])
{
GL_CHECK(glDeleteRenderbuffers(BX_COUNTOF(m_msaaBackBufferRbos), m_msaaBackBufferRbos) );
m_msaaBackBufferRbos[0] = 0;
m_msaaBackBufferRbos[1] = 0;
}
}
}
void blitMsaaFbo()
{
if (m_backBufferFbo != m_msaaBackBufferFbo // iOS
&& 0 != m_msaaBackBufferFbo)
{
GL_CHECK(glDisable(GL_SCISSOR_TEST) );
GL_CHECK(glBindFramebuffer(GL_FRAMEBUFFER, m_backBufferFbo) );
GL_CHECK(glBindFramebuffer(GL_READ_FRAMEBUFFER, m_msaaBackBufferFbo) );
GL_CHECK(glBindFramebuffer(GL_DRAW_FRAMEBUFFER, 0) );
uint32_t width = m_resolution.m_width;
uint32_t height = m_resolution.m_height;
GLenum filter = BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGL) || BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGLES < 30)
? GL_NEAREST
: GL_LINEAR
;
GL_CHECK(glBlitFramebuffer(0
, 0
, width
, height
, 0
, 0
, width
, height
, GL_COLOR_BUFFER_BIT
, filter
) );
GL_CHECK(glBindFramebuffer(GL_FRAMEBUFFER, m_backBufferFbo) );
}
}
void setRenderContextSize(uint32_t _width, uint32_t _height, uint32_t _flags = 0)
{
if (_width != 0
|| _height != 0)
{
if (!m_glctx.isValid() )
{
m_glctx.create(_width, _height);
#if BX_PLATFORM_IOS
// iOS: need to figure out how to deal with FBO created by context.
m_backBufferFbo = m_msaaBackBufferFbo = m_glctx.getFbo();
#endif // BX_PLATFORM_IOS
}
else
{
destroyMsaaFbo();
m_glctx.resize(_width, _height, _flags);
uint32_t msaa = (_flags&BGFX_RESET_MSAA_MASK)>>BGFX_RESET_MSAA_SHIFT;
msaa = bx::uint32_min(m_maxMsaa, msaa == 0 ? 0 : 1<<msaa);
createMsaaFbo(_width, _height, msaa);
}
}
m_flip = true;
}
void invalidateCache()
{
if (m_vaoSupport)
{
m_vaoStateCache.invalidate();
}
if ( (BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGL) || BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGLES >= 30) )
&& m_samplerObjectSupport)
{
m_samplerStateCache.invalidate();
}
}
void setSamplerState(uint32_t _stage, uint32_t _numMips, uint32_t _flags)
{
if (BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGL)
|| BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGLES >= 30) )
{
if (0 == (BGFX_SAMPLER_DEFAULT_FLAGS & _flags) )
{
_flags &= ~BGFX_TEXTURE_RESERVED_MASK;
_flags &= BGFX_TEXTURE_SAMPLER_BITS_MASK;
_flags |= _numMips<<BGFX_TEXTURE_RESERVED_SHIFT;
GLuint sampler = m_samplerStateCache.find(_flags);
if (UINT32_MAX == sampler)
{
sampler = m_samplerStateCache.add(_flags);
GL_CHECK(glSamplerParameteri(sampler
, GL_TEXTURE_WRAP_S
, s_textureAddress[(_flags&BGFX_TEXTURE_U_MASK)>>BGFX_TEXTURE_U_SHIFT]
) );
GL_CHECK(glSamplerParameteri(sampler
, GL_TEXTURE_WRAP_T
, s_textureAddress[(_flags&BGFX_TEXTURE_V_MASK)>>BGFX_TEXTURE_V_SHIFT]
) );
GL_CHECK(glSamplerParameteri(sampler
, GL_TEXTURE_WRAP_R
, s_textureAddress[(_flags&BGFX_TEXTURE_W_MASK)>>BGFX_TEXTURE_W_SHIFT]
) );
GLenum minFilter;
GLenum magFilter;
getFilters(_flags, 1 < _numMips, magFilter, minFilter);
GL_CHECK(glSamplerParameteri(sampler, GL_TEXTURE_MAG_FILTER, magFilter) );
GL_CHECK(glSamplerParameteri(sampler, GL_TEXTURE_MIN_FILTER, minFilter) );
if (0 != (_flags & (BGFX_TEXTURE_MIN_ANISOTROPIC|BGFX_TEXTURE_MAG_ANISOTROPIC) )
&& 0.0f < m_maxAnisotropy)
{
GL_CHECK(glSamplerParameterf(sampler, GL_TEXTURE_MAX_ANISOTROPY_EXT, m_maxAnisotropy) );
}
if (BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGLES >= 30)
|| m_shadowSamplersSupport)
{
const uint32_t cmpFunc = (_flags&BGFX_TEXTURE_COMPARE_MASK)>>BGFX_TEXTURE_COMPARE_SHIFT;
if (0 == cmpFunc)
{
GL_CHECK(glSamplerParameteri(sampler, GL_TEXTURE_COMPARE_MODE, GL_NONE) );
}
else
{
GL_CHECK(glSamplerParameteri(sampler, GL_TEXTURE_COMPARE_MODE, GL_COMPARE_REF_TO_TEXTURE) );
GL_CHECK(glSamplerParameteri(sampler, GL_TEXTURE_COMPARE_FUNC, s_cmpFunc[cmpFunc]) );
}
}
}
GL_CHECK(glBindSampler(_stage, sampler) );
}
else
{
GL_CHECK(glBindSampler(_stage, 0) );
}
}
}
void ovrPostReset()
{
#if BGFX_CONFIG_USE_OVR
if (m_resolution.m_flags & (BGFX_RESET_HMD|BGFX_RESET_HMD_DEBUG) )
{
ovrGLConfig config;
config.OGL.Header.API = ovrRenderAPI_OpenGL;
# if OVR_VERSION > OVR_VERSION_043
config.OGL.Header.BackBufferSize.w = m_resolution.m_width;
config.OGL.Header.BackBufferSize.h = m_resolution.m_height;
# else
config.OGL.Header.RTSize.w = m_resolution.m_width;
config.OGL.Header.RTSize.h = m_resolution.m_height;
# endif // OVR_VERSION > OVR_VERSION_043
config.OGL.Header.Multisample = 0;
config.OGL.Window = (HWND)g_platformData.nwh;
config.OGL.DC = GetDC(config.OGL.Window);
if (m_ovr.postReset(g_platformData.nwh, &config.Config, !!(m_resolution.m_flags & BGFX_RESET_HMD_DEBUG) ) )
{
uint32_t size = sizeof(uint32_t) + sizeof(TextureCreate);
const Memory* mem = alloc(size);
bx::StaticMemoryBlockWriter writer(mem->data, mem->size);
uint32_t magic = BGFX_CHUNK_MAGIC_TEX;
bx::write(&writer, magic);
TextureCreate tc;
tc.m_flags = BGFX_TEXTURE_RT;
tc.m_width = m_ovr.m_rtSize.w;
tc.m_height = m_ovr.m_rtSize.h;
tc.m_sides = 0;
tc.m_depth = 0;
tc.m_numMips = 1;
tc.m_format = uint8_t(bgfx::TextureFormat::BGRA8);
tc.m_cubeMap = false;
tc.m_mem = NULL;
bx::write(&writer, tc);
m_ovrRT.create(mem, tc.m_flags, 0);
release(mem);
m_ovrFbo = m_msaaBackBufferFbo;
GL_CHECK(glGenFramebuffers(1, &m_msaaBackBufferFbo) );
GL_CHECK(glBindFramebuffer(GL_FRAMEBUFFER, m_msaaBackBufferFbo) );
GL_CHECK(glFramebufferTexture2D(GL_FRAMEBUFFER
, GL_COLOR_ATTACHMENT0
, GL_TEXTURE_2D
, m_ovrRT.m_id
, 0
) );
GL_CHECK(glBindFramebuffer(GL_FRAMEBUFFER, m_ovrFbo) );
ovrGLTexture texture;
texture.OGL.Header.API = ovrRenderAPI_OpenGL;
texture.OGL.Header.TextureSize = m_ovr.m_rtSize;
texture.OGL.TexId = m_ovrRT.m_id;
m_ovr.postReset(texture.Texture);
}
}
#endif // BGFX_CONFIG_USE_OVR
}
void ovrPreReset()
{
#if BGFX_CONFIG_USE_OVR
m_ovr.preReset();
if (m_ovr.isEnabled() )
{
GL_CHECK(glBindFramebuffer(GL_FRAMEBUFFER, 0) );
GL_CHECK(glDeleteFramebuffers(1, &m_msaaBackBufferFbo) );
m_msaaBackBufferFbo = m_ovrFbo;
m_ovrFbo = 0;
m_ovrRT.destroy();
}
#endif // BGFX_CONFIG_USE_OVR
}
void updateCapture()
{
if (m_resolution.m_flags&BGFX_RESET_CAPTURE)
{
m_captureSize = m_resolution.m_width*m_resolution.m_height*4;
m_capture = BX_REALLOC(g_allocator, m_capture, m_captureSize);
g_callback->captureBegin(m_resolution.m_width, m_resolution.m_height, m_resolution.m_width*4, TextureFormat::BGRA8, true);
}
else
{
captureFinish();
}
}
void capture()
{
if (NULL != m_capture)
{
GL_CHECK(glReadPixels(0
, 0
, m_resolution.m_width
, m_resolution.m_height
, m_readPixelsFmt
, GL_UNSIGNED_BYTE
, m_capture
) );
g_callback->captureFrame(m_capture, m_captureSize);
}
}
void captureFinish()
{
if (NULL != m_capture)
{
g_callback->captureEnd();
BX_FREE(g_allocator, m_capture);
m_capture = NULL;
m_captureSize = 0;
}
}
bool programFetchFromCache(GLuint programId, uint64_t _id)
{
_id ^= m_hash;
bool cached = false;
if (m_programBinarySupport)
{
uint32_t length = g_callback->cacheReadSize(_id);
cached = length > 0;
if (cached)
{
void* data = BX_ALLOC(g_allocator, length);
if (g_callback->cacheRead(_id, data, length) )
{
bx::MemoryReader reader(data, length);
GLenum format;
bx::read(&reader, format);
GL_CHECK(glProgramBinary(programId, format, reader.getDataPtr(), (GLsizei)reader.remaining() ) );
}
BX_FREE(g_allocator, data);
}
#if BGFX_CONFIG_RENDERER_OPENGL
GL_CHECK(glProgramParameteri(programId, GL_PROGRAM_BINARY_RETRIEVABLE_HINT, GL_TRUE) );
#endif // BGFX_CONFIG_RENDERER_OPENGL
}
return cached;
}
void programCache(GLuint programId, uint64_t _id)
{
_id ^= m_hash;
if (m_programBinarySupport)
{
GLint programLength;
GLenum format;
GL_CHECK(glGetProgramiv(programId, GL_PROGRAM_BINARY_LENGTH, &programLength) );
if (0 < programLength)
{
uint32_t length = programLength + 4;
uint8_t* data = (uint8_t*)BX_ALLOC(g_allocator, length);
GL_CHECK(glGetProgramBinary(programId, programLength, NULL, &format, &data[4]) );
*(uint32_t*)data = format;
g_callback->cacheWrite(_id, data, length);
BX_FREE(g_allocator, data);
}
}
}
void commit(ConstantBuffer& _constantBuffer)
{
_constantBuffer.reset();
for (;;)
{
uint32_t opcode = _constantBuffer.read();
if (UniformType::End == opcode)
{
break;
}
UniformType::Enum type;
uint16_t ignore;
uint16_t num;
uint16_t copy;
ConstantBuffer::decodeOpcode(opcode, type, ignore, num, copy);
const char* data;
if (copy)
{
data = _constantBuffer.read(g_uniformTypeSize[type]*num);
}
else
{
UniformHandle handle;
memcpy(&handle, _constantBuffer.read(sizeof(UniformHandle) ), sizeof(UniformHandle) );
data = (const char*)m_uniforms[handle.idx];
}
uint32_t loc = _constantBuffer.read();
#define CASE_IMPLEMENT_UNIFORM(_uniform, _glsuffix, _dxsuffix, _type) \
case UniformType::_uniform: \
{ \
_type* value = (_type*)data; \
GL_CHECK(glUniform##_glsuffix(loc, num, value) ); \
} \
break;
#define CASE_IMPLEMENT_UNIFORM_T(_uniform, _glsuffix, _dxsuffix, _type) \
case UniformType::_uniform: \
{ \
_type* value = (_type*)data; \
GL_CHECK(glUniform##_glsuffix(loc, num, GL_FALSE, value) ); \
} \
break;
switch (type)
{
// case ConstantType::Uniform1iv:
// {
// int* value = (int*)data;
// BX_TRACE("Uniform1iv sampler %d, loc %d (num %d, copy %d)", *value, loc, num, copy);
// GL_CHECK(glUniform1iv(loc, num, value) );
// }
// break;
CASE_IMPLEMENT_UNIFORM(Uniform1i, 1iv, I, int);
CASE_IMPLEMENT_UNIFORM(Uniform1f, 1fv, F, float);
CASE_IMPLEMENT_UNIFORM(Uniform1iv, 1iv, I, int);
CASE_IMPLEMENT_UNIFORM(Uniform1fv, 1fv, F, float);
CASE_IMPLEMENT_UNIFORM(Uniform2fv, 2fv, F, float);
CASE_IMPLEMENT_UNIFORM(Uniform3fv, 3fv, F, float);
CASE_IMPLEMENT_UNIFORM(Uniform4fv, 4fv, F, float);
CASE_IMPLEMENT_UNIFORM_T(Uniform3x3fv, Matrix3fv, F, float);
CASE_IMPLEMENT_UNIFORM_T(Uniform4x4fv, Matrix4fv, F, float);
case UniformType::End:
break;
default:
BX_TRACE("%4d: INVALID 0x%08x, t %d, l %d, n %d, c %d", _constantBuffer.getPos(), opcode, type, loc, num, copy);
break;
}
#undef CASE_IMPLEMENT_UNIFORM
