bgfx/examples/15-shadowmaps-simple/shadowmaps_simple.cpp
2014-02-22 13:36:31 -08:00

671 lines
16 KiB
C++

/*
* Copyright 2013-2014 Dario Manesku. All rights reserved.
* License: http://www.opensource.org/licenses/BSD-2-Clause
*/
#include <string>
#include <vector>
#include <algorithm>
#include "common.h"
#include <bgfx.h>
#include <bx/timer.h>
#include <bx/readerwriter.h>
#include "entry/entry.h"
#include "fpumath.h"
#define RENDER_SHADOW_PASS_ID 0
#define RENDER_SHADOW_PASS_BIT (1<<RENDER_SHADOW_PASS_ID)
#define RENDER_SCENE_PASS_ID 1
#define RENDER_SCENE_PASS_BIT (1<<RENDER_SCENE_PASS_ID)
uint32_t packUint32(uint8_t _x, uint8_t _y, uint8_t _z, uint8_t _w)
{
union
{
uint32_t ui32;
uint8_t arr[4];
} un;
un.arr[0] = _x;
un.arr[1] = _y;
un.arr[2] = _z;
un.arr[3] = _w;
return un.ui32;
}
uint32_t packF4u(float _x, float _y = 0.0f, float _z = 0.0f, float _w = 0.0f)
{
const uint8_t xx = uint8_t(_x*127.0f + 128.0f);
const uint8_t yy = uint8_t(_y*127.0f + 128.0f);
const uint8_t zz = uint8_t(_z*127.0f + 128.0f);
const uint8_t ww = uint8_t(_w*127.0f + 128.0f);
return packUint32(xx, yy, zz, ww);
}
struct PosNormalVertex
{
float m_x;
float m_y;
float m_z;
uint32_t m_normal;
};
static const float s_texcoord = 5.0f;
static const uint32_t s_numHPlaneVertices = 4;
static PosNormalVertex s_hplaneVertices[s_numHPlaneVertices] =
{
{ -1.0f, 0.0f, 1.0f, packF4u(0.0f, 1.0f, 0.0f) },
{ 1.0f, 0.0f, 1.0f, packF4u(0.0f, 1.0f, 0.0f) },
{ -1.0f, 0.0f, -1.0f, packF4u(0.0f, 1.0f, 0.0f) },
{ 1.0f, 0.0f, -1.0f, packF4u(0.0f, 1.0f, 0.0f) },
};
static const uint32_t s_numPlaneIndices = 6;
static const uint16_t s_planeIndices[s_numPlaneIndices] =
{
0, 1, 2,
1, 3, 2,
};
static const char* s_shaderPath = NULL;
static bool s_flipV = false;
static float s_texelHalf = 0.0f;
bgfx::FrameBufferHandle s_shadowMapFB;
static bgfx::UniformHandle u_shadowMap;
static void shaderFilePath(char* _out, const char* _name)
{
strcpy(_out, s_shaderPath);
strcat(_out, _name);
strcat(_out, ".bin");
}
long int fsize(FILE* _file)
{
long int pos = ftell(_file);
fseek(_file, 0L, SEEK_END);
long int size = ftell(_file);
fseek(_file, pos, SEEK_SET);
return size;
}
static const bgfx::Memory* load(const char* _filePath)
{
FILE* file = fopen(_filePath, "rb");
if (NULL != file)
{
uint32_t size = (uint32_t)fsize(file);
const bgfx::Memory* mem = bgfx::alloc(size+1);
size_t ignore = fread(mem->data, 1, size, file);
BX_UNUSED(ignore);
fclose(file);
mem->data[mem->size-1] = '\0';
return mem;
}
return NULL;
}
static const bgfx::Memory* loadShader(const char* _name)
{
char filePath[512];
shaderFilePath(filePath, _name);
return load(filePath);
}
static bgfx::ProgramHandle loadProgram(const char* _vsName, const char* _fsName)
{
const bgfx::Memory* mem;
// Load vertex shader.
mem = loadShader(_vsName);
bgfx::VertexShaderHandle vsh = bgfx::createVertexShader(mem);
// Load fragment shader.
mem = loadShader(_fsName);
bgfx::FragmentShaderHandle fsh = bgfx::createFragmentShader(mem);
// Create program from shaders.
bgfx::ProgramHandle program = bgfx::createProgram(vsh, fsh);
// We can destroy vertex and fragment shader here since
// their reference is kept inside bgfx after calling createProgram.
