bgfx/examples/15-shadowmaps-simple/shadowmaps_simple.cpp

393 lines
11 KiB
C++

/*
* Copyright 2013-2014 Dario Manesku. All rights reserved.
* License: https://github.com/bkaradzic/bgfx#license-bsd-2-clause
*/
#include <string>
#include <vector>
#include <algorithm>
#include "common.h"
#include <bgfx/bgfx.h>
#include <bx/timer.h>
#include <bx/readerwriter.h>
#include <bx/fpumath.h>
#include "entry/entry.h"
#include "bgfx_utils.h"
#define RENDER_SHADOW_PASS_ID 0
#define RENDER_SCENE_PASS_ID 1
uint32_t packUint32(uint8_t _x, uint8_t _y, uint8_t _z, uint8_t _w)
{
union
{
uint32_t ui32;
uint8_t arr[4];
} un;
un.arr[0] = _x;
un.arr[1] = _y;
un.arr[2] = _z;
un.arr[3] = _w;
return un.ui32;
}
uint32_t packF4u(float _x, float _y = 0.0f, float _z = 0.0f, float _w = 0.0f)
{
const uint8_t xx = uint8_t(_x*127.0f + 128.0f);
const uint8_t yy = uint8_t(_y*127.0f + 128.0f);
const uint8_t zz = uint8_t(_z*127.0f + 128.0f);
const uint8_t ww = uint8_t(_w*127.0f + 128.0f);
return packUint32(xx, yy, zz, ww);
}
struct PosNormalVertex
{
float m_x;
float m_y;
float m_z;
uint32_t m_normal;
};
static PosNormalVertex s_hplaneVertices[] =
{
{ -1.0f, 0.0f, 1.0f, packF4u(0.0f, 1.0f, 0.0f) },
{ 1.0f, 0.0f, 1.0f, packF4u(0.0f, 1.0f, 0.0f) },
{ -1.0f, 0.0f, -1.0f, packF4u(0.0f, 1.0f, 0.0f) },
{ 1.0f, 0.0f, -1.0f, packF4u(0.0f, 1.0f, 0.0f) },
};
static const uint16_t s_planeIndices[] =
{
0, 1, 2,
1, 3, 2,
};
int _main_(int _argc, char** _argv)
{
Args args(_argc, _argv);
uint32_t width = 1280;
uint32_t height = 720;
uint32_t debug = BGFX_DEBUG_TEXT;
uint32_t reset = BGFX_RESET_VSYNC;
bgfx::init(args.m_type, args.m_pciId);
bgfx::reset(width, height, reset);
bgfx::RendererType::Enum renderer = bgfx::getRendererType();
bool flipV = false
|| renderer == bgfx::RendererType::OpenGL
|| renderer == bgfx::RendererType::OpenGLES
;
// Enable debug text.
bgfx::setDebug(debug);
// Uniforms.
bgfx::UniformHandle u_shadowMap = bgfx::createUniform("u_shadowMap", bgfx::UniformType::Int1);
bgfx::UniformHandle u_lightPos = bgfx::createUniform("u_lightPos", bgfx::UniformType::Vec4);
bgfx::UniformHandle u_lightMtx = bgfx::createUniform("u_lightMtx", bgfx::UniformType::Mat4);
// When using GL clip space depth range [-1, 1] and packing depth into color buffer, we need to
// adjust the depth range to be [0, 1] for writing to the color buffer
bgfx::UniformHandle u_depthScaleOffset = bgfx::createUniform("u_depthScaleOffset", bgfx::UniformType::Vec4);
const float depthScale = flipV ? 0.5f : 1.0f;
const float depthOffset = flipV ? 0.5f : 0.0f;
float depthScaleOffset[4] = {depthScale, depthOffset, 0.0f, 0.0f};
bgfx::setUniform(u_depthScaleOffset, depthScaleOffset);
// Vertex declarations.
bgfx::VertexDecl PosNormalDecl;
PosNormalDecl.begin()
.add(bgfx::Attrib::Position, 3, bgfx::AttribType::Float)
.add(bgfx::Attrib::Normal, 4, bgfx::AttribType::Uint8, true, true)
.end();
// Meshes.
