bgfx/src/renderer_d3d11.cpp
2015-02-21 15:40:51 -08:00

3775 lines
112 KiB
C++

/*
* Copyright 2011-2015 Branimir Karadzic. All rights reserved.
* License: http://www.opensource.org/licenses/BSD-2-Clause
*/
#include "bgfx_p.h"
#if BGFX_CONFIG_RENDERER_DIRECT3D11
# include "renderer_d3d11.h"
namespace bgfx
{
static wchar_t s_viewNameW[BGFX_CONFIG_MAX_VIEWS][BGFX_CONFIG_MAX_VIEW_NAME];
struct PrimInfo
{
D3D11_PRIMITIVE_TOPOLOGY m_type;
uint32_t m_min;
uint32_t m_div;
uint32_t m_sub;
};
static const PrimInfo s_primInfo[] =
{
{ D3D11_PRIMITIVE_TOPOLOGY_TRIANGLELIST, 3, 3, 0 },
{ D3D11_PRIMITIVE_TOPOLOGY_TRIANGLESTRIP, 3, 1, 2 },
{ D3D11_PRIMITIVE_TOPOLOGY_LINELIST, 2, 2, 0 },
{ D3D11_PRIMITIVE_TOPOLOGY_LINESTRIP, 2, 1, 1 },
{ D3D11_PRIMITIVE_TOPOLOGY_POINTLIST, 1, 1, 0 },
{ D3D11_PRIMITIVE_TOPOLOGY_UNDEFINED, 0, 0, 0 },
};
static const char* s_primName[] =
{
"TriList",
"TriStrip",
"Line",
"LineStrip",
"Point",
};
BX_STATIC_ASSERT(BX_COUNTOF(s_primInfo) == BX_COUNTOF(s_primName)+1);
union Zero
{
ID3D11Buffer* m_buffer[D3D11_IA_VERTEX_INPUT_RESOURCE_SLOT_COUNT];
ID3D11UnorderedAccessView* m_uav[D3D11_PS_CS_UAV_REGISTER_COUNT];
ID3D11ShaderResourceView* m_srv[D3D11_COMMONSHADER_INPUT_RESOURCE_SLOT_COUNT];
ID3D11SamplerState* m_sampler[D3D11_COMMONSHADER_SAMPLER_SLOT_COUNT];
uint32_t m_zero[D3D11_IA_VERTEX_INPUT_RESOURCE_SLOT_COUNT];
};
static Zero s_zero;
static const uint32_t s_checkMsaa[] =
{
0,
2,
4,
8,
16,
};
static DXGI_SAMPLE_DESC s_msaa[] =
{
{ 1, 0 },
{ 2, 0 },
{ 4, 0 },
{ 8, 0 },
{ 16, 0 },
};
static const D3D11_BLEND s_blendFactor[][2] =
{
{ (D3D11_BLEND)0, (D3D11_BLEND)0 }, // ignored
{ D3D11_BLEND_ZERO, D3D11_BLEND_ZERO }, // ZERO
{ D3D11_BLEND_ONE, D3D11_BLEND_ONE }, // ONE
{ D3D11_BLEND_SRC_COLOR, D3D11_BLEND_SRC_ALPHA }, // SRC_COLOR
{ D3D11_BLEND_INV_SRC_COLOR, D3D11_BLEND_INV_SRC_ALPHA }, // INV_SRC_COLOR
{ D3D11_BLEND_SRC_ALPHA, D3D11_BLEND_SRC_ALPHA }, // SRC_ALPHA
{ D3D11_BLEND_INV_SRC_ALPHA, D3D11_BLEND_INV_SRC_ALPHA }, // INV_SRC_ALPHA
{ D3D11_BLEND_DEST_ALPHA, D3D11_BLEND_DEST_ALPHA }, // DST_ALPHA
{ D3D11_BLEND_INV_DEST_ALPHA, D3D11_BLEND_INV_DEST_ALPHA }, // INV_DST_ALPHA
{ D3D11_BLEND_DEST_COLOR, D3D11_BLEND_DEST_ALPHA }, // DST_COLOR
{ D3D11_BLEND_INV_DEST_COLOR, D3D11_BLEND_INV_DEST_ALPHA }, // INV_DST_COLOR
{ D3D11_BLEND_SRC_ALPHA_SAT, D3D11_BLEND_ONE }, // SRC_ALPHA_SAT
{ D3D11_BLEND_BLEND_FACTOR, D3D11_BLEND_BLEND_FACTOR }, // FACTOR
{ D3D11_BLEND_INV_BLEND_FACTOR, D3D11_BLEND_INV_BLEND_FACTOR }, // INV_FACTOR
};
static const D3D11_BLEND_OP s_blendEquation[] =
{
D3D11_BLEND_OP_ADD,
D3D11_BLEND_OP_SUBTRACT,
D3D11_BLEND_OP_REV_SUBTRACT,
D3D11_BLEND_OP_MIN,
D3D11_BLEND_OP_MAX,
};
static const D3D11_COMPARISON_FUNC s_cmpFunc[] =
{
D3D11_COMPARISON_FUNC(0), // ignored
D3D11_COMPARISON_LESS,
D3D11_COMPARISON_LESS_EQUAL,
D3D11_COMPARISON_EQUAL,
D3D11_COMPARISON_GREATER_EQUAL,
D3D11_COMPARISON_GREATER,
D3D11_COMPARISON_NOT_EQUAL,
D3D11_COMPARISON_NEVER,
D3D11_COMPARISON_ALWAYS,
};
static const D3D11_STENCIL_OP s_stencilOp[] =
{
D3D11_STENCIL_OP_ZERO,
D3D11_STENCIL_OP_KEEP,
D3D11_STENCIL_OP_REPLACE,
D3D11_STENCIL_OP_INCR,
D3D11_STENCIL_OP_INCR_SAT,
D3D11_STENCIL_OP_DECR,
D3D11_STENCIL_OP_DECR_SAT,
D3D11_STENCIL_OP_INVERT,
};
static const D3D11_CULL_MODE s_cullMode[] =
{
D3D11_CULL_NONE,
D3D11_CULL_FRONT,
D3D11_CULL_BACK,
};
static const D3D11_TEXTURE_ADDRESS_MODE s_textureAddress[] =
{
D3D11_TEXTURE_ADDRESS_WRAP,
D3D11_TEXTURE_ADDRESS_MIRROR,
D3D11_TEXTURE_ADDRESS_CLAMP,
};
/*
* D3D11_FILTER_MIN_MAG_MIP_POINT = 0x00,
* D3D11_FILTER_MIN_MAG_POINT_MIP_LINEAR = 0x01,
* D3D11_FILTER_MIN_POINT_MAG_LINEAR_MIP_POINT = 0x04,
* D3D11_FILTER_MIN_POINT_MAG_MIP_LINEAR = 0x05,
* D3D11_FILTER_MIN_LINEAR_MAG_MIP_POINT = 0x10,
* D3D11_FILTER_MIN_LINEAR_MAG_POINT_MIP_LINEAR = 0x11,
* D3D11_FILTER_MIN_MAG_LINEAR_MIP_POINT = 0x14,
* D3D11_FILTER_MIN_MAG_MIP_LINEAR = 0x15,
* D3D11_FILTER_ANISOTROPIC = 0x55,
*
* D3D11_COMPARISON_FILTERING_BIT = 0x80,
* D3D11_ANISOTROPIC_FILTERING_BIT = 0x40,
*
* According to D3D11_FILTER enum bits for mip, mag and mip are:
* 0x10 // MIN_LINEAR
* 0x04 // MAG_LINEAR
* 0x01 // MIP_LINEAR
*/
static const uint32_t s_textureFilter[3][3] =
{
{
0x10, // min linear
0x00, // min point
0x55, // anisotropic
},
{
0x04, // mag linear
0x00, // mag point
0x55, // anisotropic
},
{
0x01, // mip linear
0x00, // mip point
0x55, // anisotropic
},
};
struct TextureFormatInfo
{
DXGI_FORMAT m_fmt;
DXGI_FORMAT m_fmtSrv;
DXGI_FORMAT m_fmtDsv;
};
static const TextureFormatInfo s_textureFormat[] =
{
{ DXGI_FORMAT_BC1_UNORM, DXGI_FORMAT_BC1_UNORM, DXGI_FORMAT_UNKNOWN }, // BC1
{ DXGI_FORMAT_BC2_UNORM, DXGI_FORMAT_BC2_UNORM, DXGI_FORMAT_UNKNOWN }, // BC2
{ DXGI_FORMAT_BC3_UNORM, DXGI_FORMAT_BC3_UNORM, DXGI_FORMAT_UNKNOWN }, // BC3
{ DXGI_FORMAT_BC4_UNORM, DXGI_FORMAT_BC4_UNORM, DXGI_FORMAT_UNKNOWN }, // BC4
{ DXGI_FORMAT_BC5_UNORM, DXGI_FORMAT_BC5_UNORM, DXGI_FORMAT_UNKNOWN }, // BC5
{ DXGI_FORMAT_BC6H_SF16, DXGI_FORMAT_BC6H_SF16, DXGI_FORMAT_UNKNOWN }, // BC6H
{ DXGI_FORMAT_BC7_UNORM, DXGI_FORMAT_BC7_UNORM, DXGI_FORMAT_UNKNOWN }, // BC7
{ DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // ETC1
{ DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // ETC2
{ DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // ETC2A
{ DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // ETC2A1
{ DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // PTC12
{ DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // PTC14
{ DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // PTC12A
{ DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // PTC14A
{ DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // PTC22
{ DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // PTC24
{ DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // Unknown
{ DXGI_FORMAT_R1_UNORM, DXGI_FORMAT_R1_UNORM, DXGI_FORMAT_UNKNOWN }, // R1
{ DXGI_FORMAT_R8_UNORM, DXGI_FORMAT_R8_UNORM, DXGI_FORMAT_UNKNOWN }, // R8
{ DXGI_FORMAT_R16_UNORM, DXGI_FORMAT_R16_UNORM, DXGI_FORMAT_UNKNOWN }, // R16
{ DXGI_FORMAT_R16_FLOAT, DXGI_FORMAT_R16_FLOAT, DXGI_FORMAT_UNKNOWN }, // R16F
{ DXGI_FORMAT_R32_UINT, DXGI_FORMAT_R32_UINT, DXGI_FORMAT_UNKNOWN }, // R32
{ DXGI_FORMAT_R32_FLOAT, DXGI_FORMAT_R32_FLOAT, DXGI_FORMAT_UNKNOWN }, // R32F
{ DXGI_FORMAT_R8G8_UNORM, DXGI_FORMAT_R8G8_UNORM, DXGI_FORMAT_UNKNOWN }, // RG8
{ DXGI_FORMAT_R16G16_UNORM, DXGI_FORMAT_R16G16_UNORM, DXGI_FORMAT_UNKNOWN }, // RG16
{ DXGI_FORMAT_R16G16_FLOAT, DXGI_FORMAT_R16G16_FLOAT, DXGI_FORMAT_UNKNOWN }, // RG16F
{ DXGI_FORMAT_R32G32_UINT, DXGI_FORMAT_R32G32_UINT, DXGI_FORMAT_UNKNOWN }, // RG32
{ DXGI_FORMAT_R32G32_FLOAT, DXGI_FORMAT_R32G32_FLOAT, DXGI_FORMAT_UNKNOWN }, // RG32F
{ DXGI_FORMAT_B8G8R8A8_UNORM, DXGI_FORMAT_B8G8R8A8_UNORM, DXGI_FORMAT_UNKNOWN }, // BGRA8
{ DXGI_FORMAT_R16G16B16A16_UNORM, DXGI_FORMAT_R16G16B16A16_UNORM, DXGI_FORMAT_UNKNOWN }, // RGBA16
{ DXGI_FORMAT_R16G16B16A16_FLOAT, DXGI_FORMAT_R16G16B16A16_FLOAT, DXGI_FORMAT_UNKNOWN }, // RGBA16F
{ DXGI_FORMAT_R32G32B32A32_UINT, DXGI_FORMAT_R32G32B32A32_UINT, DXGI_FORMAT_UNKNOWN }, // RGBA32
{ DXGI_FORMAT_R32G32B32A32_FLOAT, DXGI_FORMAT_R32G32B32A32_FLOAT, DXGI_FORMAT_UNKNOWN }, // RGBA32F
{ DXGI_FORMAT_B5G6R5_UNORM, DXGI_FORMAT_B5G6R5_UNORM, DXGI_FORMAT_UNKNOWN }, // R5G6B5
{ DXGI_FORMAT_B4G4R4A4_UNORM, DXGI_FORMAT_B4G4R4A4_UNORM, DXGI_FORMAT_UNKNOWN }, // RGBA4
{ DXGI_FORMAT_B5G5R5A1_UNORM, DXGI_FORMAT_B5G5R5A1_UNORM, DXGI_FORMAT_UNKNOWN }, // RGB5A1
{ DXGI_FORMAT_R10G10B10A2_UNORM, DXGI_FORMAT_R10G10B10A2_UNORM, DXGI_FORMAT_UNKNOWN }, // RGB10A2
{ DXGI_FORMAT_R11G11B10_FLOAT, DXGI_FORMAT_R11G11B10_FLOAT, DXGI_FORMAT_UNKNOWN }, // R11G11B10F
{ DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // UnknownDepth
{ DXGI_FORMAT_R16_TYPELESS, DXGI_FORMAT_R16_UNORM, DXGI_FORMAT_D16_UNORM }, // D16
{ DXGI_FORMAT_R24G8_TYPELESS, DXGI_FORMAT_R24_UNORM_X8_TYPELESS, DXGI_FORMAT_D24_UNORM_S8_UINT }, // D24
{ DXGI_FORMAT_R24G8_TYPELESS, DXGI_FORMAT_R24_UNORM_X8_TYPELESS, DXGI_FORMAT_D24_UNORM_S8_UINT }, // D24S8
{ DXGI_FORMAT_R24G8_TYPELESS, DXGI_FORMAT_R24_UNORM_X8_TYPELESS, DXGI_FORMAT_D24_UNORM_S8_UINT }, // D32
{ DXGI_FORMAT_R32_TYPELESS, DXGI_FORMAT_R32_FLOAT, DXGI_FORMAT_D32_FLOAT }, // D16F
{ DXGI_FORMAT_R32_TYPELESS, DXGI_FORMAT_R32_FLOAT, DXGI_FORMAT_D32_FLOAT }, // D24F
{ DXGI_FORMAT_R32_TYPELESS, DXGI_FORMAT_R32_FLOAT, DXGI_FORMAT_D32_FLOAT }, // D32F
{ DXGI_FORMAT_R24G8_TYPELESS, DXGI_FORMAT_R24_UNORM_X8_TYPELESS, DXGI_FORMAT_D24_UNORM_S8_UINT }, // D0S8
};
BX_STATIC_ASSERT(TextureFormat::Count == BX_COUNTOF(s_textureFormat) );
static const D3D11_INPUT_ELEMENT_DESC s_attrib[] =
{
{ "POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 },
{ "NORMAL", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 },
{ "TANGENT", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 },
{ "BITANGENT", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 },
{ "COLOR", 0, DXGI_FORMAT_R8G8B8A8_UINT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 },
{ "COLOR", 1, DXGI_FORMAT_R8G8B8A8_UINT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 },
{ "BLENDINDICES", 0, DXGI_FORMAT_R8G8B8A8_UINT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 },
{ "BLENDWEIGHT", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 },
{ "TEXCOORD", 0, DXGI_FORMAT_R32G32_FLOAT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 },
{ "TEXCOORD", 1, DXGI_FORMAT_R32G32_FLOAT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 },
{ "TEXCOORD", 2, DXGI_FORMAT_R32G32_FLOAT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 },
{ "TEXCOORD", 3, DXGI_FORMAT_R32G32_FLOAT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 },
{ "TEXCOORD", 4, DXGI_FORMAT_R32G32_FLOAT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 },
{ "TEXCOORD", 5, DXGI_FORMAT_R32G32_FLOAT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 },
{ "TEXCOORD", 6, DXGI_FORMAT_R32G32_FLOAT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 },
{ "TEXCOORD", 7, DXGI_FORMAT_R32G32_FLOAT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 },
};
BX_STATIC_ASSERT(Attrib::Count == BX_COUNTOF(s_attrib) );
static const DXGI_FORMAT s_attribType[][4][2] =
{
{
{ DXGI_FORMAT_R8_UINT, DXGI_FORMAT_R8_UNORM },
{ DXGI_FORMAT_R8G8_UINT, DXGI_FORMAT_R8G8_UNORM },
{ DXGI_FORMAT_R8G8B8A8_UINT, DXGI_FORMAT_R8G8B8A8_UNORM },
{ DXGI_FORMAT_R8G8B8A8_UINT, DXGI_FORMAT_R8G8B8A8_UNORM },
},
{
{ DXGI_FORMAT_R16_SINT, DXGI_FORMAT_R16_SNORM },
{ DXGI_FORMAT_R16G16_SINT, DXGI_FORMAT_R16G16_SNORM },
{ DXGI_FORMAT_R16G16B16A16_SINT, DXGI_FORMAT_R16G16B16A16_SNORM },
{ DXGI_FORMAT_R16G16B16A16_SINT, DXGI_FORMAT_R16G16B16A16_SNORM },
},
{
{ DXGI_FORMAT_R16_FLOAT, DXGI_FORMAT_R16_FLOAT },
{ DXGI_FORMAT_R16G16_FLOAT, DXGI_FORMAT_R16G16_FLOAT },
{ DXGI_FORMAT_R16G16B16A16_FLOAT, DXGI_FORMAT_R16G16B16A16_FLOAT },
{ DXGI_FORMAT_R16G16B16A16_FLOAT, DXGI_FORMAT_R16G16B16A16_FLOAT },
},
{
{ DXGI_FORMAT_R32_FLOAT, DXGI_FORMAT_R32_FLOAT },
{ DXGI_FORMAT_R32G32_FLOAT, DXGI_FORMAT_R32G32_FLOAT },
{ DXGI_FORMAT_R32G32B32_FLOAT, DXGI_FORMAT_R32G32B32_FLOAT },
{ DXGI_FORMAT_R32G32B32A32_FLOAT, DXGI_FORMAT_R32G32B32A32_FLOAT },
},
};
BX_STATIC_ASSERT(AttribType::Count == BX_COUNTOF(s_attribType) );
static D3D11_INPUT_ELEMENT_DESC* fillVertexDecl(D3D11_INPUT_ELEMENT_DESC* _out, const VertexDecl& _decl)
{
D3D11_INPUT_ELEMENT_DESC* elem = _out;
for (uint32_t attr = 0; attr < Attrib::Count; ++attr)
{
if (0xff != _decl.m_attributes[attr])
{
memcpy(elem, &s_attrib[attr], sizeof(D3D11_INPUT_ELEMENT_DESC) );
if (0 == _decl.m_attributes[attr])
{
elem->AlignedByteOffset = 0;
}
else
{
uint8_t num;
AttribType::Enum type;
bool normalized;
bool asInt;
_decl.decode(Attrib::Enum(attr), num, type, normalized, asInt);
elem->Format = s_attribType[type][num-1][normalized];
elem->AlignedByteOffset = _decl.m_offset[attr];
}
++elem;
}
}
return elem;
}
struct TextureStage
{
TextureStage()
{
clear();
}
void clear()
{
memset(m_srv, 0, sizeof(m_srv) );
memset(m_sampler, 0, sizeof(m_sampler) );
}
ID3D11ShaderResourceView* m_srv[BGFX_CONFIG_MAX_TEXTURE_SAMPLERS];
ID3D11SamplerState* m_sampler[BGFX_CONFIG_MAX_TEXTURE_SAMPLERS];
};
BX_PRAGMA_DIAGNOSTIC_PUSH();
BX_PRAGMA_DIAGNOSTIC_IGNORED_CLANG("-Wunused-const-variable");
BX_PRAGMA_DIAGNOSTIC_IGNORED_CLANG("-Wunneeded-internal-declaration");
static const GUID WKPDID_D3DDebugObjectName = { 0x429b8c22, 0x9188, 0x4b0c, { 0x87, 0x42, 0xac, 0xb0, 0xbf, 0x85, 0xc2, 0x00 } };
static const GUID IID_ID3D11Texture2D = { 0x6f15aaf2, 0xd208, 0x4e89, { 0x9a, 0xb4, 0x48, 0x95, 0x35, 0xd3, 0x4f, 0x9c } };
static const GUID IID_IDXGIFactory = { 0x7b7166ec, 0x21c7, 0x44ae, { 0xb2, 0x1a, 0xc9, 0xae, 0x32, 0x1a, 0xe3, 0x69 } };
static const GUID IID_IDXGIDevice0 = { 0x54ec77fa, 0x1377, 0x44e6, { 0x8c, 0x32, 0x88, 0xfd, 0x5f, 0x44, 0xc8, 0x4c } };
static const GUID IID_IDXGIDevice1 = { 0x77db970f, 0x6276, 0x48ba, { 0xba, 0x28, 0x07, 0x01, 0x43, 0xb4, 0x39, 0x2c } };
static const GUID IID_IDXGIDevice2 = { 0x05008617, 0xfbfd, 0x4051, { 0xa7, 0x90, 0x14, 0x48, 0x84, 0xb4, 0xf6, 0xa9 } };
static const GUID IID_IDXGIDevice3 = { 0x6007896c, 0x3244, 0x4afd, { 0xbf, 0x18, 0xa6, 0xd3, 0xbe, 0xda, 0x50, 0x23 } };
static const GUID IID_IDXGIAdapter = { 0x2411e7e1, 0x12ac, 0x4ccf, { 0xbd, 0x14, 0x97, 0x98, 0xe8, 0x53, 0x4d, 0xc0 } };
static const GUID IID_ID3D11InfoQueue = { 0x6543dbb6, 0x1b48, 0x42f5, { 0xab, 0x82, 0xe9, 0x7e, 0xc7, 0x43, 0x26, 0xf6 } };
static const GUID s_deviceIIDs[] =
{
IID_IDXGIDevice3,
IID_IDXGIDevice2,
IID_IDXGIDevice1,
IID_IDXGIDevice0,
};
template <typename Ty>
static BX_NO_INLINE void setDebugObjectName(Ty* _interface, const char* _format, ...)