#undef CASE_IMPLEMENT_UNIFORM_T
}
}
void clearQuad(ClearQuad& _clearQuad, const Rect& _rect, const Clear& _clear, uint32_t _height, const float _palette[][4])
{
uint32_t numMrt = 1;
FrameBufferHandle fbh = m_fbh;
if (isValid(fbh) )
{
const FrameBufferGL& fb = m_frameBuffers[fbh.idx];
numMrt = bx::uint32_max(1, fb.m_num);
}
if (1 == numMrt)
{
GLuint flags = 0;
if (BGFX_CLEAR_COLOR & _clear.m_flags)
{
if (BGFX_CLEAR_COLOR_USE_PALETTE & _clear.m_flags)
{
uint8_t index = (uint8_t)bx::uint32_min(BGFX_CONFIG_MAX_CLEAR_COLOR_PALETTE-1, _clear.m_index[0]);
const float* rgba = _palette[index];
const float rr = rgba[0];
const float gg = rgba[1];
const float bb = rgba[2];
const float aa = rgba[3];
GL_CHECK(glClearColor(rr, gg, bb, aa) );
}
else
{
float rr = _clear.m_index[0]*1.0f/255.0f;
float gg = _clear.m_index[1]*1.0f/255.0f;
float bb = _clear.m_index[2]*1.0f/255.0f;
float aa = _clear.m_index[3]*1.0f/255.0f;
GL_CHECK(glClearColor(rr, gg, bb, aa) );
}
flags |= GL_COLOR_BUFFER_BIT;
GL_CHECK(glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE) );
}
if (BGFX_CLEAR_DEPTH & _clear.m_flags)
{
flags |= GL_DEPTH_BUFFER_BIT;
GL_CHECK(glClearDepth(_clear.m_depth) );
GL_CHECK(glDepthMask(GL_TRUE) );
}
if (BGFX_CLEAR_STENCIL & _clear.m_flags)
{
flags |= GL_STENCIL_BUFFER_BIT;
GL_CHECK(glClearStencil(_clear.m_stencil) );
}
if (0 != flags)
{
GL_CHECK(glEnable(GL_SCISSOR_TEST) );
GL_CHECK(glScissor(_rect.m_x, _height-_rect.m_height-_rect.m_y, _rect.m_width, _rect.m_height) );
GL_CHECK(glClear(flags) );
GL_CHECK(glDisable(GL_SCISSOR_TEST) );
}
}
else
{
const GLuint defaultVao = m_vao;
if (0 != defaultVao)
{
GL_CHECK(glBindVertexArray(defaultVao) );
}
GL_CHECK(glDisable(GL_SCISSOR_TEST) );
GL_CHECK(glDisable(GL_CULL_FACE) );
GL_CHECK(glDisable(GL_BLEND) );
GLboolean colorMask = !!(BGFX_CLEAR_COLOR & _clear.m_flags);
GL_CHECK(glColorMask(colorMask, colorMask, colorMask, colorMask) );
if (BGFX_CLEAR_DEPTH & _clear.m_flags)
{
GL_CHECK(glEnable(GL_DEPTH_TEST) );
GL_CHECK(glDepthFunc(GL_ALWAYS) );
GL_CHECK(glDepthMask(GL_TRUE) );
}
else
{
GL_CHECK(glDisable(GL_DEPTH_TEST) );
}
if (BGFX_CLEAR_STENCIL & _clear.m_flags)
{
GL_CHECK(glEnable(GL_STENCIL_TEST) );
GL_CHECK(glStencilFuncSeparate(GL_FRONT_AND_BACK, GL_ALWAYS, _clear.m_stencil, 0xff) );
GL_CHECK(glStencilOpSeparate(GL_FRONT_AND_BACK, GL_REPLACE, GL_REPLACE, GL_REPLACE) );
}
else
{
GL_CHECK(glDisable(GL_STENCIL_TEST) );
}
VertexBufferGL& vb = m_vertexBuffers[_clearQuad.m_vb->handle.idx];
VertexDecl& vertexDecl = m_vertexDecls[_clearQuad.m_vb->decl.idx];
{
struct Vertex
{
float m_x;
float m_y;
float m_z;
};
Vertex* vertex = (Vertex*)_clearQuad.m_vb->data;
BX_CHECK(vertexDecl.m_stride == sizeof(Vertex), "Stride/Vertex mismatch (stride %d, sizeof(Vertex) %d)", vertexDecl.m_stride, sizeof(Vertex) );
const float depth = _clear.m_depth;
vertex->m_x = -1.0f;
vertex->m_y = -1.0f;
vertex->m_z = depth;
vertex++;
vertex->m_x = 1.0f;
vertex->m_y = -1.0f;
vertex->m_z = depth;
vertex++;
vertex->m_x = -1.0f;
vertex->m_y = 1.0f;
vertex->m_z = depth;
vertex++;
vertex->m_x = 1.0f;
vertex->m_y = 1.0f;
vertex->m_z = depth;
}
vb.update(0, 4*_clearQuad.m_decl.m_stride, _clearQuad.m_vb->data);
GL_CHECK(glBindBuffer(GL_ARRAY_BUFFER, vb.m_id) );
ProgramGL& program = m_program[_clearQuad.m_program[numMrt-1].idx];
GL_CHECK(glUseProgram(program.m_id) );
program.bindAttributes(vertexDecl, 0);
if (BGFX_CLEAR_COLOR_USE_PALETTE & _clear.m_flags)
{
float mrtClear[BGFX_CONFIG_MAX_FRAME_BUFFER_ATTACHMENTS][4];
for (uint32_t ii = 0; ii < numMrt; ++ii)
{
uint8_t index = (uint8_t)bx::uint32_min(BGFX_CONFIG_MAX_CLEAR_COLOR_PALETTE-1, _clear.m_index[ii]);
memcpy(mrtClear[ii], _palette[index], 16);
}
GL_CHECK(glUniform4fv(0, numMrt, mrtClear[0]) );
}
else
{
float rgba[4] =
{
_clear.m_index[0]*1.0f/255.0f,
_clear.m_index[1]*1.0f/255.0f,
_clear.m_index[2]*1.0f/255.0f,
_clear.m_index[3]*1.0f/255.0f,
};
GL_CHECK(glUniform4fv(0, 1, rgba) );
}
GL_CHECK(glDrawArrays(GL_TRIANGLE_STRIP
, 0
, 4
) );
}
}
void* m_renderdocdll;
uint16_t m_numWindows;
FrameBufferHandle m_windows[BGFX_CONFIG_MAX_FRAME_BUFFERS];
IndexBufferGL m_indexBuffers[BGFX_CONFIG_MAX_INDEX_BUFFERS];
VertexBufferGL m_vertexBuffers[BGFX_CONFIG_MAX_VERTEX_BUFFERS];
ShaderGL m_shaders[BGFX_CONFIG_MAX_SHADERS];
ProgramGL m_program[BGFX_CONFIG_MAX_PROGRAMS];
TextureGL m_textures[BGFX_CONFIG_MAX_TEXTURES];
VertexDecl m_vertexDecls[BGFX_CONFIG_MAX_VERTEX_DECLS];
FrameBufferGL m_frameBuffers[BGFX_CONFIG_MAX_FRAME_BUFFERS];
UniformRegistry m_uniformReg;
void* m_uniforms[BGFX_CONFIG_MAX_UNIFORMS];
QueriesGL m_queries;
VaoStateCache m_vaoStateCache;
SamplerStateCache m_samplerStateCache;
TextVideoMem m_textVideoMem;
bool m_rtMsaa;
FrameBufferHandle m_fbh;
uint16_t m_fbDiscard;
Resolution m_resolution;
void* m_capture;
uint32_t m_captureSize;
float m_maxAnisotropy;
float m_maxAnisotropyDefault;
int32_t m_maxMsaa;
GLuint m_vao;
bool m_vaoSupport;
bool m_samplerObjectSupport;
bool m_shadowSamplersSupport;
bool m_programBinarySupport;
bool m_textureSwizzleSupport;
bool m_depthTextureSupport;
bool m_timerQuerySupport;
bool m_flip;
uint64_t m_hash;
GLenum m_readPixelsFmt;
GLuint m_backBufferFbo;
GLuint m_msaaBackBufferFbo;
GLuint m_msaaBackBufferRbos[2];
GlContext m_glctx;
const char* m_vendor;
const char* m_renderer;
const char* m_version;
const char* m_glslVersion;
OVR m_ovr;
TextureGL m_ovrRT;
GLint m_ovrFbo;
};
RendererContextGL* s_renderGL;
RendererContextI* rendererCreate()
{
s_renderGL = BX_NEW(g_allocator, RendererContextGL);
s_renderGL->init();
return s_renderGL;
}
void rendererDestroy()
{
s_renderGL->shutdown();
BX_DELETE(g_allocator, s_renderGL);
s_renderGL = NULL;
}
const char* glslTypeName(GLuint _type)
{
#define GLSL_TYPE(_ty) case _ty: return #_ty
switch (_type)
{
GLSL_TYPE(GL_INT);
GLSL_TYPE(GL_INT_VEC2);
GLSL_TYPE(GL_INT_VEC3);
GLSL_TYPE(GL_INT_VEC4);
GLSL_TYPE(GL_UNSIGNED_INT);
GLSL_TYPE(GL_UNSIGNED_INT_VEC2);
GLSL_TYPE(GL_UNSIGNED_INT_VEC3);
GLSL_TYPE(GL_UNSIGNED_INT_VEC4);
GLSL_TYPE(GL_FLOAT);
GLSL_TYPE(GL_FLOAT_VEC2);
GLSL_TYPE(GL_FLOAT_VEC3);
GLSL_TYPE(GL_FLOAT_VEC4);
GLSL_TYPE(GL_FLOAT_MAT2);
GLSL_TYPE(GL_FLOAT_MAT3);
GLSL_TYPE(GL_FLOAT_MAT4);
GLSL_TYPE(GL_SAMPLER_2D);
GLSL_TYPE(GL_INT_SAMPLER_2D);
GLSL_TYPE(GL_UNSIGNED_INT_SAMPLER_2D);
GLSL_TYPE(GL_SAMPLER_3D);
GLSL_TYPE(GL_INT_SAMPLER_3D);
GLSL_TYPE(GL_UNSIGNED_INT_SAMPLER_3D);
GLSL_TYPE(GL_SAMPLER_CUBE);
GLSL_TYPE(GL_INT_SAMPLER_CUBE);
GLSL_TYPE(GL_UNSIGNED_INT_SAMPLER_CUBE);
GLSL_TYPE(GL_SAMPLER_2D_SHADOW);
GLSL_TYPE(GL_IMAGE_1D);
GLSL_TYPE(GL_INT_IMAGE_1D);
GLSL_TYPE(GL_UNSIGNED_INT_IMAGE_1D);
GLSL_TYPE(GL_IMAGE_2D);
GLSL_TYPE(GL_INT_IMAGE_2D);
GLSL_TYPE(GL_UNSIGNED_INT_IMAGE_2D);
GLSL_TYPE(GL_IMAGE_3D);
GLSL_TYPE(GL_INT_IMAGE_3D);
GLSL_TYPE(GL_UNSIGNED_INT_IMAGE_3D);
GLSL_TYPE(GL_IMAGE_CUBE);
GLSL_TYPE(GL_INT_IMAGE_CUBE);
GLSL_TYPE(GL_UNSIGNED_INT_IMAGE_CUBE);
}
#undef GLSL_TYPE
BX_CHECK(false, "Unknown GLSL type? %x", _type);
return "UNKNOWN GLSL TYPE!";
}
const char* glEnumName(GLenum _enum)
{
#define GLENUM(_ty) case _ty: return #_ty
switch (_enum)
{
GLENUM(GL_TEXTURE);
GLENUM(GL_RENDERBUFFER);
GLENUM(GL_INVALID_ENUM);
GLENUM(GL_INVALID_FRAMEBUFFER_OPERATION);
GLENUM(GL_INVALID_VALUE);
GLENUM(GL_INVALID_OPERATION);
GLENUM(GL_OUT_OF_MEMORY);
GLENUM(GL_FRAMEBUFFER_INCOMPLETE_ATTACHMENT);
GLENUM(GL_FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT);
// GLENUM(GL_FRAMEBUFFER_INCOMPLETE_DRAW_BUFFER);
// GLENUM(GL_FRAMEBUFFER_INCOMPLETE_READ_BUFFER);
GLENUM(GL_FRAMEBUFFER_UNSUPPORTED);
}
#undef GLENUM
BX_WARN(false, "Unknown enum? %x", _enum);
return "<GLenum?>";
}
UniformType::Enum convertGlType(GLenum _type)
{
switch (_type)
{
case GL_INT:
case GL_UNSIGNED_INT:
return UniformType::Uniform1iv;
case GL_FLOAT:
return UniformType::Uniform1fv;
case GL_FLOAT_VEC2:
return UniformType::Uniform2fv;
case GL_FLOAT_VEC3:
return UniformType::Uniform3fv;
case GL_FLOAT_VEC4:
return UniformType::Uniform4fv;
case GL_FLOAT_MAT2:
break;
case GL_FLOAT_MAT3:
return UniformType::Uniform3x3fv;
case GL_FLOAT_MAT4:
return UniformType::Uniform4x4fv;
case GL_SAMPLER_2D:
case GL_INT_SAMPLER_2D:
case GL_UNSIGNED_INT_SAMPLER_2D:
case GL_SAMPLER_3D:
case GL_INT_SAMPLER_3D:
case GL_UNSIGNED_INT_SAMPLER_3D:
case GL_SAMPLER_CUBE:
case GL_INT_SAMPLER_CUBE:
case GL_UNSIGNED_INT_SAMPLER_CUBE:
case GL_SAMPLER_2D_SHADOW:
case GL_IMAGE_1D:
case GL_INT_IMAGE_1D:
case GL_UNSIGNED_INT_IMAGE_1D:
case GL_IMAGE_2D:
case GL_INT_IMAGE_2D:
case GL_UNSIGNED_INT_IMAGE_2D:
case GL_IMAGE_3D:
case GL_INT_IMAGE_3D:
case GL_UNSIGNED_INT_IMAGE_3D:
case GL_IMAGE_CUBE:
case GL_INT_IMAGE_CUBE:
case GL_UNSIGNED_INT_IMAGE_CUBE:
return UniformType::Uniform1iv;
};
BX_CHECK(false, "Unrecognized GL type 0x%04x.", _type);
return UniformType::End;
}
void ProgramGL::create(const ShaderGL& _vsh, const ShaderGL& _fsh)
{
m_id = glCreateProgram();
BX_TRACE("Program create: GL%d: GL%d, GL%d", m_id, _vsh.m_id, _fsh.m_id);
const uint64_t id = (uint64_t(_vsh.m_hash)<<32) | _fsh.m_hash;
const bool cached = s_renderGL->programFetchFromCache(m_id, id);
if (!cached)
{
GLint linked = 0;
if (0 != _vsh.m_id)
{
GL_CHECK(glAttachShader(m_id, _vsh.m_id) );
if (0 != _fsh.m_id)
{
GL_CHECK(glAttachShader(m_id, _fsh.m_id) );
}
GL_CHECK(glLinkProgram(m_id) );
GL_CHECK(glGetProgramiv(m_id, GL_LINK_STATUS, &linked) );
if (0 == linked)
{
char log[1024];
GL_CHECK(glGetProgramInfoLog(m_id, sizeof(log), NULL, log) );
BX_TRACE("%d: %s", linked, log);
}
}
if (0 == linked)
{
BX_WARN(0 != _vsh.m_id, "Invalid vertex/compute shader.");
GL_CHECK(glDeleteProgram(m_id) );
m_used[0] = Attrib::Count;
m_id = 0;
return;
}
s_renderGL->programCache(m_id, id);
}
init();
if (!cached)
{
// Must be after init, otherwise init might fail to lookup shader
// info (NVIDIA Tegra 3 OpenGL ES 2.0 14.01003).
