bgfx/src/renderer_mtl.mm
Branimir Karadžić 17b6e94360 Cleanup.
2015-10-07 20:24:34 -07:00

2802 lines
89 KiB
Text

/*
* Copyright 2011-2015 Attila Kocsis. All rights reserved.
* License: http://www.opensource.org/licenses/BSD-2-Clause
*/
#include "bgfx_p.h"
#if BGFX_CONFIG_RENDERER_METAL
#include "renderer_mtl.h"
#include "renderer.h"
#include "bx/bx.h"
#if BX_PLATFORM_OSX
# include <Cocoa/Cocoa.h>
#endif
#import <Foundation/Foundation.h>
#define UNIFORM_BUFFER_SIZE (1024*1024)
/*
Known issues / TODOs:
- 15-shadowmaps-simple (modified shaderc and example needs modification too, mtxCrop znew = z * 0.5 + 0.5 is not needed ) could be hacked in shader too
- 19-oit ( hacked shaderc to support MRT output)
- 21-deferred ( hacked shaderc to support MRT output and fs_deferred_light needed modification for metal (similar to BGFX_SHADER_LANGUAGE_HLSL )
07-callback, saveScreenshot should be implemented with one frame latency (using saveScreenshotBegin and End)
16-shadowmaps, //problem with essl -> metal: SAMPLER2D(u_shadowMap0, 4); sampler index is lost. Shadowmap is set to slot 4, but
metal shader uses sampler/texture slot 0. this could require changes outside of renderer_mtl?
Otherwise it works with hacking the slot.
24-nbody - cannot generate compute shaders for metal
20-nanonvg - TODO: remove sampler/texture hack
- caps
- optimization...
create binary shader representation
13-stencil and 16-shadowmaps are very inefficient. every view stores/loads backbuffer data
BGFX_RESET_FLIP_AFTER_RENDER on low level renderers should be true? (crashes even with BGFX_RESET_FLIP_AFTER_RENDER because there is
one rendering frame before reset). Do I have absolutely need to send result to View at flip or can I do it in submit?
*/
namespace bgfx { namespace mtl
{
static char s_viewName[BGFX_CONFIG_MAX_VIEWS][BGFX_CONFIG_MAX_VIEW_NAME];
struct PrimInfo
{
MTLPrimitiveType m_type;
uint32_t m_min;
uint32_t m_div;
uint32_t m_sub;
};
static const PrimInfo s_primInfo[] =
{
{ MTLPrimitiveTypeTriangle, 3, 3, 0 },
{ MTLPrimitiveTypeTriangleStrip, 3, 1, 2 },
{ MTLPrimitiveTypeLine, 2, 2, 0 },
{ MTLPrimitiveTypeLineStrip, 2, 1, 1 },
{ MTLPrimitiveTypePoint, 1, 1, 0 },
};
static const char* s_primName[] =
{
"TriList",
"TriStrip",
"Line",
"LineStrip",
"Point",
};
BX_STATIC_ASSERT(BX_COUNTOF(s_primInfo) == BX_COUNTOF(s_primName));
static const char* s_attribName[] =
{
"a_position",
"a_normal",
"a_tangent",
"a_bitangent",
"a_color0",
"a_color1",
"a_indices",
"a_weight",
"a_texcoord0",
"a_texcoord1",
"a_texcoord2",
"a_texcoord3",
"a_texcoord4",
"a_texcoord5",
"a_texcoord6",
"a_texcoord7",
};
BX_STATIC_ASSERT(Attrib::Count == BX_COUNTOF(s_attribName) );
static const char* s_instanceDataName[] =
{
"i_data0",
"i_data1",
"i_data2",
"i_data3",
"i_data4",
};
BX_STATIC_ASSERT(BGFX_CONFIG_MAX_INSTANCE_DATA_COUNT == BX_COUNTOF(s_instanceDataName) );
static const MTLVertexFormat s_attribType[][4][2] = //type, count, normalized
{
// Uint8
{
{ MTLVertexFormatUChar2, MTLVertexFormatUChar2Normalized },
{ MTLVertexFormatUChar2, MTLVertexFormatUChar2Normalized },
{ MTLVertexFormatUChar3, MTLVertexFormatUChar3Normalized },
{ MTLVertexFormatUChar4, MTLVertexFormatUChar4Normalized }
},
//Uint10
//TODO: normalized only
{
{ MTLVertexFormatInvalid, MTLVertexFormatUInt1010102Normalized },
{ MTLVertexFormatInvalid, MTLVertexFormatUInt1010102Normalized },
{ MTLVertexFormatInvalid, MTLVertexFormatUInt1010102Normalized },
{ MTLVertexFormatInvalid, MTLVertexFormatUInt1010102Normalized }
},
//Int16
{
{ MTLVertexFormatShort2, MTLVertexFormatShort2Normalized },
{ MTLVertexFormatShort2, MTLVertexFormatShort2Normalized },
{ MTLVertexFormatShort3, MTLVertexFormatShort3Normalized },
{ MTLVertexFormatShort4, MTLVertexFormatShort4Normalized }
},
//Half
{
{ MTLVertexFormatHalf2, MTLVertexFormatHalf2 },
{ MTLVertexFormatHalf2, MTLVertexFormatHalf2 },
{ MTLVertexFormatHalf3, MTLVertexFormatHalf2 },
{ MTLVertexFormatHalf4, MTLVertexFormatHalf2 }
},
//Float
{
{ MTLVertexFormatFloat, MTLVertexFormatFloat },
{ MTLVertexFormatFloat2, MTLVertexFormatFloat2 },
{ MTLVertexFormatFloat3, MTLVertexFormatFloat3 },
{ MTLVertexFormatFloat4, MTLVertexFormatFloat4 }
},
};
BX_STATIC_ASSERT(AttribType::Count == BX_COUNTOF(s_attribType) );
static const MTLCullMode s_cullMode[] =
{
MTLCullModeNone,
MTLCullModeFront,
MTLCullModeBack,
MTLCullModeNone
};
static const MTLBlendFactor s_blendFactor[][2] =
{
{ (MTLBlendFactor)0, (MTLBlendFactor)0 }, // ignored
{ MTLBlendFactorZero, MTLBlendFactorZero }, // ZERO
{ MTLBlendFactorOne, MTLBlendFactorOne }, // ONE
{ MTLBlendFactorSourceColor, MTLBlendFactorSourceAlpha }, // SRC_COLOR
{ MTLBlendFactorOneMinusSourceColor, MTLBlendFactorOneMinusSourceAlpha }, // INV_SRC_COLOR
{ MTLBlendFactorSourceAlpha, MTLBlendFactorSourceAlpha }, // SRC_ALPHA
{ MTLBlendFactorOneMinusSourceAlpha, MTLBlendFactorOneMinusSourceAlpha }, // INV_SRC_ALPHA
{ MTLBlendFactorDestinationAlpha, MTLBlendFactorDestinationAlpha }, // DST_ALPHA
{ MTLBlendFactorOneMinusDestinationAlpha, MTLBlendFactorOneMinusDestinationAlpha }, // INV_DST_ALPHA
{ MTLBlendFactorDestinationColor, MTLBlendFactorDestinationAlpha }, // DST_COLOR
{ MTLBlendFactorOneMinusDestinationColor, MTLBlendFactorOneMinusDestinationAlpha }, // INV_DST_COLOR
{ MTLBlendFactorSourceAlphaSaturated, MTLBlendFactorOne }, // SRC_ALPHA_SAT
{ MTLBlendFactorBlendColor, MTLBlendFactorBlendColor }, // FACTOR
{ MTLBlendFactorOneMinusBlendColor, MTLBlendFactorOneMinusBlendColor }, // INV_FACTOR
};
static const MTLBlendOperation s_blendEquation[] =
{
MTLBlendOperationAdd,
MTLBlendOperationSubtract,
MTLBlendOperationReverseSubtract,
MTLBlendOperationMin,
MTLBlendOperationMax,
};
static const MTLCompareFunction s_cmpFunc[] =
{
MTLCompareFunctionAlways, //TODO: depth disable?
MTLCompareFunctionLess,
MTLCompareFunctionLessEqual,
MTLCompareFunctionEqual,
MTLCompareFunctionGreaterEqual,
MTLCompareFunctionGreater,
MTLCompareFunctionNotEqual,
MTLCompareFunctionNever,
MTLCompareFunctionAlways
};
static const MTLStencilOperation s_stencilOp[] =
{
MTLStencilOperationZero,
MTLStencilOperationKeep,
MTLStencilOperationReplace,
MTLStencilOperationIncrementWrap,
MTLStencilOperationIncrementClamp,
MTLStencilOperationDecrementWrap,
MTLStencilOperationDecrementClamp,
MTLStencilOperationInvert
};
static const MTLSamplerAddressMode s_textureAddress[] =
{
MTLSamplerAddressModeRepeat,
MTLSamplerAddressModeMirrorRepeat,
MTLSamplerAddressModeClampToEdge,
MTLSamplerAddressModeClampToZero,
};
static const MTLSamplerMinMagFilter s_textureFilterMinMag[] =
{
MTLSamplerMinMagFilterLinear,
MTLSamplerMinMagFilterNearest,
MTLSamplerMinMagFilterLinear,
};
static const MTLSamplerMipFilter s_textureFilterMip[] =
{
MTLSamplerMipFilterLinear,
MTLSamplerMipFilterNearest,
};
struct TextureFormatInfo
{
MTLPixelFormat m_fmt;
MTLPixelFormat m_fmtSrgb;
};
static TextureFormatInfo s_textureFormat[] =
{
{ MTLPixelFormatInvalid, MTLPixelFormatInvalid }, // BC1
{ MTLPixelFormatInvalid, MTLPixelFormatInvalid }, // BC2
{ MTLPixelFormatInvalid, MTLPixelFormatInvalid }, // BC3
{ MTLPixelFormatInvalid, MTLPixelFormatInvalid }, // BC4
{ MTLPixelFormatInvalid, MTLPixelFormatInvalid }, // BC5
{ MTLPixelFormatInvalid, MTLPixelFormatInvalid }, // BC6H
{ MTLPixelFormatInvalid, MTLPixelFormatInvalid }, // BC7
{ MTLPixelFormatInvalid, MTLPixelFormatInvalid }, // ETC1
{ 180 /*MTLPixelFormatETC2_RGB8*/, 181 /*MTLPixelFormatETC2_RGB8_sRGB*/ }, // ETC2
{ 178 /*MTLPixelFormatEAC_RGBA8*/, 179 /*MTLPixelFormatEAC_RGBA8_sRGB*/ }, // ETC2A
{ 182 /*MTLPixelFormatETC2_RGB8A1*/, 183 /*MTLPixelFormatETC2_RGB8A1_sRGB*/ }, // ETC2A1
{ 160 /*MTLPixelFormatPVRTC_RGB_2BPP*/, 161 /*MTLPixelFormatPVRTC_RGB_2BPP_sRGB*/ }, // PTC12
{ 162 /*MTLPixelFormatPVRTC_RGB_4BPP*/, 163 /*MTLPixelFormatPVRTC_RGB_4BPP_sRGB*/ }, // PTC14
{ 164 /*MTLPixelFormatPVRTC_RGBA_2BPP*/, 165 /*MTLPixelFormatPVRTC_RGBA_2BPP_sRGB*/ }, // PTC12A
{ 166 /*MTLPixelFormatPVRTC_RGBA_4BPP*/, 167 /*MTLPixelFormatPVRTC_RGBA_4BPP_sRGB*/ }, // PTC14A
{ MTLPixelFormatInvalid, MTLPixelFormatInvalid }, // PTC22
{ MTLPixelFormatInvalid, MTLPixelFormatInvalid }, // PTC24
{ MTLPixelFormatInvalid, MTLPixelFormatInvalid }, // Unknown
{ MTLPixelFormatInvalid, MTLPixelFormatInvalid }, // R1
{ MTLPixelFormatA8Unorm, MTLPixelFormatInvalid }, // A8
{ MTLPixelFormatR8Unorm, 11 /*MTLPixelFormatR8Unorm_sRGB*/ }, // R8
{ MTLPixelFormatR8Sint, MTLPixelFormatInvalid }, // R8I
{ MTLPixelFormatR8Uint, MTLPixelFormatInvalid }, // R8U
{ MTLPixelFormatR8Snorm, MTLPixelFormatInvalid }, // R8S
{ MTLPixelFormatR16Unorm, MTLPixelFormatInvalid }, // R16
{ MTLPixelFormatR16Sint, MTLPixelFormatInvalid }, // R16I
{ MTLPixelFormatR16Uint, MTLPixelFormatInvalid }, // R16U
{ MTLPixelFormatR16Float, MTLPixelFormatInvalid }, // R16F