{
if (BX_ENABLED(BGFX_CONFIG_DEBUG_OBJECT_NAME) )
{
char temp[2048];
va_list argList;
va_start(argList, _format);
int size = bx::uint32_min(sizeof(temp)-1, vsnprintf(temp, sizeof(temp), _format, argList) );
va_end(argList);
temp[size] = '\0';
_interface->SetPrivateData(WKPDID_D3DDebugObjectName, size, temp);
}
}
BX_PRAGMA_DIAGNOSTIC_POP();
static BX_NO_INLINE bool getIntelExtensions(ID3D11Device* _device)
{
uint8_t temp[28];
D3D11_BUFFER_DESC desc;
desc.ByteWidth = sizeof(temp);
desc.Usage = D3D11_USAGE_STAGING;
desc.BindFlags = 0;
desc.CPUAccessFlags = D3D11_CPU_ACCESS_READ;
desc.MiscFlags = 0;
desc.StructureByteStride = 0;
D3D11_SUBRESOURCE_DATA initData;
initData.pSysMem = &temp;
initData.SysMemPitch = sizeof(temp);
initData.SysMemSlicePitch = 0;
bx::StaticMemoryBlockWriter writer(&temp, sizeof(temp) );
bx::write(&writer, "INTCEXTNCAPSFUNC", 16);
bx::write(&writer, UINT32_C(0x00010000) );
bx::write(&writer, UINT32_C(0) );
bx::write(&writer, UINT32_C(0) );
ID3D11Buffer* buffer;
HRESULT hr = _device->CreateBuffer(&desc, &initData, &buffer);
if (SUCCEEDED(hr) )
{
buffer->Release();
bx::MemoryReader reader(&temp, sizeof(temp) );
bx::skip(&reader, 16);
uint32_t version;
bx::read(&reader, version);
uint32_t driverVersion;
bx::read(&reader, driverVersion);
return version <= driverVersion;
}
return false;
};
#if USE_D3D11_DYNAMIC_LIB
static PFN_D3D11_CREATE_DEVICE D3D11CreateDevice;
static PFN_CREATE_DXGI_FACTORY CreateDXGIFactory;
static PFN_D3DPERF_SET_MARKER D3DPERF_SetMarker;
static PFN_D3DPERF_BEGIN_EVENT D3DPERF_BeginEvent;
static PFN_D3DPERF_END_EVENT D3DPERF_EndEvent;
#endif // USE_D3D11_DYNAMIC_LIB
struct RendererContextD3D11 : public RendererContextI
{
RendererContextD3D11()
: m_renderdocdll(NULL)
, m_lost(0)
, m_backBufferColor(NULL)
, m_backBufferDepthStencil(NULL)
, m_captureTexture(NULL)
, m_captureResolve(NULL)
, m_wireframe(false)
, m_flags(BGFX_RESET_NONE)
, m_maxAnisotropy(1)
, m_vsChanges(0)
, m_fsChanges(0)
, m_rtMsaa(false)
, m_ovrRtv(NULL)
, m_ovrDsv(NULL)
{
}
~RendererContextD3D11()
{
}
void init()
{
// Must be before device creation, and before RenderDoc.
m_ovr.init();
if (!m_ovr.isInitialized() )
{
m_renderdocdll = loadRenderDoc();
}
m_fbh.idx = invalidHandle;
memset(m_uniforms, 0, sizeof(m_uniforms) );
memset(&m_resolution, 0, sizeof(m_resolution) );
#if USE_D3D11_DYNAMIC_LIB
m_d3d11dll = bx::dlopen("d3d11.dll");
BGFX_FATAL(NULL != m_d3d11dll, Fatal::UnableToInitialize, "Failed to load d3d11.dll.");
m_d3d9dll = NULL;
if (BX_ENABLED(BGFX_CONFIG_DEBUG_PIX) )
{
// D3D11_1.h has ID3DUserDefinedAnnotation
// http://msdn.microsoft.com/en-us/library/windows/desktop/hh446881%28v=vs.85%29.aspx
m_d3d9dll = bx::dlopen("d3d9.dll");
BGFX_FATAL(NULL != m_d3d9dll, Fatal::UnableToInitialize, "Failed to load d3d9.dll.");
D3DPERF_SetMarker = (PFN_D3DPERF_SET_MARKER )bx::dlsym(m_d3d9dll, "D3DPERF_SetMarker" );
D3DPERF_BeginEvent = (PFN_D3DPERF_BEGIN_EVENT)bx::dlsym(m_d3d9dll, "D3DPERF_BeginEvent");
D3DPERF_EndEvent = (PFN_D3DPERF_END_EVENT )bx::dlsym(m_d3d9dll, "D3DPERF_EndEvent" );
BX_CHECK(NULL != D3DPERF_SetMarker
&& NULL != D3DPERF_BeginEvent
&& NULL != D3DPERF_EndEvent
, "Failed to initialize PIX events."
);
}
D3D11CreateDevice = (PFN_D3D11_CREATE_DEVICE)bx::dlsym(m_d3d11dll, "D3D11CreateDevice");
BGFX_FATAL(NULL != D3D11CreateDevice, Fatal::UnableToInitialize, "Function D3D11CreateDevice not found.");
m_dxgidll = bx::dlopen("dxgi.dll");
BGFX_FATAL(NULL != m_dxgidll, Fatal::UnableToInitialize, "Failed to load dxgi.dll.");
CreateDXGIFactory = (PFN_CREATE_DXGI_FACTORY)bx::dlsym(m_dxgidll, "CreateDXGIFactory");
BGFX_FATAL(NULL != CreateDXGIFactory, Fatal::UnableToInitialize, "Function CreateDXGIFactory not found.");
#endif // USE_D3D11_DYNAMIC_LIB
HRESULT hr;
IDXGIFactory* factory;
#if BX_PLATFORM_WINRT
// WinRT requires the IDXGIFactory2 interface, which isn't supported on older platforms
hr = CreateDXGIFactory1(__uuidof(IDXGIFactory2), (void**)&factory);
BGFX_FATAL(SUCCEEDED(hr), Fatal::UnableToInitialize, "Unable to create DXGI factory.");
#else
hr = CreateDXGIFactory(IID_IDXGIFactory, (void**)&factory);
BGFX_FATAL(SUCCEEDED(hr), Fatal::UnableToInitialize, "Unable to create DXGI factory.");
#endif // BX_PLATFORM_WINRT
m_adapter = NULL;
m_driverType = D3D_DRIVER_TYPE_HARDWARE;
IDXGIAdapter* adapter;
for (uint32_t ii = 0; DXGI_ERROR_NOT_FOUND != factory->EnumAdapters(ii, &adapter); ++ii)
{
DXGI_ADAPTER_DESC desc;
hr = adapter->GetDesc(&desc);
if (SUCCEEDED(hr) )
{
BX_TRACE("Adapter #%d", ii);
char description[BX_COUNTOF(desc.Description)];
wcstombs(description, desc.Description, BX_COUNTOF(desc.Description) );
BX_TRACE("\tDescription: %s", description);
BX_TRACE("\tVendorId: 0x%08x, DeviceId: 0x%08x, SubSysId: 0x%08x, Revision: 0x%08x"
, desc.VendorId
, desc.DeviceId
, desc.SubSysId
, desc.Revision
);
BX_TRACE("\tMemory: %" PRIi64 " (video), %" PRIi64 " (system), %" PRIi64 " (shared)"
, desc.DedicatedVideoMemory
, desc.DedicatedSystemMemory
, desc.SharedSystemMemory
);
if (BX_ENABLED(BGFX_CONFIG_DEBUG_PERFHUD)
&& 0 != strstr(description, "PerfHUD") )
{
m_adapter = adapter;
m_driverType = D3D_DRIVER_TYPE_REFERENCE;
}
}
DX_RELEASE(adapter, adapter == m_adapter ? 1 : 0);
}
DX_RELEASE(factory, NULL != m_adapter ? 1 : 0);
D3D_FEATURE_LEVEL features[] =
{
D3D_FEATURE_LEVEL_11_1,
D3D_FEATURE_LEVEL_11_0,
D3D_FEATURE_LEVEL_10_1,
D3D_FEATURE_LEVEL_10_0,
D3D_FEATURE_LEVEL_9_3,
D3D_FEATURE_LEVEL_9_2,
D3D_FEATURE_LEVEL_9_1,
};
uint32_t flags = 0
| D3D11_CREATE_DEVICE_SINGLETHREADED
| D3D11_CREATE_DEVICE_BGRA_SUPPORT
| (BX_ENABLED(BGFX_CONFIG_DEBUG) ? D3D11_CREATE_DEVICE_DEBUG : 0)
;
D3D_FEATURE_LEVEL featureLevel;
hr = E_FAIL;
for (uint32_t ii = 0; ii < 3 && FAILED(hr);)
{
hr = D3D11CreateDevice(m_adapter
, m_driverType
, NULL
, flags
, &features[ii]
, BX_COUNTOF(features)-ii
, D3D11_SDK_VERSION
, &m_device
, &featureLevel
, &m_deviceCtx
);
if (FAILED(hr)
&& 0 != (flags & D3D11_CREATE_DEVICE_DEBUG) )
{
// Try without debug in case D3D11 SDK Layers
// is not present?
flags &= ~D3D11_CREATE_DEVICE_DEBUG;
continue;
}
++ii;
}
BGFX_FATAL(SUCCEEDED(hr), Fatal::UnableToInitialize, "Unable to create Direct3D11 device.");
IDXGIDevice* device = NULL;
hr = E_FAIL;
for (uint32_t ii = 0; ii < BX_COUNTOF(s_deviceIIDs) && FAILED(hr); ++ii)
{
hr = m_device->QueryInterface(s_deviceIIDs[ii], (void**)&device);
BX_TRACE("D3D device 11.%d, hr %x", BX_COUNTOF(s_deviceIIDs)-1-ii, hr);
}
BGFX_FATAL(SUCCEEDED(hr), Fatal::UnableToInitialize, "Unable to create Direct3D11 device.");
hr = device->GetParent(IID_IDXGIAdapter, (void**)&adapter);
BGFX_FATAL(SUCCEEDED(hr), Fatal::UnableToInitialize, "Unable to create Direct3D11 device.");
// GPA increases device ref count.
// RenderDoc makes device ref count 0 here.
//
// This causes assert in debug. When debugger is present refcount
// checks are off.
setGraphicsDebuggerPresent(2 != getRefCount(device) );
DX_RELEASE(device, 2);
hr = adapter->GetDesc(&m_adapterDesc);
BGFX_FATAL(SUCCEEDED(hr), Fatal::UnableToInitialize, "Unable to create Direct3D11 device.");
#if BX_PLATFORM_WINRT
hr = adapter->GetParent(__uuidof(IDXGIFactory2), (void**)&m_factory);
BGFX_FATAL(SUCCEEDED(hr), Fatal::UnableToInitialize, "Unable to create Direct3D11 device.");
DX_RELEASE(adapter, 2);
memset(&m_scd, 0, sizeof(m_scd) );
m_scd.Width = BGFX_DEFAULT_WIDTH;
m_scd.Height = BGFX_DEFAULT_HEIGHT;
m_scd.Format = DXGI_FORMAT_R8G8B8A8_UNORM;
m_scd.Stereo = false;
m_scd.SampleDesc.Count = 1;
m_scd.SampleDesc.Quality = 0;
m_scd.BufferUsage = DXGI_USAGE_RENDER_TARGET_OUTPUT;
m_scd.BufferCount = 2;
m_scd.Scaling = DXGI_SCALING_NONE;
m_scd.SwapEffect = DXGI_SWAP_EFFECT_FLIP_SEQUENTIAL;
m_scd.AlphaMode = DXGI_ALPHA_MODE_IGNORE;
hr = m_factory->CreateSwapChainForCoreWindow(m_device
, g_bgfxCoreWindow
, &m_scd
, NULL
, &m_swapChain
);
#else
hr = adapter->GetParent(IID_IDXGIFactory, (void**)&m_factory);
BGFX_FATAL(SUCCEEDED(hr), Fatal::UnableToInitialize, "Unable to create Direct3D11 device.");
DX_RELEASE(adapter, 2);
memset(&m_scd, 0, sizeof(m_scd) );
m_scd.BufferDesc.Width = BGFX_DEFAULT_WIDTH;
m_scd.BufferDesc.Height = BGFX_DEFAULT_HEIGHT;
m_scd.BufferDesc.RefreshRate.Numerator = 60;
m_scd.BufferDesc.RefreshRate.Denominator = 1;
m_scd.BufferDesc.Format = DXGI_FORMAT_R8G8B8A8_UNORM;
m_scd.SampleDesc.Count = 1;
m_scd.SampleDesc.Quality = 0;
m_scd.BufferUsage = DXGI_USAGE_RENDER_TARGET_OUTPUT;
m_scd.BufferCount = 1;
m_scd.OutputWindow = g_bgfxHwnd;
m_scd.Windowed = true;
hr = m_factory->CreateSwapChain(m_device
, &m_scd
, &m_swapChain
);
#endif // BX_PLATFORM_WINRT
BGFX_FATAL(SUCCEEDED(hr), Fatal::UnableToInitialize, "Failed to create swap chain.");
m_numWindows = 1;
if (BX_ENABLED(BGFX_CONFIG_DEBUG) )
{
ID3D11InfoQueue* infoQueue;
hr = m_device->QueryInterface(IID_ID3D11InfoQueue, (void**)&infoQueue);
if (SUCCEEDED(hr) )
{
infoQueue->SetBreakOnSeverity(D3D11_MESSAGE_SEVERITY_CORRUPTION, true);
infoQueue->SetBreakOnSeverity(D3D11_MESSAGE_SEVERITY_ERROR, true);
infoQueue->SetBreakOnSeverity(D3D11_MESSAGE_SEVERITY_WARNING, false);
D3D11_INFO_QUEUE_FILTER filter;
memset(&filter, 0, sizeof(filter) );
D3D11_MESSAGE_CATEGORY catlist[] =
{
D3D11_MESSAGE_CATEGORY_STATE_SETTING,
D3D11_MESSAGE_CATEGORY_EXECUTION,
};
filter.DenyList.NumCategories = BX_COUNTOF(catlist);
filter.DenyList.pCategoryList = catlist;
infoQueue->PushStorageFilter(&filter);
DX_RELEASE(infoQueue, 3);
}
else
{
// InfoQueue QueryInterface will fail when AMD GPU Perfstudio 2 is present.