GL_CHECK(glDetachShader(m_id, _vsh.m_id) );
if (0 != _fsh.m_id)
{
GL_CHECK(glDetachShader(m_id, _fsh.m_id) );
}
}
}
void ProgramGL::destroy()
{
if (NULL != m_constantBuffer)
{
ConstantBuffer::destroy(m_constantBuffer);
m_constantBuffer = NULL;
}
m_numPredefined = 0;
if (0 != m_id)
{
GL_CHECK(glUseProgram(0) );
GL_CHECK(glDeleteProgram(m_id) );
m_id = 0;
}
m_vcref.invalidate(s_renderGL->m_vaoStateCache);
}
void ProgramGL::init()
{
GLint activeAttribs = 0;
GLint activeUniforms = 0;
GLint activeBuffers = 0;
#if BGFX_CONFIG_RENDERER_OPENGL >= 31
GL_CHECK(glBindFragDataLocation(m_id, 0, "bgfx_FragColor") );
#endif // BGFX_CONFIG_RENDERER_OPENGL >= 31
if (s_extension[Extension::ARB_program_interface_query].m_supported
|| BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGLES >= 31) )
{
GL_CHECK(glGetProgramInterfaceiv(m_id, GL_PROGRAM_INPUT, GL_ACTIVE_RESOURCES, &activeAttribs ) );
GL_CHECK(glGetProgramInterfaceiv(m_id, GL_UNIFORM, GL_ACTIVE_RESOURCES, &activeUniforms) );
GL_CHECK(glGetProgramInterfaceiv(m_id, GL_BUFFER_VARIABLE, GL_ACTIVE_RESOURCES, &activeBuffers ) );
}
else
{
GL_CHECK(glGetProgramiv(m_id, GL_ACTIVE_ATTRIBUTES, &activeAttribs ) );
GL_CHECK(glGetProgramiv(m_id, GL_ACTIVE_UNIFORMS, &activeUniforms) );
}
GLint max0, max1;
GL_CHECK(glGetProgramiv(m_id, GL_ACTIVE_ATTRIBUTE_MAX_LENGTH, &max0) );
GL_CHECK(glGetProgramiv(m_id, GL_ACTIVE_UNIFORM_MAX_LENGTH, &max1) );
uint32_t maxLength = bx::uint32_max(max0, max1);
char* name = (char*)alloca(maxLength + 1);
BX_TRACE("Program %d", m_id);
BX_TRACE("Attributes (%d):", activeAttribs);
for (int32_t ii = 0; ii < activeAttribs; ++ii)
{
GLint size;
GLenum type;
GL_CHECK(glGetActiveAttrib(m_id, ii, maxLength + 1, NULL, &size, &type, name) );
BX_TRACE("\t%s %s is at location %d"
, glslTypeName(type)
, name
, glGetAttribLocation(m_id, name)
);
}
m_numPredefined = 0;
m_numSamplers = 0;
const bool piqSupported = s_extension[Extension::ARB_program_interface_query].m_supported;
BX_TRACE("Uniforms (%d):", activeUniforms);
for (int32_t ii = 0; ii < activeUniforms; ++ii)
{
struct VariableInfo
{
GLenum type;
GLint loc;
GLint num;
};
VariableInfo vi;
GLenum props[] ={ GL_TYPE, GL_LOCATION, GL_ARRAY_SIZE };
GLenum gltype;
GLint num;
GLint loc;
if (BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGLES >= 31)
|| piqSupported)
{
GL_CHECK(glGetProgramResourceiv(m_id
, GL_UNIFORM
, ii
, BX_COUNTOF(props)
, props
, BX_COUNTOF(props)
, NULL
, (GLint*)&vi
) );
GL_CHECK(glGetProgramResourceName(m_id
, GL_UNIFORM
, ii
, maxLength + 1
, NULL
, name
) );
gltype = vi.type;
loc = vi.loc;
num = vi.num;
}
else
{
GL_CHECK(glGetActiveUniform(m_id, ii, maxLength + 1, NULL, &num, &gltype, name) );
loc = glGetUniformLocation(m_id, name);
}
num = bx::uint32_max(num, 1);
int offset = 0;
char* array = strchr(name, '[');
if (NULL != array)
{
BX_TRACE("--- %s", name);
*array = '\0';
array++;
char* end = strchr(array, ']');
*end = '\0';
offset = atoi(array);
}
switch (gltype)
{
case GL_SAMPLER_2D:
case GL_INT_SAMPLER_2D:
case GL_UNSIGNED_INT_SAMPLER_2D:
case GL_SAMPLER_3D:
case GL_INT_SAMPLER_3D:
case GL_UNSIGNED_INT_SAMPLER_3D:
case GL_SAMPLER_CUBE:
case GL_INT_SAMPLER_CUBE:
case GL_UNSIGNED_INT_SAMPLER_CUBE:
case GL_SAMPLER_2D_SHADOW:
case GL_IMAGE_1D:
case GL_INT_IMAGE_1D:
case GL_UNSIGNED_INT_IMAGE_1D:
case GL_IMAGE_2D:
case GL_INT_IMAGE_2D:
case GL_UNSIGNED_INT_IMAGE_2D:
case GL_IMAGE_3D:
case GL_INT_IMAGE_3D:
case GL_UNSIGNED_INT_IMAGE_3D:
case GL_IMAGE_CUBE:
case GL_INT_IMAGE_CUBE:
case GL_UNSIGNED_INT_IMAGE_CUBE:
BX_TRACE("Sampler #%d at location %d.", m_numSamplers, loc);
m_sampler[m_numSamplers] = loc;
m_numSamplers++;
break;
default:
break;
}
PredefinedUniform::Enum predefined = nameToPredefinedUniformEnum(name);
if (PredefinedUniform::Count != predefined)
{
m_predefined[m_numPredefined].m_loc = loc;
m_predefined[m_numPredefined].m_count = uint16_t(num);
m_predefined[m_numPredefined].m_type = uint8_t(predefined);
m_numPredefined++;
}
else
{
const UniformInfo* info = s_renderGL->m_uniformReg.find(name);
if (NULL != info)
{
if (NULL == m_constantBuffer)
{
m_constantBuffer = ConstantBuffer::create(1024);
}
UniformType::Enum type = convertGlType(gltype);
m_constantBuffer->writeUniformHandle(type, 0, info->m_handle, uint16_t(num) );
m_constantBuffer->write(loc);
BX_TRACE("store %s %d", name, info->m_handle);
}
}
BX_TRACE("\tuniform %s %s%s is at location %d, size %d, offset %d"
, glslTypeName(gltype)
, name
, PredefinedUniform::Count != predefined ? "*" : ""
, loc
, num
, offset
);
BX_UNUSED(offset);
}
if (NULL != m_constantBuffer)
{
m_constantBuffer->finish();
}
if (s_extension[Extension::ARB_program_interface_query].m_supported
|| BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGLES >= 31) )
{
struct VariableInfo
{
GLenum type;
};
VariableInfo vi;
GLenum props[] = { GL_TYPE };
BX_TRACE("Buffers (%d):", activeBuffers);
for (int32_t ii = 0; ii < activeBuffers; ++ii)
{
GL_CHECK(glGetProgramResourceiv(m_id
, GL_BUFFER_VARIABLE
, ii
, BX_COUNTOF(props)
, props
, BX_COUNTOF(props)
, NULL
, (GLint*)&vi
) );
GL_CHECK(glGetProgramResourceName(m_id
, GL_BUFFER_VARIABLE
, ii
, maxLength + 1
, NULL
, name
) );
BX_TRACE("\t%s %s at %d"
, glslTypeName(vi.type)
, name
, 0 //vi.loc
);
}
}
memset(m_attributes, 0xff, sizeof(m_attributes) );
uint32_t used = 0;
for (uint8_t ii = 0; ii < Attrib::Count; ++ii)
{
GLint loc = glGetAttribLocation(m_id, s_attribName[ii]);
if (-1 != loc)
{
BX_TRACE("attr %s: %d", s_attribName[ii], loc);
m_attributes[ii] = loc;
m_used[used++] = ii;
}
}
m_used[used] = Attrib::Count;
used = 0;
for (uint32_t ii = 0; ii < BX_COUNTOF(s_instanceDataName); ++ii)
{
GLuint loc = glGetAttribLocation(m_id, s_instanceDataName[ii]);
if (GLuint(-1) != loc )
{
BX_TRACE("instance data %s: %d", s_instanceDataName[ii], loc);
m_instanceData[used++] = loc;
}
}
m_instanceData[used] = 0xffff;
}
void ProgramGL::bindAttributes(const VertexDecl& _vertexDecl, uint32_t _baseVertex) const
{
for (uint32_t ii = 0; Attrib::Count != m_used[ii]; ++ii)
{
Attrib::Enum attr = Attrib::Enum(m_used[ii]);
GLint loc = m_attributes[attr];
uint8_t num;
AttribType::Enum type;
bool normalized;
bool asInt;
_vertexDecl.decode(attr, num, type, normalized, asInt);
if (-1 != loc)
{
if (0xff != _vertexDecl.m_attributes[attr])
{
GL_CHECK(glEnableVertexAttribArray(loc) );
GL_CHECK(glVertexAttribDivisor(loc, 0) );
uint32_t baseVertex = _baseVertex*_vertexDecl.m_stride + _vertexDecl.m_offset[attr];
GL_CHECK(glVertexAttribPointer(loc, num, s_attribType[type], normalized, _vertexDecl.m_stride, (void*)(uintptr_t)baseVertex) );
}
else
{
GL_CHECK(glDisableVertexAttribArray(loc) );
}
}
}
}
void ProgramGL::bindInstanceData(uint32_t _stride, uint32_t _baseVertex) const
{
uint32_t baseVertex = _baseVertex;
for (uint32_t ii = 0; 0xffff != m_instanceData[ii]; ++ii)
{
GLint loc = m_instanceData[ii];
GL_CHECK(glEnableVertexAttribArray(loc) );
GL_CHECK(glVertexAttribPointer(loc, 4, GL_FLOAT, GL_FALSE, _stride, (void*)(uintptr_t)baseVertex) );
GL_CHECK(glVertexAttribDivisor(loc, 1) );
baseVertex += 16;
}
}
void IndexBufferGL::destroy()
{
GL_CHECK(glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0) );
GL_CHECK(glDeleteBuffers(1, &m_id) );
m_vcref.invalidate(s_renderGL->m_vaoStateCache);
}
void VertexBufferGL::destroy()
{
GL_CHECK(glBindBuffer(GL_ARRAY_BUFFER, 0) );
GL_CHECK(glDeleteBuffers(1, &m_id) );
m_vcref.invalidate(s_renderGL->m_vaoStateCache);
}
static void texImage(GLenum _target, GLint _level, GLint _internalFormat, GLsizei _width, GLsizei _height, GLsizei _depth, GLint _border, GLenum _format, GLenum _type, const GLvoid* _data)
{
if (_target == GL_TEXTURE_3D)
{
GL_CHECK(glTexImage3D(_target, _level, _internalFormat, _width, _height, _depth, _border, _format, _type, _data) );
}
else
{
BX_UNUSED(_depth);
GL_CHECK(glTexImage2D(_target, _level, _internalFormat, _width, _height, _border, _format, _type, _data) );
}
}
static void texSubImage(GLenum _target, GLint _level, GLint _xoffset, GLint _yoffset, GLint _zoffset, GLsizei _width, GLsizei _height, GLsizei _depth, GLenum _format, GLenum _type, const GLvoid* _data)
{
if (_target == GL_TEXTURE_3D)
{
GL_CHECK(glTexSubImage3D(_target, _level, _xoffset, _yoffset, _zoffset, _width, _height, _depth, _format, _type, _data) );
}
else
{
BX_UNUSED(_zoffset, _depth);
GL_CHECK(glTexSubImage2D(_target, _level, _xoffset, _yoffset, _width, _height, _format, _type, _data) );
}
}
static void compressedTexImage(GLenum _target, GLint _level, GLenum _internalformat, GLsizei _width, GLsizei _height, GLsizei _depth, GLint _border, GLsizei _imageSize, const GLvoid* _data)
{
if (_target == GL_TEXTURE_3D)
{
GL_CHECK(glCompressedTexImage3D(_target, _level, _internalformat, _width, _height, _depth, _border, _imageSize, _data) );
}
else
{
BX_UNUSED(_depth);
GL_CHECK(glCompressedTexImage2D(_target, _level, _internalformat, _width, _height, _border, _imageSize, _data) );
}
}
static void compressedTexSubImage(GLenum _target, GLint _level, GLint _xoffset, GLint _yoffset, GLint _zoffset, GLsizei _width, GLsizei _height, GLsizei _depth, GLenum _format, GLsizei _imageSize, const GLvoid* _data)
{
if (_target == GL_TEXTURE_3D)
{
GL_CHECK(glCompressedTexSubImage3D(_target, _level, _xoffset, _yoffset, _zoffset, _width, _height, _depth, _format, _imageSize, _data) );
}
else
{
BX_UNUSED(_zoffset, _depth);
GL_CHECK(glCompressedTexSubImage2D(_target, _level, _xoffset, _yoffset, _width, _height, _format, _imageSize, _data) );
}
}
bool TextureGL::init(GLenum _target, uint32_t _width, uint32_t _height, uint8_t _format, uint8_t _numMips, uint32_t _flags)
{
m_target = _target;
m_numMips = _numMips;
m_flags = _flags;
m_currentFlags = UINT32_MAX;
m_width = _width;
m_height = _height;
m_requestedFormat = _format;
m_textureFormat = _format;
const bool bufferOnly = 0 != (m_flags&BGFX_TEXTURE_RT_BUFFER_ONLY);
const bool computeWrite = 0 != (m_flags&BGFX_TEXTURE_COMPUTE_WRITE );
if (!bufferOnly)
{
GL_CHECK(glGenTextures(1, &m_id) );
BX_CHECK(0 != m_id, "Failed to generate texture id.");
GL_CHECK(glBindTexture(_target, m_id) );
const TextureFormatInfo& tfi = s_textureFormat[_format];
m_fmt = tfi.m_fmt;
m_type = tfi.m_type;
const bool swizzle = true
&& TextureFormat::BGRA8 == m_requestedFormat
&& !s_textureFormat[m_requestedFormat].m_supported
&& !s_renderGL->m_textureSwizzleSupport
;
const bool compressed = isCompressed(TextureFormat::Enum(m_requestedFormat) );
const bool convert = false
|| (compressed && m_textureFormat != m_requestedFormat)
|| swizzle
|| !s_textureFormat[m_requestedFormat].m_supported
;
if (convert)
{
m_textureFormat = (uint8_t)TextureFormat::RGBA8;
const TextureFormatInfo& tfiRgba8 = s_textureFormat[TextureFormat::RGBA8];
m_fmt = tfiRgba8.m_fmt;
m_type = tfiRgba8.m_type;
}
if (computeWrite)
{
GL_CHECK(glTexStorage2D(_target, _numMips, s_textureFormat[m_textureFormat].m_internalFmt, m_width, m_height));
}
setSamplerState(_flags);
if (BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGL)
&& TextureFormat::BGRA8 == m_requestedFormat
&& !s_textureFormat[m_requestedFormat].m_supported
&& s_renderGL->m_textureSwizzleSupport)
{
GLint swizzleMask[] = { GL_BLUE, GL_GREEN, GL_RED, GL_ALPHA };
GL_CHECK(glTexParameteriv(GL_TEXTURE_2D, GL_TEXTURE_SWIZZLE_RGBA, swizzleMask) );
}
}
const bool renderTarget = 0 != (m_flags&BGFX_TEXTURE_RT_MASK);
if (renderTarget)
{
uint32_t msaaQuality = ( (m_flags&BGFX_TEXTURE_RT_MSAA_MASK)>>BGFX_TEXTURE_RT_MSAA_SHIFT);
msaaQuality = bx::uint32_satsub(msaaQuality, 1);
msaaQuality = bx::uint32_min(s_renderGL->m_maxMsaa, msaaQuality == 0 ? 0 : 1<<msaaQuality);
if (0 != msaaQuality
|| bufferOnly)
{
GL_CHECK(glGenRenderbuffers(1, &m_rbo) );
BX_CHECK(0 != m_rbo, "Failed to generate renderbuffer id.");
GL_CHECK(glBindRenderbuffer(GL_RENDERBUFFER, m_rbo) );
if (0 == msaaQuality)
{
GL_CHECK(glRenderbufferStorage(GL_RENDERBUFFER
, s_rboFormat[m_textureFormat]
, _width
, _height
) );
}
else if (BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGL || BGFX_CONFIG_RENDERER_OPENGLES >= 30) )
{
GL_CHECK(glRenderbufferStorageMultisample(GL_RENDERBUFFER
, msaaQuality
, s_rboFormat[m_textureFormat]
, _width
, _height
) );
}
GL_CHECK(glBindRenderbuffer(GL_RENDERBUFFER, 0) );
if (bufferOnly)
{
// This is render buffer, there is no sampling, no need
// to create texture.