// Vertex and fragment shader will be destroyed once program is
// destroyed.
bgfx::destroyVertexShader(vsh);
bgfx::destroyFragmentShader(fsh);
return program;
}
void mtxScaleRotateTranslate(float* _result
, const float _scaleX
, const float _scaleY
, const float _scaleZ
, const float _rotX
, const float _rotY
, const float _rotZ
, const float _translateX
, const float _translateY
, const float _translateZ
)
{
float mtxRotateTranslate[16];
float mtxScale[16];
mtxRotateXYZ(mtxRotateTranslate, _rotX, _rotY, _rotZ);
mtxRotateTranslate[12] = _translateX;
mtxRotateTranslate[13] = _translateY;
mtxRotateTranslate[14] = _translateZ;
memset(mtxScale, 0, sizeof(float)*16);
mtxScale[0] = _scaleX;
mtxScale[5] = _scaleY;
mtxScale[10] = _scaleZ;
mtxScale[15] = 1.0f;
mtxMul(_result, mtxScale, mtxRotateTranslate);
}
struct Aabb
{
float m_min[3];
float m_max[3];
};
struct Obb
{
float m_mtx[16];
};
struct Sphere
{
float m_center[3];
float m_radius;
};
struct Primitive
{
uint32_t m_startIndex;
uint32_t m_numIndices;
uint32_t m_startVertex;
uint32_t m_numVertices;
Sphere m_sphere;
Aabb m_aabb;
Obb m_obb;
};
typedef std::vector<Primitive> PrimitiveArray;
struct Group
{
Group()
{
reset();
}
void reset()
{
m_vbh.idx = bgfx::invalidHandle;
m_ibh.idx = bgfx::invalidHandle;
m_prims.clear();
}
bgfx::VertexBufferHandle m_vbh;
bgfx::IndexBufferHandle m_ibh;
Sphere m_sphere;
Aabb m_aabb;
Obb m_obb;
PrimitiveArray m_prims;
};
;
struct Mesh
{
void load(const void* _vertices, uint32_t _numVertices, const bgfx::VertexDecl _decl, const uint16_t* _indices, uint32_t _numIndices)
{
Group group;
const bgfx::Memory* mem;
uint32_t size;
size = _numVertices*_decl.getStride();
mem = bgfx::makeRef(_vertices, size);
group.m_vbh = bgfx::createVertexBuffer(mem, _decl);
size = _numIndices*2;
mem = bgfx::makeRef(_indices, size);
group.m_ibh = bgfx::createIndexBuffer(mem);
//TODO:
// group.m_sphere = ...
// group.m_aabb = ...
// group.m_obb = ...
// group.m_prims = ...
m_groups.push_back(group);
}
void load(const char* _filePath)
{
#define BGFX_CHUNK_MAGIC_VB BX_MAKEFOURCC('V', 'B', ' ', 0x0)
#define BGFX_CHUNK_MAGIC_IB BX_MAKEFOURCC('I', 'B', ' ', 0x0)
#define BGFX_CHUNK_MAGIC_PRI BX_MAKEFOURCC('P', 'R', 'I', 0x0)
bx::CrtFileReader reader;
reader.open(_filePath);
Group group;
uint32_t chunk;
while (4 == bx::read(&reader, chunk) )
{
switch (chunk)
{
case BGFX_CHUNK_MAGIC_VB:
{
bx::read(&reader, group.m_sphere);
bx::read(&reader, group.m_aabb);
bx::read(&reader, group.m_obb);
bx::read(&reader, m_decl);
uint16_t stride = m_decl.getStride();
uint16_t numVertices;
bx::read(&reader, numVertices);
const bgfx::Memory* mem = bgfx::alloc(numVertices*stride);
bx::read(&reader, mem->data, mem->size);
group.m_vbh = bgfx::createVertexBuffer(mem, m_decl);
}
break;
case BGFX_CHUNK_MAGIC_IB:
{
uint32_t numIndices;
bx::read(&reader, numIndices);
const bgfx::Memory* mem = bgfx::alloc(numIndices*2);
bx::read(&reader, mem->data, mem->size);
group.m_ibh = bgfx::createIndexBuffer(mem);
}
break;
case BGFX_CHUNK_MAGIC_PRI:
{
uint16_t len;
bx::read(&reader, len);
std::string material;
material.resize(len);
