bgfx/src/dds.cpp
2012-05-01 20:16:59 -07:00

506 lines
11 KiB
C++

/*
* Copyright 2011-2012 Branimir Karadzic. All rights reserved.
* License: http://www.opensource.org/licenses/BSD-2-Clause
*/
#include "bgfx_p.h"
#include "dds.h"
namespace bgfx
{
#define DDS_MAGIC MAKEFOURCC('D','D','S',' ')
#define DDS_HEADER_SIZE 124
#define DDS_IMAGE_DATA_OFFSET (DDS_HEADER_SIZE + 4)
#define DDS_DXT1 MAKEFOURCC('D', 'X', 'T', '1')
#define DDS_DXT2 MAKEFOURCC('D', 'X', 'T', '2')
#define DDS_DXT3 MAKEFOURCC('D', 'X', 'T', '3')
#define DDS_DXT4 MAKEFOURCC('D', 'X', 'T', '4')
#define DDS_DXT5 MAKEFOURCC('D', 'X', 'T', '5')
#define DDSD_CAPS 0x00000001
#define DDSD_HEIGHT 0x00000002
#define DDSD_WIDTH 0x00000004
#define DDSD_PITCH 0x00000008
#define DDSD_PIXELFORMAT 0x00001000
#define DDSD_MIPMAPCOUNT 0x00020000
#define DDSD_LINEARSIZE 0x00080000
#define DDSD_DEPTH 0x00800000
#define DDPF_ALPHAPIXELS 0x00000001
#define DDPF_ALPHA 0x00000002
#define DDPF_FOURCC 0x00000004
#define DDPF_INDEXED 0x00000020
#define DDPF_RGB 0x00000040
#define DDPF_YUV 0x00000200
#define DDPF_LUMINANCE 0x00020000
#define DDSCAPS_COMPLEX 0x00000008
#define DDSCAPS_TEXTURE 0x00001000
#define DDSCAPS_MIPMAP 0x00400000
#define DDSCAPS2_CUBEMAP 0x00000200
#define DDSCAPS2_CUBEMAP_POSITIVEX 0x00000400
#define DDSCAPS2_CUBEMAP_NEGATIVEX 0x00000800
#define DDSCAPS2_CUBEMAP_POSITIVEY 0x00001000
#define DDSCAPS2_CUBEMAP_NEGATIVEY 0x00002000
#define DDSCAPS2_CUBEMAP_POSITIVEZ 0x00004000
#define DDSCAPS2_CUBEMAP_NEGATIVEZ 0x00008000
#define DDSCAPS2_VOLUME 0x00200000
bool isDds(const Memory* _mem)
{
StreamRead stream(_mem->data, _mem->size);
uint32_t magic;
stream.read(magic);
return DDS_MAGIC == magic;
}
uint32_t bitRangeConvert(uint32_t _in, uint32_t _from, uint32_t _to)
{
uint32_t tmp0 = uint32_sll(1, _to);
uint32_t tmp1 = uint32_sll(1, _from);
uint32_t tmp2 = uint32_dec(tmp0);
uint32_t tmp3 = uint32_dec(tmp1);
uint32_t tmp4 = uint32_mul(_in, tmp2);
uint32_t tmp5 = uint32_add(tmp3, tmp4);
uint32_t tmp6 = uint32_srl(tmp5, _from);
uint32_t tmp7 = uint32_add(tmp5, tmp6);
uint32_t result = uint32_srl(tmp7, _from);
return result;
}
void decodeBlockDxt(uint8_t _dst[16*4], const uint8_t _src[8])
{
uint8_t colors[4*3];
uint32_t c0 = _src[0] | (_src[1] << 8);
colors[0] = bitRangeConvert( (c0>> 0)&0x1f, 5, 8);
colors[1] = bitRangeConvert( (c0>> 5)&0x3f, 6, 8);
colors[2] = bitRangeConvert( (c0>>11)&0x1f, 5, 8);
uint32_t c1 = _src[2] | (_src[3] << 8);
colors[3] = bitRangeConvert( (c1>> 0)&0x1f, 5, 8);
colors[4] = bitRangeConvert( (c1>> 5)&0x3f, 6, 8);
colors[5] = bitRangeConvert( (c1>>11)&0x1f, 5, 8);
colors[6] = (2*colors[0] + colors[3]) / 3;
colors[7] = (2*colors[1] + colors[4]) / 3;
colors[8] = (2*colors[2] + colors[5]) / 3;
colors[ 9] = (colors[0] + 2*colors[3]) / 3;
colors[10] = (colors[1] + 2*colors[4]) / 3;
colors[11] = (colors[2] + 2*colors[5]) / 3;
for (uint32_t ii = 0, next = 8*4; ii < 16*4; ii += 4, next += 2)
{
int idx = ( (_src[next>>3] >> (next & 7)) & 3) * 3;
_dst[ii+0] = colors[idx+0];
_dst[ii+1] = colors[idx+1];
_dst[ii+2] = colors[idx+2];
}
}
void decodeBlockDxt1(uint8_t _dst[16*4], const uint8_t _src[8])
{
uint8_t colors[4*4];
uint32_t c0 = _src[0] | (_src[1] << 8);
colors[0] = bitRangeConvert( (c0>> 0)&0x1f, 5, 8);
colors[1] = bitRangeConvert( (c0>> 5)&0x3f, 6, 8);
colors[2] = bitRangeConvert( (c0>>11)&0x1f, 5, 8);
colors[3] = 255;
uint32_t c1 = _src[2] | (_src[3] << 8);
colors[4] = bitRangeConvert( (c1>> 0)&0x1f, 5, 8);
colors[5] = bitRangeConvert( (c1>> 5)&0x3f, 6, 8);
colors[6] = bitRangeConvert( (c1>>11)&0x1f, 5, 8);
colors[7] = 255;
if (c0 > c1)
{
colors[ 8] = (2*colors[0] + colors[4]) / 3;
colors[ 9] = (2*colors[1] + colors[5]) / 3;
colors[10] = (2*colors[2] + colors[6]) / 3;
colors[11] = 255;
colors[12] = (colors[0] + 2*colors[4]) / 3;
colors[13] = (colors[1] + 2*colors[5]) / 3;
colors[14] = (colors[2] + 2*colors[6]) / 3;
colors[15] = 255;
}
else
{
colors[ 8] = (colors[0] + colors[4]) / 2;
colors[ 9] = (colors[1] + colors[5]) / 2;
colors[10] = (colors[2] + colors[6]) / 2;
colors[11] = 255;
colors[12] = 0;
colors[13] = 0;
colors[14] = 0;
colors[15] = 0;
}
for (uint32_t ii = 0, next = 8*4; ii < 16*4; ii += 4, next += 2)
{
int idx = ( (_src[next>>3] >> (next & 7)) & 3) * 4;
_dst[ii+0] = colors[idx+0];
_dst[ii+1] = colors[idx+1];
_dst[ii+2] = colors[idx+2];
_dst[ii+3] = colors[idx+3];
}
}
void decodeBlockDxt23A(uint8_t _dst[16*4], const uint8_t _src[8])
{
for (uint32_t ii = 3, next = 0; ii < 16*4; ii += 4, next += 4)
{
uint32_t c0 = (_src[next>>3] >> (next&7) ) & 0xf;
_dst[ii] = bitRangeConvert(c0, 4, 8);
}
}
void decodeBlockDxt45A(uint8_t _dst[16*4], const uint8_t _src[8])
{
uint8_t alpha[8];
alpha[0] = _src[0];
alpha[1] = _src[1];
if (alpha[0] > alpha[1])
{
alpha[2] = (6*alpha[0] + 1*alpha[1]) / 7;
alpha[3] = (5*alpha[0] + 2*alpha[1]) / 7;
alpha[4] = (4*alpha[0] + 3*alpha[1]) / 7;
alpha[5] = (3*alpha[0] + 4*alpha[1]) / 7;
alpha[6] = (2*alpha[0] + 5*alpha[1]) / 7;
alpha[7] = (1*alpha[0] + 6*alpha[1]) / 7;
}
else
{
alpha[2] = (4*alpha[0] + 1*alpha[1]) / 5;
alpha[3] = (3*alpha[0] + 2*alpha[1]) / 5;
alpha[4] = (2*alpha[0] + 3*alpha[1]) / 5;
alpha[5] = (1*alpha[0] + 4*alpha[1]) / 5;
alpha[6] = 0;
alpha[7] = 255;
}
for (uint32_t ii = 3, next = 8*2; ii < 16*4; ii += 4, ++next)
{
uint32_t bit = (_src[next>>3] >> (next&7) ) & 1;
uint32_t idx = bit;
++next;
bit = (_src[next>>3] >> (next&7) ) & 1;
idx += bit << 1;
++next;
bit = (_src[next>>3] >> (next&7) ) & 1;
idx += bit << 2;
_dst[ii] = alpha[idx & 7];
}
}
uint32_t Mip::getDecodedSize() const
{
return m_width*m_height*4;
}
void Mip::decode(uint8_t* _dst)
{
const uint8_t* src = m_data;
if (0 != m_type)
{
uint32_t width = m_width/4;
uint32_t height = m_height/4;
uint32_t pitch = m_width*4;
uint8_t temp[16*4];
switch (m_type)
{
case 1:
for (uint32_t yy = 0; yy < height; ++yy)
{
for (uint32_t xx = 0; xx < width; ++xx)
{
decodeBlockDxt1(temp, src);
src += 8;
uint8_t* dst = &_dst[(yy*pitch+xx*4)*4];
memcpy(dst, temp, 16);
memcpy(&dst[pitch], &temp[16], 16);
memcpy(&dst[2*pitch], &temp[32], 16);
memcpy(&dst[3*pitch], &temp[48], 16);
}
}
break;
case 2:
for (uint32_t yy = 0; yy < height; ++yy)
{
for (uint32_t xx = 0; xx < width; ++xx)
{
decodeBlockDxt23A(temp, src);
src += 8;
decodeBlockDxt(temp, src);
src += 8;
uint8_t* dst = &_dst[(yy*pitch+xx*4)*4];
memcpy(dst, temp, 16);
memcpy(&dst[pitch], &temp[16], 16);
memcpy(&dst[2*pitch], &temp[32], 16);
memcpy(&dst[3*pitch], &temp[48], 16);
}
}
break;
case 3:
for (uint32_t yy = 0; yy < height; ++yy)
{
for (uint32_t xx = 0; xx < width; ++xx)
{
decodeBlockDxt45A(temp, src);
src += 8;
decodeBlockDxt(temp, src);
src += 8;
uint8_t* dst = &_dst[(yy*pitch+xx*4)*4];
memcpy(dst, temp, 16);
memcpy(&dst[pitch], &temp[16], 16);
memcpy(&dst[2*pitch], &temp[32], 16);
memcpy(&dst[3*pitch], &temp[48], 16);
}
}
break;
}
}
else
{
uint32_t width = m_width;
uint32_t height = m_height;
if (m_bpp == 1
|| m_bpp == 4)
{
uint32_t pitch = m_width*m_bpp;
memcpy(_dst, src, pitch*height);
}
else
{
uint32_t pitch = m_width*4;
for (uint32_t yy = 0; yy < height; ++yy)
{
uint8_t* dst = &_dst[yy*pitch];
for (uint32_t xx = 0; xx < width; ++xx)
{
memcpy(dst, src, 3);
dst[3] = 255;
dst += 4;
src += 3;
}
}
}
}
}
bool parseDds(Dds& _dds, const Memory* _mem)
{
StreamRead stream(_mem->data, _mem->size);
uint32_t magic;
stream.read(magic);
if (DDS_MAGIC != magic)
{
return false;
}
uint32_t headerSize;
stream.read(headerSize);
if (headerSize < DDS_HEADER_SIZE)
{
return false;
}
uint32_t flags;
stream.read(flags);
if ( (flags & (DDSD_CAPS|DDSD_HEIGHT|DDSD_WIDTH|DDSD_PIXELFORMAT) ) != (DDSD_CAPS|DDSD_HEIGHT|DDSD_WIDTH|DDSD_PIXELFORMAT) )
{
return false;
}
uint32_t height;
stream.read(height);
uint32_t width;
stream.read(width);
uint32_t pitch;
stream.read(pitch);
uint32_t depth;
stream.read(depth);
uint32_t mips;
stream.read(mips);
stream.skip(44); // reserved
stream.skip(4); // pixel format size
uint32_t pixelFlags;
stream.read(pixelFlags);
uint32_t fourcc;
stream.read(fourcc);
uint32_t rgbCount;
stream.read(rgbCount);
uint32_t rbitmask;
stream.read(rbitmask);
uint32_t gbitmask;
stream.read(gbitmask);
uint32_t bbitmask;
stream.read(bbitmask);
uint32_t abitmask;
stream.read(abitmask);
uint32_t caps[4];
stream.read(caps);
if ( (caps[0] & DDSCAPS_TEXTURE) == 0)
{
return false;
}
stream.skip(4); // reserved
uint8_t bpp = 1;
uint8_t blockSize = 1;
uint8_t type = 0;
bool hasAlpha = pixelFlags & DDPF_ALPHAPIXELS;
if (pixelFlags & DDPF_FOURCC)
{
switch (fourcc)
{
case DDS_DXT1:
type = 1;
blockSize = 8;
break;
case DDS_DXT2:
case DDS_DXT3:
type = 2;
blockSize = 16;
break;
case DDS_DXT4:
case DDS_DXT5:
type = 3;
blockSize = 16;
break;
}
}
else
{
switch (pixelFlags)
{
case DDPF_RGB:
blockSize *= 3;
bpp = 3;
break;
case DDPF_RGB|DDPF_ALPHAPIXELS:
blockSize *= 4;
bpp = 4;
break;
case DDPF_LUMINANCE:
case DDPF_INDEXED:
case DDPF_ALPHA:
bpp = 1;
break;
default:
bpp = 0;
break;
}
}
_dds.m_width = width;
_dds.m_height = height;
_dds.m_depth = depth;
_dds.m_blockSize = blockSize;
_dds.m_numMips = (caps[0] & DDSCAPS_MIPMAP) ? mips : 1;
_dds.m_bpp = bpp;
_dds.m_type = type;
_dds.m_hasAlpha = hasAlpha;
return true;
}
bool getRawImageData(const Dds& _dds, uint8_t _index, const Memory* _mem, Mip& _mip)
{
uint32_t width = _dds.m_width;
uint32_t height = _dds.m_height;
uint32_t blockSize = _dds.m_blockSize;
uint32_t offset = DDS_IMAGE_DATA_OFFSET;
uint8_t bpp = _dds.m_bpp;
uint8_t type = _dds.m_type;
bool hasAlpha = _dds.m_hasAlpha;
for (uint8_t ii = 0, num = _dds.m_numMips; ii < num; ++ii)
{
width = uint32_max(1, width);
height = uint32_max(1, height);
uint32_t size = width*height*blockSize;
if (0 != type)
{
width = uint32_max(1, (width + 3)>>2);
height = uint32_max(1, (height + 3)>>2);
size = width*height*blockSize;
width <<= 2;
height <<= 2;
}
if (ii == _index)
{
_mip.m_width = width;
_mip.m_height = height;
_mip.m_blockSize = blockSize;
_mip.m_size = size;
_mip.m_data = _mem->data + offset;
_mip.m_bpp = bpp;
_mip.m_type = type;
_mip.m_hasAlpha = hasAlpha;
return true;
}
offset += size;
width >>= 1;
height >>= 1;
}
return false;
}
} // namespace bgfx