return false;
}
}
}
return true;
}
void TextureGL::create(const Memory* _mem, uint32_t _flags, uint8_t _skip)
{
ImageContainer imageContainer;
if (imageParse(imageContainer, _mem->data, _mem->size) )
{
uint8_t numMips = imageContainer.m_numMips;
const uint8_t startLod = uint8_t(bx::uint32_min(_skip, numMips-1) );
numMips -= startLod;
uint32_t textureWidth;
uint32_t textureHeight;
{
const ImageBlockInfo& ibi = getBlockInfo(TextureFormat::Enum(imageContainer.m_format) );
textureWidth = bx::uint32_max(ibi.blockWidth, imageContainer.m_width >>startLod);
textureHeight = bx::uint32_max(ibi.blockHeight, imageContainer.m_height>>startLod);
}
GLenum target = GL_TEXTURE_2D;
if (imageContainer.m_cubeMap)
{
target = GL_TEXTURE_CUBE_MAP;
}
else if (imageContainer.m_depth > 1)
{
target = GL_TEXTURE_3D;
}
if (!init(target
, textureWidth
, textureHeight
, imageContainer.m_format
, numMips
, _flags
) )
{
return;
}
const bool computeWrite = 0 != (m_flags&BGFX_TEXTURE_COMPUTE_WRITE);
target = GL_TEXTURE_CUBE_MAP == m_target ? GL_TEXTURE_CUBE_MAP_POSITIVE_X : m_target;
const GLenum internalFmt = s_textureFormat[m_textureFormat].m_internalFmt;
const bool swizzle = true
&& TextureFormat::BGRA8 == m_requestedFormat
&& !s_textureFormat[m_requestedFormat].m_supported
&& !s_renderGL->m_textureSwizzleSupport
;
const bool compressed = isCompressed(TextureFormat::Enum(m_requestedFormat) );
const bool convert = false
|| m_textureFormat != m_requestedFormat
|| swizzle
;
BX_TRACE("Texture%-4s %3d: %s (requested: %s), %dx%dx%d%s."
, imageContainer.m_cubeMap ? "Cube" : (1 < imageContainer.m_depth ? "3D" : "2D")
, this - s_renderGL->m_textures
, getName( (TextureFormat::Enum)m_textureFormat)
, getName( (TextureFormat::Enum)m_requestedFormat)
, textureWidth
, textureHeight
, imageContainer.m_cubeMap ? 6 : (1 < imageContainer.m_depth ? imageContainer.m_depth : 0)
, 0 != (m_flags&BGFX_TEXTURE_RT_MASK) ? " (render target)" : ""
);
BX_WARN(!convert, "Texture %s%s%s from %s to %s."
, swizzle ? "swizzle" : ""
, swizzle&&convert ? " and " : ""
, convert ? "convert" : ""
, getName( (TextureFormat::Enum)m_requestedFormat)
, getName( (TextureFormat::Enum)m_textureFormat)
);
uint8_t* temp = NULL;
if (convert)
{
temp = (uint8_t*)BX_ALLOC(g_allocator, textureWidth*textureHeight*4);
}
for (uint8_t side = 0, numSides = imageContainer.m_cubeMap ? 6 : 1; side < numSides; ++side)
{
uint32_t width = textureWidth;
uint32_t height = textureHeight;
uint32_t depth = imageContainer.m_depth;
for (uint8_t lod = 0, num = numMips; lod < num; ++lod)
{
width = bx::uint32_max(1, width);
height = bx::uint32_max(1, height);
depth = bx::uint32_max(1, depth);
ImageMip mip;
if (imageGetRawData(imageContainer, side, lod+startLod, _mem->data, _mem->size, mip) )
{
if (compressed
&& !convert)
{
compressedTexImage(target+side
, lod
, internalFmt
, width
, height
, depth
, 0
, mip.m_size
, mip.m_data
);
}
else
{
const uint8_t* data = mip.m_data;
if (convert)
{
imageDecodeToRgba8(temp
, mip.m_data
, mip.m_width
, mip.m_height
, mip.m_width*4
, mip.m_format
);
data = temp;
}
texImage(target+side
, lod
, internalFmt
, width
, height
, depth
, 0
, m_fmt
, m_type
, data
);
}
}
else if (!computeWrite)
{
if (compressed)
{
uint32_t size = bx::uint32_max(1, (width + 3)>>2)
* bx::uint32_max(1, (height + 3)>>2)
* 4*4*getBitsPerPixel(TextureFormat::Enum(m_textureFormat) )/8
;
compressedTexImage(target+side
, lod
, internalFmt
, width
, height
, depth
, 0
, size
, NULL
);
}
else
{
texImage(target+side
, lod
, internalFmt
, width
, height
, depth
, 0
, m_fmt
, m_type
, NULL
);
}
}
width >>= 1;
height >>= 1;
depth >>= 1;
}
}
if (NULL != temp)
{
BX_FREE(g_allocator, temp);
}
}
GL_CHECK(glBindTexture(m_target, 0) );
}
void TextureGL::destroy()
{
if (0 != m_id)
{
GL_CHECK(glBindTexture(m_target, 0) );
GL_CHECK(glDeleteTextures(1, &m_id) );
m_id = 0;
}
if (0 != m_rbo)
{
GL_CHECK(glDeleteRenderbuffers(1, &m_rbo) );
m_rbo = 0;
}
}
void TextureGL::update(uint8_t _side, uint8_t _mip, const Rect& _rect, uint16_t _z, uint16_t _depth, uint16_t _pitch, const Memory* _mem)
{
BX_UNUSED(_z, _depth);
const uint32_t bpp = getBitsPerPixel(TextureFormat::Enum(m_textureFormat) );
const uint32_t rectpitch = _rect.m_width*bpp/8;
uint32_t srcpitch = UINT16_MAX == _pitch ? rectpitch : _pitch;
GL_CHECK(glBindTexture(m_target, m_id) );
GL_CHECK(glPixelStorei(GL_UNPACK_ALIGNMENT, 1) );
GLenum target = GL_TEXTURE_CUBE_MAP == m_target ? GL_TEXTURE_CUBE_MAP_POSITIVE_X : m_target;
const bool swizzle = true
&& TextureFormat::BGRA8 == m_requestedFormat
&& !s_textureFormat[m_requestedFormat].m_supported
&& !s_renderGL->m_textureSwizzleSupport
;
const bool unpackRowLength = BX_IGNORE_C4127(!!BGFX_CONFIG_RENDERER_OPENGL || s_extension[Extension::EXT_unpack_subimage].m_supported);
const bool compressed = isCompressed(TextureFormat::Enum(m_requestedFormat) );
const bool convert = false
|| (compressed && m_textureFormat != m_requestedFormat)
|| swizzle
;
const uint32_t width = _rect.m_width;
const uint32_t height = _rect.m_height;
uint8_t* temp = NULL;
if (convert
|| !unpackRowLength)
{
temp = (uint8_t*)BX_ALLOC(g_allocator, rectpitch*height);
}
else if (unpackRowLength)
{
GL_CHECK(glPixelStorei(GL_UNPACK_ROW_LENGTH, srcpitch*8/bpp) );
}
if (compressed)
{
const uint8_t* data = _mem->data;
if (!unpackRowLength)
{
imageCopy(width, height, bpp, srcpitch, data, temp);
data = temp;
}
GL_CHECK(compressedTexSubImage(target+_side
, _mip
, _rect.m_x
, _rect.m_y
, _z
, _rect.m_width
, _rect.m_height
, _depth
, m_fmt
, _mem->size
, data
) );
}
else
{
const uint8_t* data = _mem->data;
if (convert)
{
imageDecodeToRgba8(temp, data, width, height, srcpitch, m_requestedFormat);
data = temp;
srcpitch = rectpitch;
}
if (!unpackRowLength
&& !convert)
{
imageCopy(width, height, bpp, srcpitch, data, temp);
data = temp;
}
GL_CHECK(texSubImage(target+_side
, _mip
, _rect.m_x
, _rect.m_y
, _z
, _rect.m_width
, _rect.m_height
, _depth
, m_fmt
, m_type
, data
) );
}
if (NULL != temp)
{
BX_FREE(g_allocator, temp);
}
}
void TextureGL::setSamplerState(uint32_t _flags)
{
if (BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGLES < 30)
&& !s_textureFilter[m_textureFormat])
{
// Force point sampling when texture format doesn't support linear sampling.
_flags &= 0
| BGFX_TEXTURE_MIN_MASK
| BGFX_TEXTURE_MAG_MASK
| BGFX_TEXTURE_MIP_MASK
;
_flags |= 0
| BGFX_TEXTURE_MIN_POINT
| BGFX_TEXTURE_MAG_POINT
| BGFX_TEXTURE_MIP_POINT
;
}
const uint32_t flags = (0 != (BGFX_SAMPLER_DEFAULT_FLAGS & _flags) ? m_flags : _flags) & BGFX_TEXTURE_SAMPLER_BITS_MASK;
if (flags != m_currentFlags)
{
const GLenum target = m_target;
const uint8_t numMips = m_numMips;
GL_CHECK(glTexParameteri(target, GL_TEXTURE_WRAP_S, s_textureAddress[(flags&BGFX_TEXTURE_U_MASK)>>BGFX_TEXTURE_U_SHIFT]) );
GL_CHECK(glTexParameteri(target, GL_TEXTURE_WRAP_T, s_textureAddress[(flags&BGFX_TEXTURE_V_MASK)>>BGFX_TEXTURE_V_SHIFT]) );
if (BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGL || BGFX_CONFIG_RENDERER_OPENGLES >= 30)
|| s_extension[Extension::APPLE_texture_max_level].m_supported)
{
GL_CHECK(glTexParameteri(target, GL_TEXTURE_MAX_LEVEL, numMips-1) );
}
if (target == GL_TEXTURE_3D)
{
GL_CHECK(glTexParameteri(target, GL_TEXTURE_WRAP_R, s_textureAddress[(flags&BGFX_TEXTURE_W_MASK)>>BGFX_TEXTURE_W_SHIFT]) );
}
GLenum magFilter;
GLenum minFilter;
getFilters(flags, 1 < numMips, magFilter, minFilter);
GL_CHECK(glTexParameteri(target, GL_TEXTURE_MAG_FILTER, magFilter) );
GL_CHECK(glTexParameteri(target, GL_TEXTURE_MIN_FILTER, minFilter) );
if (0 != (flags & (BGFX_TEXTURE_MIN_ANISOTROPIC|BGFX_TEXTURE_MAG_ANISOTROPIC) )
&& 0.0f < s_renderGL->m_maxAnisotropy)
{
GL_CHECK(glTexParameterf(target, GL_TEXTURE_MAX_ANISOTROPY_EXT, s_renderGL->m_maxAnisotropy) );
}
if (BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGLES >= 30)
|| s_renderGL->m_shadowSamplersSupport)
{
const uint32_t cmpFunc = (flags&BGFX_TEXTURE_COMPARE_MASK)>>BGFX_TEXTURE_COMPARE_SHIFT;
if (0 == cmpFunc)
{
GL_CHECK(glTexParameteri(m_target, GL_TEXTURE_COMPARE_MODE, GL_NONE) );
}
else
{
GL_CHECK(glTexParameteri(m_target, GL_TEXTURE_COMPARE_MODE, GL_COMPARE_REF_TO_TEXTURE) );
GL_CHECK(glTexParameteri(m_target, GL_TEXTURE_COMPARE_FUNC, s_cmpFunc[cmpFunc]) );
}
}
m_currentFlags = flags;
}
}
void TextureGL::commit(uint32_t _stage, uint32_t _flags)
{
GL_CHECK(glActiveTexture(GL_TEXTURE0+_stage) );
GL_CHECK(glBindTexture(m_target, m_id) );
if (BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGLES)
&& BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGLES < 30) )
{
// GLES2 doesn't have support for sampler object.
setSamplerState(_flags);
}
else if (BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGL)
&& BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGL < 31) )
{
// In case that GL 2.1 sampler object is supported via extension.
if (s_renderGL->m_samplerObjectSupport)
{
s_renderGL->setSamplerState(_stage, m_numMips, _flags);
}
else
{
setSamplerState(_flags);
}
}
else
{
// Everything else has sampler object.
s_renderGL->setSamplerState(_stage, m_numMips, _flags);
}
}
void writeString(bx::WriterI* _writer, const char* _str)
{
bx::write(_writer, _str, (int32_t)strlen(_str) );
}
void writeStringf(bx::WriterI* _writer, const char* _format, ...)
{
char temp[512];
va_list argList;
va_start(argList, _format);
int len = bx::vsnprintf(temp, BX_COUNTOF(temp), _format, argList);
va_end(argList);
bx::write(_writer, temp, len);
}
void strins(char* _str, const char* _insert)
{
size_t len = strlen(_insert);
memmove(&_str[len], _str, strlen(_str)+1);
memcpy(_str, _insert, len);
}
void ShaderGL::create(Memory* _mem)
{
bx::MemoryReader reader(_mem->data, _mem->size);
m_hash = bx::hashMurmur2A(_mem->data, _mem->size);
uint32_t magic;
bx::read(&reader, magic);
switch (magic)
{
case BGFX_CHUNK_MAGIC_CSH: m_type = GL_COMPUTE_SHADER; break;
case BGFX_CHUNK_MAGIC_FSH: m_type = GL_FRAGMENT_SHADER; break;
case BGFX_CHUNK_MAGIC_VSH: m_type = GL_VERTEX_SHADER; break;
default:
BGFX_FATAL(false, Fatal::InvalidShader, "Unknown shader format %x.", magic);
break;
}
uint32_t iohash;
bx::read(&reader, iohash);
uint16_t count;
bx::read(&reader, count);
BX_TRACE("%s Shader consts %d"
, BGFX_CHUNK_MAGIC_FSH == magic ? "Fragment" : BGFX_CHUNK_MAGIC_VSH == magic ? "Vertex" : "Compute"
, count
);
for (uint32_t ii = 0; ii < count; ++ii)
{
uint8_t nameSize;
bx::read(&reader, nameSize);
char name[256];
bx::read(&reader, &name, nameSize);
name[nameSize] = '\0';
uint8_t type;
bx::read(&reader, type);
uint8_t num;
bx::read(&reader, num);
uint16_t regIndex;
bx::read(&reader, regIndex);
uint16_t regCount;
bx::read(&reader, regCount);
}
uint32_t shaderSize;
bx::read(&reader, shaderSize);
m_id = glCreateShader(m_type);
BX_WARN(0 != m_id, "Failed to create %s shader."