bx::read(&reader, const_cast<char*>(material.c_str() ), len);
uint16_t num;
bx::read(&reader, num);
for (uint32_t ii = 0; ii < num; ++ii)
{
bx::read(&reader, len);
std::string name;
name.resize(len);
bx::read(&reader, const_cast<char*>(name.c_str() ), len);
Primitive prim;
bx::read(&reader, prim.m_startIndex);
bx::read(&reader, prim.m_numIndices);
bx::read(&reader, prim.m_startVertex);
bx::read(&reader, prim.m_numVertices);
bx::read(&reader, prim.m_sphere);
bx::read(&reader, prim.m_aabb);
bx::read(&reader, prim.m_obb);
group.m_prims.push_back(prim);
}
m_groups.push_back(group);
group.reset();
}
break;
default:
DBG("%08x at %d", chunk, reader.seek() );
break;
}
}
reader.close();
}
void unload()
{
for (GroupArray::const_iterator it = m_groups.begin(), itEnd = m_groups.end(); it != itEnd; ++it)
{
const Group& group = *it;
bgfx::destroyVertexBuffer(group.m_vbh);
if (bgfx::isValid(group.m_ibh) )
{
bgfx::destroyIndexBuffer(group.m_ibh);
}
}
m_groups.clear();
}
void submit(uint8_t _view, float* _mtx, bgfx::ProgramHandle _program)
{
for (GroupArray::const_iterator it = m_groups.begin(), itEnd = m_groups.end(); it != itEnd; ++it)
{
const Group& group = *it;
// Set model matrix for rendering.
bgfx::setTransform(_mtx);
bgfx::setProgram(_program);
bgfx::setIndexBuffer(group.m_ibh);
bgfx::setVertexBuffer(group.m_vbh);
// Set shadow map.
bgfx::setTexture(4, u_shadowMap, s_shadowMapFB);
// Set render states.
bgfx::setState(0
|BGFX_STATE_RGB_WRITE
|BGFX_STATE_ALPHA_WRITE
|BGFX_STATE_DEPTH_WRITE
|BGFX_STATE_DEPTH_TEST_LESS
|BGFX_STATE_CULL_CCW
|BGFX_STATE_MSAA
);
// Submit primitive for rendering.
bgfx::submit(_view);
}
}
void submitShadow(uint8_t _view, float* _mtx, bgfx::ProgramHandle _program)
{
for (GroupArray::const_iterator it = m_groups.begin(), itEnd = m_groups.end(); it != itEnd; ++it)
{
const Group& group = *it;
// Set model matrix for rendering.
bgfx::setTransform(_mtx);
bgfx::setProgram(_program);
bgfx::setIndexBuffer(group.m_ibh);
bgfx::setVertexBuffer(group.m_vbh);
// Set render states.
bgfx::setState(0
|BGFX_STATE_RGB_WRITE
|BGFX_STATE_ALPHA_WRITE
|BGFX_STATE_DEPTH_WRITE
|BGFX_STATE_DEPTH_TEST_LESS
|BGFX_STATE_CULL_CCW
|BGFX_STATE_MSAA
);
// Submit primitive for rendering.
bgfx::submit(_view);
}
}
bgfx::VertexDecl m_decl;
typedef std::vector<Group> GroupArray;
GroupArray m_groups;
};
int _main_(int /*_argc*/, char** /*_argv*/)
{
uint32_t width = 1280;
uint32_t height = 720;
uint32_t debug = BGFX_DEBUG_TEXT;
uint32_t reset = BGFX_RESET_VSYNC;
bgfx::init();
bgfx::reset(width, height, reset);
// Enable debug text.
bgfx::setDebug(debug);
// Setup root path for binary shaders. Shader binaries are different
// for each renderer.
switch (bgfx::getRendererType() )
{
default:
case bgfx::RendererType::Direct3D9:
s_shaderPath = "shaders/dx9/";
s_texelHalf = 0.5f;
break;
case bgfx::RendererType::Direct3D11:
s_shaderPath = "shaders/dx11/";
break;
case bgfx::RendererType::OpenGL:
s_shaderPath = "shaders/glsl/";
s_flipV = true;
break;
case bgfx::RendererType::OpenGLES2:
case bgfx::RendererType::OpenGLES3:
s_shaderPath = "shaders/gles/";
s_flipV = true;
break;
}
// Uniforms.
