bgfx/src/renderer_gl.cpp
2013-03-09 16:17:38 -08:00

3114 lines
87 KiB
C++

/*
* Copyright 2011-2013 Branimir Karadzic. All rights reserved.
* License: http://www.opensource.org/licenses/BSD-2-Clause
*/
#include "bgfx_p.h"
#if (BGFX_CONFIG_RENDERER_OPENGLES2|BGFX_CONFIG_RENDERER_OPENGLES3|BGFX_CONFIG_RENDERER_OPENGL)
# include "renderer_gl.h"
# include <bx/timer.h>
# include <bx/uint32_t.h>
namespace bgfx
{
struct Extension
{
enum Enum
{
EXT_texture_filter_anisotropic,
EXT_texture_format_BGRA8888,
EXT_bgra,
EXT_texture_compression_s3tc,
EXT_texture_compression_dxt1,
CHROMIUM_texture_compression_dxt3,
CHROMIUM_texture_compression_dxt5,
EXT_texture_compression_latc,
EXT_texture_compression_rgtc,
ARB_texture_float,
OES_texture_float,
OES_texture_float_linear,
OES_texture_half_float,
OES_texture_half_float_linear,
EXT_texture_type_2_10_10_10_REV,
EXT_texture_sRGB,
ARB_texture_swizzle,
EXT_texture_swizzle,
ARB_texture_multisample,
OES_standard_derivatives,
ARB_get_program_binary,
OES_get_program_binary,
EXT_framebuffer_blit,
ARB_timer_query,
EXT_timer_query,
ARB_framebuffer_sRGB,
EXT_framebuffer_sRGB,
ARB_multisample,
CHROMIUM_framebuffer_multisample,
ANGLE_translated_shader_source,
ARB_instanced_arrays,
ANGLE_instanced_arrays,
ARB_half_float_vertex,
OES_vertex_half_float,
ARB_vertex_type_2_10_10_10_rev,
OES_vertex_type_10_10_10_2,
EXT_occlusion_query_boolean,
ARB_vertex_array_object,
OES_vertex_array_object,
ATI_meminfo,
NVX_gpu_memory_info,
Count
};
const char* m_name;
bool m_supported;
bool m_initialize;
};
static Extension s_extension[Extension::Count] =
{
{ "GL_EXT_texture_filter_anisotropic", false, true },
{ "GL_EXT_texture_format_BGRA8888", false, true },
{ "GL_EXT_bgra", false, true },
{ "GL_EXT_texture_compression_s3tc", false, true },
{ "GL_EXT_texture_compression_dxt1", false, true },
{ "GL_CHROMIUM_texture_compression_dxt3", false, true },
{ "GL_CHROMIUM_texture_compression_dxt5", false, true },
{ "GL_EXT_texture_compression_latc", false, true },
{ "GL_EXT_texture_compression_rgtc", BGFX_CONFIG_RENDERER_OPENGL >= 31, true },
{ "GL_ARB_texture_float", BGFX_CONFIG_RENDERER_OPENGL >= 31, true },
{ "GL_OES_texture_float", false, true },
{ "GL_OES_texture_float_linear", false, true },
{ "GL_OES_texture_half_float", false, true },
{ "GL_OES_texture_half_float_linear", false, true },
{ "GL_EXT_texture_type_2_10_10_10_REV", false, true },
{ "GL_EXT_texture_sRGB", false, true },
{ "GL_ARB_texture_swizzle", BGFX_CONFIG_RENDERER_OPENGL >= 33, true },
{ "GL_EXT_texture_swizzle", false, true },
{ "GL_ARB_texture_multisample", false, true },
{ "GL_OES_standard_derivatives", false, true },
{ "GL_ARB_get_program_binary", BGFX_CONFIG_RENDERER_OPENGL >= 41, true },
{ "GL_OES_get_program_binary", false, false },
{ "GL_EXT_framebuffer_blit", BGFX_CONFIG_RENDERER_OPENGL >= 31, true },
{ "GL_ARB_timer_query", false, true },
{ "GL_EXT_timer_query", false, true },
{ "GL_ARB_framebuffer_sRGB", false, true },
{ "GL_EXT_framebuffer_sRGB", false, true },
{ "GL_ARB_multisample", false, true },
{ "GL_CHROMIUM_framebuffer_multisample", false, true },
{ "GL_ANGLE_translated_shader_source", false, true },
{ "GL_ARB_instanced_arrays", BGFX_CONFIG_RENDERER_OPENGL >= 33, true },
{ "GL_ANGLE_instanced_arrays", false, true },
{ "GL_ARB_half_float_vertex", false, true },
{ "GL_OES_vertex_half_float", false, true },
{ "GL_ARB_vertex_type_2_10_10_10_rev", false, true },
{ "GL_OES_vertex_type_10_10_10_2", false, true },
{ "GL_EXT_occlusion_query_boolean", false, true },
{ "GL_ARB_vertex_array_object", BGFX_CONFIG_RENDERER_OPENGL >= 31, true },
{ "OES_vertex_array_object", false, true },
{ "GL_ATI_meminfo", false, true },
{ "GL_NVX_gpu_memory_info", false, true },
};
static void GL_APIENTRY stubVertexAttribDivisor(GLuint /*_index*/, GLuint /*_divisor*/)
{
}
static void GL_APIENTRY stubDrawArraysInstanced(GLenum _mode, GLint _first, GLsizei _count, GLsizei /*_primcount*/)
{
GL_CHECK(glDrawArrays(_mode, _first, _count) );
}
static void GL_APIENTRY stubDrawElementsInstanced(GLenum _mode, GLsizei _count, GLenum _type, const GLvoid* _indices, GLsizei /*_primcount*/)
{
GL_CHECK(glDrawElements(_mode, _count, _type, _indices) );
}
#if BGFX_CONFIG_RENDERER_OPENGLES3
# define s_vertexAttribDivisor glVertexAttribDivisor
# define s_drawArraysInstanced glDrawArraysInstanced
# define s_drawElementsInstanced glDrawElementsInstanced
#else
static PFNGLVERTEXATTRIBDIVISORBGFXPROC s_vertexAttribDivisor = stubVertexAttribDivisor;
static PFNGLDRAWARRAYSINSTANCEDBGFXPROC s_drawArraysInstanced = stubDrawArraysInstanced;
static PFNGLDRAWELEMENTSINSTANCEDBGFXPROC s_drawElementsInstanced = stubDrawElementsInstanced;
#endif // BGFX_CONFIG_RENDERER_OPENGLES3
typedef void (*PostSwapBuffersFn)(uint32_t _width, uint32_t _height);
static void rgbaToBgra(uint8_t* _data, uint32_t _width, uint32_t _height)
{
uint32_t dstpitch = _width*4;
for (uint32_t yy = 0; yy < _height; ++yy)
{
uint8_t* dst = &_data[yy*dstpitch];
for (uint32_t xx = 0; xx < _width; ++xx)
{
uint8_t tmp = dst[0];
dst[0] = dst[2];
dst[2] = tmp;
dst += 4;
}
}
}
struct RendererContext
{
RendererContext()
: m_rtMsaa(false)
, m_capture(NULL)
, m_captureSize(0)
, m_maxAnisotropy(0.0f)
, m_maxMsaa(0)
, m_vao(0)
, m_vaoSupport(BGFX_CONFIG_RENDERER_OPENGL >= 31)
, m_programBinarySupport(false)
, m_textureSwizzleSupport(false)
, m_flip(false)
, m_postSwapBuffers(NULL)
, m_hash( (BX_PLATFORM_WINDOWS<<1) | BX_ARCH_64BIT)
, m_backBufferFbo(0)
{
m_rt.idx = invalidHandle;
memset(&m_resolution, 0, sizeof(m_resolution) );
}
void updateResolution(const Resolution& _resolution)
{
if (m_resolution.m_width != _resolution.m_width
|| m_resolution.m_height != _resolution.m_height
|| m_resolution.m_flags != _resolution.m_flags)
{
m_textVideoMem.resize(false, _resolution.m_width, _resolution.m_height);
m_textVideoMem.clear();
m_resolution = _resolution;
uint32_t msaa = 1<<( (m_resolution.m_flags&BGFX_RESET_MSAA_MASK)>>BGFX_RESET_MSAA_SHIFT);
msaa = uint32_min(m_maxMsaa, msaa == 0 ? 0 : 1<<msaa);
setRenderContextSize(_resolution.m_width, _resolution.m_height, msaa);
updateCapture();
}
}
uint32_t setRenderTarget(RenderTargetHandle _rt, uint32_t _height, bool _msaa = true)
{
if (m_rt.idx != invalidHandle
&& m_rt.idx != _rt.idx
&& m_rtMsaa)
{
RenderTarget& renderTarget = m_renderTargets[m_rt.idx];
if (0 != renderTarget.m_fbo[1])
{
renderTarget.resolve();
}
}
if (_rt.idx == invalidHandle)
{
GL_CHECK(glBindFramebuffer(GL_FRAMEBUFFER, m_backBufferFbo) );
}
else
{
RenderTarget& renderTarget = m_renderTargets[_rt.idx];
GL_CHECK(glBindFramebuffer(GL_FRAMEBUFFER, renderTarget.m_fbo[0]) );
_height = renderTarget.m_height;
}
m_rt = _rt;
m_rtMsaa = _msaa;
return _height;
}
void createMsaaFbo(uint32_t _width, uint32_t _height, uint32_t _msaa)
{
#if BGFX_CONFIG_RENDERER_OPENGL|BGFX_CONFIG_RENDERER_OPENGLES3
if (1 < _msaa)
{
GL_CHECK(glGenFramebuffers(1, &m_backBufferFbo) );
GL_CHECK(glBindFramebuffer(GL_FRAMEBUFFER, m_backBufferFbo) );
GL_CHECK(glGenRenderbuffers(3, m_backBufferRbos) );
GL_CHECK(glBindRenderbuffer(GL_RENDERBUFFER, m_backBufferRbos[0]) );
GL_CHECK(glRenderbufferStorageMultisample(GL_RENDERBUFFER, _msaa, GL_RGBA8, _width, _height) );
GL_CHECK(glBindRenderbuffer(GL_RENDERBUFFER, m_backBufferRbos[1]) );
GL_CHECK(glRenderbufferStorageMultisample(GL_RENDERBUFFER, _msaa, GL_DEPTH24_STENCIL8, _width, _height) );
GL_CHECK(glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_RENDERBUFFER, m_backBufferRbos[0]) );
GL_CHECK(glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_STENCIL_ATTACHMENT, GL_RENDERBUFFER, m_backBufferRbos[1]) );
BX_CHECK(GL_FRAMEBUFFER_COMPLETE == glCheckFramebufferStatus(GL_FRAMEBUFFER)
, "glCheckFramebufferStatus failed 0x%08x"
, glCheckFramebufferStatus(GL_FRAMEBUFFER)
);
GL_CHECK(glBindFramebuffer(GL_FRAMEBUFFER, m_backBufferFbo) );
}
#endif // BGFX_CONFIG_RENDERER_OPENGL|BGFX_CONFIG_RENDERER_OPENGLES3
}
void destroyMsaaFbo()
{
#if BGFX_CONFIG_RENDERER_OPENGL|BGFX_CONFIG_RENDERER_OPENGLES3
if (0 != m_backBufferFbo)
{
GL_CHECK(glDeleteFramebuffers(1, &m_backBufferFbo) );
GL_CHECK(glDeleteRenderbuffers(3, m_backBufferRbos) );
m_backBufferFbo = 0;
}
#endif // BGFX_CONFIG_RENDERER_OPENGL|BGFX_CONFIG_RENDERER_OPENGLES3
}
void blitMsaaFbo()
{
#if BGFX_CONFIG_RENDERER_OPENGL|BGFX_CONFIG_RENDERER_OPENGLES3
if (0 != m_backBufferFbo)
{
GL_CHECK(glBindFramebuffer(GL_FRAMEBUFFER, 0) );
GL_CHECK(glBindFramebuffer(GL_READ_FRAMEBUFFER, m_backBufferFbo) );
GL_CHECK(glBindFramebuffer(GL_DRAW_FRAMEBUFFER, 0) );
uint32_t width = m_resolution.m_width;
uint32_t height = m_resolution.m_height;
GL_CHECK(glBlitFramebuffer(0
, 0
, width
, height
, 0
, 0
, width
, height
, GL_COLOR_BUFFER_BIT
, GL_LINEAR
) );
GL_CHECK(glBindFramebuffer(GL_FRAMEBUFFER, 0) );
}
#endif // BGFX_CONFIG_RENDERER_OPENGL|BGFX_CONFIG_RENDERER_OPENGLES3
}
void setRenderContextSize(uint32_t _width, uint32_t _height, uint32_t _msaa = 0)
{
if (_width != 0
|| _height != 0)
{
if (!m_glctx.isValid() )
{
m_glctx.create(_width, _height);
}
else
{
destroyMsaaFbo();
m_glctx.resize(_width, _height);
createMsaaFbo(_width, _height, _msaa);
}
}
m_flip = true;
}
void flip()
{
if (m_flip)
{
m_glctx.swap();
}
if (NULL != m_postSwapBuffers)