setGraphicsDebuggerPresent(true);
}
}
UniformHandle handle = BGFX_INVALID_HANDLE;
for (uint32_t ii = 0; ii < PredefinedUniform::Count; ++ii)
{
m_uniformReg.add(handle, getPredefinedUniformName(PredefinedUniform::Enum(ii) ), &m_predefinedUniforms[ii]);
}
g_caps.supported |= ( 0
| BGFX_CAPS_TEXTURE_3D
| BGFX_CAPS_TEXTURE_COMPARE_ALL
| BGFX_CAPS_INSTANCING
| BGFX_CAPS_VERTEX_ATTRIB_HALF
| BGFX_CAPS_FRAGMENT_DEPTH
| BGFX_CAPS_BLEND_INDEPENDENT
| BGFX_CAPS_COMPUTE
| (getIntelExtensions(m_device) ? BGFX_CAPS_FRAGMENT_ORDERING : 0)
| BGFX_CAPS_SWAP_CHAIN
| (m_ovr.isInitialized() ? BGFX_CAPS_HMD : 0)
);
g_caps.maxTextureSize = D3D11_REQ_TEXTURE2D_U_OR_V_DIMENSION;
g_caps.maxFBAttachments = bx::uint32_min(D3D11_SIMULTANEOUS_RENDER_TARGET_COUNT, BGFX_CONFIG_MAX_FRAME_BUFFER_ATTACHMENTS);
for (uint32_t ii = 0; ii < TextureFormat::Count; ++ii)
{
g_caps.formats[ii] = DXGI_FORMAT_UNKNOWN == s_textureFormat[ii].m_fmt ? 0 : 1;
}
// Init reserved part of view name.
for (uint32_t ii = 0; ii < BGFX_CONFIG_MAX_VIEWS; ++ii)
{
char name[BGFX_CONFIG_MAX_VIEW_NAME_RESERVED+1];
bx::snprintf(name, sizeof(name), "%3d ", ii);
mbstowcs(s_viewNameW[ii], name, BGFX_CONFIG_MAX_VIEW_NAME_RESERVED);
}
updateMsaa();
postReset();
}
void shutdown()
{
preReset();
m_ovr.shutdown();
m_deviceCtx->ClearState();
invalidateCache();
for (uint32_t ii = 0; ii < BX_COUNTOF(m_indexBuffers); ++ii)
{
m_indexBuffers[ii].destroy();
}
for (uint32_t ii = 0; ii < BX_COUNTOF(m_vertexBuffers); ++ii)
{
m_vertexBuffers[ii].destroy();
}
for (uint32_t ii = 0; ii < BX_COUNTOF(m_shaders); ++ii)
{
m_shaders[ii].destroy();
}
for (uint32_t ii = 0; ii < BX_COUNTOF(m_textures); ++ii)
{
m_textures[ii].destroy();
}
DX_RELEASE(m_swapChain, 0);
DX_RELEASE(m_deviceCtx, 0);
DX_RELEASE(m_device, 0);
DX_RELEASE(m_factory, 0);
unloadRenderDoc(m_renderdocdll);
#if USE_D3D11_DYNAMIC_LIB
bx::dlclose(m_dxgidll);
bx::dlclose(m_d3d9dll);
bx::dlclose(m_d3d11dll);
#endif // USE_D3D11_DYNAMIC_LIB
}
RendererType::Enum getRendererType() const BX_OVERRIDE
{
return RendererType::Direct3D11;
}
const char* getRendererName() const BX_OVERRIDE
{
return BGFX_RENDERER_DIRECT3D11_NAME;
}
void createIndexBuffer(IndexBufferHandle _handle, Memory* _mem, uint8_t _flags) BX_OVERRIDE
{
m_indexBuffers[_handle.idx].create(_mem->size, _mem->data, _flags);
}
void destroyIndexBuffer(IndexBufferHandle _handle) BX_OVERRIDE
{
m_indexBuffers[_handle.idx].destroy();
}
void createVertexDecl(VertexDeclHandle _handle, const VertexDecl& _decl) BX_OVERRIDE
{
VertexDecl& decl = m_vertexDecls[_handle.idx];
memcpy(&decl, &_decl, sizeof(VertexDecl) );
dump(decl);
}
void destroyVertexDecl(VertexDeclHandle /*_handle*/) BX_OVERRIDE
{
}
void createVertexBuffer(VertexBufferHandle _handle, Memory* _mem, VertexDeclHandle _declHandle, uint8_t _flags) BX_OVERRIDE
{
m_vertexBuffers[_handle.idx].create(_mem->size, _mem->data, _declHandle, _flags);
}
void destroyVertexBuffer(VertexBufferHandle _handle) BX_OVERRIDE
{
m_vertexBuffers[_handle.idx].destroy();
}
void createDynamicIndexBuffer(IndexBufferHandle _handle, uint32_t _size, uint8_t _flags) BX_OVERRIDE
{
m_indexBuffers[_handle.idx].create(_size, NULL, _flags);
}
void updateDynamicIndexBuffer(IndexBufferHandle _handle, uint32_t _offset, uint32_t _size, Memory* _mem) BX_OVERRIDE
{
m_indexBuffers[_handle.idx].update(_offset, bx::uint32_min(_size, _mem->size), _mem->data);
}
void destroyDynamicIndexBuffer(IndexBufferHandle _handle) BX_OVERRIDE
{
m_indexBuffers[_handle.idx].destroy();
}
void createDynamicVertexBuffer(VertexBufferHandle _handle, uint32_t _size, uint8_t _flags) BX_OVERRIDE
{
VertexDeclHandle decl = BGFX_INVALID_HANDLE;
m_vertexBuffers[_handle.idx].create(_size, NULL, decl, _flags);
}
void updateDynamicVertexBuffer(VertexBufferHandle _handle, uint32_t _offset, uint32_t _size, Memory* _mem) BX_OVERRIDE
{
m_vertexBuffers[_handle.idx].update(_offset, bx::uint32_min(_size, _mem->size), _mem->data);
}
void destroyDynamicVertexBuffer(VertexBufferHandle _handle) BX_OVERRIDE
{
m_vertexBuffers[_handle.idx].destroy();
}
void createShader(ShaderHandle _handle, Memory* _mem) BX_OVERRIDE
{
m_shaders[_handle.idx].create(_mem);
}
void destroyShader(ShaderHandle _handle) BX_OVERRIDE
{
m_shaders[_handle.idx].destroy();
}
void createProgram(ProgramHandle _handle, ShaderHandle _vsh, ShaderHandle _fsh) BX_OVERRIDE
{
m_program[_handle.idx].create(&m_shaders[_vsh.idx], isValid(_fsh) ? &m_shaders[_fsh.idx] : NULL);
}
void destroyProgram(ProgramHandle _handle) BX_OVERRIDE
{
m_program[_handle.idx].destroy();
}
void createTexture(TextureHandle _handle, Memory* _mem, uint32_t _flags, uint8_t _skip) BX_OVERRIDE
{
m_textures[_handle.idx].create(_mem, _flags, _skip);
}
void updateTextureBegin(TextureHandle /*_handle*/, uint8_t /*_side*/, uint8_t /*_mip*/) BX_OVERRIDE
{
}
void updateTexture(TextureHandle _handle, uint8_t _side, uint8_t _mip, const Rect& _rect, uint16_t _z, uint16_t _depth, uint16_t _pitch, const Memory* _mem) BX_OVERRIDE
{
m_textures[_handle.idx].update(_side, _mip, _rect, _z, _depth, _pitch, _mem);
}
void updateTextureEnd() BX_OVERRIDE
{
}
void destroyTexture(TextureHandle _handle) BX_OVERRIDE
{
m_textures[_handle.idx].destroy();
}
void createFrameBuffer(FrameBufferHandle _handle, uint8_t _num, const TextureHandle* _textureHandles) BX_OVERRIDE
{
m_frameBuffers[_handle.idx].create(_num, _textureHandles);
}
void createFrameBuffer(FrameBufferHandle _handle, void* _nwh, uint32_t _width, uint32_t _height, TextureFormat::Enum _depthFormat) BX_OVERRIDE
{
uint16_t denseIdx = m_numWindows++;
m_windows[denseIdx] = _handle;
m_frameBuffers[_handle.idx].create(denseIdx, _nwh, _width, _height, _depthFormat);
}
void destroyFrameBuffer(FrameBufferHandle _handle) BX_OVERRIDE
{
uint16_t denseIdx = m_frameBuffers[_handle.idx].destroy();
if (UINT16_MAX != denseIdx)
{
--m_numWindows;
if (m_numWindows > 1)
{
FrameBufferHandle handle = m_windows[m_numWindows];
m_windows[denseIdx] = handle;
m_frameBuffers[handle.idx].m_denseIdx = denseIdx;
}
}
}
void createUniform(UniformHandle _handle, UniformType::Enum _type, uint16_t _num, const char* _name) BX_OVERRIDE
{
if (NULL != m_uniforms[_handle.idx])
{
BX_FREE(g_allocator, m_uniforms[_handle.idx]);
}
uint32_t size = BX_ALIGN_16(g_uniformTypeSize[_type]*_num);
void* data = BX_ALLOC(g_allocator, size);
memset(data, 0, size);
m_uniforms[_handle.idx] = data;
m_uniformReg.add(_handle, _name, data);
}
void destroyUniform(UniformHandle _handle) BX_OVERRIDE
{
BX_FREE(g_allocator, m_uniforms[_handle.idx]);
m_uniforms[_handle.idx] = NULL;
}
void saveScreenShot(const char* _filePath) BX_OVERRIDE
{
ID3D11Texture2D* backBuffer;
DX_CHECK(m_swapChain->GetBuffer(0, IID_ID3D11Texture2D, (void**)&backBuffer));
D3D11_TEXTURE2D_DESC backBufferDesc;
backBuffer->GetDesc(&backBufferDesc);
D3D11_TEXTURE2D_DESC desc;
memcpy(&desc, &backBufferDesc, sizeof(desc) );
desc.SampleDesc.Count = 1;
desc.SampleDesc.Quality = 0;
desc.Usage = D3D11_USAGE_STAGING;
desc.BindFlags = 0;
desc.CPUAccessFlags = D3D11_CPU_ACCESS_READ;
ID3D11Texture2D* texture;
HRESULT hr = m_device->CreateTexture2D(&desc, NULL, &texture);
if (SUCCEEDED(hr) )
{
if (backBufferDesc.SampleDesc.Count == 1)
{
m_deviceCtx->CopyResource(texture, backBuffer);
}
else
{
desc.Usage = D3D11_USAGE_DEFAULT;
desc.CPUAccessFlags = 0;
ID3D11Texture2D* resolve;
hr = m_device->CreateTexture2D(&desc, NULL, &resolve);
if (SUCCEEDED(hr) )
{
m_deviceCtx->ResolveSubresource(resolve, 0, backBuffer, 0, desc.Format);
m_deviceCtx->CopyResource(texture, resolve);
DX_RELEASE(resolve, 0);
}
}
D3D11_MAPPED_SUBRESOURCE mapped;
DX_CHECK(m_deviceCtx->Map(texture, 0, D3D11_MAP_READ, 0, &mapped) );
imageSwizzleBgra8(backBufferDesc.Width
, backBufferDesc.Height
, mapped.RowPitch
, mapped.pData
, mapped.pData
);
g_callback->screenShot(_filePath
, backBufferDesc.Width
, backBufferDesc.Height
, mapped.RowPitch
, mapped.pData
, backBufferDesc.Height*mapped.RowPitch
, false
);
m_deviceCtx->Unmap(texture, 0);
DX_RELEASE(texture, 0);
}
DX_RELEASE(backBuffer, 0);
}
void updateViewName(uint8_t _id, const char* _name) BX_OVERRIDE
{
mbstowcs(&s_viewNameW[_id][BGFX_CONFIG_MAX_VIEW_NAME_RESERVED]
, _name
, BX_COUNTOF(s_viewNameW[0])-BGFX_CONFIG_MAX_VIEW_NAME_RESERVED
);
}
void updateUniform(uint16_t _loc, const void* _data, uint32_t _size) BX_OVERRIDE
{
memcpy(m_uniforms[_loc], _data, _size);
}
void setMarker(const char* _marker, uint32_t _size) BX_OVERRIDE
{
if (BX_ENABLED(BGFX_CONFIG_DEBUG_PIX) )
{
uint32_t size = _size*sizeof(wchar_t);
wchar_t* name = (wchar_t*)alloca(size);
mbstowcs(name, _marker, size-2);
PIX_SETMARKER(D3DCOLOR_RGBA(0xff, 0xff, 0xff, 0xff), name);
}
}
void submit(Frame* _render, ClearQuad& _clearQuad, TextVideoMemBlitter& _textVideoMemBlitter) BX_OVERRIDE;
void blitSetup(TextVideoMemBlitter& _blitter) BX_OVERRIDE
{
ID3D11DeviceContext* deviceCtx = m_deviceCtx;
uint32_t width = getBufferWidth();
uint32_t height = getBufferHeight();
if (m_ovr.isEnabled() )
{
m_ovr.getSize(width, height);
}
FrameBufferHandle fbh = BGFX_INVALID_HANDLE;
setFrameBuffer(fbh, false);
D3D11_VIEWPORT vp;
vp.TopLeftX = 0;
vp.TopLeftY = 0;
vp.Width = (float)width;
vp.Height = (float)height;
vp.MinDepth = 0.0f;
vp.MaxDepth = 1.0f;
deviceCtx->RSSetViewports(1, &vp);
uint64_t state = BGFX_STATE_RGB_WRITE
| BGFX_STATE_ALPHA_WRITE
| BGFX_STATE_DEPTH_TEST_ALWAYS
;
setBlendState(state);
setDepthStencilState(state);
setRasterizerState(state);
ProgramD3D11& program = m_program[_blitter.m_program.idx];
m_currentProgram = &program;
deviceCtx->VSSetShader(program.m_vsh->m_vertexShader, NULL, 0);
deviceCtx->VSSetConstantBuffers(0, 1, &program.m_vsh->m_buffer);
deviceCtx->PSSetShader(program.m_fsh->m_pixelShader, NULL, 0);
deviceCtx->PSSetConstantBuffers(0, 1, &program.m_fsh->m_buffer);
VertexBufferD3D11& vb = m_vertexBuffers[_blitter.m_vb->handle.idx];
VertexDecl& vertexDecl = m_vertexDecls[_blitter.m_vb->decl.idx];
uint32_t stride = vertexDecl.m_stride;
uint32_t offset = 0;
deviceCtx->IASetVertexBuffers(0, 1, &vb.m_ptr, &stride, &offset);
setInputLayout(vertexDecl, program, 0);
IndexBufferD3D11& ib = m_indexBuffers[_blitter.m_ib->handle.idx];
deviceCtx->IASetIndexBuffer(ib.m_ptr, DXGI_FORMAT_R16_UINT, 0);
float proj[16];
mtxOrtho(proj, 0.0f, (float)width, (float)height, 0.0f, 0.0f, 1000.0f);
PredefinedUniform& predefined = program.m_predefined[0];
uint8_t flags = predefined.m_type;
setShaderUniform(flags, predefined.m_loc, proj, 4);
commitShaderConstants();
m_textures[_blitter.m_texture.idx].commit(0);
commitTextureStage();
}
void blitRender(TextVideoMemBlitter& _blitter, uint32_t _numIndices) BX_OVERRIDE
{
const uint32_t numVertices = _numIndices*4/6;
if (0 < numVertices)
{
ID3D11DeviceContext* deviceCtx = m_deviceCtx;
m_indexBuffers [_blitter.m_ib->handle.idx].update(0, _numIndices*2, _blitter.m_ib->data);
m_vertexBuffers[_blitter.m_vb->handle.idx].update(0, numVertices*_blitter.m_decl.m_stride, _blitter.m_vb->data, true);
deviceCtx->IASetPrimitiveTopology(D3D11_PRIMITIVE_TOPOLOGY_TRIANGLELIST);
deviceCtx->DrawIndexed(_numIndices, 0, 0);
}
}
void preReset()
{
ovrPreReset();
DX_RELEASE(m_backBufferDepthStencil, 0);
DX_RELEASE(m_backBufferColor, 0);
// invalidateCache();
capturePreReset();
}
void postReset()
{
ID3D11Texture2D* color;
DX_CHECK(m_swapChain->GetBuffer(0, IID_ID3D11Texture2D, (void**)&color));
DX_CHECK(m_device->CreateRenderTargetView(color, NULL, &m_backBufferColor) );
DX_RELEASE(color, 0);
ovrPostReset();
// If OVR doesn't create separate depth stencil view, create default one.
