bgfx/src/renderer_d3d11.cpp
2013-03-08 21:54:08 -08:00

2627 lines
75 KiB
C++

/*
* Copyright 2011-2013 Branimir Karadzic. All rights reserved.
* License: http://www.opensource.org/licenses/BSD-2-Clause
*/
#include "bgfx_p.h"
#if BGFX_CONFIG_RENDERER_DIRECT3D11
# include "renderer_d3d11.h"
namespace bgfx
{
static const D3D11_PRIMITIVE_TOPOLOGY s_primType[] =
{
D3D11_PRIMITIVE_TOPOLOGY_TRIANGLELIST,
D3D11_PRIMITIVE_TOPOLOGY_LINELIST,
D3D11_PRIMITIVE_TOPOLOGY_POINTLIST,
};
static const D3D11_BLEND s_blendFactor[][2] =
{
{ (D3D11_BLEND)0, (D3D11_BLEND)0 }, // ignored
{ D3D11_BLEND_ZERO, D3D11_BLEND_ZERO },
{ D3D11_BLEND_ONE, D3D11_BLEND_ONE },
{ D3D11_BLEND_SRC_COLOR, D3D11_BLEND_SRC_ALPHA },
{ D3D11_BLEND_INV_SRC_COLOR, D3D11_BLEND_INV_SRC_ALPHA },
{ D3D11_BLEND_SRC_ALPHA, D3D11_BLEND_SRC_ALPHA },
{ D3D11_BLEND_INV_SRC_ALPHA, D3D11_BLEND_INV_SRC_ALPHA },
{ D3D11_BLEND_DEST_ALPHA, D3D11_BLEND_DEST_ALPHA },
{ D3D11_BLEND_INV_DEST_ALPHA, D3D11_BLEND_INV_DEST_ALPHA },
{ D3D11_BLEND_DEST_COLOR, D3D11_BLEND_DEST_ALPHA },
{ D3D11_BLEND_INV_DEST_COLOR, D3D11_BLEND_INV_DEST_ALPHA },
{ D3D11_BLEND_SRC_ALPHA_SAT, D3D11_BLEND_ONE },
};
static const D3D11_COMPARISON_FUNC s_depthFunc[] =
{
D3D11_COMPARISON_LESS, // ignored
D3D11_COMPARISON_LESS,
D3D11_COMPARISON_LESS_EQUAL,
D3D11_COMPARISON_EQUAL,
D3D11_COMPARISON_GREATER_EQUAL,
D3D11_COMPARISON_GREATER,
D3D11_COMPARISON_NOT_EQUAL,
D3D11_COMPARISON_NEVER,
D3D11_COMPARISON_ALWAYS,
};
static const D3D11_COMPARISON_FUNC s_stencilFunc[] =
{
D3D11_COMPARISON_LESS, // ignored
D3D11_COMPARISON_LESS,
D3D11_COMPARISON_LESS_EQUAL,
D3D11_COMPARISON_EQUAL,
D3D11_COMPARISON_GREATER_EQUAL,
D3D11_COMPARISON_GREATER,
D3D11_COMPARISON_NOT_EQUAL,
D3D11_COMPARISON_NEVER,
D3D11_COMPARISON_ALWAYS,
};
static const D3D11_STENCIL_OP s_stencilOp[] =
{
D3D11_STENCIL_OP_ZERO,
D3D11_STENCIL_OP_KEEP,
D3D11_STENCIL_OP_REPLACE,
D3D11_STENCIL_OP_INCR,
D3D11_STENCIL_OP_INCR_SAT,
D3D11_STENCIL_OP_DECR,
D3D11_STENCIL_OP_DECR_SAT,
D3D11_STENCIL_OP_INVERT,
};
static const D3D11_CULL_MODE s_cullMode[] =
{
D3D11_CULL_NONE,
D3D11_CULL_FRONT,
D3D11_CULL_BACK,
};
static DXGI_FORMAT s_colorFormat[] =
{
DXGI_FORMAT_UNKNOWN, // ignored
DXGI_FORMAT_R8G8B8A8_UNORM,
DXGI_FORMAT_R32_FLOAT,
};
static const DXGI_FORMAT s_depthFormat[] =
{
DXGI_FORMAT_UNKNOWN, // ignored
DXGI_FORMAT_D24_UNORM_S8_UINT,
};
static const D3D11_TEXTURE_ADDRESS_MODE s_textureAddress[] =
{
D3D11_TEXTURE_ADDRESS_WRAP,
D3D11_TEXTURE_ADDRESS_MIRROR,
D3D11_TEXTURE_ADDRESS_CLAMP,
};
/*
* D3D11_FILTER_MIN_MAG_MIP_POINT = 0x00,
* D3D11_FILTER_MIN_MAG_POINT_MIP_LINEAR = 0x01,
* D3D11_FILTER_MIN_POINT_MAG_LINEAR_MIP_POINT = 0x04,
* D3D11_FILTER_MIN_POINT_MAG_MIP_LINEAR = 0x05,
* D3D11_FILTER_MIN_LINEAR_MAG_MIP_POINT = 0x10,
* D3D11_FILTER_MIN_LINEAR_MAG_POINT_MIP_LINEAR = 0x11,
* D3D11_FILTER_MIN_MAG_LINEAR_MIP_POINT = 0x14,
* D3D11_FILTER_MIN_MAG_MIP_LINEAR = 0x15,
* D3D11_FILTER_ANISOTROPIC = 0x55,
*
* According to D3D11_FILTER enum bits for mip, mag and mip are:
* 0x10 // MIN_LINEAR
* 0x04 // MAG_LINEAR
* 0x01 // MIP_LINEAR
*/
static const uint32_t s_textureFilter[3][3] =
{
{
0x10, // min linear
0x00, // min point
0x55, // anisotopic
},
{
0x04, // mag linear
0x00, // mag point
0x55, // anisotopic
},
{
0x01, // mip linear
0x00, // mip point
0x55, // anisotopic
},
};
struct TextureFormatInfo
{
DXGI_FORMAT m_fmt;
uint8_t m_bpp;
};
#ifndef DXGI_FORMAT_B4G4R4A4_UNORM
// Win8 only BS
// https://blogs.msdn.com/b/chuckw/archive/2012/11/14/directx-11-1-and-windows-7.aspx?Redirected=true
// http://msdn.microsoft.com/en-us/library/windows/desktop/bb173059%28v=vs.85%29.aspx
# define DXGI_FORMAT_B4G4R4A4_UNORM DXGI_FORMAT(115)
#endif // DXGI_FORMAT_B4G4R4A4_UNORM
static const TextureFormatInfo s_textureFormat[TextureFormat::Count] =
{
{ DXGI_FORMAT_BC1_UNORM, 4 },
{ DXGI_FORMAT_BC2_UNORM, 8 },
{ DXGI_FORMAT_BC3_UNORM, 8 },
{ DXGI_FORMAT_BC4_UNORM, 4 },
{ DXGI_FORMAT_BC5_UNORM, 8 },
{ DXGI_FORMAT_UNKNOWN, 0 },
{ DXGI_FORMAT_R8_UNORM, 8 },
{ DXGI_FORMAT_B8G8R8A8_UNORM, 32 },
{ DXGI_FORMAT_B8G8R8A8_UNORM, 32 },
{ DXGI_FORMAT_R16G16B16A16_UNORM, 64 },
{ DXGI_FORMAT_R16G16B16A16_FLOAT, 64 },
{ DXGI_FORMAT_B5G6R5_UNORM, 16 },
{ DXGI_FORMAT_B4G4R4A4_UNORM, 16 },
{ DXGI_FORMAT_B5G5R5A1_UNORM, 16 },
{ DXGI_FORMAT_R10G10B10A2_UNORM, 32 },
};
static const D3D11_INPUT_ELEMENT_DESC s_attrib[Attrib::Count] =
{
{ "POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 },
{ "NORMAL", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 },
{ "TANGENT", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 },
{ "COLOR", 0, DXGI_FORMAT_R8G8B8A8_UINT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 },
{ "COLOR", 1, DXGI_FORMAT_R8G8B8A8_UINT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 },
{ "BLENDINDICES", 0, DXGI_FORMAT_R8G8B8A8_UINT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 },
{ "BLENDWEIGHT", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 },
{ "TEXCOORD", 0, DXGI_FORMAT_R32G32_FLOAT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 },
{ "TEXCOORD", 1, DXGI_FORMAT_R32G32_FLOAT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 },
{ "TEXCOORD", 2, DXGI_FORMAT_R32G32_FLOAT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 },
{ "TEXCOORD", 3, DXGI_FORMAT_R32G32_FLOAT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 },
{ "TEXCOORD", 4, DXGI_FORMAT_R32G32_FLOAT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 },
{ "TEXCOORD", 5, DXGI_FORMAT_R32G32_FLOAT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 },
{ "TEXCOORD", 6, DXGI_FORMAT_R32G32_FLOAT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 },
{ "TEXCOORD", 7, DXGI_FORMAT_R32G32_FLOAT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 },
};
static const DXGI_FORMAT s_attribType[AttribType::Count][4][2] =
{
{
{ DXGI_FORMAT_R8_UINT, DXGI_FORMAT_R8_UNORM },
{ DXGI_FORMAT_R8G8_UINT, DXGI_FORMAT_R8G8_UNORM },
{ DXGI_FORMAT_R8G8B8A8_UINT, DXGI_FORMAT_R8G8B8A8_UNORM },
{ DXGI_FORMAT_R8G8B8A8_UINT, DXGI_FORMAT_R8G8B8A8_UNORM },
},
{
{ DXGI_FORMAT_R16_SINT, DXGI_FORMAT_R16_SNORM },
{ DXGI_FORMAT_R16G16_SINT, DXGI_FORMAT_R16G16_SNORM },
{ DXGI_FORMAT_R16G16B16A16_SINT, DXGI_FORMAT_R16G16B16A16_SNORM },
{ DXGI_FORMAT_R16G16B16A16_SINT, DXGI_FORMAT_R16G16B16A16_SNORM },
},
{
{ DXGI_FORMAT_R16_FLOAT, DXGI_FORMAT_R16_FLOAT },
{ DXGI_FORMAT_R16G16_FLOAT, DXGI_FORMAT_R16G16_FLOAT },
{ DXGI_FORMAT_R16G16B16A16_FLOAT, DXGI_FORMAT_R16G16B16A16_FLOAT },
{ DXGI_FORMAT_R16G16B16A16_FLOAT, DXGI_FORMAT_R16G16B16A16_FLOAT },
},
{
{ DXGI_FORMAT_R32_FLOAT, DXGI_FORMAT_R32_FLOAT },
{ DXGI_FORMAT_R32G32_FLOAT, DXGI_FORMAT_R32G32_FLOAT },
{ DXGI_FORMAT_R32G32B32_FLOAT, DXGI_FORMAT_R32G32B32_FLOAT },
{ DXGI_FORMAT_R32G32B32A32_FLOAT, DXGI_FORMAT_R32G32B32A32_FLOAT },
},
};
static D3D11_INPUT_ELEMENT_DESC* fillVertexDecl(D3D11_INPUT_ELEMENT_DESC* _out, uint32_t _count, const VertexDecl& _decl)
{
D3D11_INPUT_ELEMENT_DESC* elem = _out;
for (uint32_t attr = 0; attr < Attrib::Count; ++attr)
{
if (0xff != _decl.m_attributes[attr])
{
memcpy(elem, &s_attrib[attr], sizeof(D3D11_INPUT_ELEMENT_DESC) );
if (0 == _decl.m_attributes[attr])
{
elem->AlignedByteOffset = 0;
}
else
{
uint8_t num;
AttribType::Enum type;
bool normalized;
bool asInt;
_decl.decode(Attrib::Enum(attr), num, type, normalized, asInt);
elem->Format = s_attribType[type][num-1][normalized];
elem->AlignedByteOffset = _decl.m_offset[attr];
}
++elem;
}
}
return elem;
}
struct TextureStage
{
TextureStage()
{
clear();
}
void clear()
{
memset(m_srv, 0, sizeof(m_srv) );
memset(m_sampler, 0, sizeof(m_sampler) );
}
ID3D11ShaderResourceView* m_srv[BGFX_STATE_TEX_COUNT];
ID3D11SamplerState* m_sampler[BGFX_STATE_TEX_COUNT];
};
static const GUID WKPDID_D3DDebugObjectName = { 0x429b8c22, 0x9188, 0x4b0c, { 0x87, 0x42, 0xac, 0xb0, 0xbf, 0x85, 0xc2, 0x00 } };
template <typename Ty>
static BX_NO_INLINE void setDebugObjectName(Ty* _interface, const char* _format, ...)