{
m_postSwapBuffers(m_resolution.m_width, m_resolution.m_height);
}
}
void invalidateCache()
{
m_vaoCache.invalidate();
}
void updateCapture()
{
if (m_resolution.m_flags&BGFX_RESET_CAPTURE)
{
m_captureSize = m_resolution.m_width*m_resolution.m_height*4;
m_capture = g_realloc(m_capture, m_captureSize);
g_callback->captureBegin(m_resolution.m_width, m_resolution.m_height, m_resolution.m_width*4, TextureFormat::BGRA8, true);
}
else
{
if (NULL != m_capture)
{
g_callback->captureEnd();
g_free(m_capture);
m_capture = NULL;
m_captureSize = 0;
}
}
}
void capture()
{
if (NULL != m_capture)
{
GLint fmt = s_extension[Extension::EXT_texture_format_BGRA8888].m_supported ? GL_BGRA_EXT : GL_RGBA;
GL_CHECK(glReadPixels(0
, 0
, m_resolution.m_width
, m_resolution.m_height
, fmt
, GL_UNSIGNED_BYTE
, m_capture
) );
g_callback->captureFrame(m_capture, m_captureSize);
}
}
void saveScreenShot(Memory* _mem)
{
uint32_t length = m_resolution.m_width*m_resolution.m_height*4;
uint8_t* data = (uint8_t*)g_realloc(NULL, length);
GLint fmt = s_extension[Extension::EXT_texture_format_BGRA8888].m_supported ? GL_BGRA_EXT : GL_RGBA;
uint32_t width = m_resolution.m_width;
uint32_t height = m_resolution.m_height;
GL_CHECK(glReadPixels(0
, 0
, width
, height
, fmt
, GL_UNSIGNED_BYTE
, data
) );
if (GL_RGBA == fmt)
{
rgbaToBgra(data, width, height);
}
g_callback->screenShot( (const char*)_mem->data
, width
, height
, width*4
, data
, length
, true
);
g_free(data);
}
void init()
{
m_glctx.create(BGFX_DEFAULT_WIDTH, BGFX_DEFAULT_HEIGHT);
#if BGFX_CONFIG_RENDERER_OPENGL
m_queries.create();
#endif // BGFX_CONFIG_RENDERER_OPENGL
}
void shutdown()
{
invalidateCache();
#if BGFX_CONFIG_RENDERER_OPENGL
m_queries.destroy();
#endif // BGFX_CONFIG_RENDERER_OPENGL
destroyMsaaFbo();
m_glctx.destroy();
m_flip = false;
}
IndexBuffer m_indexBuffers[BGFX_CONFIG_MAX_INDEX_BUFFERS];
VertexBuffer m_vertexBuffers[BGFX_CONFIG_MAX_VERTEX_BUFFERS];
Shader m_vertexShaders[BGFX_CONFIG_MAX_VERTEX_SHADERS];
Shader m_fragmentShaders[BGFX_CONFIG_MAX_FRAGMENT_SHADERS];
Program m_program[BGFX_CONFIG_MAX_PROGRAMS];
Texture m_textures[BGFX_CONFIG_MAX_TEXTURES];
VertexDecl m_vertexDecls[BGFX_CONFIG_MAX_VERTEX_DECLS];
RenderTarget m_renderTargets[BGFX_CONFIG_MAX_RENDER_TARGETS];
UniformRegistry m_uniformReg;
void* m_uniforms[BGFX_CONFIG_MAX_UNIFORMS];
#if BGFX_CONFIG_RENDERER_OPENGL
Queries m_queries;
#endif // BGFX_CONFIG_RENDERER_OPENGL
VaoCache m_vaoCache;
TextVideoMem m_textVideoMem;
RenderTargetHandle m_rt;
bool m_rtMsaa;
Resolution m_resolution;
void* m_capture;
uint32_t m_captureSize;
float m_maxAnisotropy;
int32_t m_maxMsaa;
GLuint m_vao;
bool m_vaoSupport;
bool m_programBinarySupport;
bool m_textureSwizzleSupport;
bool m_flip;
PostSwapBuffersFn m_postSwapBuffers;
uint64_t m_hash;
GLuint m_backBufferFbo;
GLuint m_backBufferRbos[2];
GlContext m_glctx;
};
RendererContext s_renderCtx;
#if BX_PLATFORM_NACL
static void GL_APIENTRY naclVertexAttribDivisor(GLuint _index, GLuint _divisor)
{
s_renderCtx.m_glctx.m_instancedArrays->VertexAttribDivisorANGLE(s_renderCtx.m_glctx.m_context, _index, _divisor);
}
static void GL_APIENTRY naclDrawArraysInstanced(GLenum _mode, GLint _first, GLsizei _count, GLsizei _primcount)
{
s_renderCtx.m_glctx.m_instancedArrays->DrawArraysInstancedANGLE(s_renderCtx.m_glctx.m_context, _mode, _first, _count, _primcount);
}
static void GL_APIENTRY naclDrawElementsInstanced(GLenum _mode, GLsizei _count, GLenum _type, const GLvoid* _indices, GLsizei _primcount)
{
s_renderCtx.m_glctx.m_instancedArrays->DrawElementsInstancedANGLE(s_renderCtx.m_glctx.m_context, _mode, _count, _type, _indices, _primcount);
}
void naclSetIntefraces(PP_Instance _instance, const PPB_Instance* _instInterface, const PPB_Graphics3D* _graphicsInterface, PostSwapBuffersFn _postSwapBuffers)
{
s_renderCtx.m_glctx.m_instance = _instance;
s_renderCtx.m_glctx.m_instInterface = _instInterface;
s_renderCtx.m_glctx.m_graphicsInterface = _graphicsInterface;
s_renderCtx.m_postSwapBuffers = _postSwapBuffers;
s_renderCtx.m_glctx.m_instancedArrays = glGetInstancedArraysInterfacePPAPI();
s_renderCtx.setRenderContextSize(BGFX_DEFAULT_WIDTH, BGFX_DEFAULT_HEIGHT);
if (NULL != s_renderCtx.m_glctx.m_instancedArrays)
{
s_vertexAttribDivisor = naclVertexAttribDivisor;
s_drawArraysInstanced = naclDrawArraysInstanced;
s_drawElementsInstanced = naclDrawElementsInstanced;
}
}
void naclSwapCompleteCb(void* /*_data*/, int32_t /*_result*/)
{
renderFrame();
}
#endif // BX_PLATFORM_
static const GLenum s_primType[] =
{
GL_TRIANGLES,
GL_LINES,
GL_POINTS,
};
static const char* s_attribName[Attrib::Count] =
{
"a_position",
"a_normal",
"a_tangent",
"a_color0",
"a_color1",
"a_indices",
"a_weight",
"a_texcoord0",
"a_texcoord1",
"a_texcoord2",
"a_texcoord3",
"a_texcoord4",
"a_texcoord5",
"a_texcoord6",
"a_texcoord7",
};
static const char* s_instanceDataName[BGFX_CONFIG_MAX_INSTANCE_DATA_COUNT] =
{
"i_data0",
"i_data1",
"i_data2",
"i_data3",
"i_data4",
};
static const GLenum s_attribType[AttribType::Count] =
{
GL_UNSIGNED_BYTE,
GL_SHORT,
GL_HALF_FLOAT,
GL_FLOAT,
};
static const GLenum s_blendFactor[][2] =
{
{ 0, 0 }, // ignored
{ GL_ZERO, GL_ZERO },
{ GL_ONE, GL_ONE },
{ GL_SRC_COLOR, GL_SRC_COLOR },
{ GL_ONE_MINUS_SRC_COLOR, GL_ONE_MINUS_SRC_COLOR },
{ GL_SRC_ALPHA, GL_SRC_ALPHA },
{ GL_ONE_MINUS_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA },
{ GL_DST_ALPHA, GL_DST_ALPHA },
{ GL_ONE_MINUS_DST_ALPHA, GL_ONE_MINUS_DST_ALPHA },
{ GL_DST_COLOR, GL_DST_COLOR },
{ GL_ONE_MINUS_DST_COLOR, GL_ONE_MINUS_DST_COLOR },
{ GL_SRC_ALPHA_SATURATE, GL_ONE },
};
static const GLenum s_depthFunc[] =
{
0, // ignored
GL_LESS,
GL_LEQUAL,
GL_EQUAL,
GL_GEQUAL,
GL_GREATER,
GL_NOTEQUAL,
GL_NEVER,
GL_ALWAYS,
};
static const GLenum s_stencilFunc[] =
{
0, // ignored
GL_LESS,
GL_LEQUAL,
GL_EQUAL,
GL_GEQUAL,
GL_GREATER,
GL_NOTEQUAL,
GL_NEVER,
GL_ALWAYS,
};
static const GLenum s_stencilOp[] =
{
GL_ZERO,
GL_KEEP,
GL_REPLACE,
GL_INCR_WRAP,
GL_INCR,
GL_DECR_WRAP,
GL_DECR,
GL_INVERT,
};
static const GLenum s_stencilFace[] =
{
GL_FRONT_AND_BACK,
GL_FRONT,
GL_BACK,
};
// Specifies the internal format of the texture.
// Must be one of the following symbolic constants:
// GL_ALPHA, GL_LUMINANCE, GL_LUMINANCE_ALPHA, GL_RGB, GL_RGBA.
static const GLenum s_colorFormat[] =
{
0, // ignored
GL_RGBA,
GL_RGBA,
};
static const GLenum s_depthFormat[] =
{
0, // ignored
0,
};
static const GLenum s_textureAddress[] =
{
GL_REPEAT,
GL_MIRRORED_REPEAT,
GL_CLAMP_TO_EDGE,
};
static const GLenum s_textureFilter[] =
{
GL_LINEAR,
GL_NEAREST,
GL_LINEAR,
};
struct TextureFormatInfo
{
GLenum m_internalFmt;
GLenum m_fmt;
GLenum m_type;
uint8_t m_bpp;
bool m_supported;
};
static TextureFormatInfo s_textureFormat[TextureFormat::Count] =
{
{ GL_COMPRESSED_RGBA_S3TC_DXT1_EXT, GL_COMPRESSED_RGBA_S3TC_DXT1_EXT, GL_ZERO, 4, false },
{ GL_COMPRESSED_RGBA_S3TC_DXT3_EXT, GL_COMPRESSED_RGBA_S3TC_DXT3_EXT, GL_ZERO, 8, false },
{ GL_COMPRESSED_RGBA_S3TC_DXT5_EXT, GL_COMPRESSED_RGBA_S3TC_DXT5_EXT, GL_ZERO, 8, false },
{ GL_COMPRESSED_LUMINANCE_LATC1_EXT, GL_COMPRESSED_LUMINANCE_LATC1_EXT, GL_ZERO, 4, false },
{ GL_COMPRESSED_LUMINANCE_ALPHA_LATC2_EXT, GL_COMPRESSED_LUMINANCE_ALPHA_LATC2_EXT, GL_ZERO, 8, false },
{ GL_ZERO, GL_ZERO, GL_ZERO, 0, true },
{ GL_LUMINANCE, GL_LUMINANCE, GL_UNSIGNED_BYTE, 8, true },
{ GL_RGBA, GL_RGBA, GL_UNSIGNED_BYTE, 32, true },
{ GL_RGBA, GL_RGBA, GL_UNSIGNED_BYTE, 32, true },
{ GL_RGBA16, GL_RGBA, GL_UNSIGNED_BYTE, 64, true },
{ GL_RGBA16F, GL_RGBA, GL_HALF_FLOAT, 64, true },
{ GL_RGB565, GL_RGB, GL_UNSIGNED_SHORT_5_6_5, 16, true },
{ GL_RGBA4, GL_RGBA, GL_UNSIGNED_SHORT_4_4_4_4, 16, true },
{ GL_RGB5_A1, GL_RGBA, GL_UNSIGNED_SHORT_5_5_5_1, 16, true },
{ GL_RGB10_A2, GL_RGBA, GL_UNSIGNED_INT_2_10_10_10_REV, 32, true },
};
const char* glslTypeName(GLuint _type)
{
#define GLSL_TYPE(_ty) case _ty: return #_ty
switch (_type)
{
GLSL_TYPE(GL_FLOAT);
GLSL_TYPE(GL_FLOAT_VEC2);
GLSL_TYPE(GL_FLOAT_VEC3);
GLSL_TYPE(GL_FLOAT_VEC4);
GLSL_TYPE(GL_FLOAT_MAT2);
GLSL_TYPE(GL_FLOAT_MAT3);
GLSL_TYPE(GL_FLOAT_MAT4);
// GLSL_TYPE(GL_FLOAT_MAT2x3);
// GLSL_TYPE(GL_FLOAT_MAT2x4);
// GLSL_TYPE(GL_FLOAT_MAT3x2);
// GLSL_TYPE(GL_FLOAT_MAT3x4);
// GLSL_TYPE(GL_FLOAT_MAT4x2);
// GLSL_TYPE(GL_FLOAT_MAT4x3);
// GLSL_TYPE(GL_SAMPLER_1D);
GLSL_TYPE(GL_SAMPLER_2D);
GLSL_TYPE(GL_SAMPLER_3D);
GLSL_TYPE(GL_SAMPLER_CUBE);
// GLSL_TYPE(GL_SAMPLER_1D_SHADOW);
// GLSL_TYPE(GL_SAMPLER_2D_SHADOW);
}
#undef GLSL_TYPE
return "UNKNOWN GLSL TYPE!";
}
const char* glEnumName(GLenum _enum)
{
#define GLENUM(_ty) case _ty: return #_ty
switch (_enum)
{
GLENUM(GL_TEXTURE);
GLENUM(GL_RENDERBUFFER);
}
#undef GLENUM
return "UNKNOWN GLENUM!";
}
UniformType::Enum convertGlType(GLenum _type)
{
switch (_type)
{
case GL_FLOAT:
return UniformType::Uniform1fv;
case GL_FLOAT_VEC2:
return UniformType::Uniform2fv;
case GL_FLOAT_VEC3:
return UniformType::Uniform3fv;
case GL_FLOAT_VEC4:
return UniformType::Uniform4fv;
case GL_FLOAT_MAT2:
break;
case GL_FLOAT_MAT3:
return UniformType::Uniform3x3fv;
case GL_FLOAT_MAT4:
return UniformType::Uniform4x4fv;
// case GL_FLOAT_MAT2x3:
// case GL_FLOAT_MAT2x4:
// case GL_FLOAT_MAT3x2:
// case GL_FLOAT_MAT3x4:
// case GL_FLOAT_MAT4x2:
// case GL_FLOAT_MAT4x3:
// break;
// case GL_SAMPLER_1D:
case GL_SAMPLER_2D:
case GL_SAMPLER_3D:
case GL_SAMPLER_CUBE:
// case GL_SAMPLER_1D_SHADOW:
// case GL_SAMPLER_2D_SHADOW:
return UniformType::Uniform1iv;
};
return UniformType::End;
}
void Program::create(const Shader& _vsh, const Shader& _fsh)
{
m_id = glCreateProgram();
BX_TRACE("program create: %d: %d, %d", m_id, _vsh.m_id, _fsh.m_id);
bool cached = false;
uint64_t id = (uint64_t(_vsh.m_hash)<<32) | _fsh.m_hash;
id ^= s_renderCtx.m_hash;
if (s_renderCtx.m_programBinarySupport)
{
uint32_t length = g_callback->cacheReadSize(id);
cached = length > 0;
if (cached)
{
void* data = g_realloc(NULL, length);
if (g_callback->cacheRead(id, data, length) )
{
bx::MemoryReader reader(data, length);
GLenum format;
bx::read(&reader, format);
GL_CHECK(glProgramBinary(m_id, format, reader.getDataPtr(), (GLsizei)reader.remaining() ) );
}
g_free(data);
}
#if BGFX_CONFIG_RENDERER_OPENGL
GL_CHECK(glProgramParameteri(m_id, GL_PROGRAM_BINARY_RETRIEVABLE_HINT, GL_TRUE) );
#endif // BGFX_CONFIG_RENDERER_OPENGL
}
if (!cached)
{
GL_CHECK(glAttachShader(m_id, _vsh.m_id) );
GL_CHECK(glAttachShader(m_id, _fsh.m_id) );
GL_CHECK(glLinkProgram(m_id) );
GLint linked = 0;
GL_CHECK(glGetProgramiv(m_id, GL_LINK_STATUS, &linked) );
if (0 == linked)
{
char log[1024];
GL_CHECK(glGetProgramInfoLog(m_id, sizeof(log), NULL, log) );
BX_TRACE("%d: %s", linked, log);
GL_CHECK(glDeleteProgram(m_id) );
return;
}
if (s_renderCtx.m_programBinarySupport)
{
GLint programLength;
GLenum format;
GL_CHECK(glGetProgramiv(m_id, GL_PROGRAM_BINARY_LENGTH, &programLength) );
if (0 < programLength)
{
uint32_t length = programLength + 4;
uint8_t* data = (uint8_t*)g_realloc(NULL, length);
GL_CHECK(glGetProgramBinary(m_id, programLength, NULL, &format, &data[4]) );
*(uint32_t*)data = format;
g_callback->cacheWrite(id, data, length);
g_free(data);
}
}
}
init();
}
void Program::destroy()
{
GL_CHECK(glUseProgram(0) );
GL_CHECK(glDeleteProgram(m_id) );
m_vcref.invalidate(s_renderCtx.m_vaoCache);
}
void Program::init()
{
GLint activeAttribs;
GLint activeUniforms;
GL_CHECK(glGetProgramiv(m_id, GL_ACTIVE_ATTRIBUTES, &activeAttribs) );
GL_CHECK(glGetProgramiv(m_id, GL_ACTIVE_UNIFORMS, &activeUniforms) );
GLint max0, max1;
GL_CHECK(glGetProgramiv(m_id, GL_ACTIVE_ATTRIBUTE_MAX_LENGTH, &max0) );
GL_CHECK(glGetProgramiv(m_id, GL_ACTIVE_UNIFORM_MAX_LENGTH, &max1) );
GLint maxLength = uint32_max(max0, max1);
char* name = (char*)g_realloc(NULL, maxLength + 1);
BX_TRACE("Program %d", m_id);
BX_TRACE("Attributes:");
for (int32_t ii = 0; ii < activeAttribs; ++ii)
{
GLint size;
GLenum type;
GL_CHECK(glGetActiveAttrib(m_id, ii, maxLength + 1, NULL, &size, &type, name) );
BX_TRACE("\t%s %s is at location %d"
, glslTypeName(type)
, name
, glGetAttribLocation(m_id, name)
);
}
m_numPredefined = 0;
m_constantBuffer = ConstantBuffer::create(1024);
m_numSamplers = 0;
BX_TRACE("Uniforms:");
for (int32_t ii = 0; ii < activeUniforms; ++ii)
{
GLint num;
GLenum gltype;
GL_CHECK(glGetActiveUniform(m_id, ii, maxLength + 1, NULL, &num, &gltype, name) );
GLint loc = glGetUniformLocation(m_id, name);
int offset = 0;
char* array = strchr(name, '[');
if (NULL != array)
{
BX_TRACE("--- %s", name);
*array = '\0';
array++;
char* end = strchr(array, ']');
*end = '\0';
offset = atoi(array);
}
if (GL_SAMPLER_2D == gltype)
{
BX_TRACE("Sampler %d at %d.", m_numSamplers, loc);
m_sampler[m_numSamplers] = loc;
m_numSamplers++;
}
const void* data = NULL;
PredefinedUniform::Enum predefined = nameToPredefinedUniformEnum(name);
if (PredefinedUniform::Count != predefined)
{
m_predefined[m_numPredefined].m_loc = loc;
m_predefined[m_numPredefined].m_type = predefined;
m_predefined[m_numPredefined].m_count = num;
m_numPredefined++;
}
else
{
const UniformInfo* info = s_renderCtx.m_uniformReg.find(name);
if (NULL != info)
{
data = info->m_data;
UniformType::Enum type = convertGlType(gltype);
m_constantBuffer->writeUniformRef(type, 0, data, num);
m_constantBuffer->write(loc);
BX_TRACE("store %s %p", name, data);
}
}
BX_TRACE("\tuniform %s %s%s is at location %d, size %d (%p), offset %d"
, glslTypeName(gltype)
, name
, PredefinedUniform::Count != predefined ? "*" : ""
, loc
, num
, data
, offset
);
BX_UNUSED(offset);
}
m_constantBuffer->finish();
g_free(name);
memset(m_attributes, 0xff, sizeof(m_attributes) );
uint32_t used = 0;
for (uint32_t ii = 0; ii < Attrib::Count; ++ii)
{
GLint loc = glGetAttribLocation(m_id, s_attribName[ii]);
if (-1 != loc)
{
BX_TRACE("attr %s: %d", s_attribName[ii], loc);
m_attributes[ii] = loc;
m_used[used++] = ii;
}
}
m_used[used] = Attrib::Count;
used = 0;
for (uint32_t ii = 0; ii < countof(s_instanceDataName); ++ii)
{
GLuint loc = glGetAttribLocation(m_id, s_instanceDataName[ii]);
if (GLuint(-1) != loc )
{
BX_TRACE("instance data %s: %d", s_instanceDataName[ii], loc);
m_instanceData[used++] = loc;
}
}
m_instanceData[used] = 0xffff;
}
void Program::bindAttributes(const VertexDecl& _vertexDecl, uint32_t _baseVertex) const
{
uint32_t enabled = 0;
for (uint32_t ii = 0; Attrib::Count != m_used[ii]; ++ii)
{
Attrib::Enum attr = Attrib::Enum(m_used[ii]);
GLint loc = m_attributes[attr];
uint8_t num;
AttribType::Enum type;
bool normalized;
bool asInt;
_vertexDecl.decode(attr, num, type, normalized, asInt);
if (-1 != loc
&& 0xff != _vertexDecl.m_attributes[attr])
{
GL_CHECK(glEnableVertexAttribArray(loc) );
enabled |= 1<<attr;
GL_CHECK(s_vertexAttribDivisor(loc, 0) );
uint32_t baseVertex = _baseVertex*_vertexDecl.m_stride + _vertexDecl.m_offset[attr];
GL_CHECK(glVertexAttribPointer(loc, num, s_attribType[type], normalized, _vertexDecl.m_stride, (void*)(uintptr_t)baseVertex) );
}
else
{
// GL_CHECK(glDisableVertexAttribArray(loc) );
switch (num)
{
case 1:
GL_CHECK(glVertexAttrib1f(loc, 0.0f) );
break;
case 2:
GL_CHECK(glVertexAttrib2f(loc, 0.0f, 0.0f) );
break;
case 3:
GL_CHECK(glVertexAttrib3f(loc, 0.0f, 0.0f, 0.0f) );
break;
case 4:
GL_CHECK(glVertexAttrib4f(loc, 0.0f, 0.0f, 0.0f, 0.0f) );
break;
default:
BX_CHECK(false, "You should not be here!");
break;
}
}
}
}
void Program::bindInstanceData(uint32_t _stride, uint32_t _baseVertex) const
{
uint32_t baseVertex = _baseVertex;
for (uint32_t ii = 0; 0xffff != m_instanceData[ii]; ++ii)
{
GLint loc = m_instanceData[ii];
GL_CHECK(glEnableVertexAttribArray(loc) );
GL_CHECK(glVertexAttribPointer(loc, 4, GL_FLOAT, GL_FALSE, _stride, (void*)(uintptr_t)baseVertex) );
GL_CHECK(s_vertexAttribDivisor(loc, 1) );
baseVertex += 16;
}
}
void IndexBuffer::destroy()
{
GL_CHECK(glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0) );
GL_CHECK(glDeleteBuffers(1, &m_id) );
m_vcref.invalidate(s_renderCtx.m_vaoCache);
}
void VertexBuffer::destroy()
{
GL_CHECK(glBindBuffer(GL_ARRAY_BUFFER, 0) );
GL_CHECK(glDeleteBuffers(1, &m_id) );
m_vcref.invalidate(s_renderCtx.m_vaoCache);
}
static void texImage(GLenum _target, GLint _level, GLint _internalFormat, GLsizei _width, GLsizei _height, GLsizei _depth, GLint _border, GLenum _format, GLenum _type, const GLvoid* _pixels)
{
#if BGFX_CONFIG_RENDERER_OPENGL|BGFX_CONFIG_RENDERER_OPENGLES3
if (_target == GL_TEXTURE_3D)
{
GL_CHECK(glTexImage3D(_target
, _level
, _internalFormat
, _width
, _height
, _depth
, _border
, _format
, _type
, _pixels
) );
}
else
#endif // BGFX_CONFIG_RENDERER_OPENGL|BGFX_CONFIG_RENDERER_OPENGLES3
{
BX_UNUSED(_depth);
GL_CHECK(glTexImage2D(_target
, _level
, _internalFormat
, _width
, _height
, _border
, _format
, _type
, _pixels
) );
}
}
static void compressedTexImage(GLenum _target, GLint _level, GLenum _internalformat, GLsizei _width, GLsizei _height, GLsizei _depth, GLint _border, GLsizei _imageSize, const GLvoid* _data)
{
#if BGFX_CONFIG_RENDERER_OPENGL|BGFX_CONFIG_RENDERER_OPENGLES3
if (_target == GL_TEXTURE_3D)
{
GL_CHECK(glCompressedTexImage3D(_target
, _level
, _internalformat
, _width
, _height
, _depth
, _border
, _imageSize
, _data
) );
}
else
#endif // BGFX_CONFIG_RENDERER_OPENGL|BGFX_CONFIG_RENDERER_OPENGLES3
{
BX_UNUSED(_depth);
GL_CHECK(glCompressedTexImage2D(_target
, _level
, _internalformat
, _width
, _height
, _border
, _imageSize
, _data
) );
}
}
void Texture::create(const Memory* _mem, uint32_t _flags)
{
Dds dds;
uint8_t numMips = 0;
if (parseDds(dds, _mem) )
{
numMips = dds.m_numMips;
if (dds.m_cubeMap)
{
m_target = GL_TEXTURE_CUBE_MAP;
}
#if BGFX_CONFIG_RENDERER_OPENGL|BGFX_CONFIG_RENDERER_OPENGLES3
else if (dds.m_depth > 1)
{
m_target = GL_TEXTURE_3D;
}
#endif // BGFX_CONFIG_RENDERER_OPENGL|BGFX_CONFIG_RENDERER_OPENGLES3
else
{
m_target = GL_TEXTURE_2D;
}
GL_CHECK(glGenTextures(1, &m_id) );
BX_CHECK(0 != m_id, "Failed to generate texture id.");
GL_CHECK(glBindTexture(m_target, m_id) );
const TextureFormatInfo& tfi = s_textureFormat[dds.m_type];
GLenum internalFmt = tfi.m_internalFmt;
m_fmt = tfi.m_fmt;
m_type = tfi.m_type;
GLenum target = m_target;
if (dds.m_cubeMap)
{
target = GL_TEXTURE_CUBE_MAP_POSITIVE_X;
}
if (!tfi.m_supported
|| TextureFormat::Unknown < dds.m_type)
{
uint8_t textureFormat = dds.m_type;
bool decompress = TextureFormat::Unknown > textureFormat;
if (decompress)
{
textureFormat = TextureFormat::BGRA8;
const TextureFormatInfo& tfi = s_textureFormat[textureFormat];
internalFmt = tfi.m_internalFmt;