Mesh* bunny = meshLoad("meshes/bunny.bin");
Mesh* cube = meshLoad("meshes/cube.bin");
Mesh* hollowcube = meshLoad("meshes/hollowcube.bin");
bgfx::VertexBufferHandle vbh = bgfx::createVertexBuffer(
bgfx::makeRef(s_hplaneVertices, sizeof(s_hplaneVertices) )
, PosNormalDecl
);
bgfx::IndexBufferHandle ibh = bgfx::createIndexBuffer(
bgfx::makeRef(s_planeIndices, sizeof(s_planeIndices) )
);
// Render targets.
uint16_t shadowMapSize = 512;
// Get renderer capabilities info.
const bgfx::Caps* caps = bgfx::getCaps();
// Shadow samplers are supported at least partially supported if texture
// compare less equal feature is supported.
bool shadowSamplerSupported = 0 != (caps->supported & BGFX_CAPS_TEXTURE_COMPARE_LEQUAL);
bgfx::ProgramHandle progShadow;
bgfx::ProgramHandle progMesh;
bgfx::TextureHandle shadowMapTexture;
bgfx::FrameBufferHandle shadowMapFB;
if (shadowSamplerSupported)
{
// Depth textures and shadow samplers are supported.
progShadow = loadProgram("vs_sms_shadow", "fs_sms_shadow");
progMesh = loadProgram("vs_sms_mesh", "fs_sms_mesh");
shadowMapTexture = bgfx::createTexture2D(shadowMapSize, shadowMapSize, 1, bgfx::TextureFormat::D16, BGFX_TEXTURE_RT | BGFX_TEXTURE_COMPARE_LEQUAL);
bgfx::TextureHandle fbtextures[] = { shadowMapTexture };
shadowMapFB = bgfx::createFrameBuffer(BX_COUNTOF(fbtextures), fbtextures, true);
}
else
{
// Depth textures and shadow samplers are not supported. Use float
// depth packing into color buffer instead.
progShadow = loadProgram("vs_sms_shadow_pd", "fs_sms_shadow_pd");
progMesh = loadProgram("vs_sms_mesh", "fs_sms_mesh_pd");
shadowMapTexture = bgfx::createTexture2D(shadowMapSize, shadowMapSize, 1, bgfx::TextureFormat::BGRA8, BGFX_TEXTURE_RT);
bgfx::TextureHandle fbtextures[] =
{
shadowMapTexture,
bgfx::createTexture2D(shadowMapSize, shadowMapSize, 1, bgfx::TextureFormat::D16, BGFX_TEXTURE_RT_WRITE_ONLY),
};
shadowMapFB = bgfx::createFrameBuffer(BX_COUNTOF(fbtextures), fbtextures, true);
}
MeshState* state[2];
state[0] = meshStateCreate();
state[0]->m_state = 0
| BGFX_STATE_RGB_WRITE
| BGFX_STATE_ALPHA_WRITE
| BGFX_STATE_DEPTH_WRITE
| BGFX_STATE_DEPTH_TEST_LESS
| BGFX_STATE_CULL_CCW
| BGFX_STATE_MSAA
;
state[0]->m_program = progShadow;
state[0]->m_viewId = RENDER_SHADOW_PASS_ID;
state[0]->m_numTextures = 0;
state[1] = meshStateCreate();
state[1]->m_state = 0
| BGFX_STATE_RGB_WRITE
| BGFX_STATE_ALPHA_WRITE
| BGFX_STATE_DEPTH_WRITE
| BGFX_STATE_DEPTH_TEST_LESS
| BGFX_STATE_CULL_CCW
| BGFX_STATE_MSAA
;
state[1]->m_program = progMesh;
state[1]->m_viewId = RENDER_SCENE_PASS_ID;
state[1]->m_numTextures = 1;
state[1]->m_textures[0].m_flags = UINT32_MAX;
state[1]->m_textures[0].m_stage = 0;
state[1]->m_textures[0].m_sampler = u_shadowMap;
state[1]->m_textures[0].m_texture = shadowMapTexture;
// Set view and projection matrices.