{
#if BGFX_CONFIG_DEBUG_OBJECT_NAME
char temp[2048];
va_list argList;
va_start(argList, _format);
int size = uint32_min(sizeof(temp)-1, vsnprintf(temp, sizeof(temp), _format, argList) );
va_end(argList);
temp[size] = '\0';
_interface->SetPrivateData(WKPDID_D3DDebugObjectName, size, temp);
#endif // BGFX_CONFIG_DEBUG_OBJECT_NAME
}
struct RendererContext
{
RendererContext()
: m_captureTexture(NULL)
, m_captureResolve(NULL)
, m_wireframe(false)
, m_vsChanges(0)
, m_fsChanges(0)
{
}
void init()
{
m_d3d11dll = LoadLibrary("d3d11.dll");
BGFX_FATAL(NULL != m_d3d11dll, Fatal::UnableToInitialize, "Failed to load d3d11.dll.");
PFN_D3D11_CREATE_DEVICE_AND_SWAP_CHAIN d3D11CreateDeviceAndSwapChain = (PFN_D3D11_CREATE_DEVICE_AND_SWAP_CHAIN)GetProcAddress(m_d3d11dll, "D3D11CreateDeviceAndSwapChain");
BGFX_FATAL(NULL != d3D11CreateDeviceAndSwapChain, Fatal::UnableToInitialize, "Function D3D11CreateDeviceAndSwapChain not found.");
HRESULT hr;
D3D_FEATURE_LEVEL features[] =
{
D3D_FEATURE_LEVEL_11_0,
};
memset(&m_scd, 0, sizeof(m_scd) );
m_scd.BufferDesc.Width = BGFX_DEFAULT_WIDTH;
m_scd.BufferDesc.Height = BGFX_DEFAULT_HEIGHT;
m_scd.BufferDesc.Format = DXGI_FORMAT_R8G8B8A8_UNORM;
m_scd.BufferDesc.RefreshRate.Numerator = 60;
m_scd.BufferDesc.RefreshRate.Denominator = 1;
m_scd.SampleDesc.Count = 1;
m_scd.SampleDesc.Quality = 0;
m_scd.BufferUsage = DXGI_USAGE_RENDER_TARGET_OUTPUT;
m_scd.BufferCount = 1;
m_scd.OutputWindow = g_bgfxHwnd;
m_scd.Windowed = true;
uint32_t flags = D3D11_CREATE_DEVICE_SINGLETHREADED
#if BGFX_CONFIG_DEBUG
| D3D11_CREATE_DEVICE_DEBUG
#endif // BGFX_CONFIG_DEBUG
;
D3D_FEATURE_LEVEL featureLevel;
hr = d3D11CreateDeviceAndSwapChain(NULL
, D3D_DRIVER_TYPE_HARDWARE
, NULL
, flags
, features
, 1
, D3D11_SDK_VERSION
, &m_scd
, &m_swapChain
, &m_device
, &featureLevel
, &m_deviceCtx
);
BGFX_FATAL(SUCCEEDED(hr), Fatal::UnableToInitialize, "Unable to create Direct3D11 device.");
for (uint32_t ii = 0; ii < PredefinedUniform::Count; ++ii)
{
m_predefinedUniforms[ii].create(UniformType::Uniform4x4fv, 1, false);
m_uniformReg.add(getPredefinedUniformName(PredefinedUniform::Enum(ii) ), &m_predefinedUniforms[ii]);
}
postReset();
}
void shutdown()
{
preReset();
m_deviceCtx->ClearState();
invalidateCache();
for (uint32_t ii = 0; ii < countof(m_indexBuffers); ++ii)
{
m_indexBuffers[ii].destroy();
}
for (uint32_t ii = 0; ii < countof(m_vertexBuffers); ++ii)
{
m_vertexBuffers[ii].destroy();
}
for (uint32_t ii = 0; ii < countof(m_vertexShaders); ++ii)
{
m_vertexShaders[ii].destroy();
}
for (uint32_t ii = 0; ii < countof(m_fragmentShaders); ++ii)
{
m_fragmentShaders[ii].destroy();
}
for (uint32_t ii = 0; ii < countof(m_textures); ++ii)
{
m_textures[ii].destroy();
}
for (uint32_t ii = 0; ii < countof(m_renderTargets); ++ii)
{
m_renderTargets[ii].destroy();
}
for (uint32_t ii = 0; ii < countof(m_uniforms); ++ii)
{
m_uniforms[ii].destroy();
}
for (uint32_t ii = 0; ii < PredefinedUniform::Count; ++ii)
{
m_predefinedUniforms[ii].destroy();
}
DX_RELEASE(m_swapChain, 0);
DX_RELEASE(m_deviceCtx, 0);
DX_RELEASE(m_device, 0);
FreeLibrary(m_d3d11dll);
}
void preReset()
{
DX_RELEASE(m_backBufferDepthStencil, 0);
DX_RELEASE(m_backBufferColor, 0);
// invalidateCache();
capturePreReset();
}
void postReset()
{
ID3D11Texture2D* color;
DX_CHECK(m_swapChain->GetBuffer(0, __uuidof(ID3D11Texture2D), (void**)&color) );
DX_CHECK(m_device->CreateRenderTargetView(color, NULL, &m_backBufferColor) );
DX_RELEASE(color, 0);
D3D11_TEXTURE2D_DESC dsd;
dsd.Width = m_scd.BufferDesc.Width;
dsd.Height = m_scd.BufferDesc.Height;
dsd.MipLevels = 1;
dsd.ArraySize = 1;
dsd.Format = DXGI_FORMAT_D24_UNORM_S8_UINT;
dsd.SampleDesc = m_scd.SampleDesc;
dsd.Usage = D3D11_USAGE_DEFAULT;
dsd.BindFlags = D3D11_BIND_DEPTH_STENCIL;
dsd.CPUAccessFlags = 0;
dsd.MiscFlags = 0;
ID3D11Texture2D* depthStencil;
DX_CHECK(m_device->CreateTexture2D(&dsd, NULL, &depthStencil) );
DX_CHECK(m_device->CreateDepthStencilView(depthStencil, NULL, &m_backBufferDepthStencil) );
DX_RELEASE(depthStencil, 0);
m_deviceCtx->OMSetRenderTargets(1, &m_backBufferColor, m_backBufferDepthStencil);
m_currentColor = m_backBufferColor;
m_currentDepthStencil = m_backBufferDepthStencil;
capturePostReset();
}
void flip()
{
if (NULL != m_swapChain)
{
uint32_t syncInterval = !!(m_flags & BGFX_RESET_VSYNC);
DX_CHECK(m_swapChain->Present(syncInterval, 0) );
}
}
void invalidateCache()
{
m_inputLayoutCache.invalidate();
m_blendStateCache.invalidate();
m_depthStencilStateCache.invalidate();
m_rasterizerStateCache.invalidate();
m_samplerStateCache.invalidate();
}
void updateResolution(const Resolution& _resolution)
{
if ( (uint32_t)m_scd.BufferDesc.Width != _resolution.m_width
|| (uint32_t)m_scd.BufferDesc.Height != _resolution.m_height
|| m_flags != _resolution.m_flags)
{
m_flags = _resolution.m_flags;
m_textVideoMem.resize(false, _resolution.m_width, _resolution.m_height);
m_textVideoMem.clear();
m_scd.BufferDesc.Width = _resolution.m_width;
m_scd.BufferDesc.Height = _resolution.m_height;
preReset();
DX_CHECK(m_swapChain->ResizeBuffers(2
, m_scd.BufferDesc.Width
, m_scd.BufferDesc.Height
, m_scd.BufferDesc.Format
, DXGI_SWAP_CHAIN_FLAG_ALLOW_MODE_SWITCH
) );
postReset();
}
}
void setShaderConstant(uint8_t _flags, uint16_t _regIndex, const void* _val, uint16_t _numRegs)
{
if (_flags&BGFX_UNIFORM_FRAGMENTBIT)
{
memcpy(&m_fsScratch[_regIndex], _val, _numRegs*16);
m_fsChanges += _numRegs;
}
else
{
memcpy(&m_vsScratch[_regIndex], _val, _numRegs*16);
m_vsChanges += _numRegs;
}
}
void commitShaderConstants()
{
if (0 < m_vsChanges)
{
if (NULL != m_currentProgram->m_vsh->m_buffer)
{
m_deviceCtx->UpdateSubresource(m_currentProgram->m_vsh->m_buffer, 0, 0, m_vsScratch, 0, 0);
}
m_vsChanges = 0;
}
if (0 < m_fsChanges)
{
if (NULL != m_currentProgram->m_fsh->m_buffer)
{
m_deviceCtx->UpdateSubresource(m_currentProgram->m_fsh->m_buffer, 0, 0, m_fsScratch, 0, 0);
}
m_fsChanges = 0;
}
}
void setRenderTarget(RenderTargetHandle _rt, bool _msaa = true)
{
if (_rt.idx == invalidHandle)
{
m_deviceCtx->OMSetRenderTargets(1, &m_backBufferColor, m_backBufferDepthStencil);
m_currentColor = m_backBufferColor;
m_currentDepthStencil = m_backBufferDepthStencil;
}
else
{
invalidateTextureStage();
RenderTarget& renderTarget = m_renderTargets[_rt.idx];
m_deviceCtx->OMSetRenderTargets(1, &renderTarget.m_rtv, renderTarget.m_dsv);
m_currentColor = renderTarget.m_rtv;
m_currentDepthStencil = renderTarget.m_dsv;
}
}
void clear(const Clear& _clear)
{
if (NULL != m_currentColor
&& BGFX_CLEAR_COLOR_BIT & _clear.m_flags)
{
uint32_t rgba = _clear.m_rgba;
float frgba[4] = { (rgba>>24)/255.0f, ( (rgba>>16)&0xff)/255.0f, ( (rgba>>8)&0xff)/255.0f, (rgba&0xff)/255.0f };
m_deviceCtx->ClearRenderTargetView(m_currentColor, frgba);
}
if (NULL != m_currentDepthStencil
&& (BGFX_CLEAR_DEPTH_BIT|BGFX_CLEAR_STENCIL_BIT) & _clear.m_flags)
{
DWORD flags = 0;
flags |= (_clear.m_flags & BGFX_CLEAR_DEPTH_BIT) ? D3D11_CLEAR_DEPTH : 0;
flags |= (_clear.m_flags & BGFX_CLEAR_STENCIL_BIT) ? D3D11_CLEAR_STENCIL : 0;
m_deviceCtx->ClearDepthStencilView(m_currentDepthStencil, flags, _clear.m_depth, _clear.m_stencil);
}
}
void setInputLayout(const VertexDecl& _vertexDecl, const Program& _program, uint8_t _numInstanceData)
{
uint64_t layoutHash = (uint64_t(_vertexDecl.m_hash)<<32) | _program.m_vsh->m_hash;
layoutHash ^= _numInstanceData;
ID3D11InputLayout* layout = m_inputLayoutCache.find(layoutHash);
if (NULL == layout)
{
D3D11_INPUT_ELEMENT_DESC vertexElements[Attrib::Count+1+BGFX_CONFIG_MAX_INSTANCE_DATA_COUNT];
VertexDecl decl;
memcpy(&decl, &_vertexDecl, sizeof(VertexDecl) );
const uint8_t* attrMask = _program.m_vsh->m_attrMask;
for (uint32_t ii = 0; ii < Attrib::Count; ++ii)
{
uint8_t mask = attrMask[ii];
uint8_t attr = (decl.m_attributes[ii] & mask);
decl.m_attributes[ii] = attr == 0 ? 0xff : attr == 0xff ? 0 : attr;
}
D3D11_INPUT_ELEMENT_DESC* elem = fillVertexDecl(vertexElements, Attrib::Count, decl);
uint32_t num = uint32_t(elem-vertexElements);
const D3D11_INPUT_ELEMENT_DESC inst = { "TEXCOORD", 0, DXGI_FORMAT_R32G32B32A32_FLOAT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_INSTANCE_DATA, 1 };
for (uint32_t ii = 0; ii < _numInstanceData; ++ii)
{
uint32_t index = 8-_numInstanceData+ii;
uint32_t jj;
D3D11_INPUT_ELEMENT_DESC* curr;
for (jj = 0; jj < num; ++jj)
{
curr = &vertexElements[jj];
if (0 == strcmp(curr->SemanticName, "TEXCOORD")
&& curr->SemanticIndex == index)
{
break;
}
}
if (jj == num)
{
curr = elem;
++elem;
}
memcpy(curr, &inst, sizeof(D3D11_INPUT_ELEMENT_DESC) );
curr->InputSlot = 1;
curr->SemanticIndex = index;
curr->AlignedByteOffset = ii*16;
}
num = uint32_t(elem-vertexElements);