m_fmt = tfi.m_fmt;
m_type = tfi.m_type;
}
bool swizzle = GL_RGBA == m_fmt;
#if BGFX_CONFIG_RENDERER_OPENGL
if (swizzle
&& s_renderCtx.m_textureSwizzleSupport)
{
swizzle = false;
GLint swizzleMask[] = { GL_BLUE, GL_GREEN, GL_RED, GL_ALPHA };
GL_CHECK(glTexParameteriv(GL_TEXTURE_2D, GL_TEXTURE_SWIZZLE_RGBA, swizzleMask) );
}
#endif // BGFX_CONFIG_RENDERER_OPENGL
uint8_t* bits = (uint8_t*)g_realloc(NULL, dds.m_width*dds.m_height*tfi.m_bpp/8);
for (uint8_t side = 0, numSides = dds.m_cubeMap ? 6 : 1; side < numSides; ++side)
{
uint32_t width = dds.m_width;
uint32_t height = dds.m_height;
uint32_t depth = dds.m_depth;
for (uint32_t lod = 0, num = dds.m_numMips; lod < num; ++lod)
{
width = uint32_max(1, width);
height = uint32_max(1, height);
depth = uint32_max(1, depth);
Mip mip;
if (getRawImageData(dds, side, lod, _mem, mip) )
{
mip.decode(bits);
if (swizzle)
{
rgbaToBgra(bits, width, height);
}
texImage(target+side
, lod
, internalFmt
, width
, height
, depth
, 0
, m_fmt
, m_type
, bits
);
}
width >>= 1;
height >>= 1;
depth >>= 1;
}
}
g_free(bits);
}
else
{
m_compressed = true;
for (uint8_t side = 0, numSides = dds.m_cubeMap ? 6 : 1; side < numSides; ++side)
{
uint32_t width = dds.m_width;
uint32_t height = dds.m_height;
uint32_t depth = dds.m_depth;
for (uint32_t ii = 0, num = dds.m_numMips; ii < num; ++ii)
{
width = uint32_max(1, width);
height = uint32_max(1, height);
depth = uint32_max(1, depth);
Mip mip;
if (getRawImageData(dds, side, ii, _mem, mip) )
{
compressedTexImage(target+side
, ii
, internalFmt
, width
, height
, depth
, 0
, mip.m_size
, mip.m_data
);
}
width >>= 1;
height >>= 1;
depth >>= 1;
}
}
}
}
else
{
bx::MemoryReader reader(_mem->data, _mem->size);
uint32_t magic;
bx::read(&reader, magic);
if (BGFX_CHUNK_MAGIC_TEX == magic)
{
TextureCreate tc;
bx::read(&reader, tc);
if (tc.m_cubeMap)
{
m_target = GL_TEXTURE_CUBE_MAP;
}
#if BGFX_CONFIG_RENDERER_OPENGL|BGFX_CONFIG_RENDERER_OPENGLES3
else if (tc.m_depth > 1)
{
m_target = GL_TEXTURE_3D;
}
#endif // BGFX_CONFIG_RENDERER_OPENGL|BGFX_CONFIG_RENDERER_OPENGLES3
else
{
m_target = GL_TEXTURE_2D;
}
GL_CHECK(glGenTextures(1, &m_id) );
BX_CHECK(0 != m_id, "Failed to generate texture id.");
GL_CHECK(glBindTexture(m_target, m_id) );
const TextureFormatInfo& tfi = s_textureFormat[tc.m_format];
GLenum internalFmt = tfi.m_internalFmt;
m_fmt = tfi.m_fmt;
m_type = tfi.m_type;
m_compressed = tc.m_format < TextureFormat::Unknown;
GLenum target = m_target;
if (tc.m_cubeMap)
{
target = GL_TEXTURE_CUBE_MAP_POSITIVE_X;
}
uint32_t bpp = tfi.m_bpp;
uint8_t* data = NULL != tc.m_mem ? tc.m_mem->data : NULL;
uint32_t min = m_compressed ? 4 : 1;
bool swizzle = GL_RGBA == m_fmt;
#if BGFX_CONFIG_RENDERER_OPENGL
if (swizzle
&& s_renderCtx.m_textureSwizzleSupport)
{
swizzle = false;
GLint swizzleMask[] = { GL_BLUE, GL_GREEN, GL_RED, GL_ALPHA };
GL_CHECK(glTexParameteriv(GL_TEXTURE_2D, GL_TEXTURE_SWIZZLE_RGBA, swizzleMask) );
}
#endif // BGFX_CONFIG_RENDERER_OPENGL
for (uint8_t side = 0, numSides = tc.m_cubeMap ? 6 : 1; side < numSides; ++side)
{
uint32_t width = tc.m_width;
uint32_t height = tc.m_height;
uint32_t depth = tc.m_depth;
for (uint32_t lod = 0, num = tc.m_numMips; lod < num; ++lod)
{
width = uint32_max(width, min);
height = uint32_max(height, min);
depth = uint32_max(1, depth);
uint32_t size = width*height*bpp/8;
if (m_compressed)
{
compressedTexImage(target+side
, lod
, internalFmt
, width
, height
, depth
, 0
, size
, data
);
}
else
{
if (NULL != data
&& swizzle)
{
rgbaToBgra(data, width, height);
}
texImage(target+side
, lod
, internalFmt
, width
, height
, depth
, 0
, m_fmt
, m_type
, data
);
}
if (NULL != data)
{
data += size;
}
width >>= 1;
height >>= 1;
depth >>= 1;
}
}
if (NULL != tc.m_mem)
{
release(tc.m_mem);
}
}
else
{
//
}
}
GL_CHECK(glTexParameteri(m_target, GL_TEXTURE_WRAP_S, s_textureAddress[(_flags&BGFX_TEXTURE_U_MASK)>>BGFX_TEXTURE_U_SHIFT]) );
GL_CHECK(glTexParameteri(m_target, GL_TEXTURE_WRAP_T, s_textureAddress[(_flags&BGFX_TEXTURE_V_MASK)>>BGFX_TEXTURE_V_SHIFT]) );
#if BGFX_CONFIG_RENDERER_OPENGL
if (m_target == GL_TEXTURE_3D)
{
GL_CHECK(glTexParameteri(m_target, GL_TEXTURE_WRAP_R, s_textureAddress[(_flags&BGFX_TEXTURE_W_MASK)>>BGFX_TEXTURE_W_SHIFT]) );
}
#endif // BGFX_CONFIG_RENDERER_OPENGL
GL_CHECK(glTexParameteri(m_target, GL_TEXTURE_MIN_FILTER, s_textureFilter[(_flags&BGFX_TEXTURE_MIN_MASK)>>BGFX_TEXTURE_MIN_SHIFT]) );
GL_CHECK(glTexParameteri(m_target, GL_TEXTURE_MAG_FILTER, s_textureFilter[(_flags&BGFX_TEXTURE_MAG_MASK)>>BGFX_TEXTURE_MAG_SHIFT]) );
GL_CHECK(glTexParameteri(m_target, GL_TEXTURE_MIN_FILTER, 1 < numMips ? GL_LINEAR_MIPMAP_LINEAR : GL_LINEAR) );
if (0 != (_flags & (BGFX_TEXTURE_MIN_ANISOTROPIC|BGFX_TEXTURE_MAG_ANISOTROPIC) )
&& 0.0f < s_renderCtx.m_maxAnisotropy)
{
GL_CHECK(glTexParameterf(m_target, GL_TEXTURE_MAX_ANISOTROPY_EXT, s_renderCtx.m_maxAnisotropy) );
}
GL_CHECK(glBindTexture(m_target, 0) );
}
void Texture::createColor(uint32_t _width, uint32_t _height, GLenum _min, GLenum _mag)
{
GLenum internalFormat = /*_fp ? GL_RGBA16F_ARB :*/ GL_RGBA;
GLenum type = /*_fp ? GL_HALF_FLOAT_ARB :*/ GL_UNSIGNED_BYTE;
m_target = GL_TEXTURE_2D;
GL_CHECK(glGenTextures(1, &m_id) );
BX_CHECK(0 != m_id, "Failed to generate texture id.");
GL_CHECK(glBindTexture(m_target, m_id) );
GL_CHECK(glTexParameteri(m_target, GL_TEXTURE_MIN_FILTER, _min) );
GL_CHECK(glTexParameteri(m_target, GL_TEXTURE_MAG_FILTER, _mag) );
GL_CHECK(glTexParameteri(m_target, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE) );
GL_CHECK(glTexParameteri(m_target, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE) );
GL_CHECK(glTexImage2D(m_target
, 0
, internalFormat
, _width
, _height
, 0
, GL_RGBA
, type
, NULL
) );
GL_CHECK(glBindTexture(m_target, 0) );
}
void Texture::createDepth(uint32_t _width, uint32_t _height)
{
m_target = GL_TEXTURE_2D;
GL_CHECK(glGenTextures(1, &m_id) );
BX_CHECK(0 != m_id, "Failed to generate texture id.");
GL_CHECK(glBindTexture(m_target, m_id) );
// GL_CHECK(glTexParameteri(m_target, GL_TEXTURE_COMPARE_MODE, GL_NONE) );
// GL_CHECK(glTexParameteri(m_target, GL_DEPTH_TEXTURE_MODE, GL_NONE) );
GL_CHECK(glTexParameteri(m_target, GL_TEXTURE_MIN_FILTER, GL_LINEAR) );
GL_CHECK(glTexParameteri(m_target, GL_TEXTURE_MAG_FILTER, GL_LINEAR) );
GL_CHECK(glTexParameteri(m_target, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE) );
GL_CHECK(glTexParameteri(m_target, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE) );
// OpenGL ES 2.0 doesn't support GL_DEPTH_COMPONENT... this will fail.
GL_CHECK(glTexImage2D(m_target
, 0
, GL_DEPTH_COMPONENT
, _width
, _height
, 0
, GL_DEPTH_COMPONENT
, GL_FLOAT
, NULL
) );
GL_CHECK(glBindTexture(m_target, 0) );
}
void Texture::destroy()
{
if (0 != m_id)
{
GL_CHECK(glBindTexture(m_target, 0) );
GL_CHECK(glDeleteTextures(1, &m_id) );
m_id = 0;
}
}
void Texture::update(uint8_t _side, uint8_t _mip, const Rect& _rect, uint16_t _z, uint16_t _depth, const Memory* _mem)
{
GL_CHECK(glBindTexture(m_target, m_id) );
GL_CHECK(glPixelStorei(GL_UNPACK_ALIGNMENT, 1) );
switch (m_target)
{
case GL_TEXTURE_2D:
if (m_compressed)
{
GL_CHECK(glCompressedTexSubImage2D(m_target
, _mip
, _rect.m_x
, _rect.m_y
, _rect.m_width
, _rect.m_height
, m_fmt
, _mem->size
, _mem->data
) );
}
else
{
GL_CHECK(glTexSubImage2D(m_target
, _mip
, _rect.m_x
, _rect.m_y
, _rect.m_width
, _rect.m_height
, m_fmt
, m_type
, _mem->data
) );
}
break;
case GL_TEXTURE_CUBE_MAP:
if (m_compressed)
{
GL_CHECK(glCompressedTexSubImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X+_side
, _mip
, _rect.m_x
, _rect.m_y
, _rect.m_width
, _rect.m_height
, m_fmt
, _mem->size
, _mem->data
) );
}
else
{
GL_CHECK(glTexSubImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X+_side
, _mip
, _rect.m_x
, _rect.m_y
, _rect.m_width
, _rect.m_height
, m_fmt
, m_type
, _mem->data
) );
}
break;
#if BGFX_CONFIG_RENDERER_OPENGL
case GL_TEXTURE_3D:
if (m_compressed)
{
GL_CHECK(glCompressedTexSubImage3D(m_target
, _mip
, _rect.m_x
, _rect.m_y
, _z
, _rect.m_width
, _rect.m_height
, _depth
, m_fmt
, _mem->size
, _mem->data
) );
}
else
{
GL_CHECK(glTexSubImage3D(m_target
, _mip
, _rect.m_x
, _rect.m_y
, _z
, _rect.m_width
, _rect.m_height
, _depth
, m_fmt
, m_type
, _mem->data
) );
}
break;
#endif // BGFX_CONFIG_RENDERER_OPENGL
}
}
void RenderTarget::create(uint16_t _width, uint16_t _height, uint32_t _flags, uint32_t _textureFlags)
{
BX_TRACE("Create render target %dx%d 0x%02x", _width, _height, _flags);
m_width = _width;
m_height = _height;
uint32_t msaa = (_flags&BGFX_RENDER_TARGET_MSAA_MASK)>>BGFX_RENDER_TARGET_MSAA_SHIFT;
m_msaa = uint32_min(s_renderCtx.m_maxMsaa, msaa == 0 ? 0 : 1<<msaa);
uint32_t colorFormat = (_flags&BGFX_RENDER_TARGET_COLOR_MASK)>>BGFX_RENDER_TARGET_COLOR_SHIFT;
uint32_t depthFormat = (_flags&BGFX_RENDER_TARGET_DEPTH_MASK)>>BGFX_RENDER_TARGET_DEPTH_SHIFT;
GLenum minFilter = s_textureFilter[(_textureFlags&BGFX_TEXTURE_MIN_MASK)>>BGFX_TEXTURE_MIN_SHIFT];
GLenum magFilter = s_textureFilter[(_textureFlags&BGFX_TEXTURE_MAG_MASK)>>BGFX_TEXTURE_MAG_SHIFT];
if (0 < colorFormat)
{
m_color.createColor(_width, _height, minFilter, magFilter);
}
#if 0 // GLES can't create texture with depth texture format...