{ MTLPixelFormatR16Snorm, MTLPixelFormatInvalid }, // R16S
{ MTLPixelFormatR32Sint, MTLPixelFormatInvalid }, // R32I
{ MTLPixelFormatR32Uint, MTLPixelFormatInvalid }, // R32U
{ MTLPixelFormatR32Float, MTLPixelFormatInvalid }, // R32F
{ MTLPixelFormatRG8Unorm, 31 /*MTLPixelFormatRG8Unorm_sRGB*/ }, // RG8
{ MTLPixelFormatRG8Sint, MTLPixelFormatInvalid }, // RG8I
{ MTLPixelFormatRG8Uint, MTLPixelFormatInvalid }, // RG8U
{ MTLPixelFormatRG8Snorm, MTLPixelFormatInvalid }, // RG8S
{ MTLPixelFormatRG16Unorm, MTLPixelFormatInvalid }, // RG16
{ MTLPixelFormatRG16Sint, MTLPixelFormatInvalid }, // RG16I
{ MTLPixelFormatRG16Uint, MTLPixelFormatInvalid }, // RG16U
{ MTLPixelFormatRG16Float, MTLPixelFormatInvalid }, // RG16F
{ MTLPixelFormatRG16Snorm, MTLPixelFormatInvalid }, // RG16S
{ MTLPixelFormatRG32Sint, MTLPixelFormatInvalid }, // RG32I
{ MTLPixelFormatRG32Uint, MTLPixelFormatInvalid }, // RG32U
{ MTLPixelFormatRG32Float, MTLPixelFormatInvalid }, // RG32F
{ MTLPixelFormatRGB9E5Float, MTLPixelFormatInvalid }, // RGB9E5F
{ MTLPixelFormatBGRA8Unorm, MTLPixelFormatBGRA8Unorm_sRGB }, // BGRA8
{ MTLPixelFormatRGBA8Unorm, MTLPixelFormatRGBA8Unorm_sRGB }, // RGBA8
{ MTLPixelFormatRGBA8Sint, MTLPixelFormatInvalid }, // RGBA8I
{ MTLPixelFormatRGBA8Uint, MTLPixelFormatInvalid }, // RGBA8U
{ MTLPixelFormatRGBA8Snorm, MTLPixelFormatInvalid }, // RGBA8S
{ MTLPixelFormatRGBA16Unorm, MTLPixelFormatInvalid }, // RGBA16
{ MTLPixelFormatRGBA16Sint, MTLPixelFormatInvalid }, // RGBA16I
{ MTLPixelFormatRGBA16Uint, MTLPixelFormatInvalid }, // RGBA16I
{ MTLPixelFormatRGBA16Float, MTLPixelFormatInvalid }, // RGBA16F
{ MTLPixelFormatRGBA16Snorm, MTLPixelFormatInvalid }, // RGBA16S
{ MTLPixelFormatRGBA32Sint, MTLPixelFormatInvalid }, // RGBA32I
{ MTLPixelFormatRGBA32Uint, MTLPixelFormatInvalid }, // RGBA32U
{ MTLPixelFormatRGBA32Float, MTLPixelFormatInvalid }, // RGBA32F
{ 40 /*MTLPixelFormatB5G6R5Unorm*/, MTLPixelFormatInvalid }, // R5G6B5
{ 42 /*MTLPixelFormatABGR4Unorm*/, MTLPixelFormatInvalid }, // RGBA4
{ 41 /*MTLPixelFormatA1BGR5Unorm*/, MTLPixelFormatInvalid }, // RGB5A1
{ MTLPixelFormatRGB10A2Unorm, MTLPixelFormatInvalid }, // RGB10A2
{ MTLPixelFormatRG11B10Float, MTLPixelFormatInvalid }, // R11G11B10F
{ MTLPixelFormatInvalid, MTLPixelFormatInvalid }, // UnknownDepth
{ MTLPixelFormatDepth32Float, MTLPixelFormatInvalid }, // D16
{ MTLPixelFormatDepth32Float, MTLPixelFormatInvalid }, // D24
{ MTLPixelFormatInvalid, MTLPixelFormatInvalid }, // D24S8
{ MTLPixelFormatDepth32Float, MTLPixelFormatInvalid }, // D32
{ MTLPixelFormatDepth32Float, MTLPixelFormatInvalid }, // D16F
{ MTLPixelFormatDepth32Float, MTLPixelFormatInvalid }, // D24F
{ MTLPixelFormatDepth32Float, MTLPixelFormatInvalid }, // D32F
{ MTLPixelFormatStencil8, MTLPixelFormatInvalid }, // D0S8
};
BX_STATIC_ASSERT(TextureFormat::Count == BX_COUNTOF(s_textureFormat) );
#define SHADER_FUNCTION_NAME ("xlatMtlMain")
#define SHADER_UNIFORM_NAME ("_mtl_u")
struct RendererContextMtl : public RendererContextI
{
RendererContextMtl()
: m_metalLayer(NULL)
, m_backBufferPixelFormatHash(0)
, m_maxAnisotropy(1)
, m_numWindows(1)
, m_rtMsaa(false)
, m_drawable(NULL)
{
m_fbh.idx = invalidHandle;
}
~RendererContextMtl()
{
}
bool init()
{
BX_TRACE("Init.");
if (NULL != NSClassFromString(@"CAMetalLayer") )
{
//on iOS we need the layer as CAmetalLayer
#if BX_PLATFORM_IOS
CAMetalLayer* metalLayer = (CAMetalLayer*)g_platformData.nwh;
if (NULL == metalLayer
|| ![metalLayer isKindOfClass:NSClassFromString(@"CAMetalLayer")])
{
BX_WARN(NULL != m_device, "Unable to create Metal device. Please set platform data window to a CAMetalLayer");
return false;
}
m_metalLayer = metalLayer;
#elif BX_PLATFORM_OSX
// create and set metalLayer
NSWindow* nsWindow = (NSWindow*)g_platformData.nwh;
[nsWindow.contentView setWantsLayer:YES];
m_metalLayer = [CAMetalLayer layer];
[nsWindow.contentView setLayer:m_metalLayer];
#endif // BX_PLATFORM_*
m_device = (id<MTLDevice>)g_platformData.context;
if (NULL == m_device)
{
m_device = MTLCreateSystemDefaultDevice();
}
}
if (NULL == m_device
|| NULL == m_metalLayer)
{
BX_WARN(NULL != m_device, "Unable to create Metal device.");
return false;
}
m_metalLayer.device = m_device;
m_metalLayer.pixelFormat = MTLPixelFormatBGRA8Unorm;
m_commandQueue = m_device.newCommandQueue();
BGFX_FATAL(NULL != m_commandQueue, Fatal::UnableToInitialize, "Unable to create Metal device.");
m_renderPipelineDescriptor = newRenderPipelineDescriptor();
m_depthStencilDescriptor = newDepthStencilDescriptor();
m_frontFaceStencilDescriptor = newStencilDescriptor();
m_backFaceStencilDescriptor = newStencilDescriptor();
m_vertexDescriptor = newVertexDescriptor();
m_textureDescriptor = newTextureDescriptor();
m_samplerDescriptor = newSamplerDescriptor();
m_uniformBuffer = m_device.newBufferWithLength(UNIFORM_BUFFER_SIZE, 0);
m_uniformBufferVertexOffset = 0;
m_uniformBufferFragmentOffset = 0;
memset(m_uniforms, 0, sizeof(m_uniforms) );
g_caps.supported |= (0
| BGFX_CAPS_TEXTURE_COMPARE_LEQUAL
| BGFX_CAPS_TEXTURE_3D
| BGFX_CAPS_INSTANCING
| BGFX_CAPS_VERTEX_ATTRIB_HALF
// | BGFX_CAPS_FRAGMENT_DEPTH
| BGFX_CAPS_BLEND_INDEPENDENT
| BGFX_CAPS_COMPUTE
| BGFX_CAPS_INDEX32
| BGFX_CAPS_DRAW_INDIRECT
);
g_caps.maxTextureSize = 2048; //ASK: real caps width/height: 4096, but max depth(3D) size is only: 2048
//TODO: OSX
#if BX_PLATFORM_IOS
g_caps.maxFBAttachments = uint8_t(bx::uint32_min(m_device.supportsFeatureSet(MTLFeatureSet_iOS_GPUFamily2_v1) ? 8 :4, BGFX_CONFIG_MAX_FRAME_BUFFER_ATTACHMENTS));
#endif // BX_PLATFORM_*
//todo: vendor id, device id, gpu enum
//todo: texture format caps
//add texture formats/caps/etc that are available only on new sdk/devices
#if BX_PLATFORM_IOS
# ifdef __IPHONE_8_0
if (OsVersionEqualOrGreater("8.0.0"))
{
s_textureFormat[TextureFormat::D24S8].m_fmt = MTLPixelFormatDepth32Float;
}
# endif // __IPHONE_8_0
#endif // BX_PLATFORM_*
for (uint32_t ii = 0; ii < TextureFormat::Count; ++ii)
{
uint8_t support = (s_textureFormat[ii].m_fmt != MTLPixelFormatInvalid) ? BGFX_CAPS_FORMAT_TEXTURE_COLOR : BGFX_CAPS_FORMAT_TEXTURE_NONE;
support |= (s_textureFormat[ii].m_fmtSrgb != MTLPixelFormatInvalid) ? BGFX_CAPS_FORMAT_TEXTURE_COLOR_SRGB : BGFX_CAPS_FORMAT_TEXTURE_NONE;
//TODO: additional caps flags
// support |= BGFX_CAPS_FORMAT_TEXTURE_VERTEX : BGFX_CAPS_FORMAT_TEXTURE_NONE;
// support |= BGFX_CAPS_FORMAT_TEXTURE_IMAGE : BGFX_CAPS_FORMAT_TEXTURE_NONE;
// support |= BGFX_CAPS_FORMAT_TEXTURE_FRAMEBUFFER : BGFX_CAPS_FORMAT_TEXTURE_NONE;
g_caps.formats[ii] = support;
}
// Init reserved part of view name.
for (uint32_t ii = 0; ii < BGFX_CONFIG_MAX_VIEWS; ++ii)
{
bx::snprintf(s_viewName[ii], BGFX_CONFIG_MAX_VIEW_NAME_RESERVED+1, "%3d ", ii);
}
return true;
}
void shutdown()
{
for (uint32_t ii = 0; ii < BX_COUNTOF(m_shaders); ++ii)
{
m_shaders[ii].destroy();
}
for (uint32_t ii = 0; ii < BX_COUNTOF(m_textures); ++ii)
{
m_textures[ii].destroy();
}
MTL_RELEASE(m_depthStencilDescriptor);
MTL_RELEASE(m_frontFaceStencilDescriptor);
MTL_RELEASE(m_backFaceStencilDescriptor);
MTL_RELEASE(m_renderPipelineDescriptor);
MTL_RELEASE(m_vertexDescriptor);
MTL_RELEASE(m_textureDescriptor);
MTL_RELEASE(m_samplerDescriptor);
MTL_RELEASE(m_backBufferDepth);
#if BX_PLATFORM_IOS
MTL_RELEASE(m_backBufferStencil);
#endif // BX_PLATFORM_*
MTL_RELEASE(m_uniformBuffer);
MTL_RELEASE(m_commandQueue);
MTL_RELEASE(m_device);
}
RendererType::Enum getRendererType() const BX_OVERRIDE
{
return RendererType::Metal;
}
const char* getRendererName() const BX_OVERRIDE
{
return BGFX_RENDERER_METAL_NAME;
}
void createIndexBuffer(IndexBufferHandle _handle, Memory* _mem, uint16_t _flags) BX_OVERRIDE
{
m_indexBuffers[_handle.idx].create(_mem->size, _mem->data, _flags);
}
void destroyIndexBuffer(IndexBufferHandle _handle) BX_OVERRIDE
{
m_indexBuffers[_handle.idx].destroy();
}
void createVertexDecl(VertexDeclHandle _handle, const VertexDecl& _decl) BX_OVERRIDE
{
VertexDecl& decl = m_vertexDecls[_handle.idx];
memcpy(&decl, &_decl, sizeof(VertexDecl) );
dump(decl);
}
void destroyVertexDecl(VertexDeclHandle /*_handle*/) BX_OVERRIDE
{
}
void createVertexBuffer(VertexBufferHandle _handle, Memory* _mem, VertexDeclHandle _declHandle, uint16_t _flags) BX_OVERRIDE
{
m_vertexBuffers[_handle.idx].create(_mem->size, _mem->data, _declHandle, _flags);
}
void destroyVertexBuffer(VertexBufferHandle _handle) BX_OVERRIDE
{
m_vertexBuffers[_handle.idx].destroy();
}
void createDynamicIndexBuffer(IndexBufferHandle _handle, uint32_t _size, uint16_t _flags) BX_OVERRIDE
{
m_indexBuffers[_handle.idx].create(_size, NULL, _flags);
}
void updateDynamicIndexBuffer(IndexBufferHandle _handle, uint32_t _offset, uint32_t _size, Memory* _mem) BX_OVERRIDE
{
m_indexBuffers[_handle.idx].update(_offset, bx::uint32_min(_size, _mem->size), _mem->data);
}