if (NULL == m_backBufferDepthStencil)
{
D3D11_TEXTURE2D_DESC dsd;
dsd.Width = getBufferWidth();
dsd.Height = getBufferHeight();
dsd.MipLevels = 1;
dsd.ArraySize = 1;
dsd.Format = DXGI_FORMAT_D24_UNORM_S8_UINT;
dsd.SampleDesc = m_scd.SampleDesc;
dsd.Usage = D3D11_USAGE_DEFAULT;
dsd.BindFlags = D3D11_BIND_DEPTH_STENCIL;
dsd.CPUAccessFlags = 0;
dsd.MiscFlags = 0;
ID3D11Texture2D* depthStencil;
DX_CHECK(m_device->CreateTexture2D(&dsd, NULL, &depthStencil) );
DX_CHECK(m_device->CreateDepthStencilView(depthStencil, NULL, &m_backBufferDepthStencil) );
DX_RELEASE(depthStencil, 0);
}
m_deviceCtx->OMSetRenderTargets(1, &m_backBufferColor, m_backBufferDepthStencil);
m_currentColor = m_backBufferColor;
m_currentDepthStencil = m_backBufferDepthStencil;
capturePostReset();
}
static bool isLost(HRESULT _hr)
{
return DXGI_ERROR_DEVICE_REMOVED == _hr
|| DXGI_ERROR_DEVICE_HUNG == _hr
|| DXGI_ERROR_DEVICE_RESET == _hr
|| DXGI_ERROR_DRIVER_INTERNAL_ERROR == _hr
|| DXGI_ERROR_NOT_CURRENTLY_AVAILABLE == _hr
;
}
void flip() BX_OVERRIDE
{
if (NULL != m_swapChain)
{
HRESULT hr = S_OK;
uint32_t syncInterval = !!(m_flags & BGFX_RESET_VSYNC);
#if BX_PLATFORM_WINRT
syncInterval = 1; // sync interval of 0 is not supported on WinRT
#endif
for (uint32_t ii = 1, num = m_numWindows; ii < num && SUCCEEDED(hr); ++ii)
{
hr = m_frameBuffers[m_windows[ii].idx].m_swapChain->Present(syncInterval, 0);
}
if (SUCCEEDED(hr) )
{
if (!m_ovr.swap() )
{
hr = m_swapChain->Present(syncInterval, 0);
}
}
if (FAILED(hr)
&& isLost(hr) )
{
++m_lost;
BGFX_FATAL(10 > m_lost, bgfx::Fatal::DeviceLost, "Device is lost. FAILED 0x%08x", hr);
}
else
{
m_lost = 0;
}
}
}
void invalidateCache()
{
m_inputLayoutCache.invalidate();
m_blendStateCache.invalidate();
m_depthStencilStateCache.invalidate();
m_rasterizerStateCache.invalidate();
m_samplerStateCache.invalidate();
}
void invalidateCompute()
{
m_deviceCtx->CSSetShader(NULL, NULL, 0);
ID3D11UnorderedAccessView* uav[BGFX_MAX_COMPUTE_BINDINGS] = {};
m_deviceCtx->CSSetUnorderedAccessViews(0, BX_COUNTOF(uav), uav, NULL);
ID3D11ShaderResourceView* srv[BGFX_MAX_COMPUTE_BINDINGS] = {};
m_deviceCtx->CSSetShaderResources(0, BX_COUNTOF(srv), srv);
ID3D11SamplerState* samplers[BGFX_MAX_COMPUTE_BINDINGS] = {};
m_deviceCtx->CSSetSamplers(0, BX_COUNTOF(samplers), samplers);
}
void updateMsaa()
{
for (uint32_t ii = 1, last = 0; ii < BX_COUNTOF(s_msaa); ++ii)
{
uint32_t msaa = s_checkMsaa[ii];
uint32_t quality = 0;
HRESULT hr = m_device->CheckMultisampleQualityLevels(getBufferFormat(), msaa, &quality);
if (SUCCEEDED(hr)
&& 0 < quality)
{
s_msaa[ii].Count = msaa;
s_msaa[ii].Quality = quality - 1;
last = ii;
}
else
{
s_msaa[ii] = s_msaa[last];
}
}
}
void updateResolution(const Resolution& _resolution)
{
bool recenter = !!(_resolution.m_flags & BGFX_RESET_HMD_RECENTER);
m_maxAnisotropy = !!(_resolution.m_flags & BGFX_RESET_MAXANISOTROPY)
? D3D11_REQ_MAXANISOTROPY
: 1
;
uint32_t flags = _resolution.m_flags & ~(BGFX_RESET_HMD_RECENTER | BGFX_RESET_MAXANISOTROPY);
if ( getBufferWidth() != _resolution.m_width
|| getBufferHeight() != _resolution.m_height
|| m_flags != flags)
{
bool resize = true
&& !BX_ENABLED(BX_PLATFORM_WINRT) // can't use ResizeBuffers on Windows Phone
&& (m_flags&BGFX_RESET_MSAA_MASK) == (flags&BGFX_RESET_MSAA_MASK)
;
m_flags = flags;
m_textVideoMem.resize(false, _resolution.m_width, _resolution.m_height);
m_textVideoMem.clear();
m_resolution = _resolution;
m_resolution.m_flags = flags;
setBufferSize(_resolution.m_width, _resolution.m_height);
preReset();
if (resize)
{
DX_CHECK(m_swapChain->ResizeBuffers(2
, getBufferWidth()
, getBufferHeight()
, getBufferFormat()
, DXGI_SWAP_CHAIN_FLAG_ALLOW_MODE_SWITCH
) );
}
else
{
updateMsaa();
m_scd.SampleDesc = s_msaa[(m_flags&BGFX_RESET_MSAA_MASK)>>BGFX_RESET_MSAA_SHIFT];
DX_RELEASE(m_swapChain, 0);
#if BX_PLATFORM_WINRT
HRESULT hr;
hr = m_factory->CreateSwapChainForCoreWindow(m_device
, g_bgfxCoreWindow
, &m_scd
, NULL
, &m_swapChain
);
#else
HRESULT hr;
hr = m_factory->CreateSwapChain(m_device
, &m_scd
, &m_swapChain
);
#endif // BX_PLATFORM_WINRT
BGFX_FATAL(SUCCEEDED(hr), bgfx::Fatal::UnableToInitialize, "Failed to create swap chain.");
}
postReset();
}
if (recenter)
{
m_ovr.recenter();
}
}
void setShaderUniform(uint8_t _flags, uint16_t _regIndex, const void* _val, uint16_t _numRegs)
{
if (_flags&BGFX_UNIFORM_FRAGMENTBIT)
{
memcpy(&m_fsScratch[_regIndex], _val, _numRegs*16);
m_fsChanges += _numRegs;
}
else
{
memcpy(&m_vsScratch[_regIndex], _val, _numRegs*16);
m_vsChanges += _numRegs;
}
}
void setShaderUniform4f(uint8_t _flags, uint16_t _regIndex, const void* _val, uint16_t _numRegs)
{
setShaderUniform(_flags, _regIndex, _val, _numRegs);
}
void setShaderUniform4x4f(uint8_t _flags, uint16_t _regIndex, const void* _val, uint16_t _numRegs)
{
setShaderUniform(_flags, _regIndex, _val, _numRegs);
}
void commitShaderConstants()
{
if (0 < m_vsChanges)
{
if (NULL != m_currentProgram->m_vsh->m_buffer)
{
m_deviceCtx->UpdateSubresource(m_currentProgram->m_vsh->m_buffer, 0, 0, m_vsScratch, 0, 0);
}
m_vsChanges = 0;
}
if (0 < m_fsChanges)
{
if (NULL != m_currentProgram->m_fsh->m_buffer)
{
m_deviceCtx->UpdateSubresource(m_currentProgram->m_fsh->m_buffer, 0, 0, m_fsScratch, 0, 0);
}
m_fsChanges = 0;
}
}
void setFrameBuffer(FrameBufferHandle _fbh, bool _msaa = true)
{
BX_UNUSED(_msaa);
if (!isValid(_fbh) )
{
m_deviceCtx->OMSetRenderTargets(1, &m_backBufferColor, m_backBufferDepthStencil);
m_currentColor = m_backBufferColor;
m_currentDepthStencil = m_backBufferDepthStencil;
}
else
{
invalidateTextureStage();
FrameBufferD3D11& frameBuffer = m_frameBuffers[_fbh.idx];
m_deviceCtx->OMSetRenderTargets(frameBuffer.m_num, frameBuffer.m_rtv, frameBuffer.m_dsv);
m_currentColor = frameBuffer.m_rtv[0];
m_currentDepthStencil = frameBuffer.m_dsv;
}
if (isValid(m_fbh)
&& m_fbh.idx != _fbh.idx
&& m_rtMsaa)
{
FrameBufferD3D11& frameBuffer = m_frameBuffers[m_fbh.idx];
frameBuffer.resolve();
}
m_fbh = _fbh;
m_rtMsaa = _msaa;
}
void clear(const Clear& _clear, const float _palette[][4])
{
if (isValid(m_fbh) )
{
FrameBufferD3D11& frameBuffer = m_frameBuffers[m_fbh.idx];
frameBuffer.clear(_clear, _palette);
}
else
{
if (NULL != m_currentColor
&& BGFX_CLEAR_COLOR & _clear.m_flags)
{
if (BGFX_CLEAR_COLOR_USE_PALETTE & _clear.m_flags)
{
uint8_t index = _clear.m_index[0];
if (UINT8_MAX != index)
{
m_deviceCtx->ClearRenderTargetView(m_currentColor, _palette[index]);
}
}
else
{
float frgba[4] =
{
_clear.m_index[0]*1.0f/255.0f,
_clear.m_index[1]*1.0f/255.0f,
_clear.m_index[2]*1.0f/255.0f,
_clear.m_index[3]*1.0f/255.0f,
};
m_deviceCtx->ClearRenderTargetView(m_currentColor, frgba);
}
}
if (NULL != m_currentDepthStencil
&& (BGFX_CLEAR_DEPTH|BGFX_CLEAR_STENCIL) & _clear.m_flags)
{
DWORD flags = 0;
flags |= (_clear.m_flags & BGFX_CLEAR_DEPTH) ? D3D11_CLEAR_DEPTH : 0;
flags |= (_clear.m_flags & BGFX_CLEAR_STENCIL) ? D3D11_CLEAR_STENCIL : 0;
m_deviceCtx->ClearDepthStencilView(m_currentDepthStencil, flags, _clear.m_depth, _clear.m_stencil);
}
}
}
void setInputLayout(const VertexDecl& _vertexDecl, const ProgramD3D11& _program, uint8_t _numInstanceData)
{
uint64_t layoutHash = (uint64_t(_vertexDecl.m_hash)<<32) | _program.m_vsh->m_hash;
layoutHash ^= _numInstanceData;
ID3D11InputLayout* layout = m_inputLayoutCache.find(layoutHash);
if (NULL == layout)
{
D3D11_INPUT_ELEMENT_DESC vertexElements[Attrib::Count+1+BGFX_CONFIG_MAX_INSTANCE_DATA_COUNT];
VertexDecl decl;
memcpy(&decl, &_vertexDecl, sizeof(VertexDecl) );
const uint8_t* attrMask = _program.m_vsh->m_attrMask;
for (uint32_t ii = 0; ii < Attrib::Count; ++ii)
{
uint8_t mask = attrMask[ii];
uint8_t attr = (decl.m_attributes[ii] & mask);
decl.m_attributes[ii] = attr == 0 ? 0xff : attr == 0xff ? 0 : attr;
}
D3D11_INPUT_ELEMENT_DESC* elem = fillVertexDecl(vertexElements, decl);
uint32_t num = uint32_t(elem-vertexElements);
const D3D11_INPUT_ELEMENT_DESC inst = { "TEXCOORD", 0, DXGI_FORMAT_R32G32B32A32_FLOAT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_INSTANCE_DATA, 1 };
for (uint32_t ii = 0; ii < _numInstanceData; ++ii)
{
uint32_t index = 8-_numInstanceData+ii;
uint32_t jj;
D3D11_INPUT_ELEMENT_DESC* curr = vertexElements;
for (jj = 0; jj < num; ++jj)
{
curr = &vertexElements[jj];
if (0 == strcmp(curr->SemanticName, "TEXCOORD")
&& curr->SemanticIndex == index)
{
break;
}
}
if (jj == num)
{
curr = elem;
++elem;
}
memcpy(curr, &inst, sizeof(D3D11_INPUT_ELEMENT_DESC) );
curr->InputSlot = 1;
curr->SemanticIndex = index;
curr->AlignedByteOffset = ii*16;
}
num = uint32_t(elem-vertexElements);
DX_CHECK(m_device->CreateInputLayout(vertexElements
, num
, _program.m_vsh->m_code->data
, _program.m_vsh->m_code->size
, &layout
) );
m_inputLayoutCache.add(layoutHash, layout);
}
m_deviceCtx->IASetInputLayout(layout);
}
void setBlendState(uint64_t _state, uint32_t _rgba = 0)
{
_state &= 0
| BGFX_STATE_BLEND_MASK
| BGFX_STATE_BLEND_EQUATION_MASK
| BGFX_STATE_BLEND_INDEPENDENT
| BGFX_STATE_ALPHA_WRITE
| BGFX_STATE_RGB_WRITE
;
bx::HashMurmur2A murmur;
murmur.begin();
murmur.add(_state);
const uint64_t f0 = BGFX_STATE_BLEND_FUNC(BGFX_STATE_BLEND_FACTOR, BGFX_STATE_BLEND_FACTOR);
const uint64_t f1 = BGFX_STATE_BLEND_FUNC(BGFX_STATE_BLEND_INV_FACTOR, BGFX_STATE_BLEND_INV_FACTOR);
bool hasFactor = f0 == (_state & f0)
|| f1 == (_state & f1)
;
float blendFactor[4] = { 1.0f, 1.0f, 1.0f, 1.0f };
if (hasFactor)
{
blendFactor[0] = ( (_rgba>>24) )/255.0f;
blendFactor[1] = ( (_rgba>>16)&0xff)/255.0f;
blendFactor[2] = ( (_rgba>> 8)&0xff)/255.0f;
blendFactor[3] = ( (_rgba )&0xff)/255.0f;
}
else
{
murmur.add(_rgba);
}
uint32_t hash = murmur.end();
ID3D11BlendState* bs = m_blendStateCache.find(hash);
if (NULL == bs)
{
D3D11_BLEND_DESC desc;
memset(&desc, 0, sizeof(desc) );
desc.IndependentBlendEnable = !!(BGFX_STATE_BLEND_INDEPENDENT & _state);
D3D11_RENDER_TARGET_BLEND_DESC* drt = &desc.RenderTarget[0];
drt->BlendEnable = !!(BGFX_STATE_BLEND_MASK & _state);
const uint32_t blend = uint32_t( (_state&BGFX_STATE_BLEND_MASK)>>BGFX_STATE_BLEND_SHIFT);
const uint32_t equation = uint32_t( (_state&BGFX_STATE_BLEND_EQUATION_MASK)>>BGFX_STATE_BLEND_EQUATION_SHIFT);
const uint32_t srcRGB = (blend )&0xf;
const uint32_t dstRGB = (blend>> 4)&0xf;
const uint32_t srcA = (blend>> 8)&0xf;
const uint32_t dstA = (blend>>12)&0xf;
const uint32_t equRGB = (equation )&0x7;
const uint32_t equA = (equation>>3)&0x7;
drt->SrcBlend = s_blendFactor[srcRGB][0];
drt->DestBlend = s_blendFactor[dstRGB][0];
drt->BlendOp = s_blendEquation[equRGB];
drt->SrcBlendAlpha = s_blendFactor[srcA][1];
drt->DestBlendAlpha = s_blendFactor[dstA][1];
drt->BlendOpAlpha = s_blendEquation[equA];
uint32_t writeMask = (_state&BGFX_STATE_ALPHA_WRITE) ? D3D11_COLOR_WRITE_ENABLE_ALPHA : 0;
writeMask |= (_state&BGFX_STATE_RGB_WRITE) ? D3D11_COLOR_WRITE_ENABLE_RED|D3D11_COLOR_WRITE_ENABLE_GREEN|D3D11_COLOR_WRITE_ENABLE_BLUE : 0;
drt->RenderTargetWriteMask = writeMask;
if (desc.IndependentBlendEnable)
{
for (uint32_t ii = 1, rgba = _rgba; ii < BGFX_CONFIG_MAX_FRAME_BUFFER_ATTACHMENTS; ++ii, rgba >>= 11)
{
drt = &desc.RenderTarget[ii];
drt->BlendEnable = 0 != (rgba&0x7ff);
const uint32_t src = (rgba )&0xf;
const uint32_t dst = (rgba>>4)&0xf;
const uint32_t equationIndex = (rgba>>8)&0x7;
drt->SrcBlend = s_blendFactor[src][0];
drt->DestBlend = s_blendFactor[dst][0];
drt->BlendOp = s_blendEquation[equationIndex];
drt->SrcBlendAlpha = s_blendFactor[src][1];
drt->DestBlendAlpha = s_blendFactor[dst][1];
drt->BlendOpAlpha = s_blendEquation[equationIndex];
drt->RenderTargetWriteMask = writeMask;
}
}
else
{
for (uint32_t ii = 1; ii < BGFX_CONFIG_MAX_FRAME_BUFFER_ATTACHMENTS; ++ii)
{
memcpy(&desc.RenderTarget[ii], drt, sizeof(D3D11_RENDER_TARGET_BLEND_DESC) );
}
}
DX_CHECK(m_device->CreateBlendState(&desc, &bs) );
m_blendStateCache.add(hash, bs);
}
m_deviceCtx->OMSetBlendState(bs, blendFactor, 0xffffffff);
}
void setDepthStencilState(uint64_t _state, uint64_t _stencil = 0)
{
_state &= BGFX_STATE_DEPTH_WRITE|BGFX_STATE_DEPTH_TEST_MASK;
uint32_t fstencil = unpackStencil(0, _stencil);
uint32_t ref = (fstencil&BGFX_STENCIL_FUNC_REF_MASK)>>BGFX_STENCIL_FUNC_REF_SHIFT;
_stencil &= packStencil(~BGFX_STENCIL_FUNC_REF_MASK, BGFX_STENCIL_MASK);
bx::HashMurmur2A murmur;
murmur.begin();
murmur.add(_state);
murmur.add(_stencil);
uint32_t hash = murmur.end();
ID3D11DepthStencilState* dss = m_depthStencilStateCache.find(hash);
if (NULL == dss)
{