if (0 < depthFormat)
{
m_depth.createDepth(_width, _height);
}
#endif //
#if BGFX_CONFIG_RENDERER_OPENGL|BGFX_CONFIG_RENDERER_OPENGLES3
if (0 < colorFormat
&& 0 != m_msaa)
{
GL_CHECK(glGenFramebuffers(2, m_fbo) );
GL_CHECK(glBindFramebuffer(GL_FRAMEBUFFER, m_fbo[0]) );
GL_CHECK(glGenRenderbuffers(1, &m_colorRbo) );
BX_CHECK(0 != m_colorRbo, "Failed to generate color renderbuffer id.");
GL_CHECK(glBindRenderbuffer(GL_RENDERBUFFER, m_colorRbo) );
GL_CHECK(glRenderbufferStorageMultisample(GL_RENDERBUFFER, m_msaa, GL_RGBA8, _width, _height) );
GL_CHECK(glBindRenderbuffer(GL_RENDERBUFFER, 0) );
GL_CHECK(glFramebufferRenderbuffer(GL_FRAMEBUFFER
, GL_COLOR_ATTACHMENT0
, GL_RENDERBUFFER
, m_colorRbo
) );
GL_CHECK(glBindFramebuffer(GL_FRAMEBUFFER, m_fbo[1]) );
}
else
#endif // BGFX_CONFIG_RENDERER_OPENGL|BGFX_CONFIG_RENDERER_OPENGLES3
{
GL_CHECK(glGenFramebuffers(1, m_fbo) );
GL_CHECK(glBindFramebuffer(GL_FRAMEBUFFER, m_fbo[0]) );
}
if (0 < colorFormat)
{
GL_CHECK(glFramebufferTexture2D(GL_FRAMEBUFFER
, GL_COLOR_ATTACHMENT0
, m_color.m_target
, m_color.m_id
, 0
) );
}
BX_CHECK(GL_FRAMEBUFFER_COMPLETE == glCheckFramebufferStatus(GL_FRAMEBUFFER)
, "glCheckFramebufferStatus failed 0x%08x"
, glCheckFramebufferStatus(GL_FRAMEBUFFER)
);
if (0 < depthFormat)
{
GL_CHECK(glBindFramebuffer(GL_FRAMEBUFFER, m_fbo[0]) );
if (0 < colorFormat)
{
#if BGFX_CONFIG_RENDERER_OPENGL
GLenum depthComponent = GL_DEPTH_COMPONENT32;
#else
GLenum depthComponent = GL_DEPTH_COMPONENT16;
#endif // BGFX_CONFIG_RENDERER_OPENGL
GL_CHECK(glGenRenderbuffers(1, &m_depthRbo) );
BX_CHECK(0 != m_depthRbo, "Failed to generate renderbuffer id.");
GL_CHECK(glBindRenderbuffer(GL_RENDERBUFFER, m_depthRbo) );
#if BGFX_CONFIG_RENDERER_OPENGL|BGFX_CONFIG_RENDERER_OPENGLES3
if (0 != m_msaa)
{
GL_CHECK(glRenderbufferStorageMultisample(GL_RENDERBUFFER, m_msaa, depthComponent, _width, _height) );
}
else
#endif // BGFX_CONFIG_RENDERER_OPENGL|BGFX_CONFIG_RENDERER_OPENGLES3
{
GL_CHECK(glRenderbufferStorage(GL_RENDERBUFFER, depthComponent, _width, _height) );
}
GL_CHECK(glBindRenderbuffer(GL_RENDERBUFFER, 0) );
GL_CHECK(glFramebufferRenderbuffer(GL_FRAMEBUFFER
, GL_DEPTH_ATTACHMENT
, GL_RENDERBUFFER
, m_depthRbo
) );
}
else
{
GL_CHECK(glFramebufferTexture2D(GL_FRAMEBUFFER
, GL_DEPTH_ATTACHMENT
, m_depth.m_target
, m_depth.m_id
, 0
) );
}
BX_CHECK(GL_FRAMEBUFFER_COMPLETE == glCheckFramebufferStatus(GL_FRAMEBUFFER)
, "glCheckFramebufferStatus failed 0x%08x"
, glCheckFramebufferStatus(GL_FRAMEBUFFER)
);
}
GL_CHECK(glBindFramebuffer(GL_FRAMEBUFFER, s_renderCtx.m_backBufferFbo) );
}
void RenderTarget::destroy()
{
GL_CHECK(glDeleteFramebuffers(0 == m_fbo[1] ? 1 : 2, m_fbo) );
memset(m_fbo, 0, sizeof(m_fbo) );
if (0 != m_colorRbo)
{
GL_CHECK(glDeleteRenderbuffers(1, &m_colorRbo) );
m_colorRbo = 0;
}
if (0 != m_depthRbo)
{
GL_CHECK(glDeleteRenderbuffers(1, &m_depthRbo) );
m_depthRbo = 0;
}
m_color.destroy();
m_depth.destroy();
}
void RenderTarget::resolve()
{
#if BGFX_CONFIG_RENDERER_OPENGL|BGFX_CONFIG_RENDERER_OPENGLES3
BX_CHECK(0 != m_fbo[1], "Can resolve without two framebuffers.");
GL_CHECK(glBindFramebuffer(GL_READ_FRAMEBUFFER, m_fbo[0]) );
GL_CHECK(glBindFramebuffer(GL_DRAW_FRAMEBUFFER, m_fbo[1]) );
GL_CHECK(glBlitFramebuffer(0
, 0
, m_width
, m_height
, 0
, 0
, m_width
, m_height
, GL_COLOR_BUFFER_BIT
, GL_LINEAR
) );
GL_CHECK(glBindFramebuffer(GL_FRAMEBUFFER, s_renderCtx.m_backBufferFbo) );
#endif // BGFX_CONFIG_RENDERER_OPENGL|BGFX_CONFIG_RENDERER_OPENGLES3
}
void ConstantBuffer::commit()
{
reset();
do
{
uint32_t opcode = read();
if (UniformType::End == opcode)
{
break;
}
UniformType::Enum type;
uint16_t ignore;
uint16_t num;
uint16_t copy;
decodeOpcode(opcode, type, ignore, num, copy);
const char* data;
if (copy)
{
data = read(g_uniformTypeSize[type]*num);
}
else
{
memcpy(&data, read(sizeof(void*) ), sizeof(void*) );
}
uint32_t loc = read();
#define CASE_IMPLEMENT_UNIFORM(_uniform, _glsuffix, _dxsuffix, _type) \
case UniformType::_uniform: \
{ \
_type* value = (_type*)data; \
GL_CHECK(glUniform##_glsuffix(loc, num, value) ); \
} \
break;
#define CASE_IMPLEMENT_UNIFORM_T(_uniform, _glsuffix, _dxsuffix, _type) \
case UniformType::_uniform: \
{ \
_type* value = (_type*)data; \
GL_CHECK(glUniform##_glsuffix(loc, num, GL_FALSE, value) ); \
} \
break;
switch (type)
{
// case ConstantType::Uniform1iv:
// {
// int* value = (int*)data;
// BX_TRACE("Uniform1iv sampler %d, loc %d (num %d, copy %d)", *value, loc, num, copy);
// GL_CHECK(glUniform1iv(loc, num, value) );
// }
// break;
CASE_IMPLEMENT_UNIFORM(Uniform1i, 1iv, I, int);
CASE_IMPLEMENT_UNIFORM(Uniform1f, 1fv, F, float);
CASE_IMPLEMENT_UNIFORM(Uniform1iv, 1iv, I, int);
CASE_IMPLEMENT_UNIFORM(Uniform1fv, 1fv, F, float);
CASE_IMPLEMENT_UNIFORM(Uniform2fv, 2fv, F, float);
CASE_IMPLEMENT_UNIFORM(Uniform3fv, 3fv, F, float);
CASE_IMPLEMENT_UNIFORM(Uniform4fv, 4fv, F, float);
CASE_IMPLEMENT_UNIFORM_T(Uniform3x3fv, Matrix3fv, F, float);
CASE_IMPLEMENT_UNIFORM_T(Uniform4x4fv, Matrix4fv, F, float);
case UniformType::End:
break;
default:
BX_TRACE("%4d: INVALID 0x%08x, t %d, l %d, n %d, c %d", m_pos, opcode, type, loc, num, copy);
break;
}
#undef CASE_IMPLEMENT_UNIFORM
#undef CASE_IMPLEMENT_UNIFORM_T
} while (true);
}
void TextVideoMemBlitter::setup()
{
if (0 != s_renderCtx.m_vao)
{
GL_CHECK(glBindVertexArray(s_renderCtx.m_vao) );
}
uint32_t width = s_renderCtx.m_resolution.m_width;
uint32_t height = s_renderCtx.m_resolution.m_height;
GL_CHECK(glBindFramebuffer(GL_FRAMEBUFFER, 0) );
GL_CHECK(glViewport(0, 0, width, height) );
GL_CHECK(glDisable(GL_STENCIL_TEST) );
GL_CHECK(glDisable(GL_DEPTH_TEST) );
GL_CHECK(glDepthFunc(GL_ALWAYS) );
GL_CHECK(glDisable(GL_CULL_FACE) );
GL_CHECK(glDisable(GL_BLEND) );
GL_CHECK(glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE) );
Program& program = s_renderCtx.m_program[m_program.idx];
GL_CHECK(glUseProgram(program.m_id) );
GL_CHECK(glUniform1i(program.m_sampler[0], 0) );
float proj[16];
mtxOrtho(proj, 0.0f, (float)width, (float)height, 0.0f, 0.0f, 1000.0f);
GL_CHECK(glUniformMatrix4fv(program.m_predefined[0].m_loc
, 1
, GL_FALSE
, proj
) );
GL_CHECK(glActiveTexture(GL_TEXTURE0) );
GL_CHECK(glBindTexture(GL_TEXTURE_2D, s_renderCtx.m_textures[m_texture.idx].m_id) );
}
void TextVideoMemBlitter::render(uint32_t _numIndices)
{
uint32_t numVertices = _numIndices*4/6;
s_renderCtx.m_indexBuffers[m_ib->handle.idx].update(0, _numIndices*2, m_ib->data);
s_renderCtx.m_vertexBuffers[m_vb->handle.idx].update(0, numVertices*m_decl.m_stride, m_vb->data);
VertexBuffer& vb = s_renderCtx.m_vertexBuffers[m_vb->handle.idx];
GL_CHECK(glBindBuffer(GL_ARRAY_BUFFER, vb.m_id) );
IndexBuffer& ib = s_renderCtx.m_indexBuffers[m_ib->handle.idx];
GL_CHECK(glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ib.m_id) );
Program& program = s_renderCtx.m_program[m_program.idx];
program.bindAttributes(m_decl, 0);
GL_CHECK(glDrawElements(GL_TRIANGLES
, _numIndices
, GL_UNSIGNED_SHORT
, (void*)0
) );
}
void Context::flip()
{
s_renderCtx.flip();
}
GLint glGet(GLenum _pname)
{
GLint result;
GL_CHECK(glGetIntegerv(_pname, &result) );
return result;
}
void Context::rendererInit()
{
s_renderCtx.init();
#if BGFX_CONFIG_DEBUG
GLint numCmpFormats;
GL_CHECK(glGetIntegerv(GL_NUM_COMPRESSED_TEXTURE_FORMATS, &numCmpFormats) );
BX_TRACE("GL_NUM_COMPRESSED_TEXTURE_FORMATS %d", numCmpFormats);
if (0 < numCmpFormats)
{
GLint* formats = (GLint*)alloca(sizeof(GLint)*numCmpFormats);
GL_CHECK(glGetIntegerv(GL_COMPRESSED_TEXTURE_FORMATS, formats) );
for (GLint ii = 0; ii < numCmpFormats; ++ii)
{
BX_TRACE("\t%3d: %8x", ii, formats[ii]);
}
}
# define GL_GET(_pname, _min) BX_TRACE(#_pname " %d (min: %d)", glGet(_pname), _min)
# if BX_PLATFORM_OSX
GL_GET(GL_MAX_FRAGMENT_UNIFORM_COMPONENTS, 16 * 4);
GL_GET(GL_MAX_VERTEX_UNIFORM_COMPONENTS, 128 * 4);
GL_GET(GL_MAX_VARYING_FLOATS, 8 * 4);
# else
GL_GET(GL_MAX_FRAGMENT_UNIFORM_VECTORS, 16);
GL_GET(GL_MAX_VERTEX_UNIFORM_VECTORS, 128);
GL_GET(GL_MAX_VARYING_VECTORS, 8);
# endif
GL_GET(GL_MAX_VERTEX_ATTRIBS, 8);
GL_GET(GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS, 8);
GL_GET(GL_MAX_CUBE_MAP_TEXTURE_SIZE, 16);
GL_GET(GL_MAX_TEXTURE_IMAGE_UNITS, 8);
GL_GET(GL_MAX_TEXTURE_SIZE, 64);
GL_GET(GL_MAX_VERTEX_TEXTURE_IMAGE_UNITS, 0);
GL_GET(GL_MAX_RENDERBUFFER_SIZE, 1);
const char* version = (const char*)glGetString(GL_SHADING_LANGUAGE_VERSION);
GL_CHECK(;); // check if error is generated by glGetString.
BX_TRACE("GLSL version: %s", version);
#endif // BGFX_CONFIG_DEBUG
const char* extensions = (const char*)glGetString(GL_EXTENSIONS);
glGetError(); // ignore error if glGetString returns NULL.
if (NULL != extensions)
{
char name[1024];
const char* pos = extensions;
const char* end = extensions + strlen(extensions);
while (pos < end)
{
uint32_t len;
const char* space = strchr(pos, ' ');
if (NULL != space)
{
len = uint32_min(sizeof(name), (uint32_t)(space - pos) );
}
else
{
len = uint32_min(sizeof(name), (uint32_t)strlen(pos) );
}
strncpy(name, pos, len);
name[len] = '\0';
bool supported = false;
for (uint32_t ii = 0; ii < Extension::Count; ++ii)
{
Extension& extension = s_extension[ii];
if (!extension.m_supported
&& extension.m_initialize)
{
if (0 == strcmp(name, extension.m_name) )
{
extension.m_supported = true;
supported = true;
break;
}
}
}
BX_TRACE("GL_EXTENSION%s: %s", supported ? " (supported)" : "", name);
BX_UNUSED(supported);
pos += len+1;
}
BX_TRACE("Supported extensions:");
for (uint32_t ii = 0; ii < Extension::Count; ++ii)
{
if (s_extension[ii].m_supported)
{
BX_TRACE("\t%2d: %s", ii, s_extension[ii].m_name);
}
}
}
bool bc123Supported = s_extension[Extension::EXT_texture_compression_s3tc].m_supported;
s_textureFormat[TextureFormat::BC1].m_supported = bc123Supported || s_extension[Extension::EXT_texture_compression_dxt1].m_supported;
s_textureFormat[TextureFormat::BC2].m_supported = bc123Supported || s_extension[Extension::CHROMIUM_texture_compression_dxt3].m_supported;
s_textureFormat[TextureFormat::BC3].m_supported = bc123Supported || s_extension[Extension::CHROMIUM_texture_compression_dxt5].m_supported;
bool bc45Supported = s_extension[Extension::EXT_texture_compression_latc].m_supported
|| s_extension[Extension::EXT_texture_compression_rgtc].m_supported
;
s_textureFormat[TextureFormat::BC4].m_supported = bc45Supported;
s_textureFormat[TextureFormat::BC5].m_supported = bc45Supported;
s_renderCtx.m_vaoSupport = !!BGFX_CONFIG_RENDERER_OPENGLES3
|| s_extension[Extension::ARB_vertex_array_object].m_supported
|| s_extension[Extension::OES_vertex_array_object].m_supported
;
s_renderCtx.m_programBinarySupport = !!BGFX_CONFIG_RENDERER_OPENGLES3
|| s_extension[Extension::ARB_get_program_binary].m_supported
|| s_extension[Extension::OES_get_program_binary].m_supported
;
s_renderCtx.m_textureSwizzleSupport = false
|| s_extension[Extension::ARB_texture_swizzle].m_supported
|| s_extension[Extension::EXT_texture_swizzle].m_supported
;
if (s_extension[Extension::EXT_texture_filter_anisotropic].m_supported)
{
GL_CHECK(glGetFloatv(GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT, &s_renderCtx.m_maxAnisotropy) );
}
#if BGFX_CONFIG_RENDERER_OPENGL|BGFX_CONFIG_RENDERER_OPENGLES3
if (s_extension[Extension::ARB_texture_multisample].m_supported)
{
GL_CHECK(glGetIntegerv(GL_MAX_SAMPLES, &s_renderCtx.m_maxMsaa) );
}
#endif // BGFX_CONFIG_RENDERER_OPENGL|BGFX_CONFIG_RENDERER_OPENGLES3
if (s_extension[Extension::EXT_texture_format_BGRA8888].m_supported
|| s_extension[Extension::EXT_bgra].m_supported)
{
s_textureFormat[TextureFormat::BGRX8].m_fmt = GL_BGRA_EXT;
s_textureFormat[TextureFormat::BGRA8].m_fmt = GL_BGRA_EXT;
// Mixing GLES and GL extensions here. OpenGL EXT_bgra wants
// format to be BGRA but internal format to stay RGBA, but
// EXT_texture_format_BGRA8888 wants both format and internal
// format to be BGRA.