DX_CHECK(m_device->CreateInputLayout(vertexElements
, num
, _program.m_vsh->m_code->data
, _program.m_vsh->m_code->size
, &layout
) );
m_inputLayoutCache.add(layoutHash, layout);
}
m_deviceCtx->IASetInputLayout(layout);
}
void setBlendState(uint64_t _state)
{
_state &= BGFX_STATE_BLEND_MASK|BGFX_STATE_ALPHA_WRITE|BGFX_STATE_RGB_WRITE;
ID3D11BlendState* bs = m_blendStateCache.find(_state);
if (NULL == bs)
{
D3D11_BLEND_DESC desc;
memset(&desc, 0, sizeof(desc) );
D3D11_RENDER_TARGET_BLEND_DESC& drt = desc.RenderTarget[0];
drt.BlendEnable = !!(BGFX_STATE_BLEND_MASK & _state);
uint32_t blend = (_state&BGFX_STATE_BLEND_MASK)>>BGFX_STATE_BLEND_SHIFT;
uint32_t src = blend&0xf;
uint32_t dst = (blend>>4)&0xf;
uint32_t writeMask = (_state&BGFX_STATE_ALPHA_WRITE) ? D3D11_COLOR_WRITE_ENABLE_ALPHA : 0;
writeMask |= (_state&BGFX_STATE_RGB_WRITE) ? D3D11_COLOR_WRITE_ENABLE_RED|D3D11_COLOR_WRITE_ENABLE_GREEN|D3D11_COLOR_WRITE_ENABLE_BLUE : 0;
drt.SrcBlend = s_blendFactor[src][0];
drt.DestBlend = s_blendFactor[dst][0];
drt.BlendOp = D3D11_BLEND_OP_ADD;
drt.SrcBlendAlpha = s_blendFactor[src][1];
drt.DestBlendAlpha = s_blendFactor[dst][1];
drt.BlendOpAlpha = D3D11_BLEND_OP_ADD;
drt.RenderTargetWriteMask = writeMask;
DX_CHECK(m_device->CreateBlendState(&desc, &bs) );
m_blendStateCache.add(_state, bs);
}
m_deviceCtx->OMSetBlendState(bs, NULL, 0xffffffff);
}
void setDepthStencilState(uint64_t _state, uint64_t _stencil = 0)
{
_state &= BGFX_STATE_DEPTH_WRITE|BGFX_STATE_DEPTH_TEST_MASK;
uint32_t fstencil = unpackStencil(0, _stencil);
uint32_t ref = (fstencil&BGFX_STENCIL_FUNC_REF_MASK)>>BGFX_STENCIL_FUNC_REF_SHIFT;
_stencil &= packStencil(BGFX_STENCIL_FUNC_REF_MASK, BGFX_STENCIL_MASK);
HashMurmur2A murmur;
murmur.begin();
murmur.add(_state);
murmur.add(_stencil);
uint32_t hash = murmur.end();
ID3D11DepthStencilState* dss = m_depthStencilStateCache.find(hash);
if (NULL == dss)
{
D3D11_DEPTH_STENCIL_DESC desc;
memset(&desc, 0, sizeof(desc) );
uint32_t func = (_state&BGFX_STATE_DEPTH_TEST_MASK)>>BGFX_STATE_DEPTH_TEST_SHIFT;
desc.DepthEnable = 0 != func;
desc.DepthWriteMask = !!(BGFX_STATE_DEPTH_WRITE & _state) ? D3D11_DEPTH_WRITE_MASK_ALL : D3D11_DEPTH_WRITE_MASK_ZERO;
desc.DepthFunc = s_depthFunc[func];
uint32_t bstencil = unpackStencil(1, _stencil);
uint32_t frontAndBack = bstencil != BGFX_STENCIL_NONE && bstencil != fstencil;
bstencil = frontAndBack ? bstencil : fstencil;
desc.StencilEnable = 0 != _stencil;
desc.StencilReadMask = (fstencil&BGFX_STENCIL_FUNC_RMASK_MASK)>>BGFX_STENCIL_FUNC_RMASK_SHIFT;
desc.StencilWriteMask = 0xff;
desc.FrontFace.StencilFailOp = s_stencilOp[(fstencil&BGFX_STENCIL_OP_FAIL_S_MASK)>>BGFX_STENCIL_OP_FAIL_S_SHIFT];
desc.FrontFace.StencilDepthFailOp = s_stencilOp[(fstencil&BGFX_STENCIL_OP_FAIL_Z_MASK)>>BGFX_STENCIL_OP_FAIL_Z_SHIFT];
desc.FrontFace.StencilPassOp = s_stencilOp[(fstencil&BGFX_STENCIL_OP_PASS_Z_MASK)>>BGFX_STENCIL_OP_PASS_Z_SHIFT];
desc.FrontFace.StencilFunc = s_stencilFunc[(fstencil&BGFX_STENCIL_TEST_MASK)>>BGFX_STENCIL_TEST_SHIFT];
desc.BackFace.StencilFailOp = s_stencilOp[(bstencil&BGFX_STENCIL_OP_FAIL_Z_MASK)>>BGFX_STENCIL_OP_FAIL_Z_SHIFT];
desc.BackFace.StencilDepthFailOp = s_stencilOp[(bstencil&BGFX_STENCIL_OP_FAIL_S_MASK)>>BGFX_STENCIL_OP_FAIL_S_SHIFT];
desc.BackFace.StencilPassOp = s_stencilOp[(bstencil&BGFX_STENCIL_OP_PASS_Z_MASK)>>BGFX_STENCIL_OP_PASS_Z_SHIFT];
desc.BackFace.StencilFunc = s_stencilFunc[(bstencil&BGFX_STENCIL_TEST_MASK)>>BGFX_STENCIL_TEST_SHIFT];
DX_CHECK(m_device->CreateDepthStencilState(&desc, &dss) );
m_depthStencilStateCache.add(hash, dss);
}
m_deviceCtx->OMSetDepthStencilState(dss, ref);
}
void setDebugWireframe(bool _wireframe)
{
if (m_wireframe != _wireframe)
{
m_wireframe = _wireframe;
m_rasterizerStateCache.invalidate();
}
}
void setRasterizerState(uint64_t _state, bool _wireframe = false)
{
_state &= BGFX_STATE_CULL_MASK;
_state |= _wireframe ? BGFX_STATE_PT_LINES : BGFX_STATE_NONE;
ID3D11RasterizerState* rs = m_rasterizerStateCache.find(_state);
if (NULL == rs)
{
uint32_t cull = (_state&BGFX_STATE_CULL_MASK)>>BGFX_STATE_CULL_SHIFT;
D3D11_RASTERIZER_DESC desc;
desc.FillMode = _wireframe ? D3D11_FILL_WIREFRAME : D3D11_FILL_SOLID;
desc.CullMode = s_cullMode[cull];
desc.FrontCounterClockwise = false;
desc.DepthBias = 0;
desc.DepthBiasClamp = 0.0f;
desc.SlopeScaledDepthBias = 0.0f;
desc.DepthClipEnable = false;
desc.ScissorEnable = false;
desc.MultisampleEnable = false;
desc.AntialiasedLineEnable = false;
DX_CHECK(m_device->CreateRasterizerState(&desc, &rs) );
m_rasterizerStateCache.add(_state, rs);
}
m_deviceCtx->RSSetState(rs);
}
ID3D11SamplerState* getSamplerState(uint32_t _flags)
{
_flags &= BGFX_TEXTURE_MIN_MASK|BGFX_TEXTURE_MAG_MASK|BGFX_TEXTURE_MIP_MASK
| BGFX_TEXTURE_U_MASK|BGFX_TEXTURE_V_MASK|BGFX_TEXTURE_W_MASK
;
uint8_t minFilter = s_textureFilter[0][(_flags&BGFX_TEXTURE_MIN_MASK)>>BGFX_TEXTURE_MIN_SHIFT];
uint8_t magFilter = s_textureFilter[1][(_flags&BGFX_TEXTURE_MAG_MASK)>>BGFX_TEXTURE_MAG_SHIFT];
uint8_t mipFilter = s_textureFilter[2][(_flags&BGFX_TEXTURE_MIP_MASK)>>BGFX_TEXTURE_MIP_SHIFT];
D3D11_SAMPLER_DESC sd;
sd.Filter = (D3D11_FILTER)(minFilter|magFilter|mipFilter);
sd.AddressU = s_textureAddress[(_flags&BGFX_TEXTURE_U_MASK)>>BGFX_TEXTURE_U_SHIFT];
sd.AddressV = s_textureAddress[(_flags&BGFX_TEXTURE_V_MASK)>>BGFX_TEXTURE_V_SHIFT];
sd.AddressW = s_textureAddress[(_flags&BGFX_TEXTURE_W_MASK)>>BGFX_TEXTURE_W_SHIFT];
sd.MipLODBias = 0.0f;
sd.MaxAnisotropy = 1;
sd.ComparisonFunc = D3D11_COMPARISON_NEVER;
sd.BorderColor[0] = 0.0f;
sd.BorderColor[1] = 0.0f;
sd.BorderColor[2] = 0.0f;
sd.BorderColor[3] = 0.0f;
sd.MinLOD = 0;
sd.MaxLOD = D3D11_FLOAT32_MAX;
uint32_t hash = bx::hashMurmur2A(sd);
ID3D11SamplerState* sampler = m_samplerStateCache.find(hash);
if (NULL == sampler)
{
m_device->CreateSamplerState(&sd, &sampler);
DX_CHECK_REFCOUNT(sampler, 1);
m_samplerStateCache.add(hash, sampler);
}
return sampler;
}
void commitTextureStage()
{
m_deviceCtx->PSSetShaderResources(0, BGFX_STATE_TEX_COUNT, m_textureStage.m_srv);
m_deviceCtx->PSSetSamplers(0, BGFX_STATE_TEX_COUNT, m_textureStage.m_sampler);
}
void invalidateTextureStage()
{
m_textureStage.clear();
commitTextureStage();
}
void capturePostReset()
{
if (m_flags&BGFX_RESET_CAPTURE)
{
ID3D11Texture2D* backBuffer;
DX_CHECK(m_swapChain->GetBuffer(0, __uuidof(ID3D11Texture2D), (void**)&backBuffer) );
D3D11_TEXTURE2D_DESC backBufferDesc;
backBuffer->GetDesc(&backBufferDesc);
D3D11_TEXTURE2D_DESC desc;
memcpy(&desc, &backBufferDesc, sizeof(desc) );
desc.SampleDesc.Count = 1;
desc.SampleDesc.Quality = 0;
desc.Usage = D3D11_USAGE_STAGING;
desc.BindFlags = 0;
desc.CPUAccessFlags = D3D11_CPU_ACCESS_READ;
HRESULT hr = m_device->CreateTexture2D(&desc, NULL, &m_captureTexture);
if (SUCCEEDED(hr) )
{
if (backBufferDesc.SampleDesc.Count != 1)
{
desc.Usage = D3D11_USAGE_DEFAULT;
desc.CPUAccessFlags = 0;
m_device->CreateTexture2D(&desc, NULL, &m_captureResolve);
}
g_callback->captureBegin(backBufferDesc.Width, backBufferDesc.Height, backBufferDesc.Width*4, TextureFormat::BGRA8, false);
}
DX_RELEASE(backBuffer, 0);
}
}
void capturePreReset()
{
if (NULL != m_captureTexture)
{
g_callback->captureEnd();
}
DX_RELEASE(m_captureResolve, 0);
DX_RELEASE(m_captureTexture, 0);
}
void capture()
{
if (NULL != m_captureTexture)
{
ID3D11Texture2D* backBuffer;
DX_CHECK(m_swapChain->GetBuffer(0, __uuidof(ID3D11Texture2D), (void**)&backBuffer) );
DXGI_MODE_DESC& desc = m_scd.BufferDesc;
if (NULL == m_captureResolve)
{
m_deviceCtx->CopyResource(m_captureTexture, backBuffer);
}
else
{
m_deviceCtx->ResolveSubresource(m_captureResolve, 0, backBuffer, 0, desc.Format);
m_deviceCtx->CopyResource(m_captureTexture, m_captureResolve);
}
D3D11_MAPPED_SUBRESOURCE mapped;
DX_CHECK(m_deviceCtx->Map(m_captureTexture, 0, D3D11_MAP_READ, 0, &mapped) );
g_callback->captureFrame(mapped.pData, desc.Height*mapped.RowPitch);
m_deviceCtx->Unmap(m_captureTexture, 0);
DX_RELEASE(backBuffer, 0);
}
}
void saveScreenShot(Memory* _mem)
{
ID3D11Texture2D* backBuffer;
DX_CHECK(m_swapChain->GetBuffer(0, __uuidof(ID3D11Texture2D), (void**)&backBuffer) );
D3D11_TEXTURE2D_DESC backBufferDesc;
backBuffer->GetDesc(&backBufferDesc);
D3D11_TEXTURE2D_DESC desc;
memcpy(&desc, &backBufferDesc, sizeof(desc) );
desc.SampleDesc.Count = 1;
desc.SampleDesc.Quality = 0;
desc.Usage = D3D11_USAGE_STAGING;
desc.BindFlags = 0;
desc.CPUAccessFlags = D3D11_CPU_ACCESS_READ;
ID3D11Texture2D* texture;
HRESULT hr = m_device->CreateTexture2D(&desc, NULL, &texture);
if (SUCCEEDED(hr) )
{
if (backBufferDesc.SampleDesc.Count == 1)
{
m_deviceCtx->CopyResource(texture, backBuffer);
}
else
{
desc.Usage = D3D11_USAGE_DEFAULT;