, BGFX_CHUNK_MAGIC_FSH == magic ? "fragment" : BGFX_CHUNK_MAGIC_VSH == magic ? "vertex" : "compute"
);
const char* code = (const char*)reader.getDataPtr();
if (0 != m_id)
{
if (GL_COMPUTE_SHADER != m_type)
{
int32_t codeLen = (int32_t)strlen(code);
int32_t tempLen = codeLen + (4<<10);
char* temp = (char*)alloca(tempLen);
bx::StaticMemoryBlockWriter writer(temp, tempLen);
if (BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGLES)
&& BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGLES < 30) )
{
writeString(&writer
, "#define flat\n"
"#define smooth\n"
"#define noperspective\n"
);
bool usesDerivatives = s_extension[Extension::OES_standard_derivatives].m_supported
&& bx::findIdentifierMatch(code, s_OES_standard_derivatives)
;
bool usesFragData = !!bx::findIdentifierMatch(code, "gl_FragData");
bool usesFragDepth = !!bx::findIdentifierMatch(code, "gl_FragDepth");
bool usesShadowSamplers = !!bx::findIdentifierMatch(code, s_EXT_shadow_samplers);
bool usesTexture3D = s_extension[Extension::OES_texture_3D].m_supported
&& bx::findIdentifierMatch(code, s_OES_texture_3D)
;
bool usesTextureLod = !!bx::findIdentifierMatch(code, s_EXT_shader_texture_lod);
bool usesFragmentOrdering = !!bx::findIdentifierMatch(code, "beginFragmentShaderOrdering");
if (usesDerivatives)
{
writeString(&writer, "#extension GL_OES_standard_derivatives : enable\n");
}
if (usesFragData)
{
BX_WARN(s_extension[Extension::EXT_draw_buffers ].m_supported
|| s_extension[Extension::WEBGL_draw_buffers].m_supported
, "EXT_draw_buffers is used but not supported by GLES2 driver."
);
writeString(&writer
, "#extension GL_EXT_draw_buffers : enable\n"
);
}
bool insertFragDepth = false;
if (usesFragDepth)
{
BX_WARN(s_extension[Extension::EXT_frag_depth].m_supported, "EXT_frag_depth is used but not supported by GLES2 driver.");
if (s_extension[Extension::EXT_frag_depth].m_supported)
{
writeString(&writer
, "#extension GL_EXT_frag_depth : enable\n"
"#define bgfx_FragDepth gl_FragDepthEXT\n"
);
char str[128];
bx::snprintf(str, BX_COUNTOF(str), "%s float gl_FragDepthEXT;\n"
, s_extension[Extension::OES_fragment_precision_high].m_supported ? "highp" : "mediump"
);
writeString(&writer, str);
}
else
{
insertFragDepth = true;
}
}
if (usesShadowSamplers)
{
if (s_renderGL->m_shadowSamplersSupport)
{
writeString(&writer
, "#extension GL_EXT_shadow_samplers : enable\n"
"#define shadow2D shadow2DEXT\n"
"#define shadow2DProj shadow2DProjEXT\n"
);
}
else
{
writeString(&writer
, "#define sampler2DShadow sampler2D\n"
"#define shadow2D(_sampler, _coord) step(_coord.z, texture2D(_sampler, _coord.xy).x)\n"
"#define shadow2DProj(_sampler, _coord) step(_coord.z/_coord.w, texture2DProj(_sampler, _coord).x)\n"
);
}
}
if (usesTexture3D)
{
writeString(&writer, "#extension GL_OES_texture_3D : enable\n");
}
if (usesTextureLod)
{
BX_WARN(s_extension[Extension::EXT_shader_texture_lod].m_supported, "EXT_shader_texture_lod is used but not supported by GLES2 driver.");
if (s_extension[Extension::EXT_shader_texture_lod].m_supported)
{
writeString(&writer
, "#extension GL_EXT_shader_texture_lod : enable\n"
"#define texture2DLod texture2DLodEXT\n"
"#define texture2DProjLod texture2DProjLodEXT\n"
"#define textureCubeLod textureCubeLodEXT\n"
);
}
else
{
writeString(&writer
, "#define texture2DLod(_sampler, _coord, _level) texture2D(_sampler, _coord)\n"
"#define texture2DProjLod(_sampler, _coord, _level) texture2DProj(_sampler, _coord)\n"
"#define textureCubeLod(_sampler, _coord, _level) textureCube(_sampler, _coord)\n"
);
}
}
if (usesFragmentOrdering)
{
if (s_extension[Extension::INTEL_fragment_shader_ordering].m_supported)
{
writeString(&writer, "#extension GL_INTEL_fragment_shader_ordering : enable\n");
}
else
{
writeString(&writer, "#define beginFragmentShaderOrdering()\n");
}
}
writeStringf(&writer, "precision %s float;\n"
, m_type == GL_FRAGMENT_SHADER ? "mediump" : "highp"
);
bx::write(&writer, code, codeLen);
bx::write(&writer, '\0');
if (insertFragDepth)
{
char* entry = strstr(temp, "void main ()");
if (NULL != entry)
{
char* brace = strstr(entry, "{");
if (NULL != brace)
{
const char* end = bx::strmb(brace, '{', '}');
if (NULL != end)
{
strins(brace+1, "\n float bgfx_FragDepth = 0.0;\n");
}
}
}
}
// Replace all instances of gl_FragDepth with bgfx_FragDepth.
for (const char* fragDepth = bx::findIdentifierMatch(temp, "gl_FragDepth"); NULL != fragDepth; fragDepth = bx::findIdentifierMatch(fragDepth, "gl_FragDepth") )
{
char* insert = const_cast<char*>(fragDepth);
strins(insert, "bg");
memcpy(insert + 2, "fx", 2);
}
}
else if (BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGL)
&& BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGL <= 21) )
{
bool usesTextureLod = true
&& s_extension[Extension::ARB_shader_texture_lod].m_supported
&& bx::findIdentifierMatch(code, s_ARB_shader_texture_lod)
;
bool usesIUsamplers = !!bx::findIdentifierMatch(code, s_uisamplers);
uint32_t version = usesIUsamplers ? 130 : (usesTextureLod ? 120 : 0);
if (0 != version)
{
writeStringf(&writer, "#version %d\n", version);
}
if (usesTextureLod)
{
if (m_type == GL_FRAGMENT_SHADER)
{
writeString(&writer, "#extension GL_ARB_shader_texture_lod : enable\n");
}
}
writeString(&writer
, "#define lowp\n"
"#define mediump\n"
"#define highp\n"
"#define flat\n"
"#define smooth\n"
"#define noperspective\n"
);
bx::write(&writer, code, codeLen);
bx::write(&writer, '\0');
}
else if (BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGL >= 31)
|| BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGLES >= 30) )
{
if (BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGLES >= 30) )
{
writeString(&writer
, "#version 300 es\n"
"precision mediump float;\n"
);
}
else
{
writeString(&writer, "#version 140\n");
}
writeString(&writer, "#define texture2DLod textureLod\n");
writeString(&writer, "#define texture3DLod textureLod\n");
writeString(&writer, "#define textureCubeLod textureLod\n");
if (m_type == GL_FRAGMENT_SHADER)
{
writeString(&writer, "#define varying in\n");
writeString(&writer, "#define texture2D texture\n");
writeString(&writer, "#define texture2DProj textureProj\n");
if (BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGL) )
{
writeString(&writer, "#define shadow2D(_sampler, _coord) vec2(textureProj(_sampler, vec4(_coord, 1.0) ) )\n");
writeString(&writer, "#define shadow2DProj(_sampler, _coord) vec2(textureProj(_sampler, _coord) ) )\n");
}
else
{
writeString(&writer, "#define shadow2D(_sampler, _coord) (textureProj(_sampler, vec4(_coord, 1.0) ) )\n");
writeString(&writer, "#define shadow2DProj(_sampler, _coord) (textureProj(_sampler, _coord) ) )\n");
}
writeString(&writer, "#define texture3D texture\n");
writeString(&writer, "#define textureCube texture\n");
uint32_t fragData = 0;
if (!!bx::findIdentifierMatch(code, "gl_FragData") )
{
for (uint32_t ii = 0, num = g_caps.maxFBAttachments; ii < num; ++ii)
{
char tmpFragData[16];
bx::snprintf(tmpFragData, BX_COUNTOF(tmpFragData), "gl_FragData[%d]", ii);
fragData = bx::uint32_max(fragData, NULL == strstr(code, tmpFragData) ? 0 : ii+1);
}
BGFX_FATAL(0 != fragData, Fatal::InvalidShader, "Unable to find and patch gl_FragData!");
}
if (!!bx::findIdentifierMatch(code, "beginFragmentShaderOrdering") )
{
if (s_extension[Extension::INTEL_fragment_shader_ordering].m_supported)
{
writeString(&writer, "#extension GL_INTEL_fragment_shader_ordering : enable\n");
}
else
{
writeString(&writer, "#define beginFragmentShaderOrdering()\n");
}
}
if (0 != fragData)
{
writeStringf(&writer, "out vec4 bgfx_FragData[%d];\n", fragData);
writeString(&writer, "#define gl_FragData bgfx_FragData\n");
}
else
{
writeString(&writer, "out vec4 bgfx_FragColor;\n");
writeString(&writer, "#define gl_FragColor bgfx_FragColor\n");
}
}
else
{
writeString(&writer, "#define attribute in\n");
writeString(&writer, "#define varying out\n");
}
if (!BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGLES >= 30) )
{
writeString(&writer
, "#define lowp\n"
"#define mediump\n"
"#define highp\n"
);
}
bx::write(&writer, code, codeLen);
bx::write(&writer, '\0');
}
code = temp;
}
GL_CHECK(glShaderSource(m_id, 1, (const GLchar**)&code, NULL) );
GL_CHECK(glCompileShader(m_id) );
GLint compiled = 0;
GL_CHECK(glGetShaderiv(m_id, GL_COMPILE_STATUS, &compiled) );
if (0 == compiled)
{
BX_TRACE("\n####\n%s\n####", code);
GLsizei len;
char log[1024];
GL_CHECK(glGetShaderInfoLog(m_id, sizeof(log), &len, log) );
BX_TRACE("Failed to compile shader. %d: %s", compiled, log);
GL_CHECK(glDeleteShader(m_id) );
m_id = 0;
BGFX_FATAL(false, bgfx::Fatal::InvalidShader, "Failed to compile shader.");
}
else if (BX_ENABLED(BGFX_CONFIG_DEBUG)
&& s_extension[Extension::ANGLE_translated_shader_source].m_supported
&& NULL != glGetTranslatedShaderSourceANGLE)
{
GLsizei len;
GL_CHECK(glGetShaderiv(m_id, GL_TRANSLATED_SHADER_SOURCE_LENGTH_ANGLE, &len) );
char* source = (char*)alloca(len);
GL_CHECK(glGetTranslatedShaderSourceANGLE(m_id, len, &len, source) );
BX_TRACE("ANGLE source (len: %d):\n%s\n####", len, source);
}
}
}
void ShaderGL::destroy()
{
if (0 != m_id)
{
GL_CHECK(glDeleteShader(m_id) );
m_id = 0;
}
}
static void frameBufferValidate()
{
GLenum complete = glCheckFramebufferStatus(GL_FRAMEBUFFER);
BX_CHECK(GL_FRAMEBUFFER_COMPLETE == complete
, "glCheckFramebufferStatus failed 0x%08x: %s"
, complete
, glEnumName(complete)
);
BX_UNUSED(complete);
}
void FrameBufferGL::create(uint8_t _num, const TextureHandle* _handles)
{
GL_CHECK(glGenFramebuffers(1, &m_fbo[0]) );
m_numTh = _num;
memcpy(m_th, _handles, _num*sizeof(TextureHandle) );
postReset();
}
void FrameBufferGL::postReset()
{
if (0 != m_fbo[0])
{
GL_CHECK(glBindFramebuffer(GL_FRAMEBUFFER, m_fbo[0]) );
bool needResolve = false;
GLenum buffers[BGFX_CONFIG_MAX_FRAME_BUFFER_ATTACHMENTS];
uint32_t colorIdx = 0;
for (uint32_t ii = 0; ii < m_numTh; ++ii)
{
TextureHandle handle = m_th[ii];
if (isValid(handle) )
{
const TextureGL& texture = s_renderGL->m_textures[handle.idx];
if (0 == colorIdx)
{
m_width = texture.m_width;
m_height = texture.m_height;
}
GLenum attachment = GL_COLOR_ATTACHMENT0 + colorIdx;
TextureFormat::Enum format = (TextureFormat::Enum)texture.m_textureFormat;
if (isDepth(format) )
{
const ImageBlockInfo& info = getBlockInfo(format);
if (0 < info.stencilBits)
{
attachment = GL_DEPTH_STENCIL_ATTACHMENT;
}
else if (0 == info.depthBits)
{
attachment = GL_STENCIL_ATTACHMENT;
}
else
{
attachment = GL_DEPTH_ATTACHMENT;
}
}
else
{
buffers[colorIdx] = attachment;
++colorIdx;
}
if (0 != texture.m_rbo)
{
GL_CHECK(glFramebufferRenderbuffer(GL_FRAMEBUFFER
, attachment
, GL_RENDERBUFFER
, texture.m_rbo
) );
}
else
{
GL_CHECK(glFramebufferTexture2D(GL_FRAMEBUFFER
, attachment
, texture.m_target
, texture.m_id
, 0
) );
}
needResolve |= (0 != texture.m_rbo) && (0 != texture.m_id);
}
}
m_num = uint8_t(colorIdx);
if (BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGL) )
{
if (0 == colorIdx)
{
// When only depth is attached disable draw buffer to avoid
// GL_FRAMEBUFFER_INCOMPLETE_DRAW_BUFFER.
GL_CHECK(glDrawBuffer(GL_NONE) );
}
else
{
GL_CHECK(glDrawBuffers(colorIdx, buffers) );
}
// Disable read buffer to avoid GL_FRAMEBUFFER_INCOMPLETE_READ_BUFFER.