//
// Reference:
// https://www.khronos.org/registry/gles/extensions/EXT/EXT_texture_format_BGRA8888.txt
// https://www.opengl.org/registry/specs/EXT/bgra.txt
if (!s_extension[Extension::EXT_bgra].m_supported)
{
s_textureFormat[TextureFormat::BGRX8].m_internalFmt = GL_BGRA_EXT;
s_textureFormat[TextureFormat::BGRA8].m_internalFmt = GL_BGRA_EXT;
}
}
if (s_extension[Extension::EXT_texture_compression_rgtc].m_supported)
{
s_textureFormat[TextureFormat::BC4].m_fmt = GL_COMPRESSED_RED_RGTC1_EXT;
s_textureFormat[TextureFormat::BC4].m_internalFmt = GL_COMPRESSED_RED_RGTC1_EXT;
s_textureFormat[TextureFormat::BC5].m_fmt = GL_COMPRESSED_RED_GREEN_RGTC2_EXT;
s_textureFormat[TextureFormat::BC5].m_internalFmt = GL_COMPRESSED_RED_GREEN_RGTC2_EXT;
}
#if !BGFX_CONFIG_RENDERER_OPENGLES3
if (NULL != glVertexAttribDivisor
&& NULL != glDrawArraysInstanced
&& NULL != glDrawElementsInstanced)
{
s_vertexAttribDivisor = glVertexAttribDivisor;
s_drawArraysInstanced = glDrawArraysInstanced;
s_drawElementsInstanced = glDrawElementsInstanced;
}
else
{
s_vertexAttribDivisor = stubVertexAttribDivisor;
s_drawArraysInstanced = stubDrawArraysInstanced;
s_drawElementsInstanced = stubDrawElementsInstanced;
}
#endif // !BGFX_CONFIG_RENDERER_OPENGLES3
if (s_renderCtx.m_vaoSupport)
{
GL_CHECK(glGenVertexArrays(1, &s_renderCtx.m_vao) );
}
#if BGFX_CONFIG_RENDERER_OPENGL >= 31
s_textureFormat[TextureFormat::L8].m_internalFmt = GL_R8;
s_textureFormat[TextureFormat::L8].m_fmt = GL_RED;
#endif // BGFX_CONFIG_RENDERER_OPENGL >= 31
}
void Context::rendererShutdown()
{
if (s_renderCtx.m_vaoSupport)
{
GL_CHECK(glBindVertexArray(0) );
GL_CHECK(glDeleteVertexArrays(1, &s_renderCtx.m_vao) );
s_renderCtx.m_vao = 0;
}
s_renderCtx.shutdown();
}
void Context::rendererCreateIndexBuffer(IndexBufferHandle _handle, Memory* _mem)
{
s_renderCtx.m_indexBuffers[_handle.idx].create(_mem->size, _mem->data);
}
void Context::rendererDestroyIndexBuffer(IndexBufferHandle _handle)
{
s_renderCtx.m_indexBuffers[_handle.idx].destroy();
}
void Context::rendererCreateVertexDecl(VertexDeclHandle _handle, const VertexDecl& _decl)
{
VertexDecl& decl = s_renderCtx.m_vertexDecls[_handle.idx];
memcpy(&decl, &_decl, sizeof(VertexDecl) );
dump(decl);
}
void Context::rendererDestroyVertexDecl(VertexDeclHandle /*_handle*/)
{
}
void Context::rendererCreateVertexBuffer(VertexBufferHandle _handle, Memory* _mem, VertexDeclHandle _declHandle)
{
s_renderCtx.m_vertexBuffers[_handle.idx].create(_mem->size, _mem->data, _declHandle);
}
void Context::rendererDestroyVertexBuffer(VertexBufferHandle _handle)
{
s_renderCtx.m_vertexBuffers[_handle.idx].destroy();
}
void Context::rendererCreateDynamicIndexBuffer(IndexBufferHandle _handle, uint32_t _size)
{
s_renderCtx.m_indexBuffers[_handle.idx].create(_size, NULL);
}
void Context::rendererUpdateDynamicIndexBuffer(IndexBufferHandle _handle, uint32_t _offset, uint32_t _size, Memory* _mem)
{
s_renderCtx.m_indexBuffers[_handle.idx].update(_offset, uint32_min(_size, _mem->size), _mem->data);
}
void Context::rendererDestroyDynamicIndexBuffer(IndexBufferHandle _handle)
{
s_renderCtx.m_indexBuffers[_handle.idx].destroy();
}
void Context::rendererCreateDynamicVertexBuffer(VertexBufferHandle _handle, uint32_t _size)
{
VertexDeclHandle decl = BGFX_INVALID_HANDLE;
s_renderCtx.m_vertexBuffers[_handle.idx].create(_size, NULL, decl);
}
void Context::rendererUpdateDynamicVertexBuffer(VertexBufferHandle _handle, uint32_t _offset, uint32_t _size, Memory* _mem)
{
s_renderCtx.m_vertexBuffers[_handle.idx].update(_offset, uint32_min(_size, _mem->size), _mem->data);
}
void Context::rendererDestroyDynamicVertexBuffer(VertexBufferHandle _handle)
{
s_renderCtx.m_vertexBuffers[_handle.idx].destroy();
}
void Context::rendererCreateVertexShader(VertexShaderHandle _handle, Memory* _mem)
{
s_renderCtx.m_vertexShaders[_handle.idx].create(GL_VERTEX_SHADER, _mem);
}
void Context::rendererDestroyVertexShader(VertexShaderHandle _handle)
{
s_renderCtx.m_vertexShaders[_handle.idx].destroy();
}
void Context::rendererCreateFragmentShader(FragmentShaderHandle _handle, Memory* _mem)
{
s_renderCtx.m_fragmentShaders[_handle.idx].create(GL_FRAGMENT_SHADER, _mem);
}
void Context::rendererDestroyFragmentShader(FragmentShaderHandle _handle)
{
s_renderCtx.m_fragmentShaders[_handle.idx].destroy();
}
void Context::rendererCreateProgram(ProgramHandle _handle, VertexShaderHandle _vsh, FragmentShaderHandle _fsh)
{
s_renderCtx.m_program[_handle.idx].create(s_renderCtx.m_vertexShaders[_vsh.idx], s_renderCtx.m_fragmentShaders[_fsh.idx]);
}
void Context::rendererDestroyProgram(FragmentShaderHandle _handle)
{
s_renderCtx.m_program[_handle.idx].destroy();
}
void Context::rendererCreateTexture(TextureHandle _handle, Memory* _mem, uint32_t _flags)
{
s_renderCtx.m_textures[_handle.idx].create(_mem, _flags);
}
void Context::rendererUpdateTextureBegin(TextureHandle _handle, uint8_t _side, uint8_t _mip)
{
}
void Context::rendererUpdateTexture(TextureHandle _handle, uint8_t _side, uint8_t _mip, const Rect& _rect, uint16_t _z, uint16_t _depth, const Memory* _mem)
{
s_renderCtx.m_textures[_handle.idx].update(_side, _mip, _rect, _z, _depth, _mem);
}
void Context::rendererUpdateTextureEnd()
{
}
void Context::rendererDestroyTexture(TextureHandle _handle)
{
s_renderCtx.m_textures[_handle.idx].destroy();
}
void Context::rendererCreateRenderTarget(RenderTargetHandle _handle, uint16_t _width, uint16_t _height, uint32_t _flags, uint32_t _textureFlags)
{
s_renderCtx.m_renderTargets[_handle.idx].create(_width, _height, _flags, _textureFlags);
}
void Context::rendererDestroyRenderTarget(RenderTargetHandle _handle)
{
s_renderCtx.m_renderTargets[_handle.idx].destroy();
}
void Context::rendererCreateUniform(UniformHandle _handle, UniformType::Enum _type, uint16_t _num, const char* _name)
{
uint32_t size = g_uniformTypeSize[_type]*_num;
void* data = g_realloc(NULL, size);
memset(data, 0, size);
s_renderCtx.m_uniforms[_handle.idx] = data;
s_renderCtx.m_uniformReg.add(_name, s_renderCtx.m_uniforms[_handle.idx]);
}
void Context::rendererDestroyUniform(UniformHandle _handle)
{
g_free(s_renderCtx.m_uniforms[_handle.idx]);
}
void Context::rendererSaveScreenShot(Memory* _mem)
{
s_renderCtx.saveScreenShot(_mem);
}
void Context::rendererUpdateUniform(uint16_t _loc, const void* _data, uint32_t _size)
{
memcpy(s_renderCtx.m_uniforms[_loc], _data, _size);
}
void Context::rendererSubmit()
{
const GLuint defaultVao = s_renderCtx.m_vaoSupport;
if (0 != defaultVao)
{
GL_CHECK(glBindVertexArray(defaultVao) );
}
GL_CHECK(glBindFramebuffer(GL_FRAMEBUFFER, 0) );
s_renderCtx.updateResolution(m_render->m_resolution);
int64_t elapsed = -bx::getHPCounter();
int64_t captureElapsed = 0;
#if BGFX_CONFIG_RENDERER_OPENGL
if (m_render->m_debug & (BGFX_DEBUG_IFH|BGFX_DEBUG_STATS) )
{
s_renderCtx.m_queries.begin(0, GL_TIME_ELAPSED);
}
#endif // BGFX_CONFIG_RENDERER_OPENGL
if (0 < m_render->m_iboffset)
{
TransientIndexBuffer* ib = m_render->m_transientIb;
s_renderCtx.m_indexBuffers[ib->handle.idx].update(0, m_render->m_iboffset, ib->data);
}
if (0 < m_render->m_vboffset)
{
TransientVertexBuffer* vb = m_render->m_transientVb;
s_renderCtx.m_vertexBuffers[vb->handle.idx].update(0, m_render->m_vboffset, vb->data);
}
m_render->sort();
RenderState currentState;
currentState.reset();
currentState.m_flags = BGFX_STATE_NONE;
currentState.m_stencil = packStencil(BGFX_STENCIL_NONE, BGFX_STENCIL_NONE);
Matrix4 viewProj[BGFX_CONFIG_MAX_VIEWS];
for (uint32_t ii = 0; ii < BGFX_CONFIG_MAX_VIEWS; ++ii)
{
mtxMul(viewProj[ii].val, m_render->m_view[ii].val, m_render->m_proj[ii].val);
}
uint16_t programIdx = invalidHandle;
SortKey key;
uint8_t view = 0xff;
RenderTargetHandle rt = BGFX_INVALID_HANDLE;
int32_t height = m_render->m_resolution.m_height;
float alphaRef = 0.0f;
GLenum primType = m_render->m_debug&BGFX_DEBUG_WIREFRAME ? GL_LINES : GL_TRIANGLES;
uint32_t primNumVerts = 3;
uint32_t baseVertex = 0;
GLuint currentVao = 0;
uint32_t statsNumPrimsSubmitted = 0;
uint32_t statsNumIndices = 0;
uint32_t statsNumInstances = 0;
uint32_t statsNumPrimsRendered = 0;
if (0 == (m_render->m_debug&BGFX_DEBUG_IFH) )
{
GL_CHECK(glBindFramebuffer(GL_FRAMEBUFFER, s_renderCtx.m_backBufferFbo) );
for (uint32_t item = 0, numItems = m_render->m_num; item < numItems; ++item)
{
key.decode(m_render->m_sortKeys[item]);
const RenderState& state = m_render->m_renderState[m_render->m_sortValues[item] ];
const uint64_t newFlags = state.m_flags;
uint64_t changedFlags = currentState.m_flags ^ state.m_flags;
currentState.m_flags = newFlags;
const uint64_t newStencil = state.m_stencil;
uint64_t changedStencil = currentState.m_stencil ^ state.m_stencil;
currentState.m_stencil = newStencil;
if (key.m_view != view)
{
currentState.clear();
changedFlags = BGFX_STATE_MASK;
changedStencil = packStencil(BGFX_STENCIL_MASK, BGFX_STENCIL_MASK);
currentState.m_flags = newFlags;
GREMEDY_SETMARKER("view");
view = key.m_view;
programIdx = invalidHandle;
if (m_render->m_rt[view].idx != rt.idx)
{
rt = m_render->m_rt[view];
height = s_renderCtx.setRenderTarget(rt, m_render->m_resolution.m_height);
}
Rect& rect = m_render->m_rect[view];
GL_CHECK(glViewport(rect.m_x, height-rect.m_height-rect.m_y, rect.m_width, rect.m_height) );
Clear& clear = m_render->m_clear[view];
if (BGFX_CLEAR_NONE != clear.m_flags)
{
GLuint flags = 0;
if (BGFX_CLEAR_COLOR_BIT & clear.m_flags)
{
flags |= GL_COLOR_BUFFER_BIT;
uint32_t rgba = clear.m_rgba;
float rr = (rgba>>24)/255.0f;