desc.CPUAccessFlags = 0;
ID3D11Texture2D* resolve;
HRESULT hr = m_device->CreateTexture2D(&desc, NULL, &resolve);
if (SUCCEEDED(hr) )
{
m_deviceCtx->ResolveSubresource(resolve, 0, backBuffer, 0, desc.Format);
m_deviceCtx->CopyResource(texture, resolve);
DX_RELEASE(resolve, 0);
}
}
D3D11_MAPPED_SUBRESOURCE mapped;
DX_CHECK(m_deviceCtx->Map(texture, 0, D3D11_MAP_READ, 0, &mapped) );
g_callback->screenShot( (const char*)_mem->data
, backBufferDesc.Width
, backBufferDesc.Height
, mapped.RowPitch
, mapped.pData
, backBufferDesc.Height*mapped.RowPitch
, false
);
m_deviceCtx->Unmap(texture, 0);
DX_RELEASE(texture, 0);
}
DX_RELEASE(backBuffer, 0);
}
HMODULE m_d3d11dll;
IDXGISwapChain* m_swapChain;
ID3D11Device* m_device;
ID3D11DeviceContext* m_deviceCtx;
ID3D11RenderTargetView* m_backBufferColor;
ID3D11DepthStencilView* m_backBufferDepthStencil;
ID3D11RenderTargetView* m_currentColor;
ID3D11DepthStencilView* m_currentDepthStencil;
ID3D11Texture2D* m_captureTexture;
ID3D11Texture2D* m_captureResolve;
bool m_wireframe;
DXGI_SWAP_CHAIN_DESC m_scd;
uint32_t m_flags;
IndexBuffer m_indexBuffers[BGFX_CONFIG_MAX_INDEX_BUFFERS];
VertexBuffer m_vertexBuffers[BGFX_CONFIG_MAX_VERTEX_BUFFERS];
Shader m_vertexShaders[BGFX_CONFIG_MAX_VERTEX_SHADERS];
Shader m_fragmentShaders[BGFX_CONFIG_MAX_FRAGMENT_SHADERS];
Program m_program[BGFX_CONFIG_MAX_PROGRAMS];
Texture m_textures[BGFX_CONFIG_MAX_TEXTURES];
VertexDecl m_vertexDecls[BGFX_CONFIG_MAX_VERTEX_DECLS];
RenderTarget m_renderTargets[BGFX_CONFIG_MAX_RENDER_TARGETS];
UniformBuffer m_uniforms[BGFX_CONFIG_MAX_UNIFORMS];
UniformBuffer m_predefinedUniforms[PredefinedUniform::Count];
UniformRegistry m_uniformReg;
StateCacheT<ID3D11BlendState> m_blendStateCache;
StateCacheT<ID3D11DepthStencilState> m_depthStencilStateCache;
StateCacheT<ID3D11InputLayout> m_inputLayoutCache;
StateCacheT<ID3D11RasterizerState> m_rasterizerStateCache;
StateCacheT<ID3D11SamplerState> m_samplerStateCache;
TextVideoMem m_textVideoMem;
RenderTargetHandle m_rt;
TextureStage m_textureStage;
Program* m_currentProgram;
uint8_t m_vsScratch[64<<10];
uint8_t m_fsScratch[64<<10];
uint32_t m_vsChanges;
uint32_t m_fsChanges;
};
static RendererContext s_renderCtx;
void IndexBuffer::create(uint32_t _size, void* _data)
{
m_size = _size;
m_dynamic = NULL == _data;
D3D11_BUFFER_DESC desc;
desc.ByteWidth = _size;
desc.BindFlags = D3D11_BIND_INDEX_BUFFER;
desc.MiscFlags = 0;
desc.StructureByteStride = 0;
if (m_dynamic)
{
desc.Usage = D3D11_USAGE_DYNAMIC;
desc.CPUAccessFlags = D3D11_CPU_ACCESS_WRITE;
DX_CHECK(s_renderCtx.m_device->CreateBuffer(&desc
, NULL
, &m_ptr
) );
}
else
{
desc.Usage = D3D11_USAGE_IMMUTABLE;
desc.CPUAccessFlags = 0;
D3D11_SUBRESOURCE_DATA srd;
srd.pSysMem = _data;
srd.SysMemPitch = 0;
srd.SysMemSlicePitch = 0;
DX_CHECK(s_renderCtx.m_device->CreateBuffer(&desc
, &srd
, &m_ptr
) );
}
}
void IndexBuffer::update(uint32_t _offset, uint32_t _size, void* _data)
{
ID3D11DeviceContext* deviceCtx = s_renderCtx.m_deviceCtx;
BX_CHECK(m_dynamic, "Must be dynamic!");
D3D11_MAPPED_SUBRESOURCE mapped;
D3D11_MAP type = m_dynamic && 0 == _offset && m_size == _size ? D3D11_MAP_WRITE_DISCARD : D3D11_MAP_WRITE_NO_OVERWRITE;
DX_CHECK(deviceCtx->Map(m_ptr, 0, type, 0, &mapped) );
memcpy( (uint8_t*)mapped.pData + _offset, _data, _size);
deviceCtx->Unmap(m_ptr, 0);
}
void VertexBuffer::create(uint32_t _size, void* _data, VertexDeclHandle _declHandle)
{
m_size = _size;
m_decl = _declHandle;
m_dynamic = NULL == _data;
D3D11_BUFFER_DESC desc;
desc.ByteWidth = _size;
desc.BindFlags = D3D11_BIND_VERTEX_BUFFER;
desc.MiscFlags = 0;
if (m_dynamic)
{
desc.Usage = D3D11_USAGE_DYNAMIC;
desc.CPUAccessFlags = D3D11_CPU_ACCESS_WRITE;
desc.StructureByteStride = 0;
DX_CHECK(s_renderCtx.m_device->CreateBuffer(&desc
, NULL
, &m_ptr
) );
}
else
{
desc.Usage = D3D11_USAGE_IMMUTABLE;
desc.CPUAccessFlags = 0;
desc.StructureByteStride = 0;
D3D11_SUBRESOURCE_DATA srd;
srd.pSysMem = _data;
srd.SysMemPitch = 0;
srd.SysMemSlicePitch = 0;
DX_CHECK(s_renderCtx.m_device->CreateBuffer(&desc
, &srd
, &m_ptr
) );
}
}
void VertexBuffer::update(uint32_t _offset, uint32_t _size, void* _data)
{
ID3D11DeviceContext* deviceCtx = s_renderCtx.m_deviceCtx;
BX_CHECK(m_dynamic, "Must be dynamic!");
D3D11_MAPPED_SUBRESOURCE mapped;
D3D11_MAP type = m_dynamic && 0 == _offset && m_size == _size ? D3D11_MAP_WRITE_DISCARD : D3D11_MAP_WRITE_NO_OVERWRITE;
DX_CHECK(deviceCtx->Map(m_ptr, 0, type, 0, &mapped) );
memcpy( (uint8_t*)mapped.pData + _offset, _data, _size);
deviceCtx->Unmap(m_ptr, 0);
}
void ConstantBuffer::commit()
{
reset();
do
{
uint32_t opcode = read();
if (UniformType::End == opcode)
{
break;
}
UniformType::Enum type;
uint16_t loc;
uint16_t num;
uint16_t copy;
decodeOpcode(opcode, type, loc, num, copy);
const char* data;
if (copy)
{
data = read(g_uniformTypeSize[type]*num);
}
else
{
memcpy(&data, read(sizeof(void*) ), sizeof(void*) );
}
#define CASE_IMPLEMENT_UNIFORM(_uniform, _glsuffix, _dxsuffix, _type) \
case UniformType::_uniform: \
case UniformType::_uniform|BGFX_UNIFORM_FRAGMENTBIT: \
{ \
s_renderCtx.setShaderConstant(type, loc, data, num); \
} \
break;
switch ((int32_t)type)
{
CASE_IMPLEMENT_UNIFORM(Uniform1i, 1iv, I, int);
CASE_IMPLEMENT_UNIFORM(Uniform1f, 1fv, F, float);
CASE_IMPLEMENT_UNIFORM(Uniform1iv, 1iv, I, int);
CASE_IMPLEMENT_UNIFORM(Uniform1fv, 1fv, F, float);
CASE_IMPLEMENT_UNIFORM(Uniform2fv, 2fv, F, float);
CASE_IMPLEMENT_UNIFORM(Uniform3fv, 3fv, F, float);
CASE_IMPLEMENT_UNIFORM(Uniform4fv, 4fv, F, float);
CASE_IMPLEMENT_UNIFORM(Uniform3x3fv, Matrix3fv, F, float);
CASE_IMPLEMENT_UNIFORM(Uniform4x4fv, Matrix4fv, F, float);
case UniformType::End:
break;
default:
BX_TRACE("%4d: INVALID 0x%08x, t %d, l %d, n %d, c %d", m_pos, opcode, type, loc, num, copy);
break;
}
#undef CASE_IMPLEMENT_UNIFORM
} while (true);
}
void TextVideoMemBlitter::setup()
{
ID3D11DeviceContext* deviceCtx = s_renderCtx.m_deviceCtx;
uint32_t width = s_renderCtx.m_scd.BufferDesc.Width;
uint32_t height = s_renderCtx.m_scd.BufferDesc.Height;
RenderTargetHandle rt = BGFX_INVALID_HANDLE;
s_renderCtx.setRenderTarget(rt, false);
D3D11_VIEWPORT vp;
vp.TopLeftX = 0;
vp.TopLeftY = 0;
vp.Width = (float)width;
vp.Height = (float)height;
vp.MinDepth = 0.0f;
vp.MaxDepth = 1.0f;
deviceCtx->RSSetViewports(1, &vp);
uint64_t state = BGFX_STATE_RGB_WRITE
| BGFX_STATE_ALPHA_WRITE
| BGFX_STATE_DEPTH_TEST_ALWAYS
;
s_renderCtx.setBlendState(state);
s_renderCtx.setDepthStencilState(state);
s_renderCtx.setRasterizerState(state, false);
Program& program = s_renderCtx.m_program[m_program.idx];
s_renderCtx.m_currentProgram = &program;
deviceCtx->VSSetShader( (ID3D11VertexShader*)program.m_vsh->m_ptr, NULL, 0);
deviceCtx->VSSetConstantBuffers(0, 1, &program.m_vsh->m_buffer);
deviceCtx->PSSetShader( (ID3D11PixelShader*)program.m_fsh->m_ptr, NULL, 0);
deviceCtx->PSSetConstantBuffers(0, 1, &program.m_fsh->m_buffer);
VertexBuffer& vb = s_renderCtx.m_vertexBuffers[m_vb->handle.idx];
VertexDecl& vertexDecl = s_renderCtx.m_vertexDecls[m_vb->decl.idx];
uint32_t stride = vertexDecl.m_stride;
uint32_t offset = 0;
deviceCtx->IASetVertexBuffers(0, 1, &vb.m_ptr, &stride, &offset);
s_renderCtx.setInputLayout(vertexDecl, program, 0);
IndexBuffer& ib = s_renderCtx.m_indexBuffers[m_ib->handle.idx];
deviceCtx->IASetIndexBuffer(ib.m_ptr, DXGI_FORMAT_R16_UINT, 0);
float proj[16];
mtxOrtho(proj, 0.0f, (float)width, (float)height, 0.0f, 0.0f, 1000.0f);
PredefinedUniform& predefined = program.m_predefined[0];
uint8_t flags = predefined.m_type;
s_renderCtx.setShaderConstant(flags, predefined.m_loc, proj, 4);
s_renderCtx.commitShaderConstants();
s_renderCtx.m_textures[m_texture.idx].commit(0);
s_renderCtx.commitTextureStage();
}
void TextVideoMemBlitter::render(uint32_t _numIndices)
{
ID3D11DeviceContext* deviceCtx = s_renderCtx.m_deviceCtx;
IndexBuffer& ib = s_renderCtx.m_indexBuffers[m_ib->handle.idx];
ib.update(0, _numIndices*2, m_ib->data);
uint32_t numVertices = _numIndices*4/6;
s_renderCtx.m_vertexBuffers[m_vb->handle.idx].update(0, numVertices*m_decl.m_stride, m_vb->data);
deviceCtx->IASetPrimitiveTopology(D3D11_PRIMITIVE_TOPOLOGY_TRIANGLELIST);
deviceCtx->DrawIndexed(_numIndices, 0, 0);
}
void ClearQuad::clear(const Rect& _rect, const Clear& _clear)
{
uint32_t width = s_renderCtx.m_scd.BufferDesc.Width;
uint32_t height = s_renderCtx.m_scd.BufferDesc.Height;
if (0 == _rect.m_x
&& 0 == _rect.m_y
&& width == _rect.m_width
&& height == _rect.m_height)
{
s_renderCtx.clear(_clear);
}
else
{
ID3D11DeviceContext* deviceCtx = s_renderCtx.m_deviceCtx;
uint64_t state = 0;
state |= _clear.m_flags & BGFX_CLEAR_COLOR_BIT ? BGFX_STATE_RGB_WRITE|BGFX_STATE_ALPHA_WRITE : 0;