GL_CHECK(glReadBuffer(GL_NONE) );
}
frameBufferValidate();
if (needResolve)
{
GL_CHECK(glGenFramebuffers(1, &m_fbo[1]) );
GL_CHECK(glBindFramebuffer(GL_FRAMEBUFFER, m_fbo[1]) );
colorIdx = 0;
for (uint32_t ii = 0; ii < m_numTh; ++ii)
{
TextureHandle handle = m_th[ii];
if (isValid(handle) )
{
const TextureGL& texture = s_renderGL->m_textures[handle.idx];
if (0 != texture.m_id)
{
GLenum attachment = GL_COLOR_ATTACHMENT0 + colorIdx;
if (!isDepth( (TextureFormat::Enum)texture.m_textureFormat) )
{
++colorIdx;
GL_CHECK(glFramebufferTexture2D(GL_FRAMEBUFFER
, attachment
, texture.m_target
, texture.m_id
, 0
) );
}
}
}
}
frameBufferValidate();
}
GL_CHECK(glBindFramebuffer(GL_FRAMEBUFFER, s_renderGL->m_msaaBackBufferFbo) );
}
}
void FrameBufferGL::create(uint16_t _denseIdx, void* _nwh, uint32_t _width, uint32_t _height, TextureFormat::Enum _depthFormat)
{
BX_UNUSED(_depthFormat);
m_swapChain = s_renderGL->m_glctx.createSwapChain(_nwh);
m_width = _width;
m_height = _height;
m_denseIdx = _denseIdx;
}
uint16_t FrameBufferGL::destroy()
{
if (0 != m_num)
{
GL_CHECK(glDeleteFramebuffers(0 == m_fbo[1] ? 1 : 2, m_fbo) );
m_num = 0;
}
if (NULL != m_swapChain)
{
s_renderGL->m_glctx.destroySwapChain(m_swapChain);
m_swapChain = NULL;
}
memset(m_fbo, 0, sizeof(m_fbo) );
uint16_t denseIdx = m_denseIdx;
m_denseIdx = UINT16_MAX;
return denseIdx;
}
void FrameBufferGL::resolve()
{
if (0 != m_fbo[1])
{
GL_CHECK(glBindFramebuffer(GL_READ_FRAMEBUFFER, m_fbo[0]) );
GL_CHECK(glReadBuffer(GL_COLOR_ATTACHMENT0) );
GL_CHECK(glBindFramebuffer(GL_DRAW_FRAMEBUFFER, m_fbo[1]) );
GL_CHECK(glBlitFramebuffer(0
, 0
, m_width
, m_height
, 0
, 0
, m_width
, m_height
, GL_COLOR_BUFFER_BIT
, GL_LINEAR
) );
GL_CHECK(glBindFramebuffer(GL_READ_FRAMEBUFFER, m_fbo[0]) );
GL_CHECK(glReadBuffer(GL_NONE) );
GL_CHECK(glBindFramebuffer(GL_FRAMEBUFFER, s_renderGL->m_msaaBackBufferFbo) );
}
}
void FrameBufferGL::discard(uint16_t _flags)
{
GLenum buffers[BGFX_CONFIG_MAX_FRAME_BUFFER_ATTACHMENTS+2];
uint32_t idx = 0;
if (BGFX_CLEAR_NONE != (_flags & BGFX_CLEAR_DISCARD_COLOR_MASK) )
{
for (uint32_t ii = 0, num = m_num; ii < num; ++ii)
{
if (BGFX_CLEAR_NONE != (_flags & (BGFX_CLEAR_DISCARD_COLOR_0<<ii) ) )
{
buffers[idx++] = GL_COLOR_ATTACHMENT0 + ii;
}
}
}
uint32_t dsFlags = _flags & (BGFX_CLEAR_DISCARD_DEPTH|BGFX_CLEAR_DISCARD_STENCIL);
if (BGFX_CLEAR_NONE != dsFlags)
{
if ( (BGFX_CLEAR_DISCARD_DEPTH|BGFX_CLEAR_DISCARD_STENCIL) == dsFlags)
{
buffers[idx++] = GL_DEPTH_STENCIL_ATTACHMENT;
}
else if (BGFX_CLEAR_DISCARD_DEPTH == dsFlags)
{
buffers[idx++] = GL_DEPTH_ATTACHMENT;
}
else if (BGFX_CLEAR_DISCARD_STENCIL == dsFlags)
{
buffers[idx++] = GL_STENCIL_ATTACHMENT;
}
}
GL_CHECK(glInvalidateFramebuffer(GL_FRAMEBUFFER, idx, buffers) );
}
void RendererContextGL::submit(Frame* _render, ClearQuad& _clearQuad, TextVideoMemBlitter& _textVideoMemBlitter)
{
if (1 < m_numWindows
&& m_vaoSupport)
{
m_vaoSupport = false;
GL_CHECK(glBindVertexArray(0) );
GL_CHECK(glDeleteVertexArrays(1, &m_vao) );
m_vao = 0;
m_vaoStateCache.invalidate();
}
m_glctx.makeCurrent(NULL);
const GLuint defaultVao = m_vao;
if (0 != defaultVao)
{
GL_CHECK(glBindVertexArray(defaultVao) );
}
GL_CHECK(glBindFramebuffer(GL_FRAMEBUFFER, m_backBufferFbo) );
updateResolution(_render->m_resolution);
int64_t elapsed = -bx::getHPCounter();
int64_t captureElapsed = 0;
if (BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGL)
&& (_render->m_debug & (BGFX_DEBUG_IFH|BGFX_DEBUG_STATS) )
&& m_timerQuerySupport)
{
m_queries.begin(0, GL_TIME_ELAPSED);
}
if (0 < _render->m_iboffset)
{
TransientIndexBuffer* ib = _render->m_transientIb;
m_indexBuffers[ib->handle.idx].update(0, _render->m_iboffset, ib->data);
}
if (0 < _render->m_vboffset)
{
TransientVertexBuffer* vb = _render->m_transientVb;
m_vertexBuffers[vb->handle.idx].update(0, _render->m_vboffset, vb->data);
}
_render->sort();
RenderDraw currentState;
currentState.clear();
currentState.m_flags = BGFX_STATE_NONE;
currentState.m_stencil = packStencil(BGFX_STENCIL_NONE, BGFX_STENCIL_NONE);
const bool hmdEnabled = m_ovr.isEnabled() || m_ovr.isDebug();
_render->m_hmdEnabled = hmdEnabled;
ViewState viewState(_render, hmdEnabled);
uint16_t programIdx = invalidHandle;
SortKey key;
uint8_t view = 0xff;
FrameBufferHandle fbh = BGFX_INVALID_HANDLE;
int32_t height = hmdEnabled
? _render->m_hmd.height
: _render->m_resolution.m_height
;
uint32_t blendFactor = 0;
uint8_t primIndex;
{
const uint64_t pt = _render->m_debug&BGFX_DEBUG_WIREFRAME ? BGFX_STATE_PT_LINES : 0;
primIndex = uint8_t(pt>>BGFX_STATE_PT_SHIFT);
}
PrimInfo prim = s_primInfo[primIndex];
uint32_t baseVertex = 0;
GLuint currentVao = 0;
bool wasCompute = false;
bool viewHasScissor = false;
Rect viewScissorRect;
viewScissorRect.clear();
uint16_t discardFlags = BGFX_CLEAR_NONE;
const bool blendIndependentSupported = s_extension[Extension::ARB_draw_buffers_blend].m_supported;
const bool computeSupported = (BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGL) && s_extension[Extension::ARB_compute_shader].m_supported)
|| BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGLES >= 31)
;
uint32_t statsNumPrimsSubmitted[BX_COUNTOF(s_primInfo)] = {};
uint32_t statsNumPrimsRendered[BX_COUNTOF(s_primInfo)] = {};
uint32_t statsNumInstances[BX_COUNTOF(s_primInfo)] = {};
uint32_t statsNumIndices = 0;
uint32_t statsKeyType[2] = {};
if (0 == (_render->m_debug&BGFX_DEBUG_IFH) )
{
GL_CHECK(glBindFramebuffer(GL_FRAMEBUFFER, m_msaaBackBufferFbo) );
bool viewRestart = false;
uint8_t eye = 0;
uint8_t restartState = 0;
viewState.m_rect = _render->m_rect[0];
int32_t numItems = _render->m_num;
for (int32_t item = 0, restartItem = numItems; item < numItems || restartItem < numItems;)
{
const bool isCompute = key.decode(_render->m_sortKeys[item], _render->m_viewRemap);
statsKeyType[isCompute]++;
const bool viewChanged = 0
|| key.m_view != view
|| item == numItems
;
const RenderItem& renderItem = _render->m_renderItem[_render->m_sortValues[item] ];
++item;
if (viewChanged)
{
if (1 == restartState)
{
restartState = 2;
item = restartItem;
restartItem = numItems;
view = 0xff;
continue;
}
view = key.m_view;
programIdx = invalidHandle;
if (_render->m_fb[view].idx != fbh.idx)
{
fbh = _render->m_fb[view];
height = hmdEnabled
? _render->m_hmd.height
: _render->m_resolution.m_height
;
height = setFrameBuffer(fbh, height, discardFlags);
}
viewRestart = ( (BGFX_VIEW_STEREO == (_render->m_viewFlags[view] & BGFX_VIEW_STEREO) ) );
viewRestart &= hmdEnabled;
if (viewRestart)
{
if (0 == restartState)
{
restartState = 1;
restartItem = item - 1;
}
eye = (restartState - 1) & 1;
restartState &= 1;
}
else
{
eye = 0;
}
viewState.m_rect = _render->m_rect[view];
if (viewRestart)
{
if (BX_ENABLED(BGFX_CONFIG_DEBUG_PIX) )
{
char* viewName = s_viewName[view];
viewName[3] = ' ';
viewName[4] = eye ? 'R' : 'L';
GL_CHECK(glInsertEventMarker(0, viewName) );
}
viewState.m_rect.m_x = eye * (viewState.m_rect.m_width+1)/2;
viewState.m_rect.m_width /= 2;
}
else
{
if (BX_ENABLED(BGFX_CONFIG_DEBUG_PIX) )
{
char* viewName = s_viewName[view];
viewName[3] = ' ';
viewName[4] = ' ';
GL_CHECK(glInsertEventMarker(0, viewName) );
}
}
const Rect& scissorRect = _render->m_scissor[view];
viewHasScissor = !scissorRect.isZero();
viewScissorRect = viewHasScissor ? scissorRect : viewState.m_rect;
GL_CHECK(glViewport(viewState.m_rect.m_x
, height-viewState.m_rect.m_height-viewState.m_rect.m_y
, viewState.m_rect.m_width
, viewState.m_rect.m_height
) );
Clear& clear = _render->m_clear[view];
discardFlags = clear.m_flags & BGFX_CLEAR_DISCARD_MASK;
if (BGFX_CLEAR_NONE != (clear.m_flags & BGFX_CLEAR_MASK) )
{
clearQuad(_clearQuad, viewState.m_rect, clear, height, _render->m_clearColor);
}
GL_CHECK(glDisable(GL_STENCIL_TEST) );
GL_CHECK(glEnable(GL_DEPTH_TEST) );
GL_CHECK(glDepthFunc(GL_LESS) );
GL_CHECK(glEnable(GL_CULL_FACE) );
GL_CHECK(glDisable(GL_BLEND) );
}
if (isCompute)
{
if (!wasCompute)
{
wasCompute = true;
if (BX_ENABLED(BGFX_CONFIG_DEBUG_PIX) )
{
char* viewName = s_viewName[view];
viewName[3] = 'C';
GL_CHECK(glInsertEventMarker(0, viewName) );
}
}
if (computeSupported)
{
const RenderCompute& compute = renderItem.compute;
ProgramGL& program = m_program[key.m_program];
GL_CHECK(glUseProgram(program.m_id) );
GLbitfield barrier = 0;
for (uint32_t ii = 0; ii < BGFX_MAX_COMPUTE_BINDINGS; ++ii)
{
const Binding& bind = compute.m_bind[ii];
if (invalidHandle != bind.m_idx)
{
switch (bind.m_type)
{
case Binding::Image:
{
const TextureGL& texture = m_textures[bind.m_idx];
GL_CHECK(glBindImageTexture(ii
, texture.m_id
, bind.m_un.m_compute.m_mip
, GL_FALSE
, 0
, s_access[bind.m_un.m_compute.m_access]
, s_imageFormat[bind.m_un.m_compute.m_format])
);
barrier |= GL_SHADER_IMAGE_ACCESS_BARRIER_BIT;
}
break;
case Binding::IndexBuffer:
{
const IndexBufferGL& buffer = m_indexBuffers[bind.m_idx];
GL_CHECK(glBindBufferBase(GL_SHADER_STORAGE_BUFFER, ii, buffer.m_id));