float gg = ( (rgba>>16)&0xff)/255.0f;
float bb = ( (rgba>>8)&0xff)/255.0f;
float aa = (rgba&0xff)/255.0f;
GL_CHECK(glClearColor(rr, gg, bb, aa) );
GL_CHECK(glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE) );
}
if (BGFX_CLEAR_DEPTH_BIT & clear.m_flags)
{
flags |= GL_DEPTH_BUFFER_BIT;
GL_CHECK(glClearDepth(clear.m_depth) );
GL_CHECK(glDepthMask(GL_TRUE) );
}
if (BGFX_CLEAR_STENCIL_BIT & clear.m_flags)
{
flags |= GL_STENCIL_BUFFER_BIT;
GL_CHECK(glClearStencil(clear.m_stencil) );
}
if (0 != flags)
{
GL_CHECK(glEnable(GL_SCISSOR_TEST) );
GL_CHECK(glScissor(rect.m_x, height-rect.m_height-rect.m_y, rect.m_width, rect.m_height) );
GL_CHECK(glClear(flags) );
GL_CHECK(glDisable(GL_SCISSOR_TEST) );
}
}
GL_CHECK(glDisable(GL_STENCIL_TEST) );
GL_CHECK(glEnable(GL_DEPTH_TEST) );
GL_CHECK(glDepthFunc(GL_LESS) );
GL_CHECK(glEnable(GL_CULL_FACE) );
GL_CHECK(glDisable(GL_BLEND) );
}
if (0 != changedStencil)
{
if (0 != newStencil)
{
GL_CHECK(glEnable(GL_STENCIL_TEST) );
uint32_t bstencil = unpackStencil(1, newStencil);
uint32_t frontAndBack = bstencil != BGFX_STENCIL_NONE && bstencil != unpackStencil(0, newStencil);
// uint32_t bchanged = unpackStencil(1, changedStencil);
// if (BGFX_STENCIL_FUNC_RMASK_MASK & bchanged)
// {
// uint32_t wmask = (bstencil&BGFX_STENCIL_FUNC_RMASK_MASK)>>BGFX_STENCIL_FUNC_RMASK_SHIFT;
// GL_CHECK(glStencilMask(wmask) );
// }
for (uint32_t ii = 0, num = frontAndBack+1; ii < num; ++ii)
{
uint32_t stencil = unpackStencil(ii, newStencil);
uint32_t changed = unpackStencil(ii, changedStencil);
GLenum face = s_stencilFace[frontAndBack+ii];
if ( (BGFX_STENCIL_TEST_MASK|BGFX_STENCIL_FUNC_REF_MASK|BGFX_STENCIL_FUNC_RMASK_MASK) & changed)
{
GLint ref = (stencil&BGFX_STENCIL_FUNC_REF_MASK)>>BGFX_STENCIL_FUNC_REF_SHIFT;
GLint mask = (stencil&BGFX_STENCIL_FUNC_RMASK_MASK)>>BGFX_STENCIL_FUNC_RMASK_SHIFT;
uint32_t func = (stencil&BGFX_STENCIL_TEST_MASK)>>BGFX_STENCIL_TEST_SHIFT;
GL_CHECK(glStencilFuncSeparate(face, s_stencilFunc[func], ref, mask));
}
if ( (BGFX_STENCIL_OP_FAIL_S_MASK|BGFX_STENCIL_OP_FAIL_Z_MASK|BGFX_STENCIL_OP_PASS_Z_MASK) & changed)
{
uint32_t sfail = (stencil&BGFX_STENCIL_OP_FAIL_S_MASK)>>BGFX_STENCIL_OP_FAIL_S_SHIFT;
uint32_t zfail = (stencil&BGFX_STENCIL_OP_FAIL_Z_MASK)>>BGFX_STENCIL_OP_FAIL_Z_SHIFT;
uint32_t zpass = (stencil&BGFX_STENCIL_OP_PASS_Z_MASK)>>BGFX_STENCIL_OP_PASS_Z_SHIFT;
GL_CHECK(glStencilOpSeparate(face, s_stencilOp[sfail], s_stencilOp[zfail], s_stencilOp[zpass]) );
}
}
}
else
{
GL_CHECK(glDisable(GL_STENCIL_TEST) );
}
}
if ( (BGFX_STATE_CULL_MASK|BGFX_STATE_DEPTH_WRITE|BGFX_STATE_DEPTH_TEST_MASK
|BGFX_STATE_ALPHA_MASK|BGFX_STATE_RGB_WRITE|BGFX_STATE_BLEND_MASK
|BGFX_STATE_ALPHA_REF_MASK|BGFX_STATE_PT_MASK|BGFX_STATE_POINT_SIZE_MASK
|BGFX_STATE_MSAA) & changedFlags)
{
if (BGFX_STATE_CULL_MASK & changedFlags)
{
if (BGFX_STATE_CULL_CW & newFlags)
{
GL_CHECK(glEnable(GL_CULL_FACE) );
GL_CHECK(glCullFace(GL_BACK) );
}
else if (BGFX_STATE_CULL_CCW & newFlags)
{
GL_CHECK(glEnable(GL_CULL_FACE) );
GL_CHECK(glCullFace(GL_FRONT) );
}
else
{
GL_CHECK(glDisable(GL_CULL_FACE) );
}
}
if (BGFX_STATE_DEPTH_WRITE & changedFlags)
{
GL_CHECK(glDepthMask(!!(BGFX_STATE_DEPTH_WRITE & newFlags) ) );
}
if (BGFX_STATE_DEPTH_TEST_MASK & changedFlags)
{
uint32_t func = (newFlags&BGFX_STATE_DEPTH_TEST_MASK)>>BGFX_STATE_DEPTH_TEST_SHIFT;
if (0 != func)
{
GL_CHECK(glEnable(GL_DEPTH_TEST) );
GL_CHECK(glDepthFunc(s_depthFunc[func]) );
}
else
{
GL_CHECK(glDisable(GL_DEPTH_TEST) );
}
}
if (BGFX_STATE_ALPHA_REF_MASK & changedFlags)
{
uint32_t ref = (newFlags&BGFX_STATE_ALPHA_REF_MASK)>>BGFX_STATE_ALPHA_REF_SHIFT;
alphaRef = ref/255.0f;
}
#if BGFX_CONFIG_RENDERER_OPENGL
if ( (BGFX_STATE_PT_POINTS|BGFX_STATE_POINT_SIZE_MASK) & changedFlags)
{
float pointSize = (float)(uint32_max(1, (newFlags&BGFX_STATE_POINT_SIZE_MASK)>>BGFX_STATE_POINT_SIZE_SHIFT) );
GL_CHECK(glPointSize(pointSize) );
}
if (BGFX_STATE_MSAA & changedFlags)
{
if (BGFX_STATE_MSAA & newFlags)
{
GL_CHECK(glEnable(GL_MULTISAMPLE) );
}
else
{
GL_CHECK(glDisable(GL_MULTISAMPLE) );
}
}
#endif // BGFX_CONFIG_RENDERER_OPENGL
if ( (BGFX_STATE_ALPHA_WRITE|BGFX_STATE_RGB_WRITE) & changedFlags)
{
GLboolean alpha = !!(newFlags&BGFX_STATE_ALPHA_WRITE);
GLboolean rgb = !!(newFlags&BGFX_STATE_RGB_WRITE);
GL_CHECK(glColorMask(rgb, rgb, rgb, alpha) );
}
if (BGFX_STATE_BLEND_MASK & changedFlags)
{
if (BGFX_STATE_BLEND_MASK & newFlags)
{
uint32_t blend = (newFlags&BGFX_STATE_BLEND_MASK)>>BGFX_STATE_BLEND_SHIFT;
uint32_t src = blend&0xf;
uint32_t dst = (blend>>4)&0xf;
GL_CHECK(glEnable(GL_BLEND) );
GL_CHECK(glBlendFunc(s_blendFactor[src][0], s_blendFactor[dst][1]) );
}
else
{
GL_CHECK(glDisable(GL_BLEND) );
}
}
uint8_t primIndex = uint8_t( (newFlags&BGFX_STATE_PT_MASK)>>BGFX_STATE_PT_SHIFT);
primType = m_render->m_debug&BGFX_DEBUG_WIREFRAME ? GL_LINES : s_primType[primIndex];
primNumVerts = 3-primIndex;
}
bool programChanged = false;
bool constantsChanged = state.m_constBegin < state.m_constEnd;
bool bindAttribs = false;
rendererUpdateUniforms(m_render->m_constantBuffer, state.m_constBegin, state.m_constEnd);
if (key.m_program != programIdx)
{
programIdx = key.m_program;
GLuint id = invalidHandle == programIdx ? 0 : s_renderCtx.m_program[programIdx].m_id;
GL_CHECK(glUseProgram(id) );
programChanged =
constantsChanged =
bindAttribs = true;
}
if (invalidHandle != programIdx)
{
Program& program = s_renderCtx.m_program[programIdx];
if (constantsChanged)
{
program.commit();
}
for (uint32_t ii = 0, num = program.m_numPredefined; ii < num; ++ii)
{
PredefinedUniform& predefined = program.m_predefined[ii];
switch (predefined.m_type)
{
case PredefinedUniform::ViewRect:
{
float rect[4];
rect[0] = m_render->m_rect[view].m_x;
rect[1] = m_render->m_rect[view].m_y;
rect[2] = m_render->m_rect[view].m_width;
rect[3] = m_render->m_rect[view].m_height;
GL_CHECK(glUniform4fv(predefined.m_loc
, 1
, &rect[0]
) );
}
break;
case PredefinedUniform::ViewTexel:
{
float rect[4];
rect[0] = 1.0f/float(m_render->m_rect[view].m_width);
rect[1] = 1.0f/float(m_render->m_rect[view].m_height);
GL_CHECK(glUniform4fv(predefined.m_loc
, 1
, &rect[0]
) );
}
break;
case PredefinedUniform::View:
{
GL_CHECK(glUniformMatrix4fv(predefined.m_loc
, 1
, GL_FALSE
, m_render->m_view[view].val
) );
}
break;
case PredefinedUniform::ViewProj:
{
GL_CHECK(glUniformMatrix4fv(predefined.m_loc
, 1
, GL_FALSE
, viewProj[view].val
) );
}
break;
case PredefinedUniform::Model:
{
const Matrix4& model = m_render->m_matrixCache.m_cache[state.m_matrix];
GL_CHECK(glUniformMatrix4fv(predefined.m_loc
, uint32_min(predefined.m_count, state.m_num)
, GL_FALSE
, model.val
) );
}
break;
case PredefinedUniform::ModelView:
{
Matrix4 modelView;
const Matrix4& model = m_render->m_matrixCache.m_cache[state.m_matrix];
mtxMul(modelView.val, model.val, m_render->m_view[view].val);
GL_CHECK(glUniformMatrix4fv(predefined.m_loc
, 1
, GL_FALSE
, modelView.val
) );
}
break;
case PredefinedUniform::ModelViewProj:
{
Matrix4 modelViewProj;
const Matrix4& model = m_render->m_matrixCache.m_cache[state.m_matrix];
mtxMul(modelViewProj.val, model.val, viewProj[view].val);
GL_CHECK(glUniformMatrix4fv(predefined.m_loc
, 1
, GL_FALSE
, modelViewProj.val
) );
}
break;
case PredefinedUniform::ModelViewProjX:
{
const Matrix4& model = m_render->m_matrixCache.m_cache[state.m_matrix];
static const BX_ALIGN_STRUCT_16(float) s_bias[16] =
{
0.5f, 0.0f, 0.0f, 0.0f,
0.0f, 0.5f, 0.0f, 0.0f,
0.0f, 0.0f, 0.5f, 0.0f,
0.5f, 0.5f, 0.5f, 1.0f,
};
uint8_t other = m_render->m_other[view];
Matrix4 viewProjBias;
mtxMul(viewProjBias.val, viewProj[other].val, s_bias);
Matrix4 modelViewProj;
mtxMul(modelViewProj.val, model.val, viewProjBias.val);
GL_CHECK(glUniformMatrix4fv(predefined.m_loc
, 1
, GL_FALSE
, modelViewProj.val
) );
}
break;
case PredefinedUniform::ViewProjX:
{
static const BX_ALIGN_STRUCT_16(float) s_bias[16] =
{
0.5f, 0.0f, 0.0f, 0.0f,
0.0f, 0.5f, 0.0f, 0.0f,
0.0f, 0.0f, 0.5f, 0.0f,
0.5f, 0.5f, 0.5f, 1.0f,
};
uint8_t other = m_render->m_other[view];
Matrix4 viewProjBias;
mtxMul(viewProjBias.val, viewProj[other].val, s_bias);
GL_CHECK(glUniformMatrix4fv(predefined.m_loc
, 1
, GL_FALSE
, viewProjBias.val
) );
}
break;
case PredefinedUniform::AlphaRef:
{
GL_CHECK(glUniform1f(predefined.m_loc, alphaRef) );
}
break;
case PredefinedUniform::Count:
break;
}
}
// if (BGFX_STATE_TEX_MASK & changedFlags)
{
uint64_t flag = BGFX_STATE_TEX0;
for (uint32_t stage = 0; stage < BGFX_STATE_TEX_COUNT; ++stage)
{
const Sampler& sampler = state.m_sampler[stage];
Sampler& current = currentState.m_sampler[stage];
if (current.m_idx != sampler.m_idx
|| current.m_flags != sampler.m_flags
|| programChanged)
{
if (invalidHandle != sampler.m_idx)
{
GL_CHECK(glActiveTexture(GL_TEXTURE0+stage) );
switch (sampler.m_flags&BGFX_SAMPLER_TYPE_MASK)
{
case BGFX_SAMPLER_TEXTURE:
{
const Texture& texture = s_renderCtx.m_textures[sampler.m_idx];
GL_CHECK(glBindTexture(texture.m_target, texture.m_id) );
}
break;
case BGFX_SAMPLER_RENDERTARGET_COLOR:
{
const RenderTarget& rt = s_renderCtx.m_renderTargets[sampler.m_idx];
GL_CHECK(glBindTexture(rt.m_color.m_target, rt.m_color.m_id) );
}
break;
case BGFX_SAMPLER_RENDERTARGET_DEPTH:
{
const RenderTarget& rt = s_renderCtx.m_renderTargets[sampler.m_idx];
GL_CHECK(glBindTexture(rt.m_depth.m_target, rt.m_depth.m_id) );
}
break;
}
}
}
current = sampler;
flag <<= 1;
}
}
if (0 != defaultVao
&& 0 == state.m_startVertex
&& 0 == state.m_instanceDataOffset)
{
if (programChanged
|| currentState.m_vertexBuffer.idx != state.m_vertexBuffer.idx