state |= _clear.m_flags & BGFX_CLEAR_DEPTH_BIT ? BGFX_STATE_DEPTH_TEST_ALWAYS|BGFX_STATE_DEPTH_WRITE : 0;
s_renderCtx.setBlendState(state);
s_renderCtx.setDepthStencilState(state);
s_renderCtx.setRasterizerState(state, false);
Program& program = s_renderCtx.m_program[m_program.idx];
s_renderCtx.m_currentProgram = &program;
deviceCtx->VSSetShader( (ID3D11VertexShader*)program.m_vsh->m_ptr, NULL, 0);
deviceCtx->VSSetConstantBuffers(0, 0, NULL);
deviceCtx->PSSetShader( (ID3D11PixelShader*)program.m_fsh->m_ptr, NULL, 0);
deviceCtx->PSSetConstantBuffers(0, 0, NULL);
VertexBuffer& vb = s_renderCtx.m_vertexBuffers[m_vb->handle.idx];
VertexDecl& vertexDecl = s_renderCtx.m_vertexDecls[m_vb->decl.idx];
uint32_t stride = vertexDecl.m_stride;
uint32_t offset = 0;
{
struct Vertex
{
float m_x;
float m_y;
float m_z;
uint32_t m_abgr;
} * vertex = (Vertex*)m_vb->data;
const uint32_t abgr = bx::endianSwap(_clear.m_rgba);
const float depth = _clear.m_depth;
vertex->m_x = -1.0f;
vertex->m_y = -1.0f;
vertex->m_z = depth;
vertex->m_abgr = abgr;
vertex++;
vertex->m_x = 1.0f;
vertex->m_y = -1.0f;
vertex->m_z = depth;
vertex->m_abgr = abgr;
vertex++;
vertex->m_x = 1.0f;
vertex->m_y = 1.0f;
vertex->m_z = depth;
vertex->m_abgr = abgr;
vertex++;
vertex->m_x = -1.0f;
vertex->m_y = 1.0f;
vertex->m_z = depth;
vertex->m_abgr = abgr;
}
s_renderCtx.m_vertexBuffers[m_vb->handle.idx].update(0, 4*m_decl.m_stride, m_vb->data);
deviceCtx->IASetVertexBuffers(0, 1, &vb.m_ptr, &stride, &offset);
s_renderCtx.setInputLayout(vertexDecl, program, 0);
IndexBuffer& ib = s_renderCtx.m_indexBuffers[m_ib.idx];
deviceCtx->IASetIndexBuffer(ib.m_ptr, DXGI_FORMAT_R16_UINT, 0);
deviceCtx->IASetPrimitiveTopology(D3D11_PRIMITIVE_TOPOLOGY_TRIANGLELIST);
deviceCtx->DrawIndexed(6, 0, 0);
}
}
void Shader::create(bool _fragment, const Memory* _mem)
{
bx::MemoryReader reader(_mem->data, _mem->size);
uint32_t magic;
bx::read(&reader, magic);
uint32_t iohash;
bx::read(&reader, iohash);
bx::read(&reader, m_attrMask, sizeof(m_attrMask) );
uint16_t count;
bx::read(&reader, count);
uint16_t size;
bx::read(&reader, size);
if (0 < size)
{
D3D11_BUFFER_DESC desc;
desc.ByteWidth = size;
desc.Usage = D3D11_USAGE_DEFAULT;
desc.BindFlags = D3D11_BIND_CONSTANT_BUFFER;
desc.CPUAccessFlags = 0;
desc.MiscFlags = 0;
desc.StructureByteStride = 0;
DX_CHECK(s_renderCtx.m_device->CreateBuffer(&desc, NULL, &m_buffer) );
}
m_numPredefined = 0;
m_numUniforms = count;
BX_TRACE("Shader consts %d", count);
uint8_t fragmentBit = _fragment ? BGFX_UNIFORM_FRAGMENTBIT : 0;
if (0 < count)
{
m_constantBuffer = ConstantBuffer::create(1024);
for (uint32_t ii = 0; ii < count; ++ii)
{
uint8_t nameSize;
bx::read(&reader, nameSize);
char name[256];
bx::read(&reader, &name, nameSize);
name[nameSize] = '\0';
uint8_t type;
bx::read(&reader, type);
uint8_t num;
bx::read(&reader, num);
uint16_t regIndex;
bx::read(&reader, regIndex);
uint16_t regCount;
bx::read(&reader, regCount);
const char* kind = "invalid";
const void* data = NULL;
PredefinedUniform::Enum predefined = nameToPredefinedUniformEnum(name);
if (PredefinedUniform::Count != predefined)
{
kind = "predefined";
m_predefined[m_numPredefined].m_loc = regIndex;
m_predefined[m_numPredefined].m_count = regCount;
m_predefined[m_numPredefined].m_type = predefined|fragmentBit;
m_numPredefined++;
}
else
{
const UniformInfo* info = s_renderCtx.m_uniformReg.find(name);
UniformBuffer* uniform = info != NULL ? (UniformBuffer*)info->m_data : NULL;
if (NULL != uniform)
{
kind = "user";
data = uniform->m_data;
m_constantBuffer->writeUniformRef( (UniformType::Enum)(type|fragmentBit), regIndex, data, regCount);
}
}
BX_TRACE("\t%s: %s, type %2d, num %2d, r.index %3d, r.count %2d"
, kind
, name
, type
, num
, regIndex
, regCount
);
BX_UNUSED(kind);
}
m_constantBuffer->finish();
}
uint16_t shaderSize;
bx::read(&reader, shaderSize);
const DWORD* code = (const DWORD*)reader.getDataPtr();
bx::skip(&reader, shaderSize);
if (_fragment)
{
DX_CHECK(s_renderCtx.m_device->CreatePixelShader(code, shaderSize, NULL, (ID3D11PixelShader**)&m_ptr) );
BGFX_FATAL(NULL != m_ptr, bgfx::Fatal::InvalidShader, "Failed to create fragment shader.");
}
else
{
m_hash = hashMurmur2A(code, shaderSize);
m_code = alloc(shaderSize);
memcpy(m_code->data, code, shaderSize);
DX_CHECK(s_renderCtx.m_device->CreateVertexShader(code, shaderSize, NULL, (ID3D11VertexShader**)&m_ptr) );
BGFX_FATAL(NULL != m_ptr, bgfx::Fatal::InvalidShader, "Failed to create vertex shader.");
}
}
void Texture::create(const Memory* _mem, uint32_t _flags)
{
m_sampler = s_renderCtx.getSamplerState(_flags);
Dds dds;
if (parseDds(dds, _mem) )
{
bool decompress = false;
if (dds.m_cubeMap)
{
m_type = TextureCube;
}
else if (dds.m_depth > 1)
{
m_type = Texture3D;
}
else
{
m_type = Texture2D;
}
uint32_t numSrd = dds.m_numMips*(dds.m_cubeMap ? 6 : 1);
D3D11_SUBRESOURCE_DATA* srd = (D3D11_SUBRESOURCE_DATA*)alloca(numSrd*sizeof(D3D11_SUBRESOURCE_DATA) );
uint32_t kk = 0;
bool convert = false;
m_numMips = dds.m_numMips;
if (decompress
|| TextureFormat::Unknown < dds.m_type)
{
uint32_t bpp = s_textureFormat[dds.m_type].m_bpp;
convert = TextureFormat::BGRX8 == dds.m_type;
for (uint8_t side = 0, numSides = dds.m_cubeMap ? 6 : 1; side < numSides; ++side)
{
uint32_t width = dds.m_width;
uint32_t height = dds.m_height;
uint32_t depth = dds.m_depth;
for (uint32_t lod = 0, num = m_numMips; lod < num; ++lod)
{
width = uint32_max(1, width);
height = uint32_max(1, height);
depth = uint32_max(1, depth);
Mip mip;
if (getRawImageData(dds, side, lod, _mem, mip) )
{
if (convert)
{
uint8_t* temp = (uint8_t*)g_realloc(NULL, mip.m_width*mip.m_height*bpp/8);
mip.decode(temp);
srd[kk].pSysMem = temp;
srd[kk].SysMemPitch = mip.m_width*bpp/8;
}
else
{
srd[kk].pSysMem = mip.m_data;
srd[kk].SysMemPitch = mip.m_width*mip.m_bpp/8;
}
srd[kk].SysMemSlicePitch = mip.m_height*srd[kk].SysMemPitch;
++kk;
}
width >>= 1;
height >>= 1;
depth >>= 1;
}
}
}
else
{
for (uint8_t side = 0, numSides = dds.m_cubeMap ? 6 : 1; side < numSides; ++side)
{
for (uint32_t lod = 0, num = m_numMips; lod < num; ++lod)
{
Mip mip;
if (getRawImageData(dds, side, lod, _mem, mip) )
{
srd[kk].pSysMem = mip.m_data;
if (TextureFormat::Unknown > dds.m_type)
{
srd[kk].SysMemPitch = (mip.m_width/4)*mip.m_blockSize;
srd[kk].SysMemSlicePitch = (mip.m_height/4)*srd[kk].SysMemPitch;
}
else
{
srd[kk].SysMemPitch = mip.m_width*mip.m_bpp/8;
srd[kk].SysMemSlicePitch = mip.m_height*srd[kk].SysMemPitch;
}
++kk;
}
}
}
}
D3D11_SHADER_RESOURCE_VIEW_DESC srvd;
memset(&srvd, 0, sizeof(srvd) );
srvd.Format = s_textureFormat[dds.m_type].m_fmt;
switch (m_type)
{
case Texture2D:
case TextureCube:
{
D3D11_TEXTURE2D_DESC desc;
desc.Width = dds.m_width;
desc.Height = dds.m_height;
desc.MipLevels = dds.m_numMips;
desc.Format = s_textureFormat[dds.m_type].m_fmt;
desc.SampleDesc.Count = 1;
desc.SampleDesc.Quality = 0;
desc.Usage = D3D11_USAGE_IMMUTABLE;
desc.BindFlags = D3D11_BIND_SHADER_RESOURCE;
desc.CPUAccessFlags = 0;
if (dds.m_cubeMap)
{
desc.ArraySize = 6;
desc.MiscFlags = D3D11_RESOURCE_MISC_TEXTURECUBE;
srvd.ViewDimension = D3D11_SRV_DIMENSION_TEXTURECUBE;
srvd.TextureCube.MipLevels = dds.m_numMips;
}
else
{
desc.ArraySize = 1;
desc.MiscFlags = 0;
srvd.ViewDimension = D3D11_SRV_DIMENSION_TEXTURE2D;
srvd.Texture2D.MipLevels = dds.m_numMips;
}
DX_CHECK(s_renderCtx.m_device->CreateTexture2D(&desc, srd, &m_texture2d) );
}
break;
case Texture3D:
{
D3D11_TEXTURE3D_DESC desc;
desc.Width = dds.m_width;
desc.Height = dds.m_height;
desc.Depth = dds.m_depth;
desc.MipLevels = dds.m_numMips;
desc.Format = s_textureFormat[dds.m_type].m_fmt;
desc.Usage = D3D11_USAGE_IMMUTABLE;
desc.BindFlags = D3D11_BIND_SHADER_RESOURCE;
desc.CPUAccessFlags = 0;
desc.MiscFlags = 0;
srvd.ViewDimension = D3D11_SRV_DIMENSION_TEXTURE3D;
srvd.Texture3D.MipLevels = dds.m_numMips;
DX_CHECK(s_renderCtx.m_device->CreateTexture3D(&desc, srd, &m_texture3d) );
}
break;
}
DX_CHECK(s_renderCtx.m_device->CreateShaderResourceView(m_ptr, &srvd, &m_srv) );
if (convert)
{
kk = 0;
for (uint8_t side = 0, numSides = dds.m_cubeMap ? 6 : 1; side < numSides; ++side)
{
for (uint32_t lod = 0, num = dds.m_numMips; lod < num; ++lod)
{
g_free(const_cast<void*>(srd[kk].pSysMem) );
++kk;
}
}
}
}
else
{
bx::MemoryReader reader(_mem->data, _mem->size);
uint32_t magic;
bx::read(&reader, magic);
if (BGFX_CHUNK_MAGIC_TEX == magic)
{
TextureCreate tc;
bx::read(&reader, tc);
if (tc.m_cubeMap)
{
m_type = TextureCube;
}
else if (tc.m_depth > 1)
{
m_type = Texture3D;
}
else
{
m_type = Texture2D;
}
m_numMips = tc.m_numMips;
D3D11_SHADER_RESOURCE_VIEW_DESC srvd;
memset(&srvd, 0, sizeof(srvd) );