void destroyDynamicIndexBuffer(IndexBufferHandle _handle) BX_OVERRIDE
{
m_indexBuffers[_handle.idx].destroy();
}
void createDynamicVertexBuffer(VertexBufferHandle _handle, uint32_t _size, uint16_t _flags) BX_OVERRIDE
{
VertexDeclHandle decl = BGFX_INVALID_HANDLE;
m_vertexBuffers[_handle.idx].create(_size, NULL, decl, _flags);
}
void updateDynamicVertexBuffer(VertexBufferHandle _handle, uint32_t _offset, uint32_t _size, Memory* _mem) BX_OVERRIDE
{
m_vertexBuffers[_handle.idx].update(_offset, bx::uint32_min(_size, _mem->size), _mem->data);
}
void destroyDynamicVertexBuffer(VertexBufferHandle _handle) BX_OVERRIDE
{
m_vertexBuffers[_handle.idx].destroy();
}
void createShader(ShaderHandle _handle, Memory* _mem) BX_OVERRIDE
{
m_shaders[_handle.idx].create(_mem);
}
void destroyShader(ShaderHandle _handle) BX_OVERRIDE
{
m_shaders[_handle.idx].destroy();
}
void createProgram(ProgramHandle _handle, ShaderHandle _vsh, ShaderHandle _fsh) BX_OVERRIDE
{
m_program[_handle.idx].create(&m_shaders[_vsh.idx], &m_shaders[_fsh.idx]);
}
void destroyProgram(ProgramHandle _handle) BX_OVERRIDE
{
m_program[_handle.idx].destroy();
}
void createTexture(TextureHandle _handle, Memory* _mem, uint32_t _flags, uint8_t _skip) BX_OVERRIDE
{
m_textures[_handle.idx].create(_mem, _flags, _skip);
}
void updateTextureBegin(TextureHandle /*_handle*/, uint8_t /*_side*/, uint8_t /*_mip*/) BX_OVERRIDE
{
}
void updateTexture(TextureHandle _handle, uint8_t _side, uint8_t _mip, const Rect& _rect, uint16_t _z, uint16_t _depth, uint16_t _pitch, const Memory* _mem) BX_OVERRIDE
{
m_textures[_handle.idx].update(_side, _mip, _rect, _z, _depth, _pitch, _mem);
}
void updateTextureEnd() BX_OVERRIDE
{
}
void resizeTexture(TextureHandle _handle, uint16_t _width, uint16_t _height) BX_OVERRIDE
{
TextureMtl& texture = m_textures[_handle.idx];
uint32_t size = sizeof(uint32_t) + sizeof(TextureCreate);
const Memory* mem = alloc(size);
bx::StaticMemoryBlockWriter writer(mem->data, mem->size);
uint32_t magic = BGFX_CHUNK_MAGIC_TEX;
bx::write(&writer, magic);
TextureCreate tc;
tc.m_flags = texture.m_flags;
tc.m_width = _width;
tc.m_height = _height;
tc.m_sides = 0;
tc.m_depth = 0;
tc.m_numMips = 1;
tc.m_format = texture.m_requestedFormat;
tc.m_cubeMap = false;
tc.m_mem = NULL;
bx::write(&writer, tc);
texture.destroy();
texture.create(mem, tc.m_flags, 0);
release(mem);
}
void destroyTexture(TextureHandle _handle) BX_OVERRIDE
{
m_textures[_handle.idx].destroy();
}
void createFrameBuffer(FrameBufferHandle _handle, uint8_t _num, const TextureHandle* _textureHandles) BX_OVERRIDE
{
m_frameBuffers[_handle.idx].create(_num, _textureHandles);
}
void createFrameBuffer(FrameBufferHandle _handle, void* _nwh, uint32_t _width, uint32_t _height, TextureFormat::Enum _depthFormat) BX_OVERRIDE
{
uint16_t denseIdx = m_numWindows++;
m_windows[denseIdx] = _handle;
m_frameBuffers[_handle.idx].create(denseIdx, _nwh, _width, _height, _depthFormat);
}
void destroyFrameBuffer(FrameBufferHandle _handle) BX_OVERRIDE
{
uint16_t denseIdx = m_frameBuffers[_handle.idx].destroy();
if (UINT16_MAX != denseIdx)
{
--m_numWindows;
if (m_numWindows > 1)
{
FrameBufferHandle handle = m_windows[m_numWindows];
m_windows[denseIdx] = handle;
m_frameBuffers[handle.idx].m_denseIdx = denseIdx;
}
}
}
void createUniform(UniformHandle _handle, UniformType::Enum _type, uint16_t _num, const char* _name) BX_OVERRIDE
{
if (NULL != m_uniforms[_handle.idx])
{
BX_FREE(g_allocator, m_uniforms[_handle.idx]);
}
uint32_t size = BX_ALIGN_16(g_uniformTypeSize[_type]*_num);
void* data = BX_ALLOC(g_allocator, size);
memset(data, 0, size);
m_uniforms[_handle.idx] = data;
m_uniformReg.add(_handle, _name, data);
}
void destroyUniform(UniformHandle _handle) BX_OVERRIDE
{
BX_FREE(g_allocator, m_uniforms[_handle.idx]);
m_uniforms[_handle.idx] = NULL;
}
void saveScreenShot(const char* _filePath) BX_OVERRIDE
{
if (NULL == m_drawable
|| NULL == m_drawable.texture)
{
return;
}
//TODO: we should wait for completion of pending commandBuffers
//TODO: implement this with saveScreenshotBegin/End
Texture backBuffer = m_drawable.texture;
uint32_t width = backBuffer.width();
uint32_t height = backBuffer.height();
uint32_t length = width*height*4;
uint8_t* data = (uint8_t*)BX_ALLOC(g_allocator, length);
MTLRegion region = { { 0, 0, 0 }, { width, height, 1 } };
backBuffer.getBytes(data, 4*width, 0, region, 0, 0);
g_callback->screenShot(_filePath
, backBuffer.width()
, backBuffer.height()
, width*4
, data
, length
, false
);
BX_FREE(g_allocator, data);
}
void updateViewName(uint8_t _id, const char* _name) BX_OVERRIDE
{
if (BX_ENABLED(BGFX_CONFIG_DEBUG_PIX) )
{
bx::strlcpy(&s_viewName[_id][BGFX_CONFIG_MAX_VIEW_NAME_RESERVED]
, _name
, BX_COUNTOF(s_viewName[0])-BGFX_CONFIG_MAX_VIEW_NAME_RESERVED
);
}
}
void updateUniform(uint16_t _loc, const void* _data, uint32_t _size) BX_OVERRIDE
{
memcpy(m_uniforms[_loc], _data, _size);
}
void setMarker(const char* _marker, uint32_t /*_size*/) BX_OVERRIDE
{
if (BX_ENABLED(BGFX_CONFIG_DEBUG_MTL) )
{
m_renderCommandEncoder.insertDebugSignpost(_marker);
}
}
void submit(Frame* _render, ClearQuad& _clearQuad, TextVideoMemBlitter& _textVideoMemBlitter) BX_OVERRIDE;
void blitSetup(TextVideoMemBlitter& _blitter) BX_OVERRIDE
{
RenderCommandEncoder rce = m_renderCommandEncoder;
uint32_t width = getBufferWidth();
uint32_t height = getBufferHeight();
//if (m_ovr.isEnabled() )
//{
// m_ovr.getSize(width, height);
//}
FrameBufferHandle fbh = BGFX_INVALID_HANDLE;
//TODO: change to default framebuffer - we need a new encoder for this!
//setFrameBuffer(fbh, false);
MTLViewport viewport = { 0.0f, 0.0f, (float)width, (float)height, 0.0f, 1.0f};
rce.setViewport(viewport);
MTLScissorRect rc = { 0,0,width,height };
rce.setScissorRect(rc);
rce.setCullMode(MTLCullModeNone);
uint64_t state = BGFX_STATE_RGB_WRITE
| BGFX_STATE_ALPHA_WRITE
| BGFX_STATE_DEPTH_TEST_ALWAYS;
setDepthStencilState(state);
ProgramMtl& program = m_program[_blitter.m_program.idx];
RenderPipelineState pipelineState = program.getRenderPipelineState(state, 0, fbh, _blitter.m_vb->decl, 0);
rce.setRenderPipelineState(pipelineState);
uint32_t vertexUniformBufferSize = program.m_vshConstantBufferSize;
uint32_t fragmentUniformBufferSize = program.m_fshConstantBufferSize;
if (vertexUniformBufferSize )
{
m_uniformBufferVertexOffset = BX_ALIGN_MASK(m_uniformBufferVertexOffset, program.m_vshConstantBufferAlignmentMask);
rce.setVertexBuffer(m_uniformBuffer, m_uniformBufferVertexOffset, 0);
}
m_uniformBufferFragmentOffset = m_uniformBufferVertexOffset + vertexUniformBufferSize;
if (fragmentUniformBufferSize )
{
m_uniformBufferFragmentOffset = BX_ALIGN_MASK(m_uniformBufferFragmentOffset, program.m_fshConstantBufferAlignmentMask);
rce.setFragmentBuffer(m_uniformBuffer, m_uniformBufferFragmentOffset, 0);
}
VertexBufferMtl& vb = m_vertexBuffers[_blitter.m_vb->handle.idx];
rce.setVertexBuffer(vb.m_buffer, 0, 1);
float proj[16];
bx::mtxOrtho(proj, 0.0f, (float)width, (float)height, 0.0f, 0.0f, 1000.0f);
PredefinedUniform& predefined = program.m_predefined[0];
uint8_t flags = predefined.m_type;
setShaderUniform(flags, predefined.m_loc, proj, 4);
m_textures[_blitter.m_texture.idx].commit(0);
}
void blitRender(TextVideoMemBlitter& _blitter, uint32_t _numIndices) BX_OVERRIDE
{
const uint32_t numVertices = _numIndices*4/6;
if (0 < numVertices)
{
m_indexBuffers [_blitter.m_ib->handle.idx].update(0, _numIndices*2, _blitter.m_ib->data);
m_vertexBuffers[_blitter.m_vb->handle.idx].update(0, numVertices*_blitter.m_decl.m_stride, _blitter.m_vb->data, true);
m_renderCommandEncoder.drawIndexedPrimitives(MTLPrimitiveTypeTriangle, _numIndices, MTLIndexTypeUInt16, m_indexBuffers[_blitter.m_ib->handle.idx].m_buffer, 0, 1);
}
}
void flip(HMD& /*_hmd*/) BX_OVERRIDE
{
if (NULL == m_drawable
|| NULL == m_commandBuffer)
{
return;
}
// Present and commit the command buffer
m_commandBuffer.presentDrawable(m_drawable);
MTL_RELEASE(m_drawable);
m_commandBuffer.commit();
// using heavy syncing now
// TODO: refactor it with double/triple buffering frame data
m_commandBuffer.waitUntilCompleted();
MTL_RELEASE(m_commandBuffer);
//TODO: support multiple windows on OSX
/*
if (m_flip)
{
for (uint32_t ii = 1, num = m_numWindows; ii < num; ++ii)
{
m_glctx.swap(m_frameBuffers[m_windows[ii].idx].m_swapChain);
}
if (!m_ovr.swap(_hmd) )
{
m_glctx.swap();
}
}
*/
}
void updateResolution(const Resolution& _resolution)
{
m_maxAnisotropy = !!(_resolution.m_flags & BGFX_RESET_MAXANISOTROPY)
? 16
: 1
;
//TODO: _resolution has wrong dimensions, using m_drawable.texture size now
if (NULL == m_drawable.texture)
{
return;
}
uint32_t width = (uint32_t)m_drawable.texture.width;
uint32_t height = (uint32_t)m_drawable.texture.height;
//TODO: there should be a way to specify if backbuffer needs stencil/depth.