D3D11_DEPTH_STENCIL_DESC desc;
memset(&desc, 0, sizeof(desc) );
uint32_t func = (_state&BGFX_STATE_DEPTH_TEST_MASK)>>BGFX_STATE_DEPTH_TEST_SHIFT;
desc.DepthEnable = 0 != func;
desc.DepthWriteMask = !!(BGFX_STATE_DEPTH_WRITE & _state) ? D3D11_DEPTH_WRITE_MASK_ALL : D3D11_DEPTH_WRITE_MASK_ZERO;
desc.DepthFunc = s_cmpFunc[func];
uint32_t bstencil = unpackStencil(1, _stencil);
uint32_t frontAndBack = bstencil != BGFX_STENCIL_NONE && bstencil != fstencil;
bstencil = frontAndBack ? bstencil : fstencil;
desc.StencilEnable = 0 != _stencil;
desc.StencilReadMask = (fstencil&BGFX_STENCIL_FUNC_RMASK_MASK)>>BGFX_STENCIL_FUNC_RMASK_SHIFT;
desc.StencilWriteMask = 0xff;
desc.FrontFace.StencilFailOp = s_stencilOp[(fstencil&BGFX_STENCIL_OP_FAIL_S_MASK)>>BGFX_STENCIL_OP_FAIL_S_SHIFT];
desc.FrontFace.StencilDepthFailOp = s_stencilOp[(fstencil&BGFX_STENCIL_OP_FAIL_Z_MASK)>>BGFX_STENCIL_OP_FAIL_Z_SHIFT];
desc.FrontFace.StencilPassOp = s_stencilOp[(fstencil&BGFX_STENCIL_OP_PASS_Z_MASK)>>BGFX_STENCIL_OP_PASS_Z_SHIFT];
desc.FrontFace.StencilFunc = s_cmpFunc[(fstencil&BGFX_STENCIL_TEST_MASK)>>BGFX_STENCIL_TEST_SHIFT];
desc.BackFace.StencilFailOp = s_stencilOp[(bstencil&BGFX_STENCIL_OP_FAIL_S_MASK)>>BGFX_STENCIL_OP_FAIL_S_SHIFT];
desc.BackFace.StencilDepthFailOp = s_stencilOp[(bstencil&BGFX_STENCIL_OP_FAIL_Z_MASK)>>BGFX_STENCIL_OP_FAIL_Z_SHIFT];
desc.BackFace.StencilPassOp = s_stencilOp[(bstencil&BGFX_STENCIL_OP_PASS_Z_MASK)>>BGFX_STENCIL_OP_PASS_Z_SHIFT];
desc.BackFace.StencilFunc = s_cmpFunc[(bstencil&BGFX_STENCIL_TEST_MASK)>>BGFX_STENCIL_TEST_SHIFT];
DX_CHECK(m_device->CreateDepthStencilState(&desc, &dss) );
m_depthStencilStateCache.add(hash, dss);
}
m_deviceCtx->OMSetDepthStencilState(dss, ref);
}
void setDebugWireframe(bool _wireframe)
{
if (m_wireframe != _wireframe)
{
m_wireframe = _wireframe;
m_rasterizerStateCache.invalidate();
}
}
void setRasterizerState(uint64_t _state, bool _wireframe = false, bool _scissor = false)
{
_state &= BGFX_STATE_CULL_MASK|BGFX_STATE_MSAA;
_state |= _wireframe ? BGFX_STATE_PT_LINES : BGFX_STATE_NONE;
_state |= _scissor ? BGFX_STATE_RESERVED_MASK : 0;
ID3D11RasterizerState* rs = m_rasterizerStateCache.find(_state);
if (NULL == rs)
{
uint32_t cull = (_state&BGFX_STATE_CULL_MASK)>>BGFX_STATE_CULL_SHIFT;
D3D11_RASTERIZER_DESC desc;
desc.FillMode = _wireframe ? D3D11_FILL_WIREFRAME : D3D11_FILL_SOLID;
desc.CullMode = s_cullMode[cull];
desc.FrontCounterClockwise = false;
desc.DepthBias = 0;
desc.DepthBiasClamp = 0.0f;
desc.SlopeScaledDepthBias = 0.0f;
desc.DepthClipEnable = false;
desc.ScissorEnable = _scissor;
desc.MultisampleEnable = !!(_state&BGFX_STATE_MSAA);
desc.AntialiasedLineEnable = false;
DX_CHECK(m_device->CreateRasterizerState(&desc, &rs) );
m_rasterizerStateCache.add(_state, rs);
}
m_deviceCtx->RSSetState(rs);
}
ID3D11SamplerState* getSamplerState(uint32_t _flags)
{
_flags &= BGFX_TEXTURE_SAMPLER_BITS_MASK;
ID3D11SamplerState* sampler = m_samplerStateCache.find(_flags);
if (NULL == sampler)
{
const uint32_t cmpFunc = (_flags&BGFX_TEXTURE_COMPARE_MASK)>>BGFX_TEXTURE_COMPARE_SHIFT;
const uint8_t minFilter = s_textureFilter[0][(_flags&BGFX_TEXTURE_MIN_MASK)>>BGFX_TEXTURE_MIN_SHIFT];
const uint8_t magFilter = s_textureFilter[1][(_flags&BGFX_TEXTURE_MAG_MASK)>>BGFX_TEXTURE_MAG_SHIFT];
const uint8_t mipFilter = s_textureFilter[2][(_flags&BGFX_TEXTURE_MIP_MASK)>>BGFX_TEXTURE_MIP_SHIFT];
const uint8_t filter = 0 == cmpFunc ? 0 : D3D11_COMPARISON_FILTERING_BIT;
D3D11_SAMPLER_DESC sd;
sd.Filter = (D3D11_FILTER)(filter|minFilter|magFilter|mipFilter);
sd.AddressU = s_textureAddress[(_flags&BGFX_TEXTURE_U_MASK)>>BGFX_TEXTURE_U_SHIFT];
sd.AddressV = s_textureAddress[(_flags&BGFX_TEXTURE_V_MASK)>>BGFX_TEXTURE_V_SHIFT];
sd.AddressW = s_textureAddress[(_flags&BGFX_TEXTURE_W_MASK)>>BGFX_TEXTURE_W_SHIFT];
sd.MipLODBias = 0.0f;
sd.MaxAnisotropy = m_maxAnisotropy;
sd.ComparisonFunc = 0 == cmpFunc ? D3D11_COMPARISON_NEVER : s_cmpFunc[cmpFunc];
sd.BorderColor[0] = 0.0f;
sd.BorderColor[1] = 0.0f;
sd.BorderColor[2] = 0.0f;
sd.BorderColor[3] = 0.0f;
sd.MinLOD = 0;
sd.MaxLOD = D3D11_FLOAT32_MAX;
m_device->CreateSamplerState(&sd, &sampler);
DX_CHECK_REFCOUNT(sampler, 1);
m_samplerStateCache.add(_flags, sampler);
}
return sampler;
}
DXGI_FORMAT getBufferFormat()
{
#if BX_PLATFORM_WINRT
return m_scd.Format;
#else
return m_scd.BufferDesc.Format;
#endif
}
uint32_t getBufferWidth()
{
#if BX_PLATFORM_WINRT
return m_scd.Width;
#else
return m_scd.BufferDesc.Width;
#endif
}
uint32_t getBufferHeight()
{
#if BX_PLATFORM_WINRT
return m_scd.Height;
#else
return m_scd.BufferDesc.Height;
#endif
}
void setBufferSize(uint32_t _width, uint32_t _height)
{
#if BX_PLATFORM_WINRT
m_scd.Width = _width;
m_scd.Height = _height;
#else
m_scd.BufferDesc.Width = _width;
m_scd.BufferDesc.Height = _height;
#endif
}
void commitTextureStage()
{
m_deviceCtx->PSSetShaderResources(0, BGFX_CONFIG_MAX_TEXTURE_SAMPLERS, m_textureStage.m_srv);
m_deviceCtx->PSSetSamplers(0, BGFX_CONFIG_MAX_TEXTURE_SAMPLERS, m_textureStage.m_sampler);
}
void invalidateTextureStage()
{
m_textureStage.clear();
commitTextureStage();
}
void ovrPostReset()
{
#if BGFX_CONFIG_USE_OVR
if (m_flags & (BGFX_RESET_HMD|BGFX_RESET_HMD_DEBUG) )
{
ovrD3D11Config config;
config.D3D11.Header.API = ovrRenderAPI_D3D11;
# if OVR_VERSION > OVR_VERSION_043
config.D3D11.Header.BackBufferSize.w = m_scd.BufferDesc.Width;
config.D3D11.Header.BackBufferSize.h = m_scd.BufferDesc.Height;
config.D3D11.pBackBufferUAV = NULL;
# else
config.D3D11.Header.RTSize.w = m_scd.BufferDesc.Width;
config.D3D11.Header.RTSize.h = m_scd.BufferDesc.Height;
# endif // OVR_VERSION > OVR_VERSION_042
config.D3D11.Header.Multisample = 0;
config.D3D11.pDevice = m_device;
config.D3D11.pDeviceContext = m_deviceCtx;
config.D3D11.pBackBufferRT = m_backBufferColor;
config.D3D11.pSwapChain = m_swapChain;
if (m_ovr.postReset(g_bgfxHwnd, &config.Config, !!(m_flags & BGFX_RESET_HMD_DEBUG) ) )
{
uint32_t size = sizeof(uint32_t) + sizeof(TextureCreate);
const Memory* mem = alloc(size);
bx::StaticMemoryBlockWriter writer(mem->data, mem->size);
uint32_t magic = BGFX_CHUNK_MAGIC_TEX;
bx::write(&writer, magic);
TextureCreate tc;
tc.m_flags = BGFX_TEXTURE_RT;
tc.m_width = m_ovr.m_rtSize.w;
tc.m_height = m_ovr.m_rtSize.h;
tc.m_sides = 0;
tc.m_depth = 0;
tc.m_numMips = 1;
tc.m_format = uint8_t(bgfx::TextureFormat::BGRA8);
tc.m_cubeMap = false;
tc.m_mem = NULL;
bx::write(&writer, tc);
m_ovrRT.create(mem, tc.m_flags, 0);
release(mem);
DX_CHECK(m_device->CreateRenderTargetView(m_ovrRT.m_ptr, NULL, &m_ovrRtv) );
D3D11_TEXTURE2D_DESC dsd;
dsd.Width = m_ovr.m_rtSize.w;
dsd.Height = m_ovr.m_rtSize.h;
dsd.MipLevels = 1;
dsd.ArraySize = 1;
dsd.Format = DXGI_FORMAT_D24_UNORM_S8_UINT;
dsd.SampleDesc = m_scd.SampleDesc;
dsd.Usage = D3D11_USAGE_DEFAULT;
dsd.BindFlags = D3D11_BIND_DEPTH_STENCIL;
dsd.CPUAccessFlags = 0;
dsd.MiscFlags = 0;
ID3D11Texture2D* depthStencil;
DX_CHECK(m_device->CreateTexture2D(&dsd, NULL, &depthStencil) );
DX_CHECK(m_device->CreateDepthStencilView(depthStencil, NULL, &m_ovrDsv) );
DX_RELEASE(depthStencil, 0);
ovrD3D11Texture texture;
texture.D3D11.Header.API = ovrRenderAPI_D3D11;
texture.D3D11.Header.TextureSize = m_ovr.m_rtSize;
texture.D3D11.pTexture = m_ovrRT.m_texture2d;
texture.D3D11.pSRView = m_ovrRT.m_srv;
m_ovr.postReset(texture.Texture);
bx::xchg(m_ovrRtv, m_backBufferColor);
BX_CHECK(NULL == m_backBufferDepthStencil, "");
bx::xchg(m_ovrDsv, m_backBufferDepthStencil);
}
}
#endif // BGFX_CONFIG_USE_OVR
}
void ovrPreReset()
{
#if BGFX_CONFIG_USE_OVR
m_ovr.preReset();
if (NULL != m_ovrRtv)
{
bx::xchg(m_ovrRtv, m_backBufferColor);
bx::xchg(m_ovrDsv, m_backBufferDepthStencil);
BX_CHECK(NULL == m_backBufferDepthStencil, "");
DX_RELEASE(m_ovrRtv, 0);
DX_RELEASE(m_ovrDsv, 0);
m_ovrRT.destroy();
}
#endif // BGFX_CONFIG_USE_OVR
}
void capturePostReset()
{
if (m_flags&BGFX_RESET_CAPTURE)
{
ID3D11Texture2D* backBuffer;
DX_CHECK(m_swapChain->GetBuffer(0, IID_ID3D11Texture2D, (void**)&backBuffer));
D3D11_TEXTURE2D_DESC backBufferDesc;
backBuffer->GetDesc(&backBufferDesc);
D3D11_TEXTURE2D_DESC desc;
memcpy(&desc, &backBufferDesc, sizeof(desc) );
desc.SampleDesc.Count = 1;
desc.SampleDesc.Quality = 0;
desc.Usage = D3D11_USAGE_STAGING;
desc.BindFlags = 0;
desc.CPUAccessFlags = D3D11_CPU_ACCESS_READ;
HRESULT hr = m_device->CreateTexture2D(&desc, NULL, &m_captureTexture);
if (SUCCEEDED(hr) )
{
if (backBufferDesc.SampleDesc.Count != 1)
{
desc.Usage = D3D11_USAGE_DEFAULT;
desc.CPUAccessFlags = 0;
m_device->CreateTexture2D(&desc, NULL, &m_captureResolve);
}
g_callback->captureBegin(backBufferDesc.Width, backBufferDesc.Height, backBufferDesc.Width*4, TextureFormat::BGRA8, false);
}
DX_RELEASE(backBuffer, 0);
}
}
void capturePreReset()
{
if (NULL != m_captureTexture)
{
g_callback->captureEnd();
}
DX_RELEASE(m_captureResolve, 0);
DX_RELEASE(m_captureTexture, 0);
}
void capture()
{
if (NULL != m_captureTexture)
{
ID3D11Texture2D* backBuffer;
DX_CHECK(m_swapChain->GetBuffer(0, IID_ID3D11Texture2D, (void**)&backBuffer));
if (NULL == m_captureResolve)
{
m_deviceCtx->CopyResource(m_captureTexture, backBuffer);
}
else
{
m_deviceCtx->ResolveSubresource(m_captureResolve, 0, backBuffer, 0, getBufferFormat());
m_deviceCtx->CopyResource(m_captureTexture, m_captureResolve);
}
D3D11_MAPPED_SUBRESOURCE mapped;
DX_CHECK(m_deviceCtx->Map(m_captureTexture, 0, D3D11_MAP_READ, 0, &mapped) );
g_callback->captureFrame(mapped.pData, getBufferHeight()*mapped.RowPitch);
m_deviceCtx->Unmap(m_captureTexture, 0);
DX_RELEASE(backBuffer, 0);
}
}
void commit(ConstantBuffer& _constantBuffer)
{
_constantBuffer.reset();
for (;;)
{
uint32_t opcode = _constantBuffer.read();
if (UniformType::End == opcode)
{
break;
}
UniformType::Enum type;
uint16_t loc;
uint16_t num;
uint16_t copy;
ConstantBuffer::decodeOpcode(opcode, type, loc, num, copy);
const char* data;
if (copy)
{
data = _constantBuffer.read(g_uniformTypeSize[type]*num);
}
else
{
UniformHandle handle;
memcpy(&handle, _constantBuffer.read(sizeof(UniformHandle) ), sizeof(UniformHandle) );
data = (const char*)m_uniforms[handle.idx];
}
#define CASE_IMPLEMENT_UNIFORM(_uniform, _dxsuffix, _type) \
case UniformType::_uniform: \
case UniformType::_uniform|BGFX_UNIFORM_FRAGMENTBIT: \
{ \
setShaderUniform(type, loc, data, num); \
} \
break;
switch ( (int32_t)type)
{
case UniformType::Uniform3x3fv:
case UniformType::Uniform3x3fv|BGFX_UNIFORM_FRAGMENTBIT: \
{
float* value = (float*)data;
for (uint32_t ii = 0, count = num/3; ii < count; ++ii, loc += 3*16, value += 9)
{
Matrix4 mtx;
mtx.un.val[ 0] = value[0];
mtx.un.val[ 1] = value[1];
mtx.un.val[ 2] = value[2];
mtx.un.val[ 3] = 0.0f;
mtx.un.val[ 4] = value[3];
mtx.un.val[ 5] = value[4];
mtx.un.val[ 6] = value[5];
mtx.un.val[ 7] = 0.0f;
mtx.un.val[ 8] = value[6];
mtx.un.val[ 9] = value[7];
mtx.un.val[10] = value[8];
mtx.un.val[11] = 0.0f;
setShaderUniform(type, loc, &mtx.un.val[0], 3);
}
}
break;
CASE_IMPLEMENT_UNIFORM(Uniform1i, I, int);
CASE_IMPLEMENT_UNIFORM(Uniform1f, F, float);
CASE_IMPLEMENT_UNIFORM(Uniform1iv, I, int);
CASE_IMPLEMENT_UNIFORM(Uniform1fv, F, float);
CASE_IMPLEMENT_UNIFORM(Uniform2fv, F, float);
CASE_IMPLEMENT_UNIFORM(Uniform3fv, F, float);
CASE_IMPLEMENT_UNIFORM(Uniform4fv, F, float);
CASE_IMPLEMENT_UNIFORM(Uniform4x4fv, F, float);
case UniformType::End:
break;
default:
BX_TRACE("%4d: INVALID 0x%08x, t %d, l %d, n %d, c %d", _constantBuffer.getPos(), opcode, type, loc, num, copy);
break;
}
#undef CASE_IMPLEMENT_UNIFORM
}
}
void clearQuad(ClearQuad& _clearQuad, const Rect& _rect, const Clear& _clear, const float _palette[][4])
{
uint32_t width = getBufferWidth();
uint32_t height = getBufferHeight();
if (0 == _rect.m_x
&& 0 == _rect.m_y
&& width == _rect.m_width
&& height == _rect.m_height)
{
clear(_clear, _palette);
}
else
{
ID3D11DeviceContext* deviceCtx = m_deviceCtx;
uint64_t state = 0;
state |= _clear.m_flags & BGFX_CLEAR_COLOR ? BGFX_STATE_RGB_WRITE|BGFX_STATE_ALPHA_WRITE : 0;
state |= _clear.m_flags & BGFX_CLEAR_DEPTH ? BGFX_STATE_DEPTH_TEST_ALWAYS|BGFX_STATE_DEPTH_WRITE : 0;
uint64_t stencil = 0;
stencil |= _clear.m_flags & BGFX_CLEAR_STENCIL ? 0
| BGFX_STENCIL_TEST_ALWAYS
| BGFX_STENCIL_FUNC_REF(_clear.m_stencil)
| BGFX_STENCIL_FUNC_RMASK(0xff)
| BGFX_STENCIL_OP_FAIL_S_REPLACE
| BGFX_STENCIL_OP_FAIL_Z_REPLACE
| BGFX_STENCIL_OP_PASS_Z_REPLACE
: 0
;
setBlendState(state);
setDepthStencilState(state, stencil);