float view[16];
float proj[16];
float eye[3] = { 0.0f, 30.0f, -60.0f };
float at[3] = { 0.0f, 5.0f, 0.0f };
bx::mtxLookAt(view, eye, at);
const float aspect = float(int32_t(width) ) / float(int32_t(height) );
bx::mtxProj(proj, 60.0f, aspect, 0.1f, 1000.0f, flipV);
// Time acumulators.
float timeAccumulatorLight = 0.0f;
float timeAccumulatorScene = 0.0f;
entry::MouseState mouseState;
while (!entry::processEvents(width, height, debug, reset, &mouseState) )
{
// Time.
int64_t now = bx::getHPCounter();
static int64_t last = now;
const int64_t frameTime = now - last;
last = now;
const double freq = double(bx::getHPFrequency() );
const double toMs = 1000.0/freq;
const float deltaTime = float(frameTime/freq);
// Update time accumulators.
timeAccumulatorLight += deltaTime;
timeAccumulatorScene += deltaTime;
// Use debug font to print information about this example.
bgfx::dbgTextClear();
bgfx::dbgTextPrintf(0, 1, 0x4f, "bgfx/examples/15-shadowmaps-simple");
bgfx::dbgTextPrintf(0, 2, 0x6f, "Description: Shadow maps example (technique: %s).", shadowSamplerSupported ? "depth texture and shadow samplers" : "shadow depth packed into color texture");
bgfx::dbgTextPrintf(0, 3, 0x0f, "Frame: % 7.3f[ms]", double(frameTime)*toMs);
// Setup lights.
float lightPos[4];
lightPos[0] = -cosf(timeAccumulatorLight);
lightPos[1] = -1.0f;
lightPos[2] = -sinf(timeAccumulatorLight);
lightPos[3] = 0.0f;
bgfx::setUniform(u_lightPos, lightPos);
// Setup instance matrices.
float mtxFloor[16];
bx::mtxSRT(mtxFloor
, 30.0f, 30.0f, 30.0f
, 0.0f, 0.0f, 0.0f
, 0.0f, 0.0f, 0.0f
);
float mtxBunny[16];
bx::mtxSRT(mtxBunny
, 5.0f, 5.0f, 5.0f
, 0.0f, bx::pi - timeAccumulatorScene, 0.0f
, 15.0f, 5.0f, 0.0f
);
float mtxHollowcube[16];
bx::mtxSRT(mtxHollowcube
, 2.5f, 2.5f, 2.5f
, 0.0f, 1.56f - timeAccumulatorScene, 0.0f
, 0.0f, 10.0f, 0.0f
);
float mtxCube[16];
bx::mtxSRT(mtxCube
, 2.5f, 2.5f, 2.5f
, 0.0f, 1.56f - timeAccumulatorScene, 0.0f
, -15.0f, 5.0f, 0.0f
);
// Define matrices.
float lightView[16];
float lightProj[16];
eye[0] = -lightPos[0];
eye[1] = -lightPos[1];
eye[2] = -lightPos[2];
at[0] = 0.0f;
at[1] = 0.0f;
at[2] = 0.0f;
bx::mtxLookAt(lightView, eye, at);
const float area = 30.0f;
bx::mtxOrtho(lightProj, -area, area, -area, area, -100.0f, 100.0f, 0.0f, flipV);
bgfx::setViewRect(RENDER_SHADOW_PASS_ID, 0, 0, shadowMapSize, shadowMapSize);
bgfx::setViewFrameBuffer(RENDER_SHADOW_PASS_ID, shadowMapFB);
bgfx::setViewTransform(RENDER_SHADOW_PASS_ID, lightView, lightProj);
bgfx::setViewRect(RENDER_SCENE_PASS_ID, 0, 0, width, height);
bgfx::setViewTransform(RENDER_SCENE_PASS_ID, view, proj);
// Clear backbuffer and shadowmap framebuffer at beginning.