u_shadowMap = bgfx::createUniform("u_shadowMap", bgfx::UniformType::Uniform1iv);
bgfx::UniformHandle u_lightPos = bgfx::createUniform("u_lightPos", bgfx::UniformType::Uniform4fv);
bgfx::UniformHandle u_lightMtx = bgfx::createUniform("u_lightMtx", bgfx::UniformType::Uniform4x4fv);
// Programs.
bgfx::ProgramHandle progPackDepth = loadProgram("vs_smsimple_packdepth", "fs_smsimple_packdepth");
bgfx::ProgramHandle progDraw = loadProgram("vs_smsimple_draw", "fs_smsimple_draw");
// Vertex declarations.
bgfx::VertexDecl PosNormalDecl;
PosNormalDecl.begin();
PosNormalDecl.add(bgfx::Attrib::Position, 3, bgfx::AttribType::Float);
PosNormalDecl.add(bgfx::Attrib::Normal, 4, bgfx::AttribType::Uint8, true, true);
PosNormalDecl.end();
// Meshes.
Mesh bunnyMesh;
Mesh cubeMesh;
Mesh hollowcubeMesh;
Mesh hplaneMesh;
bunnyMesh.load("meshes/bunny.bin");
cubeMesh.load("meshes/cube.bin");
hollowcubeMesh.load("meshes/hollowcube.bin");
hplaneMesh.load(s_hplaneVertices, s_numHPlaneVertices, PosNormalDecl, s_planeIndices, s_numPlaneIndices);
// Render targets.
uint16_t shadowMapSize = 512;
bgfx::TextureHandle fbtextures[] =
{
bgfx::createTexture2D(shadowMapSize, shadowMapSize, 1, bgfx::TextureFormat::BGRA8, BGFX_TEXTURE_RT),
bgfx::createTexture2D(shadowMapSize, shadowMapSize, 1, bgfx::TextureFormat::D16, BGFX_TEXTURE_RT_BUFFER_ONLY),
};
s_shadowMapFB = bgfx::createFrameBuffer(BX_COUNTOF(fbtextures), fbtextures, true);
// Set view and projection matrices.
float view[16];
float proj[16];
const float eye[3] = { 0.0f, 30.0f, -60.0f };
const float at[3] = { 0.0f, 5.0f, 0.0f };
mtxLookAt(view, eye, at);
const float aspect = float(int32_t(width) ) / float(int32_t(height) );
mtxProj(proj, 60.0f, aspect, 0.1f, 1000.0f);
// Time acumulators.
float timeAccumulatorLight = 0.0f;
float timeAccumulatorScene = 0.0f;
entry::MouseState mouseState;
while (!entry::processEvents(width, height, debug, reset, &mouseState) )
{
// Time.
int64_t now = bx::getHPCounter();
static int64_t last = now;
const int64_t frameTime = now - last;
last = now;
const double freq = double(bx::getHPFrequency() );
const double toMs = 1000.0/freq;
const float deltaTime = float(frameTime/freq);
// Update time accumulators.
timeAccumulatorLight += deltaTime;
timeAccumulatorScene += deltaTime;
// Use debug font to print information about this example.
bgfx::dbgTextClear();
bgfx::dbgTextPrintf(0, 1, 0x4f, "bgfx/examples/15-shadowmaps-simple");
bgfx::dbgTextPrintf(0, 2, 0x6f, "Description: Shadow maps example.");
bgfx::dbgTextPrintf(0, 3, 0x0f, "Frame: % 7.3f[ms]", double(frameTime)*toMs);
// Setup lights.
float lightPos[4];
lightPos[0] = -cos(timeAccumulatorLight);
lightPos[1] = -1.0f;
lightPos[2] = -sin(timeAccumulatorLight);
lightPos[3] = 0.0f;
bgfx::setUniform(u_lightPos, lightPos);
// Setup instance matrices.
float mtxFloor[16];
mtxScaleRotateTranslate(mtxFloor
, 30.0f, 30.0f, 30.0f
, 0.0f, 0.0f, 0.0f
, 0.0f, 0.0f, 0.0f
);
float mtxBunny[16];
mtxScaleRotateTranslate(mtxBunny
, 5.0f, 5.0f, 5.0f
, 0.0f, float(M_PI) - timeAccumulatorScene, 0.0f
, 15.0f, 5.0f, 0.0f
);
float mtxHollowcube[16];
mtxScaleRotateTranslate(mtxHollowcube
, 2.5f, 2.5f, 2.5f
, 0.0f, 1.56f - timeAccumulatorScene, 0.0f
, 0.0f, 10.0f, 0.0f
);
float mtxCube[16];
mtxScaleRotateTranslate(mtxCube
, 2.5f, 2.5f, 2.5f
, 0.0f, 1.56f - timeAccumulatorScene, 0.0f
, -15.0f, 5.0f, 0.0f
);
// Define matrices.