setRasterizerState(state);
uint32_t numMrt = 1;
FrameBufferHandle fbh = m_fbh;
if (isValid(fbh) )
{
const FrameBufferD3D11& fb = m_frameBuffers[fbh.idx];
numMrt = bx::uint32_max(1, fb.m_num);
}
ProgramD3D11& program = m_program[_clearQuad.m_program[numMrt-1].idx];
m_currentProgram = &program;
deviceCtx->VSSetShader(program.m_vsh->m_vertexShader, NULL, 0);
deviceCtx->VSSetConstantBuffers(0, 0, NULL);
if (NULL != m_currentColor)
{
const ShaderD3D11* fsh = program.m_fsh;
deviceCtx->PSSetShader(fsh->m_pixelShader, NULL, 0);
deviceCtx->PSSetConstantBuffers(0, 1, &fsh->m_buffer);
if (BGFX_CLEAR_COLOR_USE_PALETTE & _clear.m_flags)
{
float mrtClear[BGFX_CONFIG_MAX_FRAME_BUFFER_ATTACHMENTS][4];
for (uint32_t ii = 0; ii < numMrt; ++ii)
{
uint8_t index = (uint8_t)bx::uint32_min(BGFX_CONFIG_MAX_CLEAR_COLOR_PALETTE-1, _clear.m_index[ii]);
memcpy(mrtClear[ii], _palette[index], 16);
}
deviceCtx->UpdateSubresource(fsh->m_buffer, 0, 0, mrtClear, 0, 0);
}
else
{
float rgba[4] =
{
_clear.m_index[0]*1.0f/255.0f,
_clear.m_index[1]*1.0f/255.0f,
_clear.m_index[2]*1.0f/255.0f,
_clear.m_index[3]*1.0f/255.0f,
};
deviceCtx->UpdateSubresource(fsh->m_buffer, 0, 0, rgba, 0, 0);
}
}
else
{
deviceCtx->PSSetShader(NULL, NULL, 0);
}
VertexBufferD3D11& vb = m_vertexBuffers[_clearQuad.m_vb->handle.idx];
const VertexDecl& vertexDecl = m_vertexDecls[_clearQuad.m_vb->decl.idx];
const uint32_t stride = vertexDecl.m_stride;
const uint32_t offset = 0;
{
struct Vertex
{
float m_x;
float m_y;
float m_z;
};
Vertex* vertex = (Vertex*)_clearQuad.m_vb->data;
BX_CHECK(stride == sizeof(Vertex), "Stride/Vertex mismatch (stride %d, sizeof(Vertex) %d)", stride, sizeof(Vertex) );
const float depth = _clear.m_depth;
vertex->m_x = -1.0f;
vertex->m_y = -1.0f;
vertex->m_z = depth;
vertex++;
vertex->m_x = 1.0f;
vertex->m_y = -1.0f;
vertex->m_z = depth;
vertex++;
vertex->m_x = -1.0f;
vertex->m_y = 1.0f;
vertex->m_z = depth;
vertex++;
vertex->m_x = 1.0f;
vertex->m_y = 1.0f;
vertex->m_z = depth;
}
m_vertexBuffers[_clearQuad.m_vb->handle.idx].update(0, 4*_clearQuad.m_decl.m_stride, _clearQuad.m_vb->data);
deviceCtx->IASetVertexBuffers(0, 1, &vb.m_ptr, &stride, &offset);
setInputLayout(vertexDecl, program, 0);
deviceCtx->IASetPrimitiveTopology(D3D11_PRIMITIVE_TOPOLOGY_TRIANGLESTRIP);
deviceCtx->Draw(4, 0);
}
}
#if USE_D3D11_DYNAMIC_LIB
void* m_d3d9dll;
void* m_d3d11dll;
void* m_dxgidll;
#endif // USE_D3D11_DYNAMIC_LIB
void* m_renderdocdll;
D3D_DRIVER_TYPE m_driverType;
IDXGIAdapter* m_adapter;
DXGI_ADAPTER_DESC m_adapterDesc;
#if BX_PLATFORM_WINRT
IDXGIFactory2* m_factory;
IDXGISwapChain1* m_swapChain;
#else
IDXGIFactory* m_factory;
IDXGISwapChain* m_swapChain;
#endif
uint16_t m_lost;
uint16_t m_numWindows;
FrameBufferHandle m_windows[BGFX_CONFIG_MAX_FRAME_BUFFERS];
ID3D11Device* m_device;
ID3D11DeviceContext* m_deviceCtx;
ID3D11RenderTargetView* m_backBufferColor;
ID3D11DepthStencilView* m_backBufferDepthStencil;
ID3D11RenderTargetView* m_currentColor;
ID3D11DepthStencilView* m_currentDepthStencil;
ID3D11Texture2D* m_captureTexture;
ID3D11Texture2D* m_captureResolve;
Resolution m_resolution;
bool m_wireframe;
#if BX_PLATFORM_WINRT
DXGI_SWAP_CHAIN_DESC1 m_scd;
#else
DXGI_SWAP_CHAIN_DESC m_scd;
#endif
uint32_t m_flags;
uint32_t m_maxAnisotropy;
IndexBufferD3D11 m_indexBuffers[BGFX_CONFIG_MAX_INDEX_BUFFERS];
VertexBufferD3D11 m_vertexBuffers[BGFX_CONFIG_MAX_VERTEX_BUFFERS];
ShaderD3D11 m_shaders[BGFX_CONFIG_MAX_SHADERS];
ProgramD3D11 m_program[BGFX_CONFIG_MAX_PROGRAMS];
TextureD3D11 m_textures[BGFX_CONFIG_MAX_TEXTURES];
VertexDecl m_vertexDecls[BGFX_CONFIG_MAX_VERTEX_DECLS];
FrameBufferD3D11 m_frameBuffers[BGFX_CONFIG_MAX_FRAME_BUFFERS];
void* m_uniforms[BGFX_CONFIG_MAX_UNIFORMS];
Matrix4 m_predefinedUniforms[PredefinedUniform::Count];
UniformRegistry m_uniformReg;
StateCacheT<ID3D11BlendState> m_blendStateCache;
StateCacheT<ID3D11DepthStencilState> m_depthStencilStateCache;
StateCacheT<ID3D11InputLayout> m_inputLayoutCache;
StateCacheT<ID3D11RasterizerState> m_rasterizerStateCache;
StateCacheT<ID3D11SamplerState> m_samplerStateCache;
TextVideoMem m_textVideoMem;
TextureStage m_textureStage;
ProgramD3D11* m_currentProgram;
uint8_t m_vsScratch[64<<10];
uint8_t m_fsScratch[64<<10];
uint32_t m_vsChanges;
uint32_t m_fsChanges;
FrameBufferHandle m_fbh;
bool m_rtMsaa;
OVR m_ovr;
TextureD3D11 m_ovrRT;
ID3D11RenderTargetView* m_ovrRtv;
ID3D11DepthStencilView* m_ovrDsv;
};
static RendererContextD3D11* s_renderD3D11;
RendererContextI* rendererCreateD3D11()
{
s_renderD3D11 = BX_NEW(g_allocator, RendererContextD3D11);
s_renderD3D11->init();
return s_renderD3D11;
}
void rendererDestroyD3D11()
{
s_renderD3D11->shutdown();
BX_DELETE(g_allocator, s_renderD3D11);
s_renderD3D11 = NULL;
}
void BufferD3D11::create(uint32_t _size, void* _data, uint8_t _flags, uint16_t _stride, bool _vertex)
{
m_uav = NULL;
m_size = _size;
const bool needUav = 0 != (_flags & BGFX_BUFFER_COMPUTE_WRITE);
const bool needSrv = 0 != (_flags & BGFX_BUFFER_COMPUTE_READ);
m_dynamic = NULL == _data && !needUav;
D3D11_BUFFER_DESC desc;
desc.ByteWidth = _size;
desc.BindFlags = 0
| (_vertex ? D3D11_BIND_VERTEX_BUFFER : D3D11_BIND_INDEX_BUFFER)
| (needUav ? D3D11_BIND_UNORDERED_ACCESS : 0)
| (needSrv ? D3D11_BIND_SHADER_RESOURCE : 0)
;
desc.MiscFlags = 0;
desc.StructureByteStride = 0;
DXGI_FORMAT format = _vertex
? DXGI_FORMAT_R32G32B32A32_FLOAT
: DXGI_FORMAT_R16_UINT
;
ID3D11Device* device = s_renderD3D11->m_device;
if (needUav)
{
desc.Usage = D3D11_USAGE_DEFAULT;
desc.CPUAccessFlags = 0;
desc.StructureByteStride = _stride;
DX_CHECK(device->CreateBuffer(&desc
, NULL
, &m_ptr
));
D3D11_UNORDERED_ACCESS_VIEW_DESC uavd;
uavd.Format = format;
uavd.ViewDimension = D3D11_UAV_DIMENSION_BUFFER;
uavd.Buffer.FirstElement = 0;
uavd.Buffer.NumElements = m_size / 16;
uavd.Buffer.Flags = 0;
DX_CHECK(device->CreateUnorderedAccessView(m_ptr
, &uavd
, &m_uav
));
}
else if (m_dynamic)
{
desc.Usage = D3D11_USAGE_DYNAMIC;
desc.CPUAccessFlags = D3D11_CPU_ACCESS_WRITE;
DX_CHECK(device->CreateBuffer(&desc
, NULL
, &m_ptr
));
}
else
{
desc.Usage = D3D11_USAGE_IMMUTABLE;
desc.CPUAccessFlags = 0;
D3D11_SUBRESOURCE_DATA srd;
srd.pSysMem = _data;
srd.SysMemPitch = 0;
srd.SysMemSlicePitch = 0;
DX_CHECK(device->CreateBuffer(&desc
, &srd
, &m_ptr
));
}
if (needSrv)
{
D3D11_SHADER_RESOURCE_VIEW_DESC srvd;
srvd.Format = format;
srvd.ViewDimension = D3D11_SRV_DIMENSION_BUFFER;
srvd.Buffer.FirstElement = 0;
srvd.Buffer.NumElements = m_size / 16;
DX_CHECK(device->CreateShaderResourceView(m_ptr
, &srvd
, &m_srv
));
}
}
void BufferD3D11::update(uint32_t _offset, uint32_t _size, void* _data, bool _discard)
{
ID3D11DeviceContext* deviceCtx = s_renderD3D11->m_deviceCtx;
BX_CHECK(m_dynamic, "Must be dynamic!");
D3D11_MAPPED_SUBRESOURCE mapped;
BX_UNUSED(_discard);
D3D11_MAP type = D3D11_MAP_WRITE_DISCARD;
DX_CHECK(deviceCtx->Map(m_ptr, 0, type, 0, &mapped));
memcpy((uint8_t*)mapped.pData + _offset, _data, _size);
deviceCtx->Unmap(m_ptr, 0);
}
void VertexBufferD3D11::create(uint32_t _size, void* _data, VertexDeclHandle _declHandle, uint8_t _flags)
{
m_decl = _declHandle;
uint16_t stride = isValid(_declHandle)
? s_renderD3D11->m_vertexDecls[_declHandle.idx].m_stride
: 0
;
BufferD3D11::create(_size, _data, _flags, stride);
}
void ShaderD3D11::create(const Memory* _mem)
{
bx::MemoryReader reader(_mem->data, _mem->size);
uint32_t magic;
bx::read(&reader, magic);
switch (magic)
{
case BGFX_CHUNK_MAGIC_CSH:
case BGFX_CHUNK_MAGIC_FSH:
case BGFX_CHUNK_MAGIC_VSH:
break;
default:
BGFX_FATAL(false, Fatal::InvalidShader, "Unknown shader format %x.", magic);
break;
}
bool fragment = BGFX_CHUNK_MAGIC_FSH == magic;
uint32_t iohash;
bx::read(&reader, iohash);
uint16_t count;
bx::read(&reader, count);
m_numPredefined = 0;
m_numUniforms = count;
BX_TRACE("%s Shader consts %d"
, BGFX_CHUNK_MAGIC_FSH == magic ? "Fragment" : BGFX_CHUNK_MAGIC_VSH == magic ? "Vertex" : "Compute"
, count
);
uint8_t fragmentBit = fragment ? BGFX_UNIFORM_FRAGMENTBIT : 0;
if (0 < count)
{
for (uint32_t ii = 0; ii < count; ++ii)
{
uint8_t nameSize;
bx::read(&reader, nameSize);
char name[256];
bx::read(&reader, &name, nameSize);
name[nameSize] = '\0';
uint8_t type;
bx::read(&reader, type);
uint8_t num;
bx::read(&reader, num);
uint16_t regIndex;
bx::read(&reader, regIndex);
uint16_t regCount;
bx::read(&reader, regCount);
const char* kind = "invalid";
PredefinedUniform::Enum predefined = nameToPredefinedUniformEnum(name);
if (PredefinedUniform::Count != predefined)
{
kind = "predefined";
m_predefined[m_numPredefined].m_loc = regIndex;
m_predefined[m_numPredefined].m_count = regCount;
m_predefined[m_numPredefined].m_type = predefined|fragmentBit;
m_numPredefined++;
}
else
{
const UniformInfo* info = s_renderD3D11->m_uniformReg.find(name);
if (NULL != info)
{
if (NULL == m_constantBuffer)
{
m_constantBuffer = ConstantBuffer::create(1024);
}
kind = "user";
m_constantBuffer->writeUniformHandle( (UniformType::Enum)(type|fragmentBit), regIndex, info->m_handle, regCount);
}
}
BX_TRACE("\t%s: %s (%s), num %2d, r.index %3d, r.count %2d"
, kind
, name
, getUniformTypeName(UniformType::Enum(type&~BGFX_UNIFORM_FRAGMENTBIT) )
, num
, regIndex
, regCount
);
BX_UNUSED(kind);
}
if (NULL != m_constantBuffer)
{
m_constantBuffer->finish();
}
}
uint16_t shaderSize;
bx::read(&reader, shaderSize);
const DWORD* code = (const DWORD*)reader.getDataPtr();
bx::skip(&reader, shaderSize+1);
if (BGFX_CHUNK_MAGIC_FSH == magic)
{
DX_CHECK(s_renderD3D11->m_device->CreatePixelShader(code, shaderSize, NULL, &m_pixelShader) );
BGFX_FATAL(NULL != m_ptr, bgfx::Fatal::InvalidShader, "Failed to create fragment shader.");
}
else if (BGFX_CHUNK_MAGIC_VSH == magic)
{
m_hash = bx::hashMurmur2A(code, shaderSize);
m_code = copy(code, shaderSize);
DX_CHECK(s_renderD3D11->m_device->CreateVertexShader(code, shaderSize, NULL, &m_vertexShader) );
BGFX_FATAL(NULL != m_ptr, bgfx::Fatal::InvalidShader, "Failed to create vertex shader.");
}
else
{
DX_CHECK(s_renderD3D11->m_device->CreateComputeShader(code, shaderSize, NULL, &m_computeShader) );
BGFX_FATAL(NULL != m_ptr, bgfx::Fatal::InvalidShader, "Failed to create compute shader.");
}
uint8_t numAttrs;
bx::read(&reader, numAttrs);
memset(m_attrMask, 0, sizeof(m_attrMask));
for (uint32_t ii = 0; ii < numAttrs; ++ii)
{
uint16_t id;
bx::read(&reader, id);
Attrib::Enum attr = idToAttrib(id);
if (Attrib::Count != attr)
{
m_attrMask[attr] = 0xff;
}
}
uint16_t size;
bx::read(&reader, size);
if (0 < size)
{
D3D11_BUFFER_DESC desc;
desc.ByteWidth = size;
desc.Usage = D3D11_USAGE_DEFAULT;
desc.BindFlags = D3D11_BIND_CONSTANT_BUFFER;
desc.CPUAccessFlags = 0;
desc.MiscFlags = 0;
desc.StructureByteStride = 0;
DX_CHECK(s_renderD3D11->m_device->CreateBuffer(&desc, NULL, &m_buffer) );
}
}
void TextureD3D11::create(const Memory* _mem, uint32_t _flags, uint8_t _skip)
{
m_sampler = s_renderD3D11->getSamplerState(_flags);
ImageContainer imageContainer;
if (imageParse(imageContainer, _mem->data, _mem->size) )
{
uint8_t numMips = imageContainer.m_numMips;
const uint32_t startLod = bx::uint32_min(_skip, numMips-1);
numMips -= startLod;
const ImageBlockInfo& blockInfo = getBlockInfo(TextureFormat::Enum(imageContainer.m_format) );
const uint32_t textureWidth = bx::uint32_max(blockInfo.blockWidth, imageContainer.m_width >>startLod);
const uint32_t textureHeight = bx::uint32_max(blockInfo.blockHeight, imageContainer.m_height>>startLod);
m_flags = _flags;
m_requestedFormat = (uint8_t)imageContainer.m_format;
m_textureFormat = (uint8_t)imageContainer.m_format;
const TextureFormatInfo& tfi = s_textureFormat[m_requestedFormat];
const bool convert = DXGI_FORMAT_UNKNOWN == tfi.m_fmt;
uint8_t bpp = getBitsPerPixel(TextureFormat::Enum(m_textureFormat) );
if (convert)
{
m_textureFormat = (uint8_t)TextureFormat::BGRA8;
bpp = 32;
}
if (imageContainer.m_cubeMap)
{
m_type = TextureCube;
}
else if (imageContainer.m_depth > 1)
{
m_type = Texture3D;
}
else
{
m_type = Texture2D;
}
m_numMips = numMips;
uint32_t numSrd = numMips*(imageContainer.m_cubeMap ? 6 : 1);
D3D11_SUBRESOURCE_DATA* srd = (D3D11_SUBRESOURCE_DATA*)alloca(numSrd*sizeof(D3D11_SUBRESOURCE_DATA) );
uint32_t kk = 0;
const bool compressed = isCompressed(TextureFormat::Enum(m_textureFormat) );
const bool swizzle = TextureFormat::BGRA8 == m_textureFormat && 0 != (m_flags&BGFX_TEXTURE_COMPUTE_WRITE);
BX_TRACE("Texture %3d: %s (requested: %s), %dx%d%s%s%s."