barrier |= GL_SHADER_STORAGE_BARRIER_BIT;
}
break;
case Binding::VertexBuffer:
{
const VertexBufferGL& buffer = m_vertexBuffers[bind.m_idx];
GL_CHECK(glBindBufferBase(GL_SHADER_STORAGE_BUFFER, ii, buffer.m_id));
barrier |= GL_SHADER_STORAGE_BARRIER_BIT;
}
break;
}
}
}
if (0 != barrier)
{
bool constantsChanged = compute.m_constBegin < compute.m_constEnd;
rendererUpdateUniforms(this, _render->m_constantBuffer, compute.m_constBegin, compute.m_constEnd);
if (constantsChanged
&& NULL != program.m_constantBuffer)
{
commit(*program.m_constantBuffer);
}
viewState.setPredefined<1>(this, view, eye, program, _render, compute);
GL_CHECK(glDispatchCompute(compute.m_numX, compute.m_numY, compute.m_numZ) );
GL_CHECK(glMemoryBarrier(barrier) );
}
}
continue;
}
bool resetState = viewChanged || wasCompute;
if (wasCompute)
{
wasCompute = false;
if (BX_ENABLED(BGFX_CONFIG_DEBUG_PIX) )
{
char* viewName = s_viewName[view];
viewName[3] = ' ';
GL_CHECK(glInsertEventMarker(0, viewName) );
}
}
const RenderDraw& draw = renderItem.draw;
const uint64_t newFlags = draw.m_flags;
uint64_t changedFlags = currentState.m_flags ^ draw.m_flags;
currentState.m_flags = newFlags;
const uint64_t newStencil = draw.m_stencil;
uint64_t changedStencil = currentState.m_stencil ^ draw.m_stencil;
currentState.m_stencil = newStencil;
if (resetState)
{
currentState.clear();
currentState.m_scissor = !draw.m_scissor;
changedFlags = BGFX_STATE_MASK;
changedStencil = packStencil(BGFX_STENCIL_MASK, BGFX_STENCIL_MASK);
currentState.m_flags = newFlags;
currentState.m_stencil = newStencil;
}
uint16_t scissor = draw.m_scissor;
if (currentState.m_scissor != scissor)
{
currentState.m_scissor = scissor;
if (UINT16_MAX == scissor)
{
if (viewHasScissor)
{
GL_CHECK(glEnable(GL_SCISSOR_TEST) );
GL_CHECK(glScissor(viewScissorRect.m_x
, height-viewScissorRect.m_height-viewScissorRect.m_y
, viewScissorRect.m_width
, viewScissorRect.m_height
) );
}
else
{
GL_CHECK(glDisable(GL_SCISSOR_TEST) );
}
}
else
{
Rect scissorRect;
scissorRect.intersect(viewScissorRect, _render->m_rectCache.m_cache[scissor]);
GL_CHECK(glEnable(GL_SCISSOR_TEST) );
GL_CHECK(glScissor(scissorRect.m_x
, height-scissorRect.m_height-scissorRect.m_y
, scissorRect.m_width
, scissorRect.m_height
) );
}
}
if (0 != changedStencil)
{
if (0 != newStencil)
{
GL_CHECK(glEnable(GL_STENCIL_TEST) );
uint32_t bstencil = unpackStencil(1, newStencil);
uint8_t frontAndBack = bstencil != BGFX_STENCIL_NONE && bstencil != unpackStencil(0, newStencil);
// uint32_t bchanged = unpackStencil(1, changedStencil);
// if (BGFX_STENCIL_FUNC_RMASK_MASK & bchanged)
// {
// uint32_t wmask = (bstencil&BGFX_STENCIL_FUNC_RMASK_MASK)>>BGFX_STENCIL_FUNC_RMASK_SHIFT;
// GL_CHECK(glStencilMask(wmask) );
// }
for (uint8_t ii = 0, num = frontAndBack+1; ii < num; ++ii)
{
uint32_t stencil = unpackStencil(ii, newStencil);
uint32_t changed = unpackStencil(ii, changedStencil);
GLenum face = s_stencilFace[frontAndBack+ii];
if ( (BGFX_STENCIL_TEST_MASK|BGFX_STENCIL_FUNC_REF_MASK|BGFX_STENCIL_FUNC_RMASK_MASK) & changed)
{
GLint ref = (stencil&BGFX_STENCIL_FUNC_REF_MASK)>>BGFX_STENCIL_FUNC_REF_SHIFT;
GLint mask = (stencil&BGFX_STENCIL_FUNC_RMASK_MASK)>>BGFX_STENCIL_FUNC_RMASK_SHIFT;
uint32_t func = (stencil&BGFX_STENCIL_TEST_MASK)>>BGFX_STENCIL_TEST_SHIFT;
GL_CHECK(glStencilFuncSeparate(face, s_cmpFunc[func], ref, mask));
}
if ( (BGFX_STENCIL_OP_FAIL_S_MASK|BGFX_STENCIL_OP_FAIL_Z_MASK|BGFX_STENCIL_OP_PASS_Z_MASK) & changed)
{
uint32_t sfail = (stencil&BGFX_STENCIL_OP_FAIL_S_MASK)>>BGFX_STENCIL_OP_FAIL_S_SHIFT;
uint32_t zfail = (stencil&BGFX_STENCIL_OP_FAIL_Z_MASK)>>BGFX_STENCIL_OP_FAIL_Z_SHIFT;
uint32_t zpass = (stencil&BGFX_STENCIL_OP_PASS_Z_MASK)>>BGFX_STENCIL_OP_PASS_Z_SHIFT;
GL_CHECK(glStencilOpSeparate(face, s_stencilOp[sfail], s_stencilOp[zfail], s_stencilOp[zpass]) );
}
}
}
else
{
GL_CHECK(glDisable(GL_STENCIL_TEST) );
}
}
if ( (0
| BGFX_STATE_CULL_MASK
| BGFX_STATE_DEPTH_WRITE
| BGFX_STATE_DEPTH_TEST_MASK
| BGFX_STATE_RGB_WRITE
| BGFX_STATE_ALPHA_WRITE
| BGFX_STATE_BLEND_MASK
| BGFX_STATE_BLEND_EQUATION_MASK
| BGFX_STATE_ALPHA_REF_MASK
| BGFX_STATE_PT_MASK
| BGFX_STATE_POINT_SIZE_MASK
| BGFX_STATE_MSAA
) & changedFlags)
{
if (BGFX_STATE_CULL_MASK & changedFlags)
{
if (BGFX_STATE_CULL_CW & newFlags)
{
GL_CHECK(glEnable(GL_CULL_FACE) );
GL_CHECK(glCullFace(GL_BACK) );
}
else if (BGFX_STATE_CULL_CCW & newFlags)
{
GL_CHECK(glEnable(GL_CULL_FACE) );
GL_CHECK(glCullFace(GL_FRONT) );
}
else
{
GL_CHECK(glDisable(GL_CULL_FACE) );
}
}
if (BGFX_STATE_DEPTH_WRITE & changedFlags)
{
GL_CHECK(glDepthMask(!!(BGFX_STATE_DEPTH_WRITE & newFlags) ) );
}
if (BGFX_STATE_DEPTH_TEST_MASK & changedFlags)
{
uint32_t func = (newFlags&BGFX_STATE_DEPTH_TEST_MASK)>>BGFX_STATE_DEPTH_TEST_SHIFT;
if (0 != func)
{
GL_CHECK(glEnable(GL_DEPTH_TEST) );
GL_CHECK(glDepthFunc(s_cmpFunc[func]) );
}
else
{
GL_CHECK(glDisable(GL_DEPTH_TEST) );
}
}
if (BGFX_STATE_ALPHA_REF_MASK & changedFlags)
{
uint32_t ref = (newFlags&BGFX_STATE_ALPHA_REF_MASK)>>BGFX_STATE_ALPHA_REF_SHIFT;
viewState.m_alphaRef = ref/255.0f;
}
#if BGFX_CONFIG_RENDERER_OPENGL
if ( (BGFX_STATE_PT_POINTS|BGFX_STATE_POINT_SIZE_MASK) & changedFlags)
{
float pointSize = (float)(bx::uint32_max(1, (newFlags&BGFX_STATE_POINT_SIZE_MASK)>>BGFX_STATE_POINT_SIZE_SHIFT) );
GL_CHECK(glPointSize(pointSize) );
}
if (BGFX_STATE_MSAA & changedFlags)
{
if (BGFX_STATE_MSAA & newFlags)
{
GL_CHECK(glEnable(GL_MULTISAMPLE) );
}
else
{
GL_CHECK(glDisable(GL_MULTISAMPLE) );
}
}
#endif // BGFX_CONFIG_RENDERER_OPENGL
if ( (BGFX_STATE_ALPHA_WRITE|BGFX_STATE_RGB_WRITE) & changedFlags)
{
GLboolean alpha = !!(newFlags&BGFX_STATE_ALPHA_WRITE);
GLboolean rgb = !!(newFlags&BGFX_STATE_RGB_WRITE);
GL_CHECK(glColorMask(rgb, rgb, rgb, alpha) );
}
if ( (BGFX_STATE_BLEND_MASK|BGFX_STATE_BLEND_EQUATION_MASK|BGFX_STATE_BLEND_INDEPENDENT) & changedFlags
|| blendFactor != draw.m_rgba)
{
if ( (BGFX_STATE_BLEND_MASK|BGFX_STATE_BLEND_EQUATION_MASK|BGFX_STATE_BLEND_INDEPENDENT) & newFlags
|| blendFactor != draw.m_rgba)
{
const bool enabled = !!(BGFX_STATE_BLEND_MASK & newFlags);
const bool independent = !!(BGFX_STATE_BLEND_INDEPENDENT & newFlags)
&& blendIndependentSupported
;
const uint32_t blend = uint32_t( (newFlags&BGFX_STATE_BLEND_MASK)>>BGFX_STATE_BLEND_SHIFT);
const uint32_t srcRGB = (blend )&0xf;
const uint32_t dstRGB = (blend>> 4)&0xf;
const uint32_t srcA = (blend>> 8)&0xf;
const uint32_t dstA = (blend>>12)&0xf;
const uint32_t equ = uint32_t((newFlags&BGFX_STATE_BLEND_EQUATION_MASK)>>BGFX_STATE_BLEND_EQUATION_SHIFT);
const uint32_t equRGB = (equ )&0x7;
const uint32_t equA = (equ>>3)&0x7;
const uint32_t numRt = getNumRt();
if (!BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGL)
|| 1 >= numRt
|| !independent)
{
if (enabled)
{
GL_CHECK(glEnable(GL_BLEND) );
GL_CHECK(glBlendFuncSeparate(s_blendFactor[srcRGB].m_src
, s_blendFactor[dstRGB].m_dst
, s_blendFactor[srcA].m_src
, s_blendFactor[dstA].m_dst
) );
GL_CHECK(glBlendEquationSeparate(s_blendEquation[equRGB], s_blendEquation[equA]) );
if ( (s_blendFactor[srcRGB].m_factor || s_blendFactor[dstRGB].m_factor)
&& blendFactor != draw.m_rgba)
{
const uint32_t rgba = draw.m_rgba;
GLclampf rr = ( (rgba>>24) )/255.0f;
GLclampf gg = ( (rgba>>16)&0xff)/255.0f;
GLclampf bb = ( (rgba>> 8)&0xff)/255.0f;
GLclampf aa = ( (rgba )&0xff)/255.0f;
GL_CHECK(glBlendColor(rr, gg, bb, aa) );
}
}
else
{
GL_CHECK(glDisable(GL_BLEND) );
}
}
else
{
if (enabled)
{
GL_CHECK(glEnablei(GL_BLEND, 0) );
GL_CHECK(glBlendFuncSeparatei(0
, s_blendFactor[srcRGB].m_src
, s_blendFactor[dstRGB].m_dst
, s_blendFactor[srcA].m_src
, s_blendFactor[dstA].m_dst
) );
GL_CHECK(glBlendEquationSeparatei(0
, s_blendEquation[equRGB]
, s_blendEquation[equA]
) );
}
else
{
GL_CHECK(glDisablei(GL_BLEND, 0) );
}
for (uint32_t ii = 1, rgba = draw.m_rgba; ii < numRt; ++ii, rgba >>= 11)
{
if (0 != (rgba&0x7ff) )
{
const uint32_t src = (rgba )&0xf;
const uint32_t dst = (rgba>>4)&0xf;
const uint32_t equation = (rgba>>8)&0x7;
GL_CHECK(glEnablei(GL_BLEND, ii) );
GL_CHECK(glBlendFunci(ii, s_blendFactor[src].m_src, s_blendFactor[dst].m_dst) );
GL_CHECK(glBlendEquationi(ii, s_blendEquation[equation]) );
}
else
{
GL_CHECK(glDisablei(GL_BLEND, ii) );
}
}
}
}
else
{
GL_CHECK(glDisable(GL_BLEND) );
}
blendFactor = draw.m_rgba;
}
const uint64_t pt = _render->m_debug&BGFX_DEBUG_WIREFRAME ? BGFX_STATE_PT_LINES : newFlags&BGFX_STATE_PT_MASK;
primIndex = uint8_t(pt>>BGFX_STATE_PT_SHIFT);
prim = s_primInfo[primIndex];
}
bool programChanged = false;
bool constantsChanged = draw.m_constBegin < draw.m_constEnd;
bool bindAttribs = false;
rendererUpdateUniforms(this, _render->m_constantBuffer, draw.m_constBegin, draw.m_constEnd);
if (key.m_program != programIdx)
{
programIdx = key.m_program;
GLuint id = invalidHandle == programIdx ? 0 : m_program[programIdx].m_id;
// Skip rendering if program index is valid, but program is invalid.