srvd.Format = s_textureFormat[tc.m_format].m_fmt;
if (NULL != tc.m_mem)
{
D3D11_TEXTURE2D_DESC desc;
desc.Width = tc.m_width;
desc.Height = tc.m_height;
desc.MipLevels = tc.m_numMips;
desc.ArraySize = 1;
desc.Format = srvd.Format;
desc.SampleDesc.Count = 1;
desc.SampleDesc.Quality = 0;
desc.Usage = D3D11_USAGE_IMMUTABLE;
desc.BindFlags = D3D11_BIND_SHADER_RESOURCE;
desc.CPUAccessFlags = 0;
desc.MiscFlags = 0;
srvd.ViewDimension = D3D11_SRV_DIMENSION_TEXTURE2D;
srvd.Texture2D.MipLevels = tc.m_numMips;
D3D11_SUBRESOURCE_DATA* srd = (D3D11_SUBRESOURCE_DATA*)alloca(tc.m_numMips*sizeof(D3D11_SUBRESOURCE_DATA) );
uint32_t bpp = s_textureFormat[tc.m_format].m_bpp;
uint8_t* data = tc.m_mem->data;
for (uint8_t side = 0, numSides = tc.m_cubeMap ? 6 : 1; side < numSides; ++side)
{
uint32_t width = tc.m_width;
uint32_t height = tc.m_height;
uint32_t depth = tc.m_depth;
for (uint32_t lod = 0, num = tc.m_numMips; lod < num; ++lod)
{
width = uint32_max(1, width);
height = uint32_max(1, height);
depth = uint32_max(1, depth);
srd[lod].pSysMem = data;
srd[lod].SysMemPitch = width*bpp/8;
srd[lod].SysMemSlicePitch = 0;
data += width*height*bpp/8;
width >>= 1;
height >>= 1;
depth >>= 1;
}
}
DX_CHECK(s_renderCtx.m_device->CreateTexture2D(&desc, srd, &m_texture2d) );
release(tc.m_mem);
}
else
{
switch (m_type)
{
case Texture2D:
case TextureCube:
{
D3D11_TEXTURE2D_DESC desc;
desc.Width = tc.m_width;
desc.Height = tc.m_height;
desc.MipLevels = tc.m_numMips;
desc.Format = srvd.Format;
desc.SampleDesc.Count = 1;
desc.SampleDesc.Quality = 0;
desc.Usage = D3D11_USAGE_DEFAULT;
desc.BindFlags = D3D11_BIND_SHADER_RESOURCE;
desc.CPUAccessFlags = 0;
if (TextureCube == m_type)
{
desc.ArraySize = 6;
desc.MiscFlags = D3D11_RESOURCE_MISC_TEXTURECUBE;
srvd.ViewDimension = D3D11_SRV_DIMENSION_TEXTURECUBE;
srvd.TextureCube.MipLevels = m_numMips;
}
else
{
desc.ArraySize = 1;
desc.MiscFlags = 0;
srvd.ViewDimension = D3D11_SRV_DIMENSION_TEXTURE2D;
srvd.Texture2D.MipLevels = m_numMips;
}
DX_CHECK(s_renderCtx.m_device->CreateTexture2D(&desc, NULL, &m_texture2d) );
}
break;
case Texture3D:
{
D3D11_TEXTURE3D_DESC desc;
desc.Width = tc.m_width;
desc.Height = tc.m_height;
desc.Depth = tc.m_depth;
desc.MipLevels = tc.m_numMips;
desc.Format = srvd.Format;
desc.Usage = D3D11_USAGE_DEFAULT;
desc.BindFlags = D3D11_BIND_SHADER_RESOURCE;
desc.CPUAccessFlags = 0;
desc.MiscFlags = 0;
srvd.ViewDimension = D3D11_SRV_DIMENSION_TEXTURE3D;
srvd.Texture3D.MipLevels = m_numMips;
DX_CHECK(s_renderCtx.m_device->CreateTexture3D(&desc, NULL, &m_texture3d) );
}
break;
}
}
DX_CHECK(s_renderCtx.m_device->CreateShaderResourceView(m_ptr, &srvd, &m_srv) );
}
else
{
//
}
}
}
void Texture::destroy()
{
DX_RELEASE(m_srv, 0);
DX_RELEASE(m_ptr, 0);
}
void Texture::commit(uint8_t _stage)
{
s_renderCtx.m_textureStage.m_srv[_stage] = m_srv;
s_renderCtx.m_textureStage.m_sampler[_stage] = m_sampler;
}
void Texture::update(uint8_t _side, uint8_t _mip, const Rect& _rect, uint16_t _z, uint16_t _depth, const Memory* _mem)
{
ID3D11DeviceContext* deviceCtx = s_renderCtx.m_deviceCtx;
D3D11_BOX box;
box.left = _rect.m_x;
box.top = _rect.m_y;
box.right = box.left + _rect.m_width;
box.bottom = box.top + _rect.m_height;
box.front = _z;
box.back = box.front + _depth;
uint32_t subres = _mip + (_side * m_numMips);
#if 0
D3D11_MAPPED_SUBRESOURCE mapped;
DX_CHECK(deviceCtx->Map(m_ptr, 0, D3D11_MAP_WRITE, D3D11_MAP_FLAG_DO_NOT_WAIT, &mapped) );
memcpy( (uint8_t*)mapped.pData + subres*mapped.DepthPitch, _mem->data, _mem->size);
deviceCtx->Unmap(m_ptr, 0);
deviceCtx->CopySubresourceRegion(m_ptr
, subres
, _rect.m_x
, _rect.m_y
, _rect.m_z
, staging // D3D11_USAGE_STAGING
, ...
);
#else
deviceCtx->UpdateSubresource(m_ptr, subres, &box, _mem->data, _rect.m_width*4, 0);
#endif // 0
}
void RenderTarget::create(uint16_t _width, uint16_t _height, uint32_t _flags, uint32_t _textureFlags)
{
m_width = _width;
m_height = _height;
m_flags = _flags;
uint32_t colorFormat = (m_flags&BGFX_RENDER_TARGET_COLOR_MASK)>>BGFX_RENDER_TARGET_COLOR_SHIFT;
uint32_t depthFormat = (m_flags&BGFX_RENDER_TARGET_DEPTH_MASK)>>BGFX_RENDER_TARGET_DEPTH_SHIFT;
D3D11_TEXTURE2D_DESC desc;
desc.Width = _width;
desc.Height = _height;
desc.MipLevels = 1;
desc.ArraySize = 1;
desc.Format = s_colorFormat[colorFormat];
desc.SampleDesc.Count = 1;
desc.SampleDesc.Quality = 0;
desc.Usage = D3D11_USAGE_DEFAULT;
desc.BindFlags = D3D11_BIND_SHADER_RESOURCE|D3D11_BIND_RENDER_TARGET;
desc.CPUAccessFlags = 0;
desc.MiscFlags = 0;
DX_CHECK(s_renderCtx.m_device->CreateTexture2D(&desc, NULL, &m_colorTexture) );
DX_CHECK(s_renderCtx.m_device->CreateRenderTargetView(m_colorTexture, NULL, &m_rtv) );
DX_CHECK(s_renderCtx.m_device->CreateShaderResourceView(m_colorTexture, NULL, &m_srv) );
if (0 < depthFormat)
{
D3D11_TEXTURE2D_DESC desc;
desc.Width = _width;
desc.Height = _height;
desc.MipLevels = 1;
desc.ArraySize = 1;
desc.Format = s_depthFormat[depthFormat];
desc.SampleDesc.Count = 1;
desc.SampleDesc.Quality = 0;
desc.Usage = D3D11_USAGE_DEFAULT;
desc.BindFlags = D3D11_BIND_DEPTH_STENCIL;
desc.CPUAccessFlags = 0;
desc.MiscFlags = 0;
DX_CHECK(s_renderCtx.m_device->CreateTexture2D(&desc, NULL, &m_depthTexture) );
DX_CHECK(s_renderCtx.m_device->CreateDepthStencilView(m_depthTexture, NULL, &m_dsv) );
// DX_CHECK(s_renderCtx.m_device->CreateShaderResourceView(m_depthTexture, NULL, &m_srv) );
}
m_sampler = s_renderCtx.getSamplerState(_textureFlags);
}
void RenderTarget::destroy()
{
DX_RELEASE(m_srv, 0);
DX_RELEASE(m_rtv, 0);
DX_RELEASE(m_colorTexture, 0);
DX_RELEASE(m_dsv, 0);
DX_RELEASE(m_depthTexture, 0);
m_flags = 0;
}
void RenderTarget::commit(uint8_t _stage)
{
s_renderCtx.m_textureStage.m_srv[_stage] = m_srv;
s_renderCtx.m_textureStage.m_sampler[_stage] = m_sampler;
}
void UniformBuffer::create(UniformType::Enum _type, uint16_t _num, bool _alloc)
{
uint32_t size = BX_ALIGN_16(g_uniformTypeSize[_type]*_num);
if (_alloc)
{
m_data = g_realloc(NULL, size);
memset(m_data, 0, size);
}
D3D11_BUFFER_DESC desc;
desc.ByteWidth = size;
desc.Usage = D3D11_USAGE_DEFAULT;
desc.BindFlags = D3D11_BIND_CONSTANT_BUFFER;
desc.CPUAccessFlags = 0;
desc.MiscFlags = 0;
desc.StructureByteStride = 0;
DX_CHECK(s_renderCtx.m_device->CreateBuffer(&desc, NULL, &m_ptr) );
}
void UniformBuffer::destroy()
{
if (NULL != m_data)
{
g_free(m_data);
m_data = NULL;
}
DX_RELEASE(m_ptr, 0);
}
void Context::flip()
{
s_renderCtx.flip();
}
void Context::rendererInit()
{
s_renderCtx.init();
}
void Context::rendererShutdown()
{
s_renderCtx.shutdown();
}
void Context::rendererCreateIndexBuffer(IndexBufferHandle _handle, Memory* _mem)
{
s_renderCtx.m_indexBuffers[_handle.idx].create(_mem->size, _mem->data);
}
void Context::rendererDestroyIndexBuffer(IndexBufferHandle _handle)
{
s_renderCtx.m_indexBuffers[_handle.idx].destroy();
}
void Context::rendererCreateVertexDecl(VertexDeclHandle _handle, const VertexDecl& _decl)
{
VertexDecl& decl = s_renderCtx.m_vertexDecls[_handle.idx];
memcpy(&decl, &_decl, sizeof(VertexDecl) );
dump(decl);
}
void Context::rendererDestroyVertexDecl(VertexDeclHandle /*_handle*/)
{
}
void Context::rendererCreateVertexBuffer(VertexBufferHandle _handle, Memory* _mem, VertexDeclHandle _declHandle)
{
s_renderCtx.m_vertexBuffers[_handle.idx].create(_mem->size, _mem->data, _declHandle);
}
void Context::rendererDestroyVertexBuffer(VertexBufferHandle _handle)
{
s_renderCtx.m_vertexBuffers[_handle.idx].destroy();
}
void Context::rendererCreateDynamicIndexBuffer(IndexBufferHandle _handle, uint32_t _size)
{
s_renderCtx.m_indexBuffers[_handle.idx].create(_size, NULL);
}
void Context::rendererUpdateDynamicIndexBuffer(IndexBufferHandle _handle, uint32_t _offset, uint32_t _size, Memory* _mem)
{
s_renderCtx.m_indexBuffers[_handle.idx].update(_offset, uint32_min(_size, _mem->size), _mem->data);
}
void Context::rendererDestroyDynamicIndexBuffer(IndexBufferHandle _handle)
{
s_renderCtx.m_indexBuffers[_handle.idx].destroy();
}
void Context::rendererCreateDynamicVertexBuffer(VertexBufferHandle _handle, uint32_t _size)
{
VertexDeclHandle decl = BGFX_INVALID_HANDLE;
s_renderCtx.m_vertexBuffers[_handle.idx].create(_size, NULL, decl);
}
void Context::rendererUpdateDynamicVertexBuffer(VertexBufferHandle _handle, uint32_t _offset, uint32_t _size, Memory* _mem)
{
s_renderCtx.m_vertexBuffers[_handle.idx].update(_offset, uint32_min(_size, _mem->size), _mem->data);
}
void Context::rendererDestroyDynamicVertexBuffer(VertexBufferHandle _handle)
{
s_renderCtx.m_vertexBuffers[_handle.idx].destroy();
}
void Context::rendererCreateVertexShader(VertexShaderHandle _handle, Memory* _mem)
{
s_renderCtx.m_vertexShaders[_handle.idx].create(false, _mem);
}