, this - s_renderD3D11->m_textures
, getName( (TextureFormat::Enum)m_textureFormat)
, getName( (TextureFormat::Enum)m_requestedFormat)
, textureWidth
, textureHeight
, imageContainer.m_cubeMap ? "x6" : ""
, 0 != (m_flags&BGFX_TEXTURE_RT_MASK) ? " (render target)" : ""
, swizzle ? " (swizzle BGRA8 -> RGBA8)" : ""
);
for (uint8_t side = 0, numSides = imageContainer.m_cubeMap ? 6 : 1; side < numSides; ++side)
{
uint32_t width = textureWidth;
uint32_t height = textureHeight;
uint32_t depth = imageContainer.m_depth;
for (uint32_t lod = 0, num = numMips; lod < num; ++lod)
{
width = bx::uint32_max(1, width);
height = bx::uint32_max(1, height);
depth = bx::uint32_max(1, depth);
ImageMip mip;
if (imageGetRawData(imageContainer, side, lod+startLod, _mem->data, _mem->size, mip) )
{
srd[kk].pSysMem = mip.m_data;
if (convert)
{
uint32_t srcpitch = mip.m_width*bpp/8;
uint8_t* temp = (uint8_t*)BX_ALLOC(g_allocator, mip.m_width*mip.m_height*bpp/8);
imageDecodeToBgra8(temp, mip.m_data, mip.m_width, mip.m_height, srcpitch, mip.m_format);
srd[kk].pSysMem = temp;
srd[kk].SysMemPitch = srcpitch;
}
else if (compressed)
{
srd[kk].SysMemPitch = (mip.m_width /blockInfo.blockWidth )*mip.m_blockSize;
srd[kk].SysMemSlicePitch = (mip.m_height/blockInfo.blockHeight)*srd[kk].SysMemPitch;
}
else
{
srd[kk].SysMemPitch = mip.m_width*mip.m_bpp/8;
}
if (swizzle)
{
// imageSwizzleBgra8(width, height, mip.m_width*4, data, temp);
}
srd[kk].SysMemSlicePitch = mip.m_height*srd[kk].SysMemPitch;
++kk;
}
width >>= 1;
height >>= 1;
depth >>= 1;
}
}
const bool bufferOnly = 0 != (m_flags&BGFX_TEXTURE_RT_BUFFER_ONLY);
const bool computeWrite = 0 != (m_flags&BGFX_TEXTURE_COMPUTE_WRITE);
const bool renderTarget = 0 != (m_flags&BGFX_TEXTURE_RT_MASK);
const uint32_t msaaQuality = bx::uint32_satsub( (m_flags&BGFX_TEXTURE_RT_MSAA_MASK)>>BGFX_TEXTURE_RT_MSAA_SHIFT, 1);
const DXGI_SAMPLE_DESC& msaa = s_msaa[msaaQuality];
D3D11_SHADER_RESOURCE_VIEW_DESC srvd;
memset(&srvd, 0, sizeof(srvd) );
srvd.Format = s_textureFormat[m_textureFormat].m_fmtSrv;
DXGI_FORMAT format = s_textureFormat[m_textureFormat].m_fmt;
if (swizzle)
{
format = DXGI_FORMAT_R8G8B8A8_UNORM;
srvd.Format = DXGI_FORMAT_R8G8B8A8_UNORM;
}
switch (m_type)
{
case Texture2D:
case TextureCube:
{
D3D11_TEXTURE2D_DESC desc;
desc.Width = textureWidth;
desc.Height = textureHeight;
desc.MipLevels = numMips;
desc.Format = format;
desc.SampleDesc = msaa;
desc.Usage = kk == 0 ? D3D11_USAGE_DEFAULT : D3D11_USAGE_IMMUTABLE;
desc.BindFlags = bufferOnly ? 0 : D3D11_BIND_SHADER_RESOURCE;
desc.CPUAccessFlags = 0;
if (isDepth( (TextureFormat::Enum)m_textureFormat) )
{
desc.BindFlags |= D3D11_BIND_DEPTH_STENCIL;
desc.Usage = D3D11_USAGE_DEFAULT;
}
else if (renderTarget)
{
desc.BindFlags |= D3D11_BIND_RENDER_TARGET;
desc.Usage = D3D11_USAGE_DEFAULT;
}
if (computeWrite)
{
desc.BindFlags |= D3D11_BIND_UNORDERED_ACCESS;
desc.Usage = D3D11_USAGE_DEFAULT;
}
if (imageContainer.m_cubeMap)
{
desc.ArraySize = 6;
desc.MiscFlags = D3D11_RESOURCE_MISC_TEXTURECUBE;
srvd.ViewDimension = D3D11_SRV_DIMENSION_TEXTURECUBE;
srvd.TextureCube.MipLevels = numMips;
}
else
{
desc.ArraySize = 1;
desc.MiscFlags = 0;
srvd.ViewDimension = 1 < msaa.Count ? D3D11_SRV_DIMENSION_TEXTURE2DMS : D3D11_SRV_DIMENSION_TEXTURE2D;
srvd.Texture2D.MipLevels = numMips;
}
DX_CHECK(s_renderD3D11->m_device->CreateTexture2D(&desc, kk == 0 ? NULL : srd, &m_texture2d) );
}
break;
case Texture3D:
{
D3D11_TEXTURE3D_DESC desc;
desc.Width = textureWidth;
desc.Height = textureHeight;
desc.Depth = imageContainer.m_depth;
desc.MipLevels = imageContainer.m_numMips;
desc.Format = format;
desc.Usage = kk == 0 ? D3D11_USAGE_DEFAULT : D3D11_USAGE_IMMUTABLE;
desc.BindFlags = D3D11_BIND_SHADER_RESOURCE;
desc.CPUAccessFlags = 0;
desc.MiscFlags = 0;
if (computeWrite)
{
desc.BindFlags |= D3D11_BIND_UNORDERED_ACCESS;
desc.Usage = D3D11_USAGE_DEFAULT;
}
srvd.ViewDimension = D3D11_SRV_DIMENSION_TEXTURE3D;
srvd.Texture3D.MipLevels = numMips;
DX_CHECK(s_renderD3D11->m_device->CreateTexture3D(&desc, kk == 0 ? NULL : srd, &m_texture3d) );
}
break;
}
if (!bufferOnly)
{
DX_CHECK(s_renderD3D11->m_device->CreateShaderResourceView(m_ptr, &srvd, &m_srv) );
}
if (computeWrite)
{
DX_CHECK(s_renderD3D11->m_device->CreateUnorderedAccessView(m_ptr, NULL, &m_uav) );
}
if (convert
&& 0 != kk)
{
kk = 0;
for (uint8_t side = 0, numSides = imageContainer.m_cubeMap ? 6 : 1; side < numSides; ++side)
{
for (uint32_t lod = 0, num = numMips; lod < num; ++lod)
{
BX_FREE(g_allocator, const_cast<void*>(srd[kk].pSysMem) );
++kk;
}
}
}
}
}
void TextureD3D11::destroy()
{
DX_RELEASE(m_srv, 0);
DX_RELEASE(m_uav, 0);
DX_RELEASE(m_ptr, 0);
}
void TextureD3D11::update(uint8_t _side, uint8_t _mip, const Rect& _rect, uint16_t _z, uint16_t _depth, uint16_t _pitch, const Memory* _mem)
{
ID3D11DeviceContext* deviceCtx = s_renderD3D11->m_deviceCtx;
D3D11_BOX box;
box.left = _rect.m_x;
box.top = _rect.m_y;
box.right = box.left + _rect.m_width;
box.bottom = box.top + _rect.m_height;
box.front = _z;
box.back = box.front + _depth;
const uint32_t subres = _mip + (_side * m_numMips);
const uint32_t bpp = getBitsPerPixel(TextureFormat::Enum(m_textureFormat) );
const uint32_t rectpitch = _rect.m_width*bpp/8;
const uint32_t srcpitch = UINT16_MAX == _pitch ? rectpitch : _pitch;
const bool convert = m_textureFormat != m_requestedFormat;
uint8_t* data = _mem->data;
uint8_t* temp = NULL;
if (convert)
{
temp = (uint8_t*)BX_ALLOC(g_allocator, rectpitch*_rect.m_height);
imageDecodeToBgra8(temp, data, _rect.m_width, _rect.m_height, srcpitch, m_requestedFormat);
data = temp;
}
deviceCtx->UpdateSubresource(m_ptr, subres, &box, data, srcpitch, 0);
if (NULL != temp)
{
BX_FREE(g_allocator, temp);
}
}
void TextureD3D11::commit(uint8_t _stage, uint32_t _flags)
{
TextureStage& ts = s_renderD3D11->m_textureStage;
ts.m_srv[_stage] = m_srv;
ts.m_sampler[_stage] = 0 == (BGFX_SAMPLER_DEFAULT_FLAGS & _flags)
? s_renderD3D11->getSamplerState(_flags)
: m_sampler
;
}
void TextureD3D11::resolve()
{
}
void FrameBufferD3D11::create(uint8_t _num, const TextureHandle* _handles)
{
for (uint32_t ii = 0; ii < BX_COUNTOF(m_rtv); ++ii)
{
m_rtv[ii] = NULL;
}
m_dsv = NULL;
m_swapChain = NULL;
m_num = 0;
for (uint32_t ii = 0; ii < _num; ++ii)
{
TextureHandle handle = _handles[ii];
if (isValid(handle) )
{
const TextureD3D11& texture = s_renderD3D11->m_textures[handle.idx];
if (isDepth( (TextureFormat::Enum)texture.m_textureFormat) )
{
BX_CHECK(NULL == m_dsv, "Frame buffer already has depth-stencil attached.");
const uint32_t msaaQuality = bx::uint32_satsub( (texture.m_flags&BGFX_TEXTURE_RT_MSAA_MASK)>>BGFX_TEXTURE_RT_MSAA_SHIFT, 1);
const DXGI_SAMPLE_DESC& msaa = s_msaa[msaaQuality];
D3D11_DEPTH_STENCIL_VIEW_DESC dsvDesc;
dsvDesc.Format = s_textureFormat[texture.m_textureFormat].m_fmtDsv;
dsvDesc.ViewDimension = 1 < msaa.Count ? D3D11_DSV_DIMENSION_TEXTURE2DMS : D3D11_DSV_DIMENSION_TEXTURE2D;
dsvDesc.Flags = 0;
dsvDesc.Texture2D.MipSlice = 0;
DX_CHECK(s_renderD3D11->m_device->CreateDepthStencilView(texture.m_ptr, &dsvDesc, &m_dsv) );
}
else
{
DX_CHECK(s_renderD3D11->m_device->CreateRenderTargetView(texture.m_ptr, NULL, &m_rtv[m_num]) );
DX_CHECK(s_renderD3D11->m_device->CreateShaderResourceView(texture.m_ptr, NULL, &m_srv[m_num]) );
m_num++;
}
}
}
}
void FrameBufferD3D11::create(uint16_t _denseIdx, void* _nwh, uint32_t _width, uint32_t _height, TextureFormat::Enum _depthFormat)
{
BX_UNUSED(_depthFormat);
DXGI_SWAP_CHAIN_DESC scd;
memcpy(&scd, &s_renderD3D11->m_scd, sizeof(DXGI_SWAP_CHAIN_DESC) );
scd.BufferDesc.Width = _width;
scd.BufferDesc.Height = _height;
scd.OutputWindow = (HWND)_nwh;
HRESULT hr;
hr = s_renderD3D11->m_factory->CreateSwapChain(s_renderD3D11->m_device
, &scd
, &m_swapChain
);
BGFX_FATAL(SUCCEEDED(hr), Fatal::UnableToInitialize, "Failed to create swap chain.");
ID3D11Resource* ptr;
DX_CHECK(m_swapChain->GetBuffer(0, IID_ID3D11Texture2D, (void**)&ptr));
DX_CHECK(s_renderD3D11->m_device->CreateRenderTargetView(ptr, NULL, &m_rtv[0]) );
DX_RELEASE(ptr, 0);
m_srv[0] = NULL;
m_dsv = NULL;
m_denseIdx = _denseIdx;
m_num = 1;
}
uint16_t FrameBufferD3D11::destroy()
{
for (uint32_t ii = 0, num = m_num; ii < num; ++ii)
{
DX_RELEASE(m_srv[ii], 0);
DX_RELEASE(m_rtv[ii], 0);
}
DX_RELEASE(m_dsv, 0);
DX_RELEASE(m_swapChain, 0);
m_num = 0;
uint16_t denseIdx = m_denseIdx;
m_denseIdx = UINT16_MAX;
return denseIdx;
}
void FrameBufferD3D11::resolve()
{
}
void FrameBufferD3D11::clear(const Clear& _clear, const float _palette[][4])
{
ID3D11DeviceContext* deviceCtx = s_renderD3D11->m_deviceCtx;
if (BGFX_CLEAR_COLOR & _clear.m_flags)
{
if (BGFX_CLEAR_COLOR_USE_PALETTE & _clear.m_flags)
{
for (uint32_t ii = 0, num = m_num; ii < num; ++ii)
{
uint8_t index = _clear.m_index[ii];
if (NULL != m_rtv[ii]
&& UINT8_MAX != index)
{
deviceCtx->ClearRenderTargetView(m_rtv[ii], _palette[index]);
}
}
}
else
{
float frgba[4] =
{
_clear.m_index[0]*1.0f/255.0f,
_clear.m_index[1]*1.0f/255.0f,
_clear.m_index[2]*1.0f/255.0f,
_clear.m_index[3]*1.0f/255.0f,
};
for (uint32_t ii = 0, num = m_num; ii < num; ++ii)
{
if (NULL != m_rtv[ii])
{
deviceCtx->ClearRenderTargetView(m_rtv[ii], frgba);
}
}
}
}
if (NULL != m_dsv
&& (BGFX_CLEAR_DEPTH|BGFX_CLEAR_STENCIL) & _clear.m_flags)
{
DWORD flags = 0;
flags |= (_clear.m_flags & BGFX_CLEAR_DEPTH) ? D3D11_CLEAR_DEPTH : 0;
flags |= (_clear.m_flags & BGFX_CLEAR_STENCIL) ? D3D11_CLEAR_STENCIL : 0;
deviceCtx->ClearDepthStencilView(m_dsv, flags, _clear.m_depth, _clear.m_stencil);
}
}
void RendererContextD3D11::submit(Frame* _render, ClearQuad& _clearQuad, TextVideoMemBlitter& _textVideoMemBlitter)
{
PIX_BEGINEVENT(D3DCOLOR_RGBA(0xff, 0x00, 0x00, 0xff), L"rendererSubmit");
ID3D11DeviceContext* deviceCtx = m_deviceCtx;
updateResolution(_render->m_resolution);
int64_t elapsed = -bx::getHPCounter();
int64_t captureElapsed = 0;
if (0 < _render->m_iboffset)
{
TransientIndexBuffer* ib = _render->m_transientIb;
m_indexBuffers[ib->handle.idx].update(0, _render->m_iboffset, ib->data);
}
if (0 < _render->m_vboffset)
{
TransientVertexBuffer* vb = _render->m_transientVb;
m_vertexBuffers[vb->handle.idx].update(0, _render->m_vboffset, vb->data);
}
_render->sort();
RenderDraw currentState;
currentState.clear();
currentState.m_flags = BGFX_STATE_NONE;
currentState.m_stencil = packStencil(BGFX_STENCIL_NONE, BGFX_STENCIL_NONE);
const bool hmdEnabled = m_ovr.isEnabled() || m_ovr.isDebug();
_render->m_hmdEnabled = hmdEnabled;
if (hmdEnabled)
{
HMD& hmd = _render->m_hmd;
m_ovr.getEyePose(hmd);
}
ViewState viewState(_render, hmdEnabled);
bool wireframe = !!(_render->m_debug&BGFX_DEBUG_WIREFRAME);
bool scissorEnabled = false;
setDebugWireframe(wireframe);
uint16_t programIdx = invalidHandle;
SortKey key;
uint8_t view = 0xff;
FrameBufferHandle fbh = BGFX_INVALID_HANDLE;
const uint64_t primType = _render->m_debug&BGFX_DEBUG_WIREFRAME ? BGFX_STATE_PT_LINES : 0;
uint8_t primIndex = uint8_t(primType>>BGFX_STATE_PT_SHIFT);
PrimInfo prim = s_primInfo[primIndex];
deviceCtx->IASetPrimitiveTopology(prim.m_type);
bool wasCompute = false;
bool viewHasScissor = false;
Rect viewScissorRect;
viewScissorRect.clear();
uint32_t statsNumPrimsSubmitted[BX_COUNTOF(s_primInfo)] = {};
uint32_t statsNumPrimsRendered[BX_COUNTOF(s_primInfo)] = {};
uint32_t statsNumInstances[BX_COUNTOF(s_primInfo)] = {};
uint32_t statsNumIndices = 0;
if (0 == (_render->m_debug&BGFX_DEBUG_IFH) )
{
bool viewRestart = false;
uint8_t eye = 0;
uint8_t restartState = 0;
viewState.m_rect = _render->m_rect[0];
int32_t numItems = _render->m_num;
for (int32_t item = 0, restartItem = numItems; item < numItems || restartItem < numItems;)
{
const bool isCompute = key.decode(_render->m_sortKeys[item], _render->m_viewRemap);
const bool viewChanged = 0
|| key.m_view != view
|| item == numItems
;
const RenderItem& renderItem = _render->m_renderItem[_render->m_sortValues[item] ];
++item;
if (viewChanged)
{
if (1 == restartState)
{
restartState = 2;
item = restartItem;
restartItem = numItems;
view = 0xff;
continue;
}
view = key.m_view;
programIdx = invalidHandle;
if (_render->m_fb[view].idx != fbh.idx)
{
fbh = _render->m_fb[view];
setFrameBuffer(fbh);
}
viewRestart = ( (BGFX_VIEW_STEREO == (_render->m_viewFlags[view] & BGFX_VIEW_STEREO) ) );
viewRestart &= hmdEnabled;
if (viewRestart)
{
if (0 == restartState)
{
restartState = 1;
restartItem = item - 1;
}
eye = (restartState - 1) & 1;
restartState &= 1;
}
else
{
eye = 0;
}
PIX_ENDEVENT();
viewState.m_rect = _render->m_rect[view];
if (viewRestart)
{
wchar_t* viewNameW = s_viewNameW[view];
viewNameW[3] = eye ? L'R' : L'L';
PIX_BEGINEVENT(D3DCOLOR_RGBA(0xff, 0x00, 0x00, 0xff), viewNameW);
viewState.m_rect.m_x = eye * (viewState.m_rect.m_width+1)/2;
viewState.m_rect.m_width /= 2;
}
else
{
wchar_t* viewNameW = s_viewNameW[view];
viewNameW[3] = L' ';
PIX_BEGINEVENT(D3DCOLOR_RGBA(0xff, 0x00, 0x00, 0xff), viewNameW);
}
const Rect& scissorRect = _render->m_scissor[view];
viewHasScissor = !scissorRect.isZero();
viewScissorRect = viewHasScissor ? scissorRect : viewState.m_rect;
D3D11_VIEWPORT vp;
vp.TopLeftX = viewState.m_rect.m_x;
vp.TopLeftY = viewState.m_rect.m_y;
vp.Width = viewState.m_rect.m_width;
vp.Height = viewState.m_rect.m_height;
vp.MinDepth = 0.0f;
vp.MaxDepth = 1.0f;
deviceCtx->RSSetViewports(1, &vp);
Clear& clear = _render->m_clear[view];
if (BGFX_CLEAR_NONE != (clear.m_flags & BGFX_CLEAR_MASK) )
{
clearQuad(_clearQuad, viewState.m_rect, clear, _render->m_clearColor);
prim = s_primInfo[BX_COUNTOF(s_primName)]; // Force primitive type update after clear quad.