float screenView[16];
float screenProj[16];
mtxIdentity(screenView);
mtxOrtho(screenProj, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 100.0f);
float lightView[16];
float lightProj[16];
const float eye[3] =
{
-lightPos[0],
-lightPos[1],
-lightPos[2],
};
const float at[3] = { 0.0f, 0.0f, 0.0f };
mtxLookAt(lightView, eye, at);
const float area = 30.0f;
mtxOrtho(lightProj, -area, area, -area, area, -100.0f, 100.0f);
bgfx::setViewRect(RENDER_SHADOW_PASS_ID, 0, 0, shadowMapSize, shadowMapSize);
bgfx::setViewFrameBuffer(RENDER_SHADOW_PASS_ID, s_shadowMapFB);
bgfx::setViewTransform(RENDER_SHADOW_PASS_ID, lightView, lightProj);
bgfx::setViewRect(RENDER_SCENE_PASS_ID, 0, 0, width, height);
bgfx::setViewTransform(RENDER_SCENE_PASS_ID, view, proj);
// Clear backbuffer and shadowmap framebuffer at beginning.
bgfx::setViewClearMask(RENDER_SHADOW_PASS_BIT|RENDER_SCENE_PASS_BIT
, BGFX_CLEAR_COLOR_BIT | BGFX_CLEAR_DEPTH_BIT
, 0x303030ff, 1.0f, 0
);
bgfx::submitMask(RENDER_SHADOW_PASS_BIT|RENDER_SCENE_PASS_BIT);
// Render.
float mtxShadow[16];
float lightMtx[16];
const float sy = s_flipV ? 0.5f : -0.5f;
const float mtxCrop[16] =
{
0.5f, 0.0f, 0.0f, 0.0f,
0.0f, sy, 0.0f, 0.0f,
0.0f, 0.0f, 0.5f, 0.0f,
0.5f, 0.5f, 0.5f, 1.0f,
};
float mtxTmp[16];
mtxMul(mtxTmp, lightProj, mtxCrop);
mtxMul(mtxShadow, lightView, mtxTmp);
// Floor.
mtxMul(lightMtx, mtxFloor, mtxShadow);
bgfx::setUniform(u_lightMtx, lightMtx);
hplaneMesh.submit(RENDER_SCENE_PASS_ID, mtxFloor, progDraw);
hplaneMesh.submitShadow(RENDER_SHADOW_PASS_ID, mtxFloor, progPackDepth);
// Bunny.
mtxMul(lightMtx, mtxBunny, mtxShadow);
bgfx::setUniform(u_lightMtx, lightMtx);
bunnyMesh.submit(RENDER_SCENE_PASS_ID, mtxBunny, progDraw);
bunnyMesh.submitShadow(RENDER_SHADOW_PASS_ID, mtxBunny, progPackDepth);
// Hollow cube.
mtxMul(lightMtx, mtxHollowcube, mtxShadow);
bgfx::setUniform(u_lightMtx, lightMtx);
hollowcubeMesh.submit(RENDER_SCENE_PASS_ID, mtxHollowcube, progDraw);
hollowcubeMesh.submitShadow(RENDER_SHADOW_PASS_ID, mtxHollowcube, progPackDepth);
// Cube.
mtxMul(lightMtx, mtxCube, mtxShadow);
bgfx::setUniform(u_lightMtx, lightMtx);
cubeMesh.submit(RENDER_SCENE_PASS_ID, mtxCube, progDraw);
cubeMesh.submitShadow(RENDER_SHADOW_PASS_ID, mtxCube, progPackDepth);
// Advance to next frame. Rendering thread will be kicked to
// process submitted rendering primitives.
bgfx::frame();
}
bunnyMesh.unload();
cubeMesh.unload();
hollowcubeMesh.unload();
hplaneMesh.unload();
bgfx::destroyProgram(progPackDepth);
bgfx::destroyProgram(progDraw);
bgfx::destroyFrameBuffer(s_shadowMapFB);
bgfx::destroyUniform(u_shadowMap);
bgfx::destroyUniform(u_lightPos);
bgfx::destroyUniform(u_lightMtx);
// Shutdown bgfx.
bgfx::shutdown();
return 0;
}