void Context::rendererDestroyVertexShader(VertexShaderHandle _handle)
{
s_renderCtx.m_vertexShaders[_handle.idx].destroy();
}
void Context::rendererCreateFragmentShader(FragmentShaderHandle _handle, Memory* _mem)
{
s_renderCtx.m_fragmentShaders[_handle.idx].create(true, _mem);
}
void Context::rendererDestroyFragmentShader(FragmentShaderHandle _handle)
{
s_renderCtx.m_fragmentShaders[_handle.idx].destroy();
}
void Context::rendererCreateProgram(ProgramHandle _handle, VertexShaderHandle _vsh, FragmentShaderHandle _fsh)
{
s_renderCtx.m_program[_handle.idx].create(s_renderCtx.m_vertexShaders[_vsh.idx], s_renderCtx.m_fragmentShaders[_fsh.idx]);
}
void Context::rendererDestroyProgram(FragmentShaderHandle _handle)
{
s_renderCtx.m_program[_handle.idx].destroy();
}
void Context::rendererCreateTexture(TextureHandle _handle, Memory* _mem, uint32_t _flags)
{
s_renderCtx.m_textures[_handle.idx].create(_mem, _flags);
}
void Context::rendererUpdateTextureBegin(TextureHandle /*_handle*/, uint8_t /*_side*/, uint8_t /*_mip*/)
{
}
void Context::rendererUpdateTexture(TextureHandle _handle, uint8_t _side, uint8_t _mip, const Rect& _rect, uint16_t _z, uint16_t _depth, const Memory* _mem)
{
s_renderCtx.m_textures[_handle.idx].update(_side, _mip, _rect, _z, _depth, _mem);
}
void Context::rendererUpdateTextureEnd()
{
}
void Context::rendererDestroyTexture(TextureHandle _handle)
{
s_renderCtx.m_textures[_handle.idx].destroy();
}
void Context::rendererCreateRenderTarget(RenderTargetHandle _handle, uint16_t _width, uint16_t _height, uint32_t _flags, uint32_t _textureFlags)
{
s_renderCtx.m_renderTargets[_handle.idx].create(_width, _height, _flags, _textureFlags);
}
void Context::rendererDestroyRenderTarget(RenderTargetHandle _handle)
{
s_renderCtx.m_renderTargets[_handle.idx].destroy();
}
void Context::rendererCreateUniform(UniformHandle _handle, UniformType::Enum _type, uint16_t _num, const char* _name)
{
s_renderCtx.m_uniforms[_handle.idx].create(_type, _num);
s_renderCtx.m_uniformReg.add(_name, &s_renderCtx.m_uniforms[_handle.idx]);
}
void Context::rendererDestroyUniform(UniformHandle _handle)
{
s_renderCtx.m_uniforms[_handle.idx].destroy();
}
void Context::rendererSaveScreenShot(Memory* _mem)
{
s_renderCtx.saveScreenShot(_mem);
}
void Context::rendererUpdateUniform(uint16_t _loc, const void* _data, uint32_t _size)
{
memcpy(s_renderCtx.m_uniforms[_loc].m_data, _data, _size);
}
void Context::rendererSubmit()
{
ID3D11DeviceContext* deviceCtx = s_renderCtx.m_deviceCtx;
s_renderCtx.updateResolution(m_render->m_resolution);
int64_t elapsed = -bx::getHPCounter();
int64_t captureElapsed = 0;
if (0 < m_render->m_iboffset)
{
TransientIndexBuffer* ib = m_render->m_transientIb;
s_renderCtx.m_indexBuffers[ib->handle.idx].update(0, m_render->m_iboffset, ib->data);
}
if (0 < m_render->m_vboffset)
{
TransientVertexBuffer* vb = m_render->m_transientVb;
s_renderCtx.m_vertexBuffers[vb->handle.idx].update(0, m_render->m_vboffset, vb->data);
}
m_render->sort();
RenderState currentState;
currentState.reset();
currentState.m_flags = BGFX_STATE_NONE;
currentState.m_stencil = packStencil(BGFX_STENCIL_NONE, BGFX_STENCIL_NONE);
Matrix4 viewProj[BGFX_CONFIG_MAX_VIEWS];
for (uint32_t ii = 0; ii < BGFX_CONFIG_MAX_VIEWS; ++ii)
{
mtxMul(viewProj[ii].val, m_render->m_view[ii].val, m_render->m_proj[ii].val);
}
bool wireframe = !!(m_render->m_debug&BGFX_DEBUG_WIREFRAME);
s_renderCtx.setDebugWireframe(wireframe);
uint16_t programIdx = invalidHandle;
SortKey key;
uint8_t view = 0xff;
RenderTargetHandle rt = BGFX_INVALID_HANDLE;
float alphaRef = 0.0f;
D3D11_PRIMITIVE_TOPOLOGY primType = D3D11_PRIMITIVE_TOPOLOGY_TRIANGLELIST;
deviceCtx->IASetPrimitiveTopology(primType);
uint32_t primNumVerts = 3;
uint32_t statsNumPrimsSubmitted = 0;
uint32_t statsNumIndices = 0;
uint32_t statsNumInstances = 0;
uint32_t statsNumPrimsRendered = 0;
if (0 == (m_render->m_debug&BGFX_DEBUG_IFH) )
{
for (uint32_t item = 0, numItems = m_render->m_num; item < numItems; ++item)
{
key.decode(m_render->m_sortKeys[item]);
const RenderState& state = m_render->m_renderState[m_render->m_sortValues[item] ];
const uint64_t newFlags = state.m_flags;
uint64_t changedFlags = currentState.m_flags ^ state.m_flags;
currentState.m_flags = newFlags;
const uint64_t newStencil = state.m_stencil;
uint64_t changedStencil = currentState.m_stencil ^ state.m_stencil;
currentState.m_stencil = newStencil;
if (key.m_view != view)
{
currentState.clear();
changedFlags = BGFX_STATE_MASK;
changedStencil = packStencil(BGFX_STENCIL_MASK, BGFX_STENCIL_MASK);
currentState.m_flags = newFlags;
currentState.m_stencil = newStencil;
view = key.m_view;
programIdx = invalidHandle;
if (m_render->m_rt[view].idx != rt.idx)
{
rt = m_render->m_rt[view];
s_renderCtx.setRenderTarget(rt);
}
Rect& rect = m_render->m_rect[view];
D3D11_VIEWPORT vp;
vp.TopLeftX = rect.m_x;
vp.TopLeftY = rect.m_y;
vp.Width = rect.m_width;
vp.Height = rect.m_height;
vp.MinDepth = 0.0f;
vp.MaxDepth = 1.0f;
deviceCtx->RSSetViewports(1, &vp);
Clear& clear = m_render->m_clear[view];
if (BGFX_CLEAR_NONE != clear.m_flags)
{
m_clearQuad.clear(rect, clear);
}
s_renderCtx.setBlendState(BGFX_STATE_DEFAULT);
s_renderCtx.setDepthStencilState(BGFX_STATE_DEFAULT, packStencil(BGFX_STENCIL_DEFAULT, BGFX_STENCIL_DEFAULT) );
s_renderCtx.setRasterizerState(BGFX_STATE_DEFAULT, wireframe);
uint8_t primIndex = uint8_t( (newFlags&BGFX_STATE_PT_MASK)>>BGFX_STATE_PT_SHIFT);
if (primType != s_primType[primIndex])
{
primType = s_primType[primIndex];
primNumVerts = 3-primIndex;
deviceCtx->IASetPrimitiveTopology(primType);
}
}
if ( (BGFX_STATE_DEPTH_WRITE|BGFX_STATE_DEPTH_TEST_MASK) & changedFlags
|| 0 != changedStencil)
{
s_renderCtx.setDepthStencilState(newFlags, newStencil);
}
if ( (BGFX_STATE_CULL_MASK|BGFX_STATE_ALPHA_MASK|BGFX_STATE_RGB_WRITE
|BGFX_STATE_BLEND_MASK|BGFX_STATE_ALPHA_REF_MASK|BGFX_STATE_PT_MASK
|BGFX_STATE_POINT_SIZE_MASK|BGFX_STATE_SRGBWRITE|BGFX_STATE_MSAA) & changedFlags)
{
if ( (BGFX_STATE_BLEND_MASK|BGFX_STATE_ALPHA_WRITE|BGFX_STATE_RGB_WRITE) & changedFlags)
{
s_renderCtx.setBlendState(newFlags);
}
if ( (BGFX_STATE_CULL_MASK) & changedFlags)
{
s_renderCtx.setRasterizerState(newFlags, wireframe);
}
if (BGFX_STATE_ALPHA_REF_MASK & changedFlags)
{
uint32_t ref = (newFlags&BGFX_STATE_ALPHA_REF_MASK)>>BGFX_STATE_ALPHA_REF_SHIFT;
alphaRef = ref/255.0f;
}
uint8_t primIndex = uint8_t( (newFlags&BGFX_STATE_PT_MASK)>>BGFX_STATE_PT_SHIFT);
if (primType != s_primType[primIndex])
{
primType = s_primType[primIndex];
primNumVerts = 3-primIndex;
deviceCtx->IASetPrimitiveTopology(primType);
}
}
bool programChanged = false;
bool constantsChanged = state.m_constBegin < state.m_constEnd;
rendererUpdateUniforms(m_render->m_constantBuffer, state.m_constBegin, state.m_constEnd);
if (key.m_program != programIdx)
{
programIdx = key.m_program;
if (invalidHandle == programIdx)
{
s_renderCtx.m_currentProgram = NULL;
deviceCtx->VSSetShader(NULL, 0, 0);
deviceCtx->PSSetShader(NULL, 0, 0);
}
else
{
Program& program = s_renderCtx.m_program[programIdx];
s_renderCtx.m_currentProgram = &program;
deviceCtx->VSSetShader( (ID3D11VertexShader*)program.m_vsh->m_ptr, NULL, 0);
deviceCtx->VSSetConstantBuffers(0, 1, &program.m_vsh->m_buffer);
deviceCtx->PSSetShader( (ID3D11PixelShader*)program.m_fsh->m_ptr, NULL, 0);
deviceCtx->PSSetConstantBuffers(0, 1, &program.m_fsh->m_buffer);
}
programChanged =
constantsChanged = true;
}
if (invalidHandle != programIdx)
{
Program& program = s_renderCtx.m_program[programIdx];
if (constantsChanged)
{
program.commit();
}
for (uint32_t ii = 0, num = program.m_numPredefined; ii < num; ++ii)
{
PredefinedUniform& predefined = program.m_predefined[ii];
uint8_t flags = predefined.m_type&BGFX_UNIFORM_FRAGMENTBIT;
switch (predefined.m_type&(~BGFX_UNIFORM_FRAGMENTBIT) )
{
case PredefinedUniform::ViewRect:
{
float rect[4];
rect[0] = m_render->m_rect[view].m_x;
rect[1] = m_render->m_rect[view].m_y;
rect[2] = m_render->m_rect[view].m_width;
rect[3] = m_render->m_rect[view].m_height;
s_renderCtx.setShaderConstant(flags, predefined.m_loc, &rect[0], 1);
}
break;
case PredefinedUniform::ViewTexel:
{
float rect[4];
rect[0] = 1.0f/float(m_render->m_rect[view].m_width);
rect[1] = 1.0f/float(m_render->m_rect[view].m_height);
s_renderCtx.setShaderConstant(flags, predefined.m_loc, &rect[0], 1);
}
break;
case PredefinedUniform::View:
{
s_renderCtx.setShaderConstant(flags, predefined.m_loc, m_render->m_view[view].val, uint32_min(4, predefined.m_count) );
}
break;
case PredefinedUniform::ViewProj:
{
s_renderCtx.setShaderConstant(flags, predefined.m_loc, viewProj[view].val, uint32_min(4, predefined.m_count) );
}
break;