|| currentState.m_indexBuffer.idx != state.m_indexBuffer.idx
|| currentState.m_instanceDataBuffer.idx != state.m_instanceDataBuffer.idx)
{
bx::HashMurmur2A murmur;
murmur.begin();
murmur.add(state.m_vertexBuffer.idx);
murmur.add(state.m_indexBuffer.idx);
murmur.add(state.m_instanceDataBuffer.idx);
murmur.add(programIdx);
uint32_t hash = murmur.end();
currentState.m_vertexBuffer = state.m_vertexBuffer;
currentState.m_indexBuffer = state.m_indexBuffer;
baseVertex = state.m_startVertex;
GLuint id = s_renderCtx.m_vaoCache.find(hash);
if (UINT32_MAX != id)
{
currentVao = id;
GL_CHECK(glBindVertexArray(id) );
}
else
{
id = s_renderCtx.m_vaoCache.add(hash);
currentVao = id;
GL_CHECK(glBindVertexArray(id) );
Program& program = s_renderCtx.m_program[programIdx];
program.add(hash);
if (invalidHandle != state.m_vertexBuffer.idx)
{
VertexBuffer& vb = s_renderCtx.m_vertexBuffers[state.m_vertexBuffer.idx];
vb.add(hash);
GL_CHECK(glBindBuffer(GL_ARRAY_BUFFER, vb.m_id) );
uint16_t decl = vb.m_decl.idx == invalidHandle ? state.m_vertexDecl.idx : vb.m_decl.idx;
program.bindAttributes(s_renderCtx.m_vertexDecls[decl], state.m_startVertex);
if (invalidHandle != state.m_instanceDataBuffer.idx)
{
VertexBuffer& instanceVb = s_renderCtx.m_vertexBuffers[state.m_instanceDataBuffer.idx];
instanceVb.add(hash);
GL_CHECK(glBindBuffer(GL_ARRAY_BUFFER, instanceVb.m_id) );
program.bindInstanceData(state.m_instanceDataStride, state.m_instanceDataOffset);
}
}
else
{
GL_CHECK(glBindBuffer(GL_ARRAY_BUFFER, 0) );
}
if (invalidHandle != state.m_indexBuffer.idx)
{
IndexBuffer& ib = s_renderCtx.m_indexBuffers[state.m_indexBuffer.idx];
ib.add(hash);
GL_CHECK(glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ib.m_id) );
}
else
{
GL_CHECK(glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0) );
}
}
}
}
else
{
if (0 != defaultVao
&& 0 != currentVao)
{
GL_CHECK(glBindVertexArray(defaultVao) );
currentState.m_vertexBuffer.idx = invalidHandle;
currentState.m_indexBuffer.idx = invalidHandle;
bindAttribs = true;
currentVao = 0;
}
if (programChanged
|| currentState.m_vertexBuffer.idx != state.m_vertexBuffer.idx)
{
currentState.m_vertexBuffer = state.m_vertexBuffer;
uint16_t handle = state.m_vertexBuffer.idx;
if (invalidHandle != handle)
{
VertexBuffer& vb = s_renderCtx.m_vertexBuffers[handle];
GL_CHECK(glBindBuffer(GL_ARRAY_BUFFER, vb.m_id) );
bindAttribs = true;
}
else
{
GL_CHECK(glBindBuffer(GL_ARRAY_BUFFER, 0) );
}
}
if (currentState.m_indexBuffer.idx != state.m_indexBuffer.idx)
{
currentState.m_indexBuffer = state.m_indexBuffer;
uint16_t handle = state.m_indexBuffer.idx;
if (invalidHandle != handle)
{
IndexBuffer& ib = s_renderCtx.m_indexBuffers[handle];
GL_CHECK(glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ib.m_id) );
}
else
{
GL_CHECK(glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0) );
}
}
if (invalidHandle != currentState.m_vertexBuffer.idx)
{
if (baseVertex != state.m_startVertex
|| bindAttribs)
{
baseVertex = state.m_startVertex;
const VertexBuffer& vb = s_renderCtx.m_vertexBuffers[state.m_vertexBuffer.idx];
uint16_t decl = vb.m_decl.idx == invalidHandle ? state.m_vertexDecl.idx : vb.m_decl.idx;
const Program& program = s_renderCtx.m_program[programIdx];
program.bindAttributes(s_renderCtx.m_vertexDecls[decl], state.m_startVertex);
if (invalidHandle != state.m_instanceDataBuffer.idx)
{
GL_CHECK(glBindBuffer(GL_ARRAY_BUFFER, s_renderCtx.m_vertexBuffers[state.m_instanceDataBuffer.idx].m_id) );
program.bindInstanceData(state.m_instanceDataStride, state.m_instanceDataOffset);
}
}
}
}
if (invalidHandle != currentState.m_vertexBuffer.idx)
{
uint32_t numVertices = state.m_numVertices;
if (UINT32_C(0xffffffff) == numVertices)
{
const VertexBuffer& vb = s_renderCtx.m_vertexBuffers[currentState.m_vertexBuffer.idx];
uint16_t decl = vb.m_decl.idx == invalidHandle ? state.m_vertexDecl.idx : vb.m_decl.idx;
const VertexDecl& vertexDecl = s_renderCtx.m_vertexDecls[decl];
numVertices = vb.m_size/vertexDecl.m_stride;
}
uint32_t numIndices = 0;
uint32_t numPrimsSubmitted = 0;
uint32_t numInstances = 0;
uint32_t numPrimsRendered = 0;
if (invalidHandle != state.m_indexBuffer.idx)
{
if (UINT32_MAX == state.m_numIndices)
{
numIndices = s_renderCtx.m_indexBuffers[state.m_indexBuffer.idx].m_size/2;
numPrimsSubmitted = numIndices/primNumVerts;
numInstances = state.m_numInstances;
numPrimsRendered = numPrimsSubmitted*state.m_numInstances;
GL_CHECK(s_drawElementsInstanced(primType
, numIndices
, GL_UNSIGNED_SHORT
, (void*)0
, state.m_numInstances
) );
}
else if (primNumVerts <= state.m_numIndices)
{
numIndices = state.m_numIndices;
numPrimsSubmitted = numIndices/primNumVerts;
numInstances = state.m_numInstances;
numPrimsRendered = numPrimsSubmitted*state.m_numInstances;
GL_CHECK(s_drawElementsInstanced(primType
, numIndices
, GL_UNSIGNED_SHORT
, (void*)(uintptr_t)(state.m_startIndex*2)
, state.m_numInstances
) );
}
}
else
{
numPrimsSubmitted = numVertices/primNumVerts;
numInstances = state.m_numInstances;
numPrimsRendered = numPrimsSubmitted*state.m_numInstances;
GL_CHECK(s_drawArraysInstanced(primType
, 0
, numVertices
, state.m_numInstances
) );
}
statsNumPrimsSubmitted += numPrimsSubmitted;
statsNumIndices += numIndices;
statsNumInstances += numInstances;
statsNumPrimsRendered += numPrimsRendered;
}
}
}
s_renderCtx.blitMsaaFbo();
if (0 < m_render->m_num)
{
captureElapsed = -bx::getHPCounter();
s_renderCtx.capture();
captureElapsed += bx::getHPCounter();
}
}
int64_t now = bx::getHPCounter();
elapsed += now;
static int64_t last = now;
int64_t frameTime = now - last;
last = now;
static int64_t min = frameTime;
static int64_t max = frameTime;
min = min > frameTime ? frameTime : min;
max = max < frameTime ? frameTime : max;
if (m_render->m_debug & (BGFX_DEBUG_IFH|BGFX_DEBUG_STATS) )
{
double elapsedGpuMs = 0.0;
#if BGFX_CONFIG_RENDERER_OPENGL
s_renderCtx.m_queries.end(GL_TIME_ELAPSED);
uint64_t elapsedGl = s_renderCtx.m_queries.getResult(0);
elapsedGpuMs = double(elapsedGl)/1e6;
#endif // BGFX_CONFIG_RENDERER_OPENGL
TextVideoMem& tvm = s_renderCtx.m_textVideoMem;
static int64_t next = now;
if (now >= next)
{
next = now + bx::getHPFrequency();
double freq = double(bx::getHPFrequency() );
double toMs = 1000.0/freq;
tvm.clear();
uint16_t pos = 10;
tvm.printf(0, 0, BGFX_CONFIG_DEBUG ? 0x89 : 0x8f, " " BGFX_RENDERER_NAME " ");
tvm.printf(10, pos++, 0x8e, " Frame CPU: %7.3f, % 7.3f \x1f, % 7.3f \x1e [ms] / % 6.2f FPS"
, double(frameTime)*toMs
, double(min)*toMs
, double(max)*toMs
, freq/frameTime
);
double elapsedCpuMs = double(elapsed)*toMs;
tvm.printf(10, pos++, 0x8e, " Draw calls: %4d / CPU %3.4f [ms] %c GPU %3.4f [ms]"
, m_render->m_num
, elapsedCpuMs
, elapsedCpuMs > elapsedGpuMs ? '>' : '<'
, elapsedGpuMs
);
tvm.printf(10, pos++, 0x8e, " Prims: %7d (#inst: %5d), submitted: %7d"
, statsNumPrimsRendered
, statsNumInstances
, statsNumPrimsSubmitted
);
double captureMs = double(captureElapsed)*toMs;
tvm.printf(10, pos++, 0x8e, " Capture: %3.4f [ms]", captureMs);
tvm.printf(10, pos++, 0x8e, " Indices: %7d", statsNumIndices);
tvm.printf(10, pos++, 0x8e, " DVB size: %7d", m_render->m_vboffset);
tvm.printf(10, pos++, 0x8e, " DIB size: %7d", m_render->m_iboffset);
#if BGFX_CONFIG_RENDERER_OPENGL
if (s_extension[Extension::ATI_meminfo].m_supported)
{
GLint vboFree[4];
GL_CHECK(glGetIntegerv(GL_VBO_FREE_MEMORY_ATI, vboFree) );
GLint texFree[4];
GL_CHECK(glGetIntegerv(GL_TEXTURE_FREE_MEMORY_ATI, texFree) );
GLint rbfFree[4];
GL_CHECK(glGetIntegerv(GL_RENDERBUFFER_FREE_MEMORY_ATI, rbfFree) );
pos++;
tvm.printf(10, pos++, 0x8c, " -------------| free| free b| aux| aux fb");
tvm.printf(10, pos++, 0x8e, " VBO: %7d, %7d, %7d, %7d", vboFree[0], vboFree[1], vboFree[2], vboFree[3]);
tvm.printf(10, pos++, 0x8e, " Texture: %7d, %7d, %7d, %7d", texFree[0], texFree[1], texFree[2], texFree[3]);
tvm.printf(10, pos++, 0x8e, " Render Buffer: %7d, %7d, %7d, %7d", rbfFree[0], rbfFree[1], rbfFree[2], rbfFree[3]);
}
else if (s_extension[Extension::NVX_gpu_memory_info].m_supported)
{
GLint dedicated;
GL_CHECK(glGetIntegerv(GL_GPU_MEMORY_INFO_DEDICATED_VIDMEM_NVX, &dedicated) );
GLint totalAvail;
GL_CHECK(glGetIntegerv(GL_GPU_MEMORY_INFO_TOTAL_AVAILABLE_MEMORY_NVX, &totalAvail) );
GLint currAvail;
GL_CHECK(glGetIntegerv(GL_GPU_MEMORY_INFO_CURRENT_AVAILABLE_VIDMEM_NVX, &currAvail) );
GLint evictedCount;
GL_CHECK(glGetIntegerv(GL_GPU_MEMORY_INFO_EVICTION_COUNT_NVX, &evictedCount) );
GLint evictedMemory;
GL_CHECK(glGetIntegerv(GL_GPU_MEMORY_INFO_EVICTED_MEMORY_NVX, &evictedMemory) );
pos++;
tvm.printf(10, pos++, 0x8c, "----------|");
tvm.printf(10, pos++, 0x8e, " Dedicated: %7d", dedicated);
tvm.printf(10, pos++, 0x8e, " Available: %7d (%7d)", currAvail, totalAvail);
tvm.printf(10, pos++, 0x8e, " Eviction: %7d / %7d", evictedCount, evictedMemory);
}
#endif // BGFX_CONFIG_RENDERER_OPENGL
uint8_t attr[2] = { 0x89, 0x8a };
uint8_t attrIndex = m_render->m_waitSubmit < m_render->m_waitRender;
pos++;
tvm.printf(10, pos++, attr[attrIndex&1], "Submit wait: %3.4f [ms]", double(m_render->m_waitSubmit)*toMs);
tvm.printf(10, pos++, attr[(attrIndex+1)&1], "Render wait: %3.4f [ms]", double(m_render->m_waitRender)*toMs);
min = frameTime;
max = frameTime;
}
m_textVideoMemBlitter.blit(tvm);
}
else if (m_render->m_debug & BGFX_DEBUG_TEXT)
{
m_textVideoMemBlitter.blit(m_render->m_textVideoMem);
}
GREMEDY_FRAMETERMINATOR();
}
}
#endif // (BGFX_CONFIG_RENDERER_OPENGLES2|BGFX_CONFIG_RENDERER_OPENGLES3|BGFX_CONFIG_RENDERER_OPENGL)