programIdx = 0 == id ? invalidHandle : programIdx;
GL_CHECK(glUseProgram(id) );
programChanged =
constantsChanged =
bindAttribs = true;
}
if (invalidHandle != programIdx)
{
ProgramGL& program = m_program[programIdx];
if (constantsChanged
&& NULL != program.m_constantBuffer)
{
commit(*program.m_constantBuffer);
}
viewState.setPredefined<1>(this, view, eye, program, _render, draw);
{
for (uint32_t stage = 0; stage < BGFX_CONFIG_MAX_TEXTURE_SAMPLERS; ++stage)
{
const Binding& sampler = draw.m_bind[stage];
Binding& current = currentState.m_bind[stage];
if (current.m_idx != sampler.m_idx
|| current.m_un.m_draw.m_flags != sampler.m_un.m_draw.m_flags
|| programChanged)
{
if (invalidHandle != sampler.m_idx)
{
TextureGL& texture = m_textures[sampler.m_idx];
texture.commit(stage, sampler.m_un.m_draw.m_flags);
}
}
current = sampler;
}
}
if (0 != defaultVao
&& 0 == draw.m_startVertex
&& 0 == draw.m_instanceDataOffset)
{
if (programChanged
|| baseVertex != draw.m_startVertex
|| currentState.m_vertexBuffer.idx != draw.m_vertexBuffer.idx
|| currentState.m_indexBuffer.idx != draw.m_indexBuffer.idx
|| currentState.m_instanceDataOffset != draw.m_instanceDataOffset
|| currentState.m_instanceDataStride != draw.m_instanceDataStride
|| currentState.m_instanceDataBuffer.idx != draw.m_instanceDataBuffer.idx)
{
bx::HashMurmur2A murmur;
murmur.begin();
murmur.add(draw.m_vertexBuffer.idx);
if (isValid(draw.m_vertexBuffer) )
{
const VertexBufferGL& vb = m_vertexBuffers[draw.m_vertexBuffer.idx];
uint16_t decl = !isValid(vb.m_decl) ? draw.m_vertexDecl.idx : vb.m_decl.idx;
murmur.add(decl);
}
murmur.add(draw.m_indexBuffer.idx);
murmur.add(draw.m_instanceDataBuffer.idx);
murmur.add(draw.m_instanceDataOffset);
murmur.add(draw.m_instanceDataStride);
murmur.add(programIdx);
uint32_t hash = murmur.end();
currentState.m_vertexBuffer = draw.m_vertexBuffer;
currentState.m_indexBuffer = draw.m_indexBuffer;
currentState.m_instanceDataOffset = draw.m_instanceDataOffset;
currentState.m_instanceDataStride = draw.m_instanceDataStride;
baseVertex = draw.m_startVertex;
GLuint id = m_vaoStateCache.find(hash);
if (UINT32_MAX != id)
{
currentVao = id;
GL_CHECK(glBindVertexArray(id) );
}
else
{
id = m_vaoStateCache.add(hash);
currentVao = id;
GL_CHECK(glBindVertexArray(id) );
program.add(hash);
if (isValid(draw.m_vertexBuffer) )
{
VertexBufferGL& vb = m_vertexBuffers[draw.m_vertexBuffer.idx];
vb.add(hash);
GL_CHECK(glBindBuffer(GL_ARRAY_BUFFER, vb.m_id) );
uint16_t decl = !isValid(vb.m_decl) ? draw.m_vertexDecl.idx : vb.m_decl.idx;
program.bindAttributes(m_vertexDecls[decl], draw.m_startVertex);
if (isValid(draw.m_instanceDataBuffer) )
{
VertexBufferGL& instanceVb = m_vertexBuffers[draw.m_instanceDataBuffer.idx];
instanceVb.add(hash);
GL_CHECK(glBindBuffer(GL_ARRAY_BUFFER, instanceVb.m_id) );
program.bindInstanceData(draw.m_instanceDataStride, draw.m_instanceDataOffset);
}
}
else
{
GL_CHECK(glBindBuffer(GL_ARRAY_BUFFER, 0) );
}
if (isValid(draw.m_indexBuffer) )
{
IndexBufferGL& ib = m_indexBuffers[draw.m_indexBuffer.idx];
ib.add(hash);
GL_CHECK(glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ib.m_id) );
}
else
{
GL_CHECK(glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0) );
}
}
}
}
else
{
if (0 != defaultVao
&& 0 != currentVao)
{
GL_CHECK(glBindVertexArray(defaultVao) );
currentState.m_vertexBuffer.idx = invalidHandle;
currentState.m_indexBuffer.idx = invalidHandle;
bindAttribs = true;
currentVao = 0;
}
if (programChanged
|| currentState.m_vertexBuffer.idx != draw.m_vertexBuffer.idx
|| currentState.m_instanceDataBuffer.idx != draw.m_instanceDataBuffer.idx
|| currentState.m_instanceDataOffset != draw.m_instanceDataOffset
|| currentState.m_instanceDataStride != draw.m_instanceDataStride)
{
currentState.m_vertexBuffer = draw.m_vertexBuffer;
currentState.m_instanceDataBuffer.idx = draw.m_instanceDataBuffer.idx;
currentState.m_instanceDataOffset = draw.m_instanceDataOffset;
currentState.m_instanceDataStride = draw.m_instanceDataStride;
uint16_t handle = draw.m_vertexBuffer.idx;
if (invalidHandle != handle)
{
VertexBufferGL& vb = m_vertexBuffers[handle];
GL_CHECK(glBindBuffer(GL_ARRAY_BUFFER, vb.m_id) );
bindAttribs = true;
}
else
{
GL_CHECK(glBindBuffer(GL_ARRAY_BUFFER, 0) );
}
}
if (currentState.m_indexBuffer.idx != draw.m_indexBuffer.idx)
{
currentState.m_indexBuffer = draw.m_indexBuffer;
uint16_t handle = draw.m_indexBuffer.idx;
if (invalidHandle != handle)
{
IndexBufferGL& ib = m_indexBuffers[handle];
GL_CHECK(glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ib.m_id) );
}
else
{
GL_CHECK(glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0) );
}
}
if (isValid(currentState.m_vertexBuffer) )
{
if (baseVertex != draw.m_startVertex
|| bindAttribs)
{
baseVertex = draw.m_startVertex;
const VertexBufferGL& vb = m_vertexBuffers[draw.m_vertexBuffer.idx];
uint16_t decl = !isValid(vb.m_decl) ? draw.m_vertexDecl.idx : vb.m_decl.idx;
program.bindAttributes(m_vertexDecls[decl], draw.m_startVertex);
if (isValid(draw.m_instanceDataBuffer) )
{
GL_CHECK(glBindBuffer(GL_ARRAY_BUFFER, m_vertexBuffers[draw.m_instanceDataBuffer.idx].m_id) );
program.bindInstanceData(draw.m_instanceDataStride, draw.m_instanceDataOffset);
}
}
}
}
if (isValid(currentState.m_vertexBuffer) )
{
uint32_t numVertices = draw.m_numVertices;
if (UINT32_MAX == numVertices)
{
const VertexBufferGL& vb = m_vertexBuffers[currentState.m_vertexBuffer.idx];
uint16_t decl = !isValid(vb.m_decl) ? draw.m_vertexDecl.idx : vb.m_decl.idx;
const VertexDecl& vertexDecl = m_vertexDecls[decl];
numVertices = vb.m_size/vertexDecl.m_stride;
}
uint32_t numIndices = 0;
uint32_t numPrimsSubmitted = 0;
uint32_t numInstances = 0;
uint32_t numPrimsRendered = 0;
if (isValid(draw.m_indexBuffer) )
{
const IndexBufferGL& ib = m_indexBuffers[draw.m_indexBuffer.idx];
const bool hasIndex16 = 0 == (ib.m_flags & BGFX_BUFFER_INDEX32);
const GLenum indexFormat = hasIndex16
? GL_UNSIGNED_SHORT
: GL_UNSIGNED_INT
;
if (UINT32_MAX == draw.m_numIndices)
{
const uint32_t indexSize = hasIndex16 ? 2 : 4;
numIndices = ib.m_size/indexSize;
numPrimsSubmitted = numIndices/prim.m_div - prim.m_sub;
numInstances = draw.m_numInstances;
numPrimsRendered = numPrimsSubmitted*draw.m_numInstances;
GL_CHECK(glDrawElementsInstanced(prim.m_type
, numIndices
, indexFormat
, (void*)0
, draw.m_numInstances
) );
}
else if (prim.m_min <= draw.m_numIndices)
{
numIndices = draw.m_numIndices;
numPrimsSubmitted = numIndices/prim.m_div - prim.m_sub;
numInstances = draw.m_numInstances;
numPrimsRendered = numPrimsSubmitted*draw.m_numInstances;
GL_CHECK(glDrawElementsInstanced(prim.m_type
, numIndices
, indexFormat
, (void*)(uintptr_t)(draw.m_startIndex*2)
, draw.m_numInstances
) );
}
}
else
{
numPrimsSubmitted = numVertices/prim.m_div - prim.m_sub;
numInstances = draw.m_numInstances;
numPrimsRendered = numPrimsSubmitted*draw.m_numInstances;
GL_CHECK(glDrawArraysInstanced(prim.m_type
, 0
, numVertices
, draw.m_numInstances
) );
}
statsNumPrimsSubmitted[primIndex] += numPrimsSubmitted;
statsNumPrimsRendered[primIndex] += numPrimsRendered;
statsNumInstances[primIndex] += numInstances;
statsNumIndices += numIndices;
}
}
}
blitMsaaFbo();
if (0 < _render->m_num)
{
captureElapsed = -bx::getHPCounter();
capture();
captureElapsed += bx::getHPCounter();
}
}
m_glctx.makeCurrent(NULL);
int64_t now = bx::getHPCounter();
elapsed += now;
static int64_t last = now;
int64_t frameTime = now - last;
last = now;
static int64_t min = frameTime;
static int64_t max = frameTime;
min = min > frameTime ? frameTime : min;
max = max < frameTime ? frameTime : max;
if (_render->m_debug & (BGFX_DEBUG_IFH|BGFX_DEBUG_STATS) )
{
double elapsedGpuMs = 0.0;
uint64_t elapsedGl = 0;
if (BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGL)
&& m_timerQuerySupport)
{
m_queries.end(GL_TIME_ELAPSED);
elapsedGl = m_queries.getResult(0);
elapsedGpuMs = double(elapsedGl)/1e6;
}
TextVideoMem& tvm = m_textVideoMem;
static int64_t next = now;
if (now >= next)
{
next = now + bx::getHPFrequency();
double freq = double(bx::getHPFrequency() );
double toMs = 1000.0/freq;
tvm.clear();
uint16_t pos = 0;
tvm.printf(0, pos++, BGFX_CONFIG_DEBUG ? 0x89 : 0x8f, " %s / " BX_COMPILER_NAME " / " BX_CPU_NAME " / " BX_ARCH_NAME " / " BX_PLATFORM_NAME " "
, getRendererName()
);
tvm.printf(0, pos++, 0x0f, " Vendor: %s", m_vendor);
tvm.printf(0, pos++, 0x0f, " Renderer: %s", m_renderer);
tvm.printf(0, pos++, 0x0f, " Version: %s", m_version);
tvm.printf(0, pos++, 0x0f, "GLSL version: %s", m_glslVersion);
pos = 10;
tvm.printf(10, pos++, 0x8e, " Frame CPU: %7.3f, % 7.3f \x1f, % 7.3f \x1e [ms] / % 6.2f FPS "
, double(frameTime)*toMs
, double(min)*toMs
, double(max)*toMs
, freq/frameTime
);
char hmd[16];
bx::snprintf(hmd, BX_COUNTOF(hmd), ", [%c] HMD ", hmdEnabled ? '\xfe' : ' ');
const uint32_t msaa = (m_resolution.m_flags&BGFX_RESET_MSAA_MASK)>>BGFX_RESET_MSAA_SHIFT;
tvm.printf(10, pos++, 0x8e, " Reset flags: [%c] vsync, [%c] MSAAx%d%s, [%c] MaxAnisotropy "
, !!(m_resolution.m_flags&BGFX_RESET_VSYNC) ? '\xfe' : ' '
, 0 != msaa ? '\xfe' : ' '
, 1<<msaa
, m_ovr.isInitialized() ? hmd : ", no-HMD "
, !!(m_resolution.m_flags&BGFX_RESET_MAXANISOTROPY) ? '\xfe' : ' '
);
double elapsedCpuMs = double(elapsed)*toMs;
tvm.printf(10, pos++, 0x8e, " Submitted: %4d (draw %4d, compute %4d) / CPU %3.4f [ms] %c GPU %3.4f [ms]"
, _render->m_num
, statsKeyType[0]
, statsKeyType[1]
, elapsedCpuMs
, elapsedCpuMs > elapsedGpuMs ? '>' : '<'
, elapsedGpuMs
);
for (uint32_t ii = 0; ii < BX_COUNTOF(s_primInfo); ++ii)
{
tvm.printf(10, pos++, 0x8e, " %9s: %7d (#inst: %5d), submitted: %7d"
, s_primName[ii]
, statsNumPrimsRendered[ii]
, statsNumInstances[ii]
, statsNumPrimsSubmitted[ii]
);
}
if (NULL != m_renderdocdll)
{
tvm.printf(tvm.m_width-27, 0, 0x1f, " [F11 - RenderDoc capture] ");
}
tvm.printf(10, pos++, 0x8e, " Indices: %7d", statsNumIndices);
tvm.printf(10, pos++, 0x8e, " DVB size: %7d", _render->m_vboffset);
tvm.printf(10, pos++, 0x8e, " DIB size: %7d", _render->m_iboffset);
pos++;
tvm.printf(10, pos++, 0x8e, " State cache: ");
tvm.printf(10, pos++, 0x8e, " VAO | Sampler ");
tvm.printf(10, pos++, 0x8e, " %6d | %6d "
, m_vaoStateCache.getCount()
, m_samplerStateCache.getCount()
);
pos++;
double captureMs = double(captureElapsed)*toMs;
tvm.printf(10, pos++, 0x8e, " Capture: %3.4f [ms]", captureMs);
#if BGFX_CONFIG_RENDERER_OPENGL
if (s_extension[Extension::ATI_meminfo].m_supported)
{
GLint vboFree[4];
GL_CHECK(glGetIntegerv(GL_VBO_FREE_MEMORY_ATI, vboFree) );
GLint texFree[4];
GL_CHECK(glGetIntegerv(GL_TEXTURE_FREE_MEMORY_ATI, texFree) );
GLint rbfFree[4];
GL_CHECK(glGetIntegerv(GL_RENDERBUFFER_FREE_MEMORY_ATI, rbfFree) );
pos++;
tvm.printf(10, pos++, 0x8c, " -------------| free| free b| aux| aux fb");
char tmp0[16];
char tmp1[16];
char tmp2[16];
char tmp3[16];
bx::prettify(tmp0, BX_COUNTOF(tmp0), vboFree[0]);
bx::prettify(tmp1, BX_COUNTOF(tmp1), vboFree[1]);
bx::prettify(tmp2, BX_COUNTOF(tmp2), vboFree[2]);
bx::prettify(tmp3, BX_COUNTOF(tmp3), vboFree[3]);
tvm.printf(10, pos++, 0x8e, " VBO: %10s, %10s, %10s, %10s", tmp0, tmp1, tmp2, tmp3);
bx::prettify(tmp0, BX_COUNTOF(tmp0), texFree[0]);
bx::prettify(tmp1, BX_COUNTOF(tmp1), texFree[1]);
bx::prettify(tmp2, BX_COUNTOF(tmp2), texFree[2]);
bx::prettify(tmp3, BX_COUNTOF(tmp3), texFree[3]);
tvm.printf(10, pos++, 0x8e, " Texture: %10s, %10s, %10s, %10s", tmp0, tmp1, tmp2, tmp3);
bx::prettify(tmp0, BX_COUNTOF(tmp0), rbfFree[0]);
bx::prettify(tmp1, BX_COUNTOF(tmp1), rbfFree[1]);
bx::prettify(tmp2, BX_COUNTOF(tmp2), rbfFree[2]);
bx::prettify(tmp3, BX_COUNTOF(tmp3), rbfFree[3]);
tvm.printf(10, pos++, 0x8e, " Render Buffer: %10s, %10s, %10s, %10s", tmp0, tmp1, tmp2, tmp3);
}
else if (s_extension[Extension::NVX_gpu_memory_info].m_supported)
{
GLint dedicated;
GL_CHECK(glGetIntegerv(GL_GPU_MEMORY_INFO_DEDICATED_VIDMEM_NVX, &dedicated) );
GLint totalAvail;
GL_CHECK(glGetIntegerv(GL_GPU_MEMORY_INFO_TOTAL_AVAILABLE_MEMORY_NVX, &totalAvail) );
GLint currAvail;
GL_CHECK(glGetIntegerv(GL_GPU_MEMORY_INFO_CURRENT_AVAILABLE_VIDMEM_NVX, &currAvail) );
GLint evictedCount;
GL_CHECK(glGetIntegerv(GL_GPU_MEMORY_INFO_EVICTION_COUNT_NVX, &evictedCount) );
GLint evictedMemory;
GL_CHECK(glGetIntegerv(GL_GPU_MEMORY_INFO_EVICTED_MEMORY_NVX, &evictedMemory) );
pos += 2;
char tmp0[16];
char tmp1[16];
bx::prettify(tmp0, BX_COUNTOF(tmp0), dedicated);
tvm.printf(10, pos++, 0x8e, " Dedicated: %10s", tmp0);
bx::prettify(tmp0, BX_COUNTOF(tmp0), currAvail);
bx::prettify(tmp1, BX_COUNTOF(tmp1), totalAvail);
tvm.printf(10, pos++, 0x8e, " Available: %10s / %10s", tmp0, tmp1);
bx::prettify(tmp0, BX_COUNTOF(tmp0), evictedCount);
bx::prettify(tmp1, BX_COUNTOF(tmp1), evictedMemory);
tvm.printf(10, pos++, 0x8e, " Eviction: %10s / %10s", tmp0, tmp1);
}
#endif // BGFX_CONFIG_RENDERER_OPENGL
uint8_t attr[2] = { 0x89, 0x8a };
uint8_t attrIndex = _render->m_waitSubmit < _render->m_waitRender;
pos++;
tvm.printf(10, pos++, attr[attrIndex&1], "Submit wait: %3.4f [ms]", double(_render->m_waitSubmit)*toMs);
tvm.printf(10, pos++, attr[(attrIndex+1)&1], "Render wait: %3.4f [ms]", double(_render->m_waitRender)*toMs);
min = frameTime;
max = frameTime;
}
blit(this, _textVideoMemBlitter, tvm);
}
else if (_render->m_debug & BGFX_DEBUG_TEXT)
{
blit(this, _textVideoMemBlitter, _render->m_textVideoMem);
}
GL_CHECK(glFrameTerminatorGREMEDY() );
}
} } // namespace bgfx
#else
namespace bgfx { namespace gl
{
RendererContextI* rendererCreate()
{
return NULL;
}
void rendererDestroy()
{
}
} /* namespace gl */ } // namespace bgfx
#endif // (BGFX_CONFIG_RENDERER_OPENGLES || BGFX_CONFIG_RENDERER_OPENGL)