case PredefinedUniform::Model:
{
const Matrix4& model = m_render->m_matrixCache.m_cache[state.m_matrix];
s_renderCtx.setShaderConstant(flags, predefined.m_loc, model.val, uint32_min(state.m_num*4, predefined.m_count) );
}
break;
case PredefinedUniform::ModelView:
{
Matrix4 modelView;
const Matrix4& model = m_render->m_matrixCache.m_cache[state.m_matrix];
mtxMul(modelView.val, model.val, m_render->m_view[view].val);
s_renderCtx.setShaderConstant(flags, predefined.m_loc, modelView.val, uint32_min(4, predefined.m_count) );
}
break;
case PredefinedUniform::ModelViewProj:
{
Matrix4 modelViewProj;
const Matrix4& model = m_render->m_matrixCache.m_cache[state.m_matrix];
mtxMul(modelViewProj.val, model.val, viewProj[view].val);
s_renderCtx.setShaderConstant(flags, predefined.m_loc, modelViewProj.val, uint32_min(4, predefined.m_count) );
}
break;
case PredefinedUniform::ModelViewProjX:
{
const Matrix4& model = m_render->m_matrixCache.m_cache[state.m_matrix];
static const BX_ALIGN_STRUCT_16(float) s_bias[16] =
{
0.5f, 0.0f, 0.0f, 0.0f,
0.0f, 0.5f, 0.0f, 0.0f,
0.0f, 0.0f, 0.5f, 0.0f,
0.5f, 0.5f, 0.5f, 1.0f,
};
uint8_t other = m_render->m_other[view];
Matrix4 viewProjBias;
mtxMul(viewProjBias.val, viewProj[other].val, s_bias);
Matrix4 modelViewProj;
mtxMul(modelViewProj.val, model.val, viewProjBias.val);
s_renderCtx.setShaderConstant(flags, predefined.m_loc, modelViewProj.val, uint32_min(4, predefined.m_count) );
}
break;
case PredefinedUniform::ViewProjX:
{
static const BX_ALIGN_STRUCT_16(float) s_bias[16] =
{
0.5f, 0.0f, 0.0f, 0.0f,
0.0f, 0.5f, 0.0f, 0.0f,
0.0f, 0.0f, 0.5f, 0.0f,
0.5f, 0.5f, 0.5f, 1.0f,
};
uint8_t other = m_render->m_other[view];
Matrix4 viewProjBias;
mtxMul(viewProjBias.val, viewProj[other].val, s_bias);
s_renderCtx.setShaderConstant(flags, predefined.m_loc, viewProjBias.val, uint32_min(4, predefined.m_count) );
}
break;
case PredefinedUniform::AlphaRef:
{
s_renderCtx.setShaderConstant(flags, predefined.m_loc, &alphaRef, 1);
}
break;
default:
BX_CHECK(false, "predefined %d not handled", predefined.m_type);
break;
}
}
if (constantsChanged
|| program.m_numPredefined > 0)
{
s_renderCtx.commitShaderConstants();
}
}
// if (BGFX_STATE_TEX_MASK & changedFlags)
{
uint32_t changes = 0;
uint64_t flag = BGFX_STATE_TEX0;
for (uint32_t stage = 0; stage < BGFX_STATE_TEX_COUNT; ++stage)
{
const Sampler& sampler = state.m_sampler[stage];
Sampler& current = currentState.m_sampler[stage];
if (current.m_idx != sampler.m_idx
|| current.m_flags != sampler.m_flags
|| programChanged)
{
if (invalidHandle != sampler.m_idx)
{
switch (sampler.m_flags&BGFX_SAMPLER_TYPE_MASK)
{
case BGFX_SAMPLER_TEXTURE:
s_renderCtx.m_textures[sampler.m_idx].commit(stage);
break;
case BGFX_SAMPLER_RENDERTARGET_COLOR:
s_renderCtx.m_renderTargets[sampler.m_idx].commit(stage);
break;
case BGFX_SAMPLER_RENDERTARGET_DEPTH:
// id = s_renderCtx.m_renderTargets[sampler.m_idx].m_depth.m_id;
break;
}
}
else
{
s_renderCtx.m_textureStage.m_srv[stage] = NULL;
s_renderCtx.m_textureStage.m_sampler[stage] = NULL;
}
++changes;
}
current = sampler;
flag <<= 1;
}
if (0 < changes)
{
s_renderCtx.commitTextureStage();
}
}
if (currentState.m_vertexBuffer.idx != state.m_vertexBuffer.idx || programChanged)
{
currentState.m_vertexBuffer = state.m_vertexBuffer;
uint16_t handle = state.m_vertexBuffer.idx;
if (invalidHandle != handle)
{
const VertexBuffer& vb = s_renderCtx.m_vertexBuffers[handle];
uint16_t decl = vb.m_decl.idx == invalidHandle ? state.m_vertexDecl.idx : vb.m_decl.idx;
const VertexDecl& vertexDecl = s_renderCtx.m_vertexDecls[decl];
uint32_t stride = vertexDecl.m_stride;
uint32_t offset = 0;
deviceCtx->IASetVertexBuffers(0, 1, &vb.m_ptr, &stride, &offset);
if (invalidHandle != state.m_instanceDataBuffer.idx)
{
const VertexBuffer& inst = s_renderCtx.m_vertexBuffers[state.m_instanceDataBuffer.idx];
uint32_t instStride = state.m_instanceDataStride;
deviceCtx->IASetVertexBuffers(1, 1, &inst.m_ptr, &instStride, &state.m_instanceDataOffset);
s_renderCtx.setInputLayout(vertexDecl, s_renderCtx.m_program[programIdx], state.m_instanceDataStride/16);
}
else
{
deviceCtx->IASetVertexBuffers(1, 0, NULL, NULL, NULL);
s_renderCtx.setInputLayout(vertexDecl, s_renderCtx.m_program[programIdx], 0);
}
}
else
{
deviceCtx->IASetVertexBuffers(0, 0, NULL, NULL, NULL);
}
}
if (currentState.m_indexBuffer.idx != state.m_indexBuffer.idx)
{
currentState.m_indexBuffer = state.m_indexBuffer;
uint16_t handle = state.m_indexBuffer.idx;
if (invalidHandle != handle)
{
const IndexBuffer& ib = s_renderCtx.m_indexBuffers[handle];
deviceCtx->IASetIndexBuffer(ib.m_ptr, DXGI_FORMAT_R16_UINT, 0);
}
else
{
deviceCtx->IASetIndexBuffer(NULL, DXGI_FORMAT_R16_UINT, 0);
}
}
if (invalidHandle != currentState.m_vertexBuffer.idx)
{
uint32_t numVertices = state.m_numVertices;
if (UINT32_C(0xffffffff) == numVertices)
{
const VertexBuffer& vb = s_renderCtx.m_vertexBuffers[currentState.m_vertexBuffer.idx];
uint16_t decl = vb.m_decl.idx == invalidHandle ? state.m_vertexDecl.idx : vb.m_decl.idx;
const VertexDecl& vertexDecl = s_renderCtx.m_vertexDecls[decl];
numVertices = vb.m_size/vertexDecl.m_stride;
}
uint32_t numIndices = 0;
uint32_t numPrimsSubmitted = 0;
uint32_t numInstances = 0;
uint32_t numPrimsRendered = 0;
if (invalidHandle != state.m_indexBuffer.idx)
{
if (UINT32_MAX == state.m_numIndices)
{
numIndices = s_renderCtx.m_indexBuffers[state.m_indexBuffer.idx].m_size/2;
numPrimsSubmitted = numIndices/primNumVerts;
numInstances = state.m_numInstances;
numPrimsRendered = numPrimsSubmitted*state.m_numInstances;
deviceCtx->DrawIndexedInstanced(numIndices
, state.m_numInstances
, 0
, state.m_startVertex
, 0
);
}
else if (primNumVerts <= state.m_numIndices)
{
numIndices = state.m_numIndices;
numPrimsSubmitted = numIndices/primNumVerts;
numInstances = state.m_numInstances;
numPrimsRendered = numPrimsSubmitted*state.m_numInstances;
deviceCtx->DrawIndexedInstanced(numIndices
, state.m_numInstances
, state.m_startIndex
, state.m_startVertex
, 0
);
}
}
else
{
numPrimsSubmitted = numVertices/primNumVerts;
numInstances = state.m_numInstances;
numPrimsRendered = numPrimsSubmitted*state.m_numInstances;
deviceCtx->DrawInstanced(numVertices
, state.m_numInstances
, state.m_startVertex
, 0
);
}
statsNumPrimsSubmitted += numPrimsSubmitted;
statsNumIndices += numIndices;
statsNumInstances += numInstances;
statsNumPrimsRendered += numPrimsRendered;
}
}
if (0 < m_render->m_num)
{
captureElapsed = -bx::getHPCounter();
s_renderCtx.capture();
captureElapsed += bx::getHPCounter();
}
}
int64_t now = bx::getHPCounter();
elapsed += now;
static int64_t last = now;
int64_t frameTime = now - last;
last = now;
static int64_t min = frameTime;
static int64_t max = frameTime;
min = min > frameTime ? frameTime : min;
max = max < frameTime ? frameTime : max;
if (m_render->m_debug & (BGFX_DEBUG_IFH|BGFX_DEBUG_STATS) )
{
// PIX_BEGINEVENT(D3DCOLOR_RGBA(0x40, 0x40, 0x40, 0xff), "debugstats");
TextVideoMem& tvm = s_renderCtx.m_textVideoMem;
static int64_t next = now;
if (now >= next)
{
next = now + bx::getHPFrequency();
double freq = double(bx::getHPFrequency() );
double toMs = 1000.0/freq;
tvm.clear();
uint16_t pos = 10;
tvm.printf(0, 0, BGFX_CONFIG_DEBUG ? 0x89 : 0x8f, " " BGFX_RENDERER_NAME " ");
tvm.printf(10, pos++, 0x8e, " Frame: %7.3f, % 7.3f \x1f, % 7.3f \x1e [ms] / % 6.2f FPS"
, double(frameTime)*toMs
, double(min)*toMs
, double(max)*toMs
, freq/frameTime
);
double elapsedCpuMs = double(elapsed)*toMs;
tvm.printf(10, pos++, 0x8e, " Draw calls: %4d / CPU %3.4f [ms]"
, m_render->m_num
, elapsedCpuMs
);
tvm.printf(10, pos++, 0x8e, " Prims: %7d (#inst: %5d), submitted: %7d"
, statsNumPrimsRendered
, statsNumInstances
, statsNumPrimsSubmitted
);
double captureMs = double(captureElapsed)*toMs;
tvm.printf(10, pos++, 0x8e, " Capture: %3.4f [ms]", captureMs);
tvm.printf(10, pos++, 0x8e, " Indices: %7d", statsNumIndices);
tvm.printf(10, pos++, 0x8e, " DVB size: %7d", m_render->m_vboffset);
tvm.printf(10, pos++, 0x8e, " DIB size: %7d", m_render->m_iboffset);
uint8_t attr[2] = { 0x89, 0x8a };
uint8_t attrIndex = m_render->m_waitSubmit < m_render->m_waitRender;
tvm.printf(10, pos++, attr[attrIndex&1], "Submit wait: %3.4f [ms]", m_render->m_waitSubmit*toMs);
tvm.printf(10, pos++, attr[(attrIndex+1)&1], "Render wait: %3.4f [ms]", m_render->m_waitRender*toMs);
min = frameTime;
max = frameTime;
}
m_textVideoMemBlitter.blit(tvm);
// PIX_ENDEVENT();
}
else if (m_render->m_debug & BGFX_DEBUG_TEXT)
{
// PIX_BEGINEVENT(D3DCOLOR_RGBA(0x40, 0x40, 0x40, 0xff), "debugtext");
m_textVideoMemBlitter.blit(m_render->m_textVideoMem);
// PIX_ENDEVENT();
}
}
}
#endif // BGFX_CONFIG_RENDERER_DIRECT3D11