}
}
if (isCompute)
{
if (!wasCompute)
{
wasCompute = true;
deviceCtx->IASetVertexBuffers(0, 2, s_zero.m_buffer, s_zero.m_zero, s_zero.m_zero);
deviceCtx->IASetIndexBuffer(NULL, DXGI_FORMAT_R16_UINT, 0);
deviceCtx->VSSetShaderResources(0, BGFX_CONFIG_MAX_TEXTURE_SAMPLERS, s_zero.m_srv);
deviceCtx->PSSetShaderResources(0, BGFX_CONFIG_MAX_TEXTURE_SAMPLERS, s_zero.m_srv);
deviceCtx->VSSetSamplers(0, BGFX_CONFIG_MAX_TEXTURE_SAMPLERS, s_zero.m_sampler);
deviceCtx->PSSetSamplers(0, BGFX_CONFIG_MAX_TEXTURE_SAMPLERS, s_zero.m_sampler);
}
const RenderCompute& compute = renderItem.compute;
if (0 != eye
&& BGFX_SUBMIT_EYE_LEFT == (compute.m_submitFlags&BGFX_SUBMIT_EYE_MASK) )
{
continue;
}
bool programChanged = false;
bool constantsChanged = compute.m_constBegin < compute.m_constEnd;
rendererUpdateUniforms(this, _render->m_constantBuffer, compute.m_constBegin, compute.m_constEnd);
if (key.m_program != programIdx)
{
programIdx = key.m_program;
ProgramD3D11& program = m_program[key.m_program];
m_currentProgram = &program;
deviceCtx->CSSetShader(program.m_vsh->m_computeShader, NULL, 0);
deviceCtx->CSSetConstantBuffers(0, 1, &program.m_vsh->m_buffer);
programChanged =
constantsChanged = true;
}
if (invalidHandle != programIdx)
{
ProgramD3D11& program = m_program[programIdx];
if (constantsChanged)
{
ConstantBuffer* vcb = program.m_vsh->m_constantBuffer;
if (NULL != vcb)
{
commit(*vcb);
}
}
viewState.setPredefined<4>(this, view, eye, program, _render, compute);
if (constantsChanged
|| program.m_numPredefined > 0)
{
commitShaderConstants();
}
}
BX_UNUSED(programChanged);
ID3D11UnorderedAccessView* uav[BGFX_MAX_COMPUTE_BINDINGS] = {};
ID3D11ShaderResourceView* srv[BGFX_MAX_COMPUTE_BINDINGS] = {};
ID3D11SamplerState* sampler[BGFX_MAX_COMPUTE_BINDINGS] = {};
for (uint32_t ii = 0; ii < BGFX_MAX_COMPUTE_BINDINGS; ++ii)
{
const Binding& bind = compute.m_bind[ii];
if (invalidHandle != bind.m_idx)
{
switch (bind.m_type)
{
case Binding::Image:
{
const TextureD3D11& texture = m_textures[bind.m_idx];
if (Access::Read != bind.m_un.m_compute.m_access)
{
uav[ii] = texture.m_uav;
}
else
{
srv[ii] = texture.m_srv;
sampler[ii] = texture.m_sampler;
}
}
break;
case Binding::IndexBuffer:
case Binding::VertexBuffer:
{
const BufferD3D11& buffer = Binding::IndexBuffer == bind.m_type
? m_indexBuffers[bind.m_idx]
: m_vertexBuffers[bind.m_idx]
;
if (Access::Read != bind.m_un.m_compute.m_access)
{
uav[ii] = buffer.m_uav;
}
else
{
srv[ii] = buffer.m_srv;
}
}
break;
}
}
}
deviceCtx->CSSetUnorderedAccessViews(0, BX_COUNTOF(uav), uav, NULL);
deviceCtx->CSSetShaderResources(0, BX_COUNTOF(srv), srv);
deviceCtx->CSSetSamplers(0, BX_COUNTOF(sampler), sampler);
deviceCtx->Dispatch(compute.m_numX, compute.m_numY, compute.m_numZ);
continue;
}
bool resetState = viewChanged || wasCompute;
if (wasCompute)
{
wasCompute = false;
programIdx = invalidHandle;
m_currentProgram = NULL;
invalidateCompute();
}
const RenderDraw& draw = renderItem.draw;
const uint64_t newFlags = draw.m_flags;
uint64_t changedFlags = currentState.m_flags ^ draw.m_flags;
currentState.m_flags = newFlags;
const uint64_t newStencil = draw.m_stencil;
uint64_t changedStencil = currentState.m_stencil ^ draw.m_stencil;
currentState.m_stencil = newStencil;
if (resetState)
{
currentState.clear();
currentState.m_scissor = !draw.m_scissor;
changedFlags = BGFX_STATE_MASK;
changedStencil = packStencil(BGFX_STENCIL_MASK, BGFX_STENCIL_MASK);
currentState.m_flags = newFlags;
currentState.m_stencil = newStencil;
setBlendState(newFlags);
setDepthStencilState(newFlags, packStencil(BGFX_STENCIL_DEFAULT, BGFX_STENCIL_DEFAULT) );
const uint64_t pt = newFlags&BGFX_STATE_PT_MASK;
primIndex = uint8_t(pt>>BGFX_STATE_PT_SHIFT);
}
if (prim.m_type != s_primInfo[primIndex].m_type)
{
prim = s_primInfo[primIndex];
deviceCtx->IASetPrimitiveTopology(prim.m_type);
}
uint16_t scissor = draw.m_scissor;
if (currentState.m_scissor != scissor)
{
currentState.m_scissor = scissor;
if (UINT16_MAX == scissor)
{
scissorEnabled = viewHasScissor;
if (viewHasScissor)
{
D3D11_RECT rc;
rc.left = viewScissorRect.m_x;
rc.top = viewScissorRect.m_y;
rc.right = viewScissorRect.m_x + viewScissorRect.m_width;
rc.bottom = viewScissorRect.m_y + viewScissorRect.m_height;
deviceCtx->RSSetScissorRects(1, &rc);
}
}
else
{
Rect scissorRect;
scissorRect.intersect(viewScissorRect, _render->m_rectCache.m_cache[scissor]);
scissorEnabled = true;
D3D11_RECT rc;
rc.left = scissorRect.m_x;
rc.top = scissorRect.m_y;
rc.right = scissorRect.m_x + scissorRect.m_width;
rc.bottom = scissorRect.m_y + scissorRect.m_height;
deviceCtx->RSSetScissorRects(1, &rc);
}
setRasterizerState(newFlags, wireframe, scissorEnabled);
}
if ( (BGFX_STATE_DEPTH_WRITE|BGFX_STATE_DEPTH_TEST_MASK) & changedFlags
|| 0 != changedStencil)
{
setDepthStencilState(newFlags, newStencil);
}
if ( (0
| BGFX_STATE_CULL_MASK
| BGFX_STATE_RGB_WRITE
| BGFX_STATE_ALPHA_WRITE
| BGFX_STATE_BLEND_MASK
| BGFX_STATE_BLEND_EQUATION_MASK
| BGFX_STATE_ALPHA_REF_MASK
| BGFX_STATE_PT_MASK
| BGFX_STATE_POINT_SIZE_MASK
| BGFX_STATE_MSAA
) & changedFlags)
{
if ( (BGFX_STATE_BLEND_MASK|BGFX_STATE_BLEND_EQUATION_MASK|BGFX_STATE_ALPHA_WRITE|BGFX_STATE_RGB_WRITE) & changedFlags)
{
setBlendState(newFlags, draw.m_rgba);
}
if ( (BGFX_STATE_CULL_MASK|BGFX_STATE_MSAA) & changedFlags)
{
setRasterizerState(newFlags, wireframe, scissorEnabled);
}
if (BGFX_STATE_ALPHA_REF_MASK & changedFlags)
{
uint32_t ref = (newFlags&BGFX_STATE_ALPHA_REF_MASK)>>BGFX_STATE_ALPHA_REF_SHIFT;
viewState.m_alphaRef = ref/255.0f;
}
const uint64_t pt = newFlags&BGFX_STATE_PT_MASK;
primIndex = uint8_t(pt>>BGFX_STATE_PT_SHIFT);
if (prim.m_type != s_primInfo[primIndex].m_type)
{
prim = s_primInfo[primIndex];
deviceCtx->IASetPrimitiveTopology(prim.m_type);
}
}
bool programChanged = false;
bool constantsChanged = draw.m_constBegin < draw.m_constEnd;
rendererUpdateUniforms(this, _render->m_constantBuffer, draw.m_constBegin, draw.m_constEnd);
if (key.m_program != programIdx)
{
programIdx = key.m_program;
if (invalidHandle == programIdx)
{
m_currentProgram = NULL;
deviceCtx->VSSetShader(NULL, NULL, 0);
deviceCtx->PSSetShader(NULL, NULL, 0);
}
else
{
ProgramD3D11& program = m_program[programIdx];
m_currentProgram = &program;
const ShaderD3D11* vsh = program.m_vsh;
deviceCtx->VSSetShader(vsh->m_vertexShader, NULL, 0);
deviceCtx->VSSetConstantBuffers(0, 1, &vsh->m_buffer);
if (NULL != m_currentColor)
{
const ShaderD3D11* fsh = program.m_fsh;
deviceCtx->PSSetShader(fsh->m_pixelShader, NULL, 0);
deviceCtx->PSSetConstantBuffers(0, 1, &fsh->m_buffer);
}
else
{
deviceCtx->PSSetShader(NULL, NULL, 0);
}
}
programChanged =
constantsChanged = true;
}
if (invalidHandle != programIdx)
{
ProgramD3D11& program = m_program[programIdx];
if (constantsChanged)
{
ConstantBuffer* vcb = program.m_vsh->m_constantBuffer;
if (NULL != vcb)
{
commit(*vcb);
}
ConstantBuffer* fcb = program.m_fsh->m_constantBuffer;
if (NULL != fcb)
{
commit(*fcb);
}
}
viewState.setPredefined<4>(this, view, eye, program, _render, draw);
if (constantsChanged
|| program.m_numPredefined > 0)
{
commitShaderConstants();
}
}
{
uint32_t changes = 0;
for (uint32_t stage = 0; stage < BGFX_CONFIG_MAX_TEXTURE_SAMPLERS; ++stage)
{
const Binding& sampler = draw.m_bind[stage];
Binding& current = currentState.m_bind[stage];
if (current.m_idx != sampler.m_idx
|| current.m_un.m_draw.m_flags != sampler.m_un.m_draw.m_flags
|| programChanged)
{
if (invalidHandle != sampler.m_idx)
{
TextureD3D11& texture = m_textures[sampler.m_idx];
texture.commit(stage, sampler.m_un.m_draw.m_flags);
}
else
{
m_textureStage.m_srv[stage] = NULL;
m_textureStage.m_sampler[stage] = NULL;
}
++changes;
}
current = sampler;
}
if (0 < changes)
{
commitTextureStage();
}
}
if (programChanged
|| currentState.m_vertexDecl.idx != draw.m_vertexDecl.idx
|| currentState.m_vertexBuffer.idx != draw.m_vertexBuffer.idx
|| currentState.m_instanceDataBuffer.idx != draw.m_instanceDataBuffer.idx
|| currentState.m_instanceDataOffset != draw.m_instanceDataOffset
|| currentState.m_instanceDataStride != draw.m_instanceDataStride)
{
currentState.m_vertexDecl = draw.m_vertexDecl;
currentState.m_vertexBuffer = draw.m_vertexBuffer;
currentState.m_instanceDataBuffer.idx = draw.m_instanceDataBuffer.idx;
currentState.m_instanceDataOffset = draw.m_instanceDataOffset;
currentState.m_instanceDataStride = draw.m_instanceDataStride;
uint16_t handle = draw.m_vertexBuffer.idx;
if (invalidHandle != handle)
{
const VertexBufferD3D11& vb = m_vertexBuffers[handle];
uint16_t decl = !isValid(vb.m_decl) ? draw.m_vertexDecl.idx : vb.m_decl.idx;
const VertexDecl& vertexDecl = m_vertexDecls[decl];
uint32_t stride = vertexDecl.m_stride;
uint32_t offset = 0;
deviceCtx->IASetVertexBuffers(0, 1, &vb.m_ptr, &stride, &offset);
if (isValid(draw.m_instanceDataBuffer) )
{
const VertexBufferD3D11& inst = m_vertexBuffers[draw.m_instanceDataBuffer.idx];
uint32_t instStride = draw.m_instanceDataStride;
deviceCtx->IASetVertexBuffers(1, 1, &inst.m_ptr, &instStride, &draw.m_instanceDataOffset);
setInputLayout(vertexDecl, m_program[programIdx], draw.m_instanceDataStride/16);
}
else
{
deviceCtx->IASetVertexBuffers(1, 0, NULL, NULL, NULL);
setInputLayout(vertexDecl, m_program[programIdx], 0);
}
}
else
{
deviceCtx->IASetVertexBuffers(0, 0, NULL, NULL, NULL);
}
}
if (currentState.m_indexBuffer.idx != draw.m_indexBuffer.idx)
{
currentState.m_indexBuffer = draw.m_indexBuffer;
uint16_t handle = draw.m_indexBuffer.idx;
if (invalidHandle != handle)
{
const IndexBufferD3D11& ib = m_indexBuffers[handle];
deviceCtx->IASetIndexBuffer(ib.m_ptr, DXGI_FORMAT_R16_UINT, 0);
}
else
{
deviceCtx->IASetIndexBuffer(NULL, DXGI_FORMAT_R16_UINT, 0);
}
}
if (isValid(currentState.m_vertexBuffer) )
{
uint32_t numVertices = draw.m_numVertices;
if (UINT32_MAX == numVertices)
{
const VertexBufferD3D11& vb = m_vertexBuffers[currentState.m_vertexBuffer.idx];
uint16_t decl = !isValid(vb.m_decl) ? draw.m_vertexDecl.idx : vb.m_decl.idx;
const VertexDecl& vertexDecl = m_vertexDecls[decl];
numVertices = vb.m_size/vertexDecl.m_stride;
}
uint32_t numIndices = 0;
uint32_t numPrimsSubmitted = 0;
uint32_t numInstances = 0;
uint32_t numPrimsRendered = 0;
if (isValid(draw.m_indexBuffer) )
{
if (UINT32_MAX == draw.m_numIndices)
{
numIndices = m_indexBuffers[draw.m_indexBuffer.idx].m_size/2;
numPrimsSubmitted = numIndices/prim.m_div - prim.m_sub;
numInstances = draw.m_numInstances;
numPrimsRendered = numPrimsSubmitted*draw.m_numInstances;
deviceCtx->DrawIndexedInstanced(numIndices
, draw.m_numInstances
, 0
, draw.m_startVertex
, 0
);
}
else if (prim.m_min <= draw.m_numIndices)
{
numIndices = draw.m_numIndices;
numPrimsSubmitted = numIndices/prim.m_div - prim.m_sub;