//TODO: support msaa
if (NULL == m_backBufferDepth
|| width != m_backBufferDepth.width()
|| height != m_backBufferDepth.height() )
{
m_textureDescriptor.textureType = MTLTextureType2D;
m_textureDescriptor.pixelFormat = MTLPixelFormatDepth32Float_Stencil8;
m_textureDescriptor.width = width;
m_textureDescriptor.height = height;
m_textureDescriptor.depth = 1;
m_textureDescriptor.mipmapLevelCount = 1;
m_textureDescriptor.sampleCount = 1;
m_textureDescriptor.arrayLength = 1;
m_textureDescriptor.resourceOptions = MTLResourceStorageModePrivate;
m_textureDescriptor.cpuCacheMode = MTLCPUCacheModeDefaultCache;
m_textureDescriptor.storageMode = MTLStorageModePrivate;
m_textureDescriptor.usage = MTLTextureUsageRenderTarget;
if (NULL != m_backBufferDepth)
{
release(m_backBufferDepth);
}
m_backBufferDepth = m_device.newTextureWithDescriptor(m_textureDescriptor);
#if 0
m_textureDescriptor.pixelFormat = MTLPixelFormatStencil8;
if (NULL != m_backBufferStencil)
{
release(m_backBufferStencil);
}
m_backBufferStencil = m_device.newTextureWithDescriptor(m_textureDescriptor);
#else
m_backBufferStencil = m_backBufferDepth;
#endif // 0
bx::HashMurmur2A murmur;
murmur.begin();
murmur.add(1);
murmur.add((uint32_t)m_drawable.texture.pixelFormat);
murmur.add((uint32_t)m_backBufferDepth.pixelFormat());
murmur.add((uint32_t)m_backBufferStencil.pixelFormat());
m_backBufferPixelFormatHash = murmur.end();
for (uint32_t ii = 0; ii < BX_COUNTOF(m_frameBuffers); ++ii)
{
m_frameBuffers[ii].postReset();
}
m_textVideoMem.resize(false, width, height);
m_textVideoMem.clear();
}
}
void setShaderUniform(uint8_t _flags, uint32_t _loc, const void* _val, uint32_t _numRegs)
{
if (_flags&BGFX_UNIFORM_FRAGMENTBIT)
{
memcpy(&((char*)m_uniformBuffer.contents())[m_uniformBufferFragmentOffset + _loc], _val, _numRegs*16);
}
else
{
memcpy(&((char*)m_uniformBuffer.contents())[m_uniformBufferVertexOffset + _loc], _val, _numRegs*16);
}
}
void setShaderUniform4f(uint8_t _flags, uint32_t _loc, const void* _val, uint32_t _numRegs)
{
setShaderUniform(_flags, _loc, _val, _numRegs);
}
void setShaderUniform4x4f(uint8_t _flags, uint32_t _loc, const void* _val, uint32_t _numRegs)
{
setShaderUniform(_flags, _loc, _val, _numRegs);
}
void commit(UniformBuffer& _uniformBuffer)
{
_uniformBuffer.reset();
for (;;)
{
uint32_t opcode = _uniformBuffer.read();
if (UniformType::End == opcode)
{
break;
}
UniformType::Enum type;
uint16_t loc;
uint16_t num;
uint16_t copy;
UniformBuffer::decodeOpcode(opcode, type, loc, num, copy);
const char* data;
if (copy)
{
data = _uniformBuffer.read(g_uniformTypeSize[type]*num);
}
else
{
UniformHandle handle;
memcpy(&handle, _uniformBuffer.read(sizeof(UniformHandle) ), sizeof(UniformHandle) );
data = (const char*)m_uniforms[handle.idx];
}
#define CASE_IMPLEMENT_UNIFORM(_uniform, _dxsuffix, _type) \
case UniformType::_uniform: \
case UniformType::_uniform|BGFX_UNIFORM_FRAGMENTBIT: \
{ \
setShaderUniform(uint8_t(type), loc, data, num); \
} \
break;
switch ( (uint32_t)type)
{
case UniformType::Mat3:
case UniformType::Mat3|BGFX_UNIFORM_FRAGMENTBIT: \
{
float* value = (float*)data;
for (uint32_t ii = 0, count = num/3; ii < count; ++ii, loc += 3*16, value += 9)
{
Matrix4 mtx;
mtx.un.val[ 0] = value[0];
mtx.un.val[ 1] = value[1];
mtx.un.val[ 2] = value[2];
mtx.un.val[ 3] = 0.0f;
mtx.un.val[ 4] = value[3];
mtx.un.val[ 5] = value[4];
mtx.un.val[ 6] = value[5];
mtx.un.val[ 7] = 0.0f;
mtx.un.val[ 8] = value[6];
mtx.un.val[ 9] = value[7];
mtx.un.val[10] = value[8];
mtx.un.val[11] = 0.0f;
setShaderUniform(uint8_t(type), loc, &mtx.un.val[0], 3);
}
}
break;
CASE_IMPLEMENT_UNIFORM(Int1, I, int);
CASE_IMPLEMENT_UNIFORM(Vec4, F, float);
CASE_IMPLEMENT_UNIFORM(Mat4, F, float);
case UniformType::End:
break;
default:
BX_TRACE("%4d: INVALID 0x%08x, t %d, l %d, n %d, c %d", _uniformBuffer.getPos(), opcode, type, loc, num, copy);
break;
}
#undef CASE_IMPLEMENT_UNIFORM
}
}
void setFrameBuffer(mtl::RenderPassDescriptor renderPassDescriptor, FrameBufferHandle _fbh, bool _msaa = true)
{
if (!isValid(_fbh) )
{
renderPassDescriptor.colorAttachments[0].texture = m_drawable.texture;
renderPassDescriptor.depthAttachment.texture = m_backBufferDepth;
renderPassDescriptor.stencilAttachment.texture = m_backBufferStencil;
//todo: set resolve textures
}
else
{
FrameBufferMtl& frameBuffer = m_frameBuffers[_fbh.idx];
for (uint32_t ii = 0; ii < frameBuffer.m_num; ++ii)
{
const TextureMtl& texture = m_textures[frameBuffer.m_colorHandle[ii].idx];
renderPassDescriptor.colorAttachments[ii].texture = texture.m_ptr;
}
if (isValid(frameBuffer.m_depthHandle))
{
const TextureMtl& texture = m_textures[frameBuffer.m_depthHandle.idx];
renderPassDescriptor.depthAttachment.texture = texture.m_ptr;
renderPassDescriptor.stencilAttachment.texture = texture.m_ptrStencil;
//TODO: stencilAttachment should be the same if packed/depth stencil format is used
}
//todo: set resolve textures
}
m_fbh = _fbh;
m_rtMsaa = _msaa;
}
void setDepthStencilState(uint64_t _state, uint64_t _stencil = 0)
{
_state &= BGFX_STATE_DEPTH_WRITE|BGFX_STATE_DEPTH_TEST_MASK;
uint32_t fstencil = unpackStencil(0, _stencil);
uint32_t ref = (fstencil&BGFX_STENCIL_FUNC_REF_MASK)>>BGFX_STENCIL_FUNC_REF_SHIFT;
_stencil &= packStencil(~BGFX_STENCIL_FUNC_REF_MASK, BGFX_STENCIL_MASK);
bx::HashMurmur2A murmur;
murmur.begin();
murmur.add(_state);
murmur.add(_stencil);
uint32_t hash = murmur.end();
DepthStencilState dss = m_depthStencilStateCache.find(hash);
if (NULL == dss)
{
DepthStencilDescriptor desc = m_depthStencilDescriptor;
uint32_t func = (_state&BGFX_STATE_DEPTH_TEST_MASK)>>BGFX_STATE_DEPTH_TEST_SHIFT;
desc.depthWriteEnabled = !!(BGFX_STATE_DEPTH_WRITE & _state);
desc.depthCompareFunction = s_cmpFunc[func];
uint32_t bstencil = unpackStencil(1, _stencil);
uint32_t frontAndBack = bstencil != BGFX_STENCIL_NONE && bstencil != fstencil;
bstencil = frontAndBack ? bstencil : fstencil;
if (0 != _stencil)
{
StencilDescriptor frontFaceDesc = m_frontFaceStencilDescriptor;
StencilDescriptor backfaceDesc = m_backFaceStencilDescriptor;
uint32_t readMask = (fstencil&BGFX_STENCIL_FUNC_RMASK_MASK)>>BGFX_STENCIL_FUNC_RMASK_SHIFT;
uint32_t writeMask = 0xff;
frontFaceDesc.stencilFailureOperation = s_stencilOp[(fstencil&BGFX_STENCIL_OP_FAIL_S_MASK)>>BGFX_STENCIL_OP_FAIL_S_SHIFT];
frontFaceDesc.depthFailureOperation = s_stencilOp[(fstencil&BGFX_STENCIL_OP_FAIL_Z_MASK)>>BGFX_STENCIL_OP_FAIL_Z_SHIFT];
frontFaceDesc.depthStencilPassOperation = s_stencilOp[(fstencil&BGFX_STENCIL_OP_PASS_Z_MASK)>>BGFX_STENCIL_OP_PASS_Z_SHIFT];
frontFaceDesc.stencilCompareFunction = s_cmpFunc[(fstencil&BGFX_STENCIL_TEST_MASK)>>BGFX_STENCIL_TEST_SHIFT];
frontFaceDesc.readMask = readMask;
frontFaceDesc.writeMask = writeMask;
backfaceDesc.stencilFailureOperation = s_stencilOp[(bstencil&BGFX_STENCIL_OP_FAIL_S_MASK)>>BGFX_STENCIL_OP_FAIL_S_SHIFT];
backfaceDesc.depthFailureOperation = s_stencilOp[(bstencil&BGFX_STENCIL_OP_FAIL_Z_MASK)>>BGFX_STENCIL_OP_FAIL_Z_SHIFT];
backfaceDesc.depthStencilPassOperation = s_stencilOp[(bstencil&BGFX_STENCIL_OP_PASS_Z_MASK)>>BGFX_STENCIL_OP_PASS_Z_SHIFT];
backfaceDesc.stencilCompareFunction = s_cmpFunc[(bstencil&BGFX_STENCIL_TEST_MASK)>>BGFX_STENCIL_TEST_SHIFT];
backfaceDesc.readMask = readMask;
backfaceDesc.writeMask = writeMask;
desc.frontFaceStencil = frontFaceDesc;
desc.backFaceStencil = backfaceDesc;
}
else
{
desc.backFaceStencil = NULL;
desc.frontFaceStencil = NULL;
}
dss = m_device.newDepthStencilStateWithDescriptor(desc);
m_depthStencilStateCache.add(hash, dss);
}
m_renderCommandEncoder.setDepthStencilState(dss);
m_renderCommandEncoder.setStencilReferenceValue(ref);
}
SamplerState getSamplerState(uint32_t _flags)
{
_flags &= BGFX_TEXTURE_SAMPLER_BITS_MASK;
SamplerState sampler = m_samplerStateCache.find(_flags);
if (NULL == sampler)
{
m_samplerDescriptor.sAddressMode = s_textureAddress[(_flags&BGFX_TEXTURE_U_MASK)>>BGFX_TEXTURE_U_SHIFT];
m_samplerDescriptor.tAddressMode = s_textureAddress[(_flags&BGFX_TEXTURE_V_MASK)>>BGFX_TEXTURE_V_SHIFT];
m_samplerDescriptor.rAddressMode = s_textureAddress[(_flags&BGFX_TEXTURE_W_MASK)>>BGFX_TEXTURE_W_SHIFT];
m_samplerDescriptor.minFilter = s_textureFilterMinMag[(_flags&BGFX_TEXTURE_MIN_MASK)>>BGFX_TEXTURE_MIN_SHIFT];
m_samplerDescriptor.magFilter = s_textureFilterMinMag[(_flags&BGFX_TEXTURE_MAG_MASK)>>BGFX_TEXTURE_MAG_SHIFT];
m_samplerDescriptor.mipFilter = s_textureFilterMip[(_flags&BGFX_TEXTURE_MIP_MASK)>>BGFX_TEXTURE_MIP_SHIFT];
m_samplerDescriptor.lodMinClamp = 0;
m_samplerDescriptor.lodMaxClamp = FLT_MAX;
m_samplerDescriptor.normalizedCoordinates = TRUE;
m_samplerDescriptor.maxAnisotropy = m_maxAnisotropy;
//TODO: I haven't found how to specify this. Comparison function can be specified in shader.
// On OSX this can be specified. There is no support for this on iOS right now.
//const uint32_t cmpFunc = (_flags&BGFX_TEXTURE_COMPARE_MASK)>>BGFX_TEXTURE_COMPARE_SHIFT;
//const uint8_t filter = 0 == cmpFunc ? 0 : D3D11_COMPARISON_FILTERING_BIT;
//m_samplerDescriptor.comparisonFunc = 0 == cmpFunc ? D3D11_COMPARISON_NEVER : s_cmpFunc[cmpFunc];
sampler = m_device.newSamplerStateWithDescriptor(m_samplerDescriptor);
m_samplerStateCache.add(_flags, sampler);
}
return sampler;
}
uint32_t getBufferWidth()
{
return m_backBufferDepth.width();
}
uint32_t getBufferHeight()
{
return m_backBufferDepth.height();
}
Device m_device;
CommandQueue m_commandQueue;
CAMetalLayer* m_metalLayer;
Texture m_backBufferDepth;
Texture m_backBufferStencil;
uint32_t m_backBufferPixelFormatHash;
uint32_t m_maxAnisotropy;
Buffer m_uniformBuffer; //todo: use a pool of this
uint32_t m_uniformBufferVertexOffset;
uint32_t m_uniformBufferFragmentOffset;
uint16_t m_numWindows;
FrameBufferHandle m_windows[BGFX_CONFIG_MAX_FRAME_BUFFERS];
IndexBufferMtl m_indexBuffers[BGFX_CONFIG_MAX_INDEX_BUFFERS];
VertexBufferMtl m_vertexBuffers[BGFX_CONFIG_MAX_VERTEX_BUFFERS];
ShaderMtl m_shaders[BGFX_CONFIG_MAX_SHADERS];
ProgramMtl m_program[BGFX_CONFIG_MAX_PROGRAMS];
TextureMtl m_textures[BGFX_CONFIG_MAX_TEXTURES];
FrameBufferMtl m_frameBuffers[BGFX_CONFIG_MAX_FRAME_BUFFERS];
VertexDecl m_vertexDecls[BGFX_CONFIG_MAX_VERTEX_DECLS];
UniformRegistry m_uniformReg;
void* m_uniforms[BGFX_CONFIG_MAX_UNIFORMS];
StateCacheT<DepthStencilState> m_depthStencilStateCache;
StateCacheT<SamplerState> m_samplerStateCache;
TextVideoMem m_textVideoMem;
FrameBufferHandle m_fbh;
bool m_rtMsaa;
// descriptors
RenderPipelineDescriptor m_renderPipelineDescriptor;
DepthStencilDescriptor m_depthStencilDescriptor;
StencilDescriptor m_frontFaceStencilDescriptor;
StencilDescriptor m_backFaceStencilDescriptor;
VertexDescriptor m_vertexDescriptor;
TextureDescriptor m_textureDescriptor;
SamplerDescriptor m_samplerDescriptor;
// currently active objects data
id <CAMetalDrawable> m_drawable;
CommandBuffer m_commandBuffer;
RenderCommandEncoder m_renderCommandEncoder;
};
static RendererContextMtl* s_renderMtl;
RendererContextI* rendererCreate()
{
s_renderMtl = BX_NEW(g_allocator, RendererContextMtl);
if (!s_renderMtl->init())
{
BX_DELETE(g_allocator, s_renderMtl);
s_renderMtl = NULL;
}
return s_renderMtl;
}
void rendererDestroy()
{
s_renderMtl->shutdown();
BX_DELETE(g_allocator, s_renderMtl);
s_renderMtl = NULL;
}
void writeString(bx::WriterI* _writer, const char* _str)
{
bx::write(_writer, _str, (int32_t)strlen(_str) );
}
void ShaderMtl::create(const Memory* _mem)
{
bx::MemoryReader reader(_mem->data, _mem->size);
uint32_t magic;
bx::read(&reader, magic);
switch (magic)
{
case BGFX_CHUNK_MAGIC_CSH:
case BGFX_CHUNK_MAGIC_FSH:
case BGFX_CHUNK_MAGIC_VSH:
break;
default:
BGFX_FATAL(false, Fatal::InvalidShader, "Unknown shader format %x.", magic);
break;
}
//bool fragment = BGFX_CHUNK_MAGIC_FSH == magic;
uint32_t iohash;
bx::read(&reader, iohash);
uint16_t count;
bx::read(&reader, count);
BX_TRACE("%s Shader consts %d"
, BGFX_CHUNK_MAGIC_FSH == magic ? "Fragment" : BGFX_CHUNK_MAGIC_VSH == magic ? "Vertex" : "Compute"
, count
);
for (uint32_t ii = 0; ii < count; ++ii)
{
uint8_t nameSize;
bx::read(&reader, nameSize);
char name[256];
bx::read(&reader, &name, nameSize);
name[nameSize] = '\0';
uint8_t type;
bx::read(&reader, type);
uint8_t num;
bx::read(&reader, num);
uint16_t regIndex;
bx::read(&reader, regIndex);
uint16_t regCount;
bx::read(&reader, regCount);
}
uint32_t shaderSize;
bx::read(&reader, shaderSize);
const char* code = (const char*)reader.getDataPtr();
bx::skip(&reader, shaderSize+1);
int32_t codeLen = (int32_t)strlen(code);
int32_t tempLen = codeLen + (4<<10);
char* temp = (char*)alloca(tempLen);
bx::StaticMemoryBlockWriter writer(temp, tempLen);
//TODO: remove this hack. some shaders have problem with half<->float conversion
writeString(&writer
, "#define half float\n"
"#define half2 float2\n"
"#define half3 float3\n"
"#define half4 float4\n"
);
bx::write(&writer, code, codeLen);
bx::write(&writer, '\0');
code = temp;
//TODO: use binary format
Library lib = s_renderMtl->m_device.newLibraryWithSource(code);
if (NULL != lib)
{
m_function = lib.newFunctionWithName(SHADER_FUNCTION_NAME);
}
BGFX_FATAL(NULL != m_function, bgfx::Fatal::InvalidShader, "Failed to create %s shader."
, BGFX_CHUNK_MAGIC_FSH == magic ? "Fragment" : BGFX_CHUNK_MAGIC_VSH == magic ? "Vertex" : "Compute");
}
void ProgramMtl::create(const ShaderMtl* _vsh, const ShaderMtl* _fsh)
{
BX_CHECK(NULL != _vsh->m_function.m_obj, "Vertex shader doesn't exist.");
m_vsh = _vsh;
if (NULL != _fsh)
{
BX_CHECK(NULL != _fsh->m_function.m_obj, "Fragment shader doesn't exist.");
m_fsh = _fsh;
}
// get attributes
memset(m_attributes, 0xff, sizeof(m_attributes) );
uint32_t used = 0;
uint32_t instUsed = 0;
if (NULL != _vsh->m_function.m_obj )
{
for (MTLVertexAttribute* attrib in _vsh->m_function.m_obj.vertexAttributes)
{
if (attrib.active )
{
const char* name = utf8String(attrib.name);
uint32_t loc = (uint32_t)attrib.attributeIndex;
BX_TRACE("attr %s: %d", name, loc);
for (uint8_t ii = 0; ii < Attrib::Count; ++ii)
{
if (!strcmp(s_attribName[ii],name))
{
m_attributes[ii] = loc;
m_used[used++] = ii;
break;
}
}
for (uint32_t ii = 0; ii < BX_COUNTOF(s_instanceDataName); ++ii)
{
if (!strcmp(s_instanceDataName[ii],name))
{
m_instanceData[instUsed++] = loc;
}
}
}
}
}
m_used[used] = Attrib::Count;
m_instanceData[instUsed] = UINT16_MAX;
}
void ProgramMtl::destroy()
{
m_vsh = NULL;
m_fsh = NULL;
if (NULL != m_vshConstantBuffer)
{
UniformBuffer::destroy(m_vshConstantBuffer);
m_vshConstantBuffer = NULL;
}
if (NULL != m_fshConstantBuffer)
{
UniformBuffer::destroy(m_fshConstantBuffer);
m_fshConstantBuffer = NULL;
}
m_vshConstantBufferSize = 0;
m_vshConstantBufferAlignmentMask = 0;
m_fshConstantBufferSize = 0;
m_fshConstantBufferAlignmentMask = 0;
m_processedUniforms = false;
m_numPredefined = 0;
}
UniformType::Enum convertMtlType(MTLDataType _type)
{
switch (_type)
{
case MTLDataTypeUInt:
case MTLDataTypeInt:
return UniformType::Int1;
case MTLDataTypeFloat:
case MTLDataTypeFloat2:
case MTLDataTypeFloat3:
case MTLDataTypeFloat4:
return UniformType::Vec4;
case MTLDataTypeFloat3x3:
return UniformType::Mat3;
case MTLDataTypeFloat4x4:
return UniformType::Mat4;
};
BX_CHECK(false, "Unrecognized Mtl Data type 0x%04x.", _type);
return UniformType::End;
}
RenderPipelineState ProgramMtl::getRenderPipelineState(uint64_t _state, uint32_t _rgba, FrameBufferHandle _fbHandle, VertexDeclHandle _declHandle, uint16_t _numInstanceData)
{
_state &= (BGFX_STATE_BLEND_MASK|BGFX_STATE_BLEND_EQUATION_MASK|BGFX_STATE_ALPHA_WRITE|BGFX_STATE_RGB_WRITE|BGFX_STATE_BLEND_INDEPENDENT|BGFX_STATE_MSAA);
bool independentBlendEnable = !!(BGFX_STATE_BLEND_INDEPENDENT & _state);
bx::HashMurmur2A murmur;
murmur.begin();
murmur.add(_state);
murmur.add(independentBlendEnable ? _rgba : 0);
if (!isValid(_fbHandle) )
{
murmur.add(s_renderMtl->m_backBufferPixelFormatHash);
}
else
{
FrameBufferMtl& frameBuffer = s_renderMtl->m_frameBuffers[_fbHandle.idx];
murmur.add(frameBuffer.m_pixelFormatHash);
}
murmur.add(_declHandle.idx);
murmur.add(_numInstanceData);
uint32_t hash = murmur.end();
RenderPipelineState rps = m_renderPipelineStateCache.find(hash);
if (NULL == rps)
{
RenderPipelineDescriptor& pd = s_renderMtl->m_renderPipelineDescriptor;
reset(pd);
uint32_t frameBufferAttachment = 1;
if (!isValid(_fbHandle) )
{
pd.colorAttachments[0].pixelFormat = s_renderMtl->m_drawable.texture.pixelFormat;
pd.depthAttachmentPixelFormat = s_renderMtl->m_backBufferDepth.m_obj.pixelFormat;
pd.stencilAttachmentPixelFormat = s_renderMtl->m_backBufferStencil.m_obj.pixelFormat;
}
else
{
FrameBufferMtl& frameBuffer = s_renderMtl->m_frameBuffers[_fbHandle.idx];
frameBufferAttachment = frameBuffer.m_num;
for (uint32_t ii = 0; ii < frameBuffer.m_num; ++ii)
{
const TextureMtl& texture = s_renderMtl->m_textures[frameBuffer.m_colorHandle[ii].idx];
pd.colorAttachments[ii].pixelFormat = texture.m_ptr.m_obj.pixelFormat;
}
if (isValid(frameBuffer.m_depthHandle))
{
const TextureMtl& texture = s_renderMtl->m_textures[frameBuffer.m_depthHandle.idx];
pd.depthAttachmentPixelFormat = texture.m_ptr.m_obj.pixelFormat;
if (NULL != texture.m_ptrStencil)
{
pd.stencilAttachmentPixelFormat = MTLPixelFormatInvalid; //texture.m_ptrStencil.m_obj.pixelFormat;
}
//todo: stencil attachment should be the same as depth for packed depth/stencil
}
}
// TODO: BGFX_STATE_MSAA using _fbHandle texture msaa values
const uint32_t blend = uint32_t( (_state&BGFX_STATE_BLEND_MASK)>>BGFX_STATE_BLEND_SHIFT);
const uint32_t equation = uint32_t( (_state&BGFX_STATE_BLEND_EQUATION_MASK)>>BGFX_STATE_BLEND_EQUATION_SHIFT);
const uint32_t srcRGB = (blend )&0xf;
const uint32_t dstRGB = (blend>> 4)&0xf;
const uint32_t srcA = (blend>> 8)&0xf;
const uint32_t dstA = (blend>>12)&0xf;
const uint32_t equRGB = (equation )&0x7;
const uint32_t equA = (equation>>3)&0x7;
uint8_t writeMask = (_state&BGFX_STATE_ALPHA_WRITE) ? MTLColorWriteMaskAlpha : 0;
writeMask |= (_state&BGFX_STATE_RGB_WRITE) ? MTLColorWriteMaskRed|MTLColorWriteMaskGreen|MTLColorWriteMaskBlue : 0;
for (uint32_t ii = 0; ii < (independentBlendEnable ? 1 : frameBufferAttachment); ++ii)
{
RenderPipelineColorAttachmentDescriptor drt = pd.colorAttachments[ii];
drt.blendingEnabled = !!(BGFX_STATE_BLEND_MASK & _state);
drt.sourceRGBBlendFactor = s_blendFactor[srcRGB][0];
drt.destinationRGBBlendFactor = s_blendFactor[dstRGB][0];
drt.rgbBlendOperation = s_blendEquation[equRGB];
drt.sourceAlphaBlendFactor = s_blendFactor[srcA][1];
drt.destinationAlphaBlendFactor = s_blendFactor[dstA][1];
drt.alphaBlendOperation = s_blendEquation[equA];
drt.writeMask = writeMask;
}
if (independentBlendEnable)
{
for (uint32_t ii = 1, rgba = _rgba; ii < frameBufferAttachment; ++ii, rgba >>= 11)
{
RenderPipelineColorAttachmentDescriptor drt = pd.colorAttachments[ii];
drt.blendingEnabled = 0 != (rgba&0x7ff);
const uint32_t src = (rgba )&0xf;
const uint32_t dst = (rgba>>4)&0xf;
const uint32_t equationIndex = (rgba>>8)&0x7;
drt.sourceRGBBlendFactor = s_blendFactor[src][0];
drt.destinationRGBBlendFactor = s_blendFactor[dst][0];
drt.rgbBlendOperation = s_blendEquation[equationIndex];
drt.sourceAlphaBlendFactor = s_blendFactor[src][1];
drt.destinationAlphaBlendFactor = s_blendFactor[dst][1];
drt.alphaBlendOperation = s_blendEquation[equationIndex];
drt.writeMask = writeMask;
}
}
pd.vertexFunction = m_vsh->m_function;
pd.fragmentFunction = m_fsh->m_function;
if (isValid(_declHandle))
{
VertexDescriptor vertexDesc = s_renderMtl->m_vertexDescriptor;
reset(vertexDesc);
VertexDecl &vertexDecl = s_renderMtl->m_vertexDecls[_declHandle.idx];
for (uint32_t ii = 0; Attrib::Count != m_used[ii]; ++ii)
{
Attrib::Enum attr = Attrib::Enum(m_used[ii]);
uint32_t loc = m_attributes[attr];
uint8_t num;
AttribType::Enum type;
bool normalized;
bool asInt;
vertexDecl.decode(attr, num, type, normalized, asInt);
BX_CHECK(num <= 4, "num must be <=4");
if (UINT16_MAX != vertexDecl.m_attributes[attr])
{
vertexDesc.attributes[loc].format = s_attribType[type][num-1][normalized?1:0];
vertexDesc.attributes[loc].bufferIndex = 1;
vertexDesc.attributes[loc].offset = vertexDecl.m_offset[attr];
BX_TRACE("attrib:%s format: %d offset:%d", s_attribName[attr], (int)vertexDesc.attributes[loc].format, (int)vertexDesc.attributes[loc].offset);
}
else
{ // missing attribute: using dummy attribute with smallest possible size
vertexDesc.attributes[loc].format = MTLVertexFormatUChar2;
vertexDesc.attributes[loc].bufferIndex = 1;
vertexDesc.attributes[loc].offset = 0;
}
}
vertexDesc.layouts[1].stride = vertexDecl.getStride();
vertexDesc.layouts[1].stepFunction = MTLVertexStepFunctionPerVertex;
BX_TRACE("stride: %d", (int)vertexDesc.layouts[1].stride);
if (_numInstanceData > 0)
{
for (uint32_t ii = 0; UINT16_MAX != m_instanceData[ii]; ++ii)
{
uint32_t loc = m_instanceData[ii];
vertexDesc.attributes[loc].format = MTLVertexFormatFloat4;
vertexDesc.attributes[loc].bufferIndex = 2;
vertexDesc.attributes[loc].offset = ii*16;
}
vertexDesc.layouts[2].stride = _numInstanceData * 16;
vertexDesc.layouts[2].stepFunction = MTLVertexStepFunctionPerInstance;
vertexDesc.layouts[2].stepRate = 1;
}
pd.vertexDescriptor = vertexDesc;
}
if (m_processedUniforms)
{
rps = s_renderMtl->m_device.newRenderPipelineStateWithDescriptor(pd);
}
else
{
m_numPredefined = 0;
RenderPipelineReflection reflection = NULL;
rps = s_renderMtl->m_device.newRenderPipelineStateWithDescriptor(pd, MTLPipelineOptionBufferTypeInfo, &reflection);
if (NULL != reflection)
{
for (uint32_t shaderType = 0; shaderType < 2; ++shaderType)
{
UniformBuffer*& constantBuffer = (shaderType == 0 ? m_vshConstantBuffer : m_fshConstantBuffer);
uint8_t fragmentBit = (1 == shaderType ? BGFX_UNIFORM_FRAGMENTBIT : 0);
for (MTLArgument* arg in (shaderType == 0 ? reflection.vertexArguments : reflection.fragmentArguments))
{
BX_TRACE("arg: %s type:%d", utf8String(arg.name), arg.type);
if (arg.active)
{
if (arg.type == MTLArgumentTypeBuffer
&& 0 == strcmp(utf8String(arg.name), SHADER_UNIFORM_NAME) )
{
BX_CHECK( arg.index == 0, "Uniform buffer must be in the buffer slot 0.");
BX_CHECK( MTLDataTypeStruct == arg.bufferDataType, "%s's type must be a struct",SHADER_UNIFORM_NAME );
if (MTLDataTypeStruct == arg.bufferDataType)
{
if (shaderType == 0)
{
m_vshConstantBufferSize = (uint32_t)arg.bufferDataSize;
m_vshConstantBufferAlignmentMask = (uint32_t)arg.bufferAlignment - 1;
}
else
{
m_fshConstantBufferSize = (uint32_t)arg.bufferDataSize;
m_fshConstantBufferAlignmentMask = (uint32_t)arg.bufferAlignment - 1;
}
for (MTLStructMember* uniform in arg.bufferStructType.members )
{
const char* name = utf8String(uniform.name);
BX_TRACE("uniform: %s type:%d", name, uniform.dataType);
MTLDataType dataType = uniform.dataType;
uint32_t num = 1;
if (dataType == MTLDataTypeArray)
{
dataType = uniform.arrayType.elementType;
num = (uint32_t)uniform.arrayType.arrayLength;
}
switch (dataType) {
case MTLDataTypeFloat4 :
num *= 1;
break;
case MTLDataTypeFloat4x4:
num *= 4;
break;
case MTLDataTypeFloat3x3:
num *= 3;
break;
default:
BX_WARN(0, "Unsupported uniform MTLDataType: %d", uniform.dataType);
break;
}
PredefinedUniform::Enum predefined = nameToPredefinedUniformEnum(name);
if (PredefinedUniform::Count != predefined)
{
m_predefined[m_numPredefined].m_loc = uint32_t(uniform.offset);
m_predefined[m_numPredefined].m_count = uint16_t(num);
m_predefined[m_numPredefined].m_type = uint8_t(predefined|fragmentBit);
m_numPredefined++;
}
else
{
const UniformInfo* info = s_renderMtl->m_uniformReg.find(name);
if (NULL != info)
{
if (NULL == constantBuffer)
{
constantBuffer = UniformBuffer::create(1024);
}
UniformType::Enum type = convertMtlType(dataType);
constantBuffer->writeUniformHandle((UniformType::Enum)(type|fragmentBit), uint32_t(uniform.offset), info->m_handle, uint16_t(num) );
BX_TRACE("store %s %d offset:%d", name, info->m_handle, uint32_t(uniform.offset));
}
}
}
}
}
else if (arg.type == MTLArgumentTypeTexture)
{
const char* name = utf8String(arg.name);
BX_TRACE("texture: %s index:%d", name, arg.index);
}
else if (arg.type == MTLArgumentTypeSampler)
{
const char* name = utf8String(arg.name);
BX_TRACE("sampler: %s index:%d", name, arg.index);
}
}
}
if (NULL != constantBuffer)
{
constantBuffer->finish();
}
}
}
m_processedUniforms = true;
}
m_renderPipelineStateCache.add(hash, rps);
}
return rps;
}
void BufferMtl::create(uint32_t _size, void* _data, uint16_t _flags, uint16_t _stride, bool _vertex)
{
BX_UNUSED(_flags, _stride, _vertex);
m_size = _size;
if (NULL == _data)
{
m_buffer = s_renderMtl->m_device.newBufferWithLength(_size, 0);
}
else
{
m_buffer = s_renderMtl->m_device.newBufferWithBytes(_data, _size, 0);
}
}
void BufferMtl::update(uint32_t _offset, uint32_t _size, void* _data, bool _discard)
{
BX_UNUSED(_discard);
memcpy( (uint8_t*)m_buffer.contents() + _offset, _data, _size);
}
void VertexBufferMtl::create(uint32_t _size, void* _data, VertexDeclHandle _declHandle, uint16_t _flags)
{
m_decl = _declHandle;
uint16_t stride = isValid(_declHandle)
? s_renderMtl->m_vertexDecls[_declHandle.idx].m_stride
: 0
;
BufferMtl::create(_size, _data, _flags, stride, true);
}
void TextureMtl::create(const Memory* _mem, uint32_t _flags, uint8_t _skip)
{
m_sampler = s_renderMtl->getSamplerState(_flags);
ImageContainer imageContainer;
if (imageParse(imageContainer, _mem->data, _mem->size) )
{
uint8_t numMips = imageContainer.m_numMips;
const uint8_t startLod = uint8_t(bx::uint32_min(_skip, numMips-1) );
numMips -= startLod;
const ImageBlockInfo& blockInfo = getBlockInfo(TextureFormat::Enum(imageContainer.m_format) );
const uint32_t textureWidth = bx::uint32_max(blockInfo.blockWidth, imageContainer.m_width >>startLod);
const uint32_t textureHeight = bx::uint32_max(blockInfo.blockHeight, imageContainer.m_height>>startLod);
m_flags = _flags;
m_requestedFormat = (uint8_t)imageContainer.m_format;
m_textureFormat = (uint8_t)imageContainer.m_format;
const TextureFormatInfo& tfi = s_textureFormat[m_requestedFormat];
const bool convert = MTLPixelFormatInvalid == tfi.m_fmt;
uint8_t bpp = getBitsPerPixel(TextureFormat::Enum(m_textureFormat) );
if (convert)
{
m_textureFormat = (uint8_t)TextureFormat::RGBA8;
bpp = 32;
}
TextureDescriptor desc = s_renderMtl->m_textureDescriptor;
if (imageContainer.m_cubeMap)
{
desc.textureType = MTLTextureTypeCube;
}
else if (imageContainer.m_depth > 1)
{
desc.textureType = MTLTextureType3D;
}
else
{
desc.textureType = MTLTextureType2D;
}
m_numMips = numMips;
const bool compressed = isCompressed(TextureFormat::Enum(m_textureFormat) );
BX_TRACE("Texture %3d: %s (requested: %s), %dx%d%s%s."
, this - s_renderMtl->m_textures
, getName( (TextureFormat::Enum)m_textureFormat)
, getName( (TextureFormat::Enum)m_requestedFormat)
, textureWidth
, textureHeight
, imageContainer.m_cubeMap ? "x6" : ""
, 0 != (_flags&BGFX_TEXTURE_RT_MASK) ? " (render target)" : ""
);
// const bool bufferOnly = 0 != (_flags&BGFX_TEXTURE_RT_BUFFER_ONLY);
const bool computeWrite = 0 != (_flags&BGFX_TEXTURE_COMPUTE_WRITE);
// const bool renderTarget = 0 != (_flags&BGFX_TEXTURE_RT_MASK);
const bool srgb = 0 != (_flags&BGFX_TEXTURE_SRGB) || imageContainer.m_srgb;
// const uint32_t msaaQuality = bx::uint32_satsub( (_flags&BGFX_TEXTURE_RT_MSAA_MASK)>>BGFX_TEXTURE_RT_MSAA_SHIFT, 1);
// const DXGI_SAMPLE_DESC& msaa = s_msaa[msaaQuality];
MTLPixelFormat format = MTLPixelFormatInvalid;
if (srgb)
{
format = s_textureFormat[m_textureFormat].m_fmtSrgb;
BX_WARN(format != MTLPixelFormatInvalid, "sRGB not supported for texture format %d", m_textureFormat);
}
if (format == MTLPixelFormatInvalid)
{
// not swizzled and not sRGB, or sRGB unsupported
format = s_textureFormat[m_textureFormat].m_fmt;
}
desc.pixelFormat = format;
desc.width = textureWidth;
desc.height = textureHeight;
desc.depth = bx::uint32_max(1,imageContainer.m_depth);
desc.mipmapLevelCount = imageContainer.m_numMips;
desc.sampleCount = 1; //TODO: set samplecount - If textureType is not MTLTextureType2DMultisample, the value must be 1.
desc.resourceOptions = MTLResourceStorageModePrivate;
desc.cpuCacheMode = MTLCPUCacheModeDefaultCache;
desc.storageMode = MTLStorageModeManaged; //MTLStorageModePrivate;
desc.usage = MTLTextureUsageShaderRead;
//TODO: set resource flags depending on usage(renderTarget/computeWrite/etc) on iOS9/OSX
m_ptr = s_renderMtl->m_device.newTextureWithDescriptor(desc);
if (m_requestedFormat == TextureFormat::D24S8
&& desc.pixelFormat == MTLPixelFormatDepth32Float)
{
desc.pixelFormat = MTLPixelFormatStencil8;
m_ptrStencil = s_renderMtl->m_device.newTextureWithDescriptor(desc);
}
uint8_t* temp = NULL;
if (convert)
{
temp = (uint8_t*)BX_ALLOC(g_allocator, textureWidth*textureHeight*4);
}
for (uint8_t side = 0, numSides = imageContainer.m_cubeMap ? 6 : 1; side < numSides; ++side)
{
uint32_t width = textureWidth;
uint32_t height = textureHeight;
uint32_t depth = imageContainer.m_depth;
for (uint8_t lod = 0, num = numMips; lod < num; ++lod)
{
width = bx::uint32_max(1, width);
height = bx::uint32_max(1, height);
depth = bx::uint32_max(1, depth);
ImageMip mip;
if (imageGetRawData(imageContainer, side, lod+startLod, _mem->data, _mem->size, mip) )
{
const uint8_t* data = mip.m_data;
if (convert)
{
imageDecodeToRgba8(temp
, mip.m_data
, mip.m_width
, mip.m_height
, mip.m_width*4
, mip.m_format
);
data = temp;
}
MTLRegion region = { { 0, 0, 0 }, { width, height, depth } };
uint32_t bytesPerRow;
uint32_t bytesPerImage;
if (compressed && !convert)
{
if (format >= 160 /*MTLPixelFormatPVRTC_RGB_2BPP*/
&& format <= 167 /*MTLPixelFormatPVRTC_RGBA_4BPP_sRGB*/)
{
bytesPerRow = 0;
bytesPerImage = 0;
}
else
{
bytesPerRow = (mip.m_width / blockInfo.blockWidth )*mip.m_blockSize;
bytesPerImage = (desc.textureType == MTLTextureType3D) ? (mip.m_height/blockInfo.blockHeight)*bytesPerRow : 0;
}
}
else
{
bytesPerRow = width * bpp / 8;
bytesPerImage = (desc.textureType == MTLTextureType3D) ? width * height * bpp / 8 : 0;
}
m_ptr.replaceRegion(region, lod, side, data, bytesPerRow, bytesPerImage);
}
else if (!computeWrite)
{
//TODO: do we need to clear to zero??
}
width >>= 1;
height >>= 1;
depth >>= 1;
}
}
if (NULL != temp)
{
BX_FREE(g_allocator, temp);
}
}
}
void TextureMtl::update(uint8_t _side, uint8_t _mip, const Rect& _rect, uint16_t _z, uint16_t _depth, uint16_t _pitch, const Memory* _mem)
{
MTLRegion region = { { _rect.m_x, _rect.m_y, _z }, { _rect.m_width, _rect.m_height, _depth } };
const uint32_t bpp = getBitsPerPixel(TextureFormat::Enum(m_textureFormat) );
const uint32_t rectpitch = _rect.m_width*bpp/8;
const uint32_t srcpitch = UINT16_MAX == _pitch ? rectpitch : _pitch;
const bool convert = m_textureFormat != m_requestedFormat;
uint8_t* data = _mem->data;
uint8_t* temp = NULL;
if (convert)
{
temp = (uint8_t*)BX_ALLOC(g_allocator, rectpitch*_rect.m_height);
imageDecodeToBgra8(temp, data, _rect.m_width, _rect.m_height, srcpitch, m_requestedFormat);
data = temp;
}
m_ptr.replaceRegion(region, _mip, _side, data, srcpitch, srcpitch * _rect.m_height);
if (NULL != temp)
{
BX_FREE(g_allocator, temp);
}
}
void TextureMtl::commit(uint8_t _stage, uint32_t _flags)
{
//TODO: vertex or fragment stage?
s_renderMtl->m_renderCommandEncoder.setFragmentTexture(m_ptr, _stage);
s_renderMtl->m_renderCommandEncoder.setFragmentSamplerState(0 == (BGFX_SAMPLER_DEFAULT_FLAGS & _flags)
? s_renderMtl->getSamplerState(_flags)
: m_sampler, _stage);
}
void FrameBufferMtl::create(uint8_t _num, const TextureHandle* _handles)
{
m_num = 0;
for (uint32_t ii = 0; ii < _num; ++ii)
{
TextureHandle handle = _handles[ii];
if (isValid(handle) )
{
const TextureMtl& texture = s_renderMtl->m_textures[handle.idx];
//TODO: separate stencil buffer? or just use packed depth/stencil (which is not available on iOS8)
if (isDepth( (TextureFormat::Enum)texture.m_textureFormat) )
{
m_depthHandle = handle;
}
else
{
m_colorHandle[m_num] = handle;
m_num++;
}
}
}
bx::HashMurmur2A murmur;
murmur.begin();
murmur.add(m_num);
for (uint32_t ii = 0; ii < m_num; ++ii)
{
const TextureMtl& texture = s_renderMtl->m_textures[m_colorHandle[ii].idx];
murmur.add((uint32_t)texture.m_ptr.pixelFormat());
}
const TextureMtl& depthTexture = s_renderMtl->m_textures[m_depthHandle.idx];
murmur.add((uint32_t)depthTexture.m_ptr.pixelFormat());
murmur.add((uint32_t)MTLPixelFormatInvalid); //stencil
m_pixelFormatHash = murmur.end();
}
void FrameBufferMtl::create(uint16_t _denseIdx, void* _nwh, uint32_t _width, uint32_t _height, TextureFormat::Enum _depthFormat)
{
BX_UNUSED(_denseIdx, _nwh, _width, _height, _depthFormat);
BX_WARN(false, "FrameBufferMtl::create not yet implemented");
}
void FrameBufferMtl::postReset()
{
BX_WARN(false, "FrameBufferMtl::postReset not yet implemented");
//TODO: what should we do here?
}
uint16_t FrameBufferMtl::destroy()
{
m_num = 0;
m_depthHandle.idx = invalidHandle;
uint16_t denseIdx = m_denseIdx;
m_denseIdx = UINT16_MAX;
return denseIdx;
}
void RendererContextMtl::submit(Frame* _render, ClearQuad& _clearQuad, TextVideoMemBlitter& _textVideoMemBlitter) BX_OVERRIDE
{
BX_UNUSED(_clearQuad);
m_commandBuffer = m_commandQueue.commandBuffer();
retain(m_commandBuffer); // keep alive to be useable at 'flip'
//TODO: multithreading with multiple commandbuffer
// is there a FAST way to tell which view is active?
//TODO: acquire CAMetalDrawable just before we really need it. When we are using an encoder with target metalLayer's texture
m_drawable = m_metalLayer.nextDrawable;
// retain(m_drawable); // keep alive to be useable at 'flip'
m_uniformBufferVertexOffset = 0;
m_uniformBufferFragmentOffset = 0;
updateResolution(_render->m_resolution);
int64_t elapsed = -bx::getHPCounter();
int64_t captureElapsed = 0;
if (_render->m_debug & (BGFX_DEBUG_IFH|BGFX_DEBUG_STATS) )
{
//TODO
//m_gpuTimer.begin();
}
if (0 < _render->m_iboffset)
{
TransientIndexBuffer* ib = _render->m_transientIb;
m_indexBuffers[ib->handle.idx].update(0, _render->m_iboffset, ib->data);
}
if (0 < _render->m_vboffset)
{
TransientVertexBuffer* vb = _render->m_transientVb;
m_vertexBuffers[vb->handle.idx].update(0, _render->m_vboffset, vb->data);
}
_render->sort();
RenderDraw currentState;
currentState.clear();
currentState.m_flags = BGFX_STATE_NONE;
currentState.m_stencil = packStencil(BGFX_STENCIL_NONE, BGFX_STENCIL_NONE);
_render->m_hmdInitialized = false;
const bool hmdEnabled = false;
ViewState viewState(_render, hmdEnabled);
uint32_t blendFactor = 0;
bool wireframe = !!(_render->m_debug&BGFX_DEBUG_WIREFRAME);
//TODO: REMOVE THIS - TEMPORARY HACK
m_textureDescriptor.textureType = MTLTextureType2D;
m_textureDescriptor.pixelFormat = MTLPixelFormatRGBA8Unorm;
m_textureDescriptor.width = 4;
m_textureDescriptor.height = 4;
m_textureDescriptor.depth = 1;
m_textureDescriptor.mipmapLevelCount = 1;
m_textureDescriptor.sampleCount = 1; //TODO: set samplecount - If textureType is not MTLTextureType2DMultisample, the value must be 1.
Texture zeroTexture = m_device.newTextureWithDescriptor(m_textureDescriptor);
uint16_t programIdx = invalidHandle;
SortKey key;
uint16_t view = UINT16_MAX;
FrameBufferHandle fbh = BGFX_INVALID_HANDLE;
//ASK: why should we use this? It changes topology, so possible renders a big mess, doesn't it?
//const uint64_t primType = _render->m_debug&BGFX_DEBUG_WIREFRAME ? BGFX_STATE_PT_LINES : 0;
const uint64_t primType = 0;
uint8_t primIndex = uint8_t(primType>>BGFX_STATE_PT_SHIFT);
PrimInfo prim = s_primInfo[primIndex];
ProgramMtl* currentProgram = NULL;
mtl::RenderCommandEncoder rce;
bool wasCompute = false;
bool viewHasScissor = false;
Rect viewScissorRect;
viewScissorRect.clear();
uint32_t statsNumPrimsSubmitted[BX_COUNTOF(s_primInfo)] = {};
uint32_t statsNumPrimsRendered[BX_COUNTOF(s_primInfo)] = {};
uint32_t statsNumInstances[BX_COUNTOF(s_primInfo)] = {};
uint32_t statsNumDrawIndirect[BX_COUNTOF(s_primInfo)] = {};
uint32_t statsNumIndices = 0;
uint32_t statsKeyType[2] = {};
if (0 == (_render->m_debug&BGFX_DEBUG_IFH) )
{
bool viewRestart = false;
uint8_t eye = 0;
uint8_t restartState = 0;
viewState.m_rect = _render->m_rect[0];
int32_t numItems = _render->m_num;
for (int32_t item = 0, restartItem = numItems; item < numItems || restartItem < numItems;)
{
const bool isCompute = key.decode(_render->m_sortKeys[item], _render->m_viewRemap);
statsKeyType[isCompute]++;
const bool viewChanged = 0
|| key.m_view != view
|| item == numItems
;
const RenderItem& renderItem = _render->m_renderItem[_render->m_sortValues[item] ];
++item;
if (viewChanged)
{
if (1 == restartState)
{
restartState = 2;
item = restartItem;
restartItem = numItems;
view = UINT16_MAX;
continue;
}
view = key.m_view;
programIdx = invalidHandle;
viewRestart = ( (BGFX_VIEW_STEREO == (_render->m_viewFlags[view] & BGFX_VIEW_STEREO) ) );
viewRestart &= hmdEnabled;
if (viewRestart)
{
if (0 == restartState)
{
restartState = 1;
restartItem = item - 1;
}
eye = (restartState - 1) & 1;
restartState &= 1;
}
else
{
eye = 0;
}
viewState.m_rect = _render->m_rect[view];
if (viewRestart)
{
viewState.m_rect.m_x = eye * (viewState.m_rect.m_width+1)/2;
viewState.m_rect.m_width /= 2;
}
const Rect& scissorRect = _render->m_scissor[view];
viewHasScissor = !scissorRect.isZero();
viewScissorRect = viewHasScissor ? scissorRect : viewState.m_rect;
Clear& clr = _render->m_clear[view];
mtl::RenderPassDescriptor renderPassDescriptor = newRenderPassDescriptor();
//todo: check FB size
uint32_t width = getBufferWidth();
uint32_t height = getBufferHeight();
Rect viewRect = viewState.m_rect;
bool fullscreenRect = (0 == viewRect.m_x && 0 == viewRect.m_y && width == viewRect.m_width && height == viewRect.m_height);
//TODO/OPTIMIZATION: merge views with same target framebuffer into one renderPass
fbh = _render->m_fb[view];
setFrameBuffer(renderPassDescriptor, fbh);
RenderPassColorAttachmentDescriptor colorAttachment0 = renderPassDescriptor.colorAttachments[0];
if (BGFX_CLEAR_COLOR & clr.m_flags)
{
if (BGFX_CLEAR_COLOR_USE_PALETTE & clr.m_flags)
{
uint8_t index = (uint8_t)bx::uint32_min(BGFX_CONFIG_MAX_COLOR_PALETTE-1, clr.m_index[0]);
const float* rgba = _render->m_colorPalette[index];
const float rr = rgba[0];
const float gg = rgba[1];
const float bb = rgba[2];
const float aa = rgba[3];
colorAttachment0.clearColor = MTLClearColorMake(rr,gg,bb,aa);
}
else
{
float rr = clr.m_index[0]*1.0f/255.0f;
float gg = clr.m_index[1]*1.0f/255.0f;
float bb = clr.m_index[2]*1.0f/255.0f;
float aa = clr.m_index[3]*1.0f/255.0f;
colorAttachment0.clearColor = MTLClearColorMake(rr,gg,bb,aa);
}
colorAttachment0.loadAction = MTLLoadActionClear;
}
else
colorAttachment0.loadAction = MTLLoadActionLoad;
//TODO: optimize store actions use discard flag
RenderPassDepthAttachmentDescriptor depthAttachment = renderPassDescriptor.depthAttachment;
if (NULL != depthAttachment.texture)
{
depthAttachment.clearDepth = clr.m_depth;
depthAttachment.loadAction = (BGFX_CLEAR_DEPTH & clr.m_flags) ? MTLLoadActionClear : MTLLoadActionLoad;
depthAttachment.storeAction = MTLStoreActionStore;
}
RenderPassStencilAttachmentDescriptor stencilAttachment = renderPassDescriptor.stencilAttachment;
if (NULL != stencilAttachment.texture)
{
stencilAttachment.clearStencil = clr.m_stencil;
stencilAttachment.loadAction = (BGFX_CLEAR_STENCIL & clr.m_flags) ? MTLLoadActionClear : MTLLoadActionLoad;
stencilAttachment.storeAction = MTLStoreActionStore;
}
if (0 != m_renderCommandEncoder)
{
m_renderCommandEncoder.endEncoding();
}
rce = m_commandBuffer.renderCommandEncoderWithDescriptor(renderPassDescriptor);
m_renderCommandEncoder = rce;
MTL_RELEASE(renderPassDescriptor);
//TODO: REMOVE THIS!!!!
// TERRIBLE HACK TO SUPPRESS DEBUG LAYER WARNING ABOUT MISSING TEXTURE/SAMPLER AT 0 in 20-nanovg
m_renderCommandEncoder.setFragmentTexture(zeroTexture, 0);
m_renderCommandEncoder.setFragmentSamplerState(getSamplerState(0), 0);
rce.setTriangleFillMode(wireframe? MTLTriangleFillModeLines : MTLTriangleFillModeFill);
if (BX_ENABLED(BGFX_CONFIG_DEBUG_MTL) )
{
if (item != 1) //ASK: better check ? I don't get the whole restart thing
rce.popDebugGroup();
rce.pushDebugGroup(s_viewName[view]);
}
MTLViewport vp;
vp.originX = viewState.m_rect.m_x;
vp.originY = viewState.m_rect.m_y;
vp.width = viewState.m_rect.m_width;
vp.height = viewState.m_rect.m_height;
vp.znear = 0.0f;
vp.zfar = 1.0f;
rce.setViewport(vp);
if (BGFX_CLEAR_NONE != (clr.m_flags & BGFX_CLEAR_MASK) && !fullscreenRect)
{ //TODO: fallback to clear with quad
//clearQuad(_clearQuad, viewState.m_rect, clr, _render->m_colorPalette);
}
}
//TODO: iscompute
bool resetState = viewChanged || wasCompute;
if (wasCompute)
{
wasCompute = false;
programIdx = invalidHandle;
currentProgram = NULL;
//TODO
//invalidateCompute();
}
const RenderDraw& draw = renderItem.draw;
const uint64_t newFlags = draw.m_flags;
uint64_t changedFlags = currentState.m_flags ^ draw.m_flags;
currentState.m_flags = newFlags;
const uint64_t newStencil = draw.m_stencil;
uint64_t changedStencil = currentState.m_stencil ^ draw.m_stencil;
currentState.m_stencil = newStencil;
if (resetState)
{
currentState.clear();
currentState.m_scissor = !draw.m_scissor;
changedFlags = BGFX_STATE_MASK;
changedStencil = packStencil(BGFX_STENCIL_MASK, BGFX_STENCIL_MASK);
currentState.m_flags = newFlags;
currentState.m_stencil = newStencil;
programIdx = invalidHandle;
setDepthStencilState(newFlags, packStencil(BGFX_STENCIL_DEFAULT, BGFX_STENCIL_DEFAULT));
const uint64_t pt = newFlags&BGFX_STATE_PT_MASK;
primIndex = uint8_t(pt>>BGFX_STATE_PT_SHIFT);
}
if (prim.m_type != s_primInfo[primIndex].m_type)
{
prim = s_primInfo[primIndex];
}
uint16_t scissor = draw.m_scissor;
if (currentState.m_scissor != scissor)
{
currentState.m_scissor = scissor;
MTLScissorRect rc;
if (UINT16_MAX == scissor)
{
if (viewHasScissor)
{
rc.x = viewScissorRect.m_x;
rc.y = viewScissorRect.m_y;
rc.width = viewScissorRect.m_width;
rc.height = viewScissorRect.m_height;
}
else
{ // can't disable: set to view rect
rc.x = viewState.m_rect.m_x;
rc.y = viewState.m_rect.m_y;
rc.width = viewState.m_rect.m_width;
rc.height = viewState.m_rect.m_height;
}
}
else
{
Rect scissorRect;
scissorRect.intersect(viewScissorRect, _render->m_rectCache.m_cache[scissor]);
rc.x = scissorRect.m_x;
rc.y = scissorRect.m_y;
rc.width = scissorRect.m_width;
rc.height = scissorRect.m_height;
}
rce.setScissorRect(rc);
}
if ((BGFX_STATE_DEPTH_WRITE|BGFX_STATE_DEPTH_TEST_MASK) & changedFlags
|| 0 != changedStencil)
{
setDepthStencilState(newFlags,newStencil);
}
if ((0
| BGFX_STATE_CULL_MASK
| BGFX_STATE_ALPHA_REF_MASK
| BGFX_STATE_PT_MASK
//| BGFX_STATE_POINT_SIZE_MASK //TODO: not supported. could be supported with uniform
) & changedFlags)
{
if (BGFX_STATE_CULL_MASK & changedFlags)
{
const uint64_t pt = newFlags&BGFX_STATE_CULL_MASK;
uint8_t cullIndex = uint8_t(pt>>BGFX_STATE_CULL_SHIFT);
rce.setCullMode(s_cullMode[cullIndex]);
}
if (BGFX_STATE_ALPHA_REF_MASK & changedFlags)
{
uint32_t ref = (newFlags&BGFX_STATE_ALPHA_REF_MASK)>>BGFX_STATE_ALPHA_REF_SHIFT;
viewState.m_alphaRef = ref/255.0f;
}
const uint64_t pt = newFlags&BGFX_STATE_PT_MASK;
primIndex = uint8_t(pt>>BGFX_STATE_PT_SHIFT);
if (prim.m_type != s_primInfo[primIndex].m_type)
{
prim = s_primInfo[primIndex];
}
}
if ((blendFactor != draw.m_rgba) && !(newFlags & BGFX_STATE_BLEND_INDEPENDENT) )
{
const uint32_t rgba = draw.m_rgba;
float rr = ( (rgba>>24) )/255.0f;
float gg = ( (rgba>>16)&0xff)/255.0f;
float bb = ( (rgba>> 8)&0xff)/255.0f;
float aa = ( (rgba )&0xff)/255.0f;
rce.setBlendColor(rr,gg,bb,aa);
blendFactor = draw.m_rgba;
}
bool programChanged = false;
bool constantsChanged = draw.m_constBegin < draw.m_constEnd;
rendererUpdateUniforms(this, _render->m_uniformBuffer, draw.m_constBegin, draw.m_constEnd);
if (key.m_program != programIdx ||
(BGFX_STATE_BLEND_MASK|BGFX_STATE_BLEND_EQUATION_MASK|BGFX_STATE_ALPHA_WRITE|BGFX_STATE_RGB_WRITE|BGFX_STATE_BLEND_INDEPENDENT|BGFX_STATE_MSAA) & changedFlags ||
currentState.m_vertexBuffer.idx != draw.m_vertexBuffer.idx ||
currentState.m_vertexDecl.idx != draw.m_vertexDecl.idx ||
currentState.m_instanceDataStride != draw.m_instanceDataStride ||
( (blendFactor != draw.m_rgba) && !!(newFlags & BGFX_STATE_BLEND_INDEPENDENT) ) )
{
programIdx = key.m_program;
currentState.m_vertexDecl = draw.m_vertexDecl;
currentState.m_instanceDataStride = draw.m_instanceDataStride;
if (invalidHandle == programIdx)
{
currentProgram = NULL;
continue;
}
else
{
ProgramMtl& program = m_program[programIdx];
currentProgram = &program;
uint16_t handle = draw.m_vertexBuffer.idx;
const VertexBufferMtl& vb = m_vertexBuffers[handle];
VertexDeclHandle decl;
decl.idx = !isValid(vb.m_decl) ? draw.m_vertexDecl.idx : vb.m_decl.idx;
RenderPipelineState pipelineState = program.getRenderPipelineState(newFlags, draw.m_rgba, fbh, decl, draw.m_instanceDataStride/16);
if (NULL == pipelineState )
{ //call with invalid program
currentProgram = NULL;
programIdx = invalidHandle;
continue;
}
rce.setRenderPipelineState(pipelineState);
}
programChanged =
constantsChanged = true;
}
if (invalidHandle != programIdx)
{
ProgramMtl& program = m_program[programIdx];
uint32_t vertexUniformBufferSize = program.m_vshConstantBufferSize;
uint32_t fragmentUniformBufferSize = program.m_fshConstantBufferSize;
if (vertexUniformBufferSize )
{
m_uniformBufferVertexOffset = BX_ALIGN_MASK(m_uniformBufferVertexOffset, program.m_vshConstantBufferAlignmentMask);
rce.setVertexBuffer(m_uniformBuffer, m_uniformBufferVertexOffset, 0);
}
m_uniformBufferFragmentOffset = m_uniformBufferVertexOffset + vertexUniformBufferSize;
if (fragmentUniformBufferSize )
{
m_uniformBufferFragmentOffset = BX_ALIGN_MASK(m_uniformBufferFragmentOffset, program.m_fshConstantBufferAlignmentMask);
rce.setFragmentBuffer(m_uniformBuffer, m_uniformBufferFragmentOffset, 0);
}
//TODO: create new UniformBuffer when not enough place for next buffer
if (constantsChanged)
{
UniformBuffer* vcb = program.m_vshConstantBuffer;
if (NULL != vcb)
{
commit(*vcb);
}
UniformBuffer* fcb = program.m_fshConstantBuffer;
if (NULL != fcb)
{
commit(*fcb);
}
}
viewState.setPredefined<4>(this, view, eye, program, _render, draw);
m_uniformBufferFragmentOffset += fragmentUniformBufferSize;
m_uniformBufferVertexOffset = m_uniformBufferFragmentOffset;
}
{
for (uint8_t stage = 0; stage < BGFX_CONFIG_MAX_TEXTURE_SAMPLERS; ++stage)
{
const Binding& sampler = draw.m_bind[stage];
Binding& current = currentState.m_bind[stage];
if (current.m_idx != sampler.m_idx
|| current.m_un.m_draw.m_flags != sampler.m_un.m_draw.m_flags
|| programChanged)
{
if (invalidHandle != sampler.m_idx)
{
TextureMtl& texture = m_textures[sampler.m_idx];
texture.commit(stage, sampler.m_un.m_draw.m_flags);
}
}
current = sampler;
}
}
if (currentState.m_vertexBuffer.idx != draw.m_vertexBuffer.idx
|| currentState.m_startVertex != draw.m_startVertex
|| currentState.m_instanceDataBuffer.idx != draw.m_instanceDataBuffer.idx
|| currentState.m_instanceDataOffset != draw.m_instanceDataOffset
)
{
currentState.m_vertexBuffer = draw.m_vertexBuffer;
currentState.m_startVertex = draw.m_startVertex;
currentState.m_instanceDataBuffer.idx = draw.m_instanceDataBuffer.idx;
currentState.m_instanceDataOffset = draw.m_instanceDataOffset;
uint16_t handle = draw.m_vertexBuffer.idx;
if (invalidHandle != handle)
{
const VertexBufferMtl& vb = m_vertexBuffers[handle];
uint16_t decl = !isValid(vb.m_decl) ? draw.m_vertexDecl.idx : vb.m_decl.idx;
const VertexDecl& vertexDecl = m_vertexDecls[decl];
uint32_t offset = draw.m_startVertex * vertexDecl.getStride();
rce.setVertexBuffer(vb.m_buffer, offset, 1);
if (isValid(draw.m_instanceDataBuffer) )
{
const VertexBufferMtl& inst = m_vertexBuffers[draw.m_instanceDataBuffer.idx];
rce.setVertexBuffer(inst.m_buffer, draw.m_instanceDataOffset, 2);
}
}
}
if (isValid(currentState.m_vertexBuffer) )
{
uint32_t numVertices = draw.m_numVertices;
if (UINT32_MAX == numVertices)
{
const VertexBufferMtl& vb = m_vertexBuffers[currentState.m_vertexBuffer.idx];
uint16_t decl = !isValid(vb.m_decl) ? draw.m_vertexDecl.idx : vb.m_decl.idx;
const VertexDecl& vertexDecl = m_vertexDecls[decl];
numVertices = vb.m_size/vertexDecl.m_stride;
}
uint32_t numIndices = 0;
uint32_t numPrimsSubmitted = 0;
uint32_t numInstances = 0;
uint32_t numPrimsRendered = 0;
uint32_t numDrawIndirect = 0;
if (isValid(draw.m_indirectBuffer) )
{
// TODO: indirect draw
}
else
{
if (isValid(draw.m_indexBuffer) )
{
const IndexBufferMtl& ib = m_indexBuffers[draw.m_indexBuffer.idx];
MTLIndexType indexType = 0 == (ib.m_flags & BGFX_BUFFER_INDEX32) ? MTLIndexTypeUInt16 : MTLIndexTypeUInt32;
if (UINT32_MAX == draw.m_numIndices)
{
const uint32_t indexSize = 0 == (ib.m_flags & BGFX_BUFFER_INDEX32) ? 2 : 4;
numIndices = ib.m_size/indexSize;
numPrimsSubmitted = numIndices/prim.m_div - prim.m_sub;
numInstances = draw.m_numInstances;
numPrimsRendered = numPrimsSubmitted*draw.m_numInstances;
rce.drawIndexedPrimitives(prim.m_type, numIndices, indexType, ib.m_buffer, 0, draw.m_numInstances);
}
else if (prim.m_min <= draw.m_numIndices)
{
const uint32_t indexSize = 0 == (ib.m_flags & BGFX_BUFFER_INDEX32) ? 2 : 4;
numIndices = draw.m_numIndices;
numPrimsSubmitted = numIndices/prim.m_div - prim.m_sub;
numInstances = draw.m_numInstances;
numPrimsRendered = numPrimsSubmitted*draw.m_numInstances;
rce.drawIndexedPrimitives(prim.m_type, numIndices, indexType, ib.m_buffer, draw.m_startIndex * indexSize,numInstances);
}
}
else
{
numPrimsSubmitted = numVertices/prim.m_div - prim.m_sub;
numInstances = draw.m_numInstances;
numPrimsRendered = numPrimsSubmitted*draw.m_numInstances;
rce.drawPrimitives(prim.m_type, 0, draw.m_numVertices, draw.m_numInstances);
}
}
statsNumPrimsSubmitted[primIndex] += numPrimsSubmitted;
statsNumPrimsRendered[primIndex] += numPrimsRendered;
statsNumInstances[primIndex] += numInstances;
statsNumDrawIndirect[primIndex] += numDrawIndirect;
statsNumIndices += numIndices;
}
}
if (wasCompute)
{
//TODO
//invalidateCompute();
}
if (0 < _render->m_num)
{
//ASK: we now using one commandBuffer that is commited in flush. Should we implement this?
//if (0 != (m_resolution.m_flags & BGFX_RESET_FLUSH_AFTER_RENDER) )
{
// ????
//deviceCtx->Flush();
}
captureElapsed = -bx::getHPCounter();
//TODO
//capture();
captureElapsed += bx::getHPCounter();
}
}
if (BX_ENABLED(BGFX_CONFIG_DEBUG_MTL) )
{
if (0 < _render->m_num)
{
rce.popDebugGroup();
}
}
//TODO: debug stats
int64_t now = bx::getHPCounter();
elapsed += now;
static int64_t last = now;
int64_t frameTime = now - last;
last = now;
static int64_t min = frameTime;
static int64_t max = frameTime;
min = min > frameTime ? frameTime : min;
max = max < frameTime ? frameTime : max;
if (_render->m_debug & (BGFX_DEBUG_IFH|BGFX_DEBUG_STATS) )
{
rce.pushDebugGroup("debugstats");
static uint32_t maxGpuLatency = 0;
static double maxGpuElapsed = 0.0f;
// double elapsedGpuMs = 0.0;
//TODO: gputimer
/* m_gpuTimer.end();
while (m_gpuTimer.get() )
{
double toGpuMs = 1000.0 / double(m_gpuTimer.m_frequency);
elapsedGpuMs = m_gpuTimer.m_elapsed * toGpuMs;
maxGpuElapsed = elapsedGpuMs > maxGpuElapsed ? elapsedGpuMs : maxGpuElapsed;
}
maxGpuLatency = bx::uint32_imax(maxGpuLatency, m_gpuTimer.m_control.available()-1);
*/
TextVideoMem& tvm = m_textVideoMem;
static int64_t next = now;
if (now >= next)
{
next = now + bx::getHPFrequency();
double freq = double(bx::getHPFrequency() );
double toMs = 1000.0/freq;
tvm.clear();
uint16_t pos = 0;
tvm.printf(0, pos++, BGFX_CONFIG_DEBUG ? 0x89 : 0x8f, " %s / " BX_COMPILER_NAME " / " BX_CPU_NAME " / " BX_ARCH_NAME " / " BX_PLATFORM_NAME " "
, getRendererName()
);
//const D3DADAPTER_IDENTIFIER9& identifier = m_identifier;
//tvm.printf(0, pos++, 0x0f, " Device: %s (%s)", identifier.Description, identifier.Driver);
pos = 10;
tvm.printf(10, pos++, 0x8e, " Frame: %7.3f, % 7.3f \x1f, % 7.3f \x1e [ms] / % 6.2f FPS "
, double(frameTime)*toMs
, double(min)*toMs
, double(max)*toMs
, freq/frameTime
);
/*
const uint32_t msaa = (m_resolution.m_flags&BGFX_RESET_MSAA_MASK)>>BGFX_RESET_MSAA_SHIFT;
tvm.printf(10, pos++, 0x8e, " Reset flags: [%c] vsync, [%c] MSAAx%d, [%c] MaxAnisotropy "
, !!(m_resolution.m_flags&BGFX_RESET_VSYNC) ? '\xfe' : ' '
, 0 != msaa ? '\xfe' : ' '
, 1<<msaa
, !!(m_resolution.m_flags&BGFX_RESET_MAXANISOTROPY) ? '\xfe' : ' '
);
*/
double elapsedCpuMs = double(elapsed)*toMs;
tvm.printf(10, pos++, 0x8e, " Submitted: %4d (draw %4d, compute %4d) / CPU %3.4f [ms] %c GPU %3.4f [ms] (latency %d)"
, _render->m_num
, statsKeyType[0]
, statsKeyType[1]
, elapsedCpuMs
, elapsedCpuMs > maxGpuElapsed ? '>' : '<'
, maxGpuElapsed
, maxGpuLatency
);
maxGpuLatency = 0;
maxGpuElapsed = 0.0;
for (uint32_t ii = 0; ii < BX_COUNTOF(s_primName); ++ii)
{
tvm.printf(10, pos++, 0x8e, " %9s: %7d (#inst: %5d), submitted: %7d"
, s_primName[ii]
, statsNumPrimsRendered[ii]
, statsNumInstances[ii]
, statsNumPrimsSubmitted[ii]
);
}
tvm.printf(10, pos++, 0x8e, " Indices: %7d ", statsNumIndices);
tvm.printf(10, pos++, 0x8e, " Uniform size: %7d, Max: %7d ", _render->m_uniformEnd, _render->m_uniformMax);
tvm.printf(10, pos++, 0x8e, " DVB size: %7d ", _render->m_vboffset);
tvm.printf(10, pos++, 0x8e, " DIB size: %7d ", _render->m_iboffset);
double captureMs = double(captureElapsed)*toMs;
tvm.printf(10, pos++, 0x8e, " Capture: %3.4f [ms]", captureMs);
uint8_t attr[2] = { 0x89, 0x8a };
uint8_t attrIndex = _render->m_waitSubmit < _render->m_waitRender;
tvm.printf(10, pos++, attr[attrIndex&1], " Submit wait: %3.4f [ms]", _render->m_waitSubmit*toMs);
tvm.printf(10, pos++, attr[(attrIndex+1)&1], " Render wait: %3.4f [ms]", _render->m_waitRender*toMs);
min = frameTime;
max = frameTime;
}
blit(this, _textVideoMemBlitter, tvm);
rce.popDebugGroup();
}
else if (_render->m_debug & BGFX_DEBUG_TEXT)
{
rce.pushDebugGroup("debugtext");
blit(this, _textVideoMemBlitter, _render->m_textVideoMem);
rce.popDebugGroup();
}
//TODO: REMOVE THIS - TEMPORARY HACK
release(zeroTexture);
rce.endEncoding();
m_renderCommandEncoder = 0;
}
} /* namespace mtl */ } // namespace bgfx
#else
namespace bgfx { namespace mtl
{
RendererContextI* rendererCreate()
{
return NULL;
}
void rendererDestroy()
{
}
} /* namespace mtl */ } // namespace bgfx
#endif // BGFX_CONFIG_RENDERER_METAL