bgfx::setViewClear(RENDER_SHADOW_PASS_ID
, BGFX_CLEAR_COLOR | BGFX_CLEAR_DEPTH
, 0x303030ff, 1.0f, 0
);
bgfx::setViewClear(RENDER_SCENE_PASS_ID
, BGFX_CLEAR_COLOR | BGFX_CLEAR_DEPTH
, 0x303030ff, 1.0f, 0
);
// Render.
float mtxShadow[16];
float lightMtx[16];
const float sy = flipV ? 0.5f : -0.5f;
const float mtxCrop[16] =
{
0.5f, 0.0f, 0.0f, 0.0f,
0.0f, sy, 0.0f, 0.0f,
0.0f, 0.0f, depthScale, 0.0f,
0.5f, 0.5f, depthOffset, 1.0f,
};
float mtxTmp[16];
bx::mtxMul(mtxTmp, lightProj, mtxCrop);
bx::mtxMul(mtxShadow, lightView, mtxTmp);
// Floor.
bx::mtxMul(lightMtx, mtxFloor, mtxShadow);
uint32_t cached = bgfx::setTransform(mtxFloor);
for (uint32_t pass = 0; pass < 2; ++pass)
{
const MeshState& st = *state[pass];
bgfx::setTransform(cached);
for (uint8_t tex = 0; tex < st.m_numTextures; ++tex)
{
const MeshState::Texture& texture = st.m_textures[tex];
bgfx::setTexture(texture.m_stage
, texture.m_sampler
, texture.m_texture
, texture.m_flags
);
}
bgfx::setUniform(u_lightMtx, lightMtx);
bgfx::setIndexBuffer(ibh);
bgfx::setVertexBuffer(vbh);
bgfx::setState(st.m_state);
bgfx::submit(st.m_viewId, st.m_program);
}
// Bunny.
bx::mtxMul(lightMtx, mtxBunny, mtxShadow);
bgfx::setUniform(u_lightMtx, lightMtx);
meshSubmit(bunny, &state[0], 1, mtxBunny);
bgfx::setUniform(u_lightMtx, lightMtx);
meshSubmit(bunny, &state[1], 1, mtxBunny);
// Hollow cube.
bx::mtxMul(lightMtx, mtxHollowcube, mtxShadow);
bgfx::setUniform(u_lightMtx, lightMtx);
meshSubmit(hollowcube, &state[0], 1, mtxHollowcube);
bgfx::setUniform(u_lightMtx, lightMtx);
meshSubmit(hollowcube, &state[1], 1, mtxHollowcube);
// Cube.
bx::mtxMul(lightMtx, mtxCube, mtxShadow);
bgfx::setUniform(u_lightMtx, lightMtx);
meshSubmit(cube, &state[0], 1, mtxCube);
bgfx::setUniform(u_lightMtx, lightMtx);
meshSubmit(cube, &state[1], 1, mtxCube);
// Advance to next frame. Rendering thread will be kicked to
// process submitted rendering primitives.
bgfx::frame();
}
meshUnload(bunny);
meshUnload(cube);
meshUnload(hollowcube);
meshStateDestroy(state[0]);
meshStateDestroy(state[1]);
bgfx::destroyVertexBuffer(vbh);
bgfx::destroyIndexBuffer(ibh);
bgfx::destroyProgram(progShadow);
bgfx::destroyProgram(progMesh);
bgfx::destroyFrameBuffer(shadowMapFB);
bgfx::destroyUniform(u_shadowMap);
bgfx::destroyUniform(u_lightPos);
bgfx::destroyUniform(u_lightMtx);
// Shutdown bgfx.
bgfx::shutdown();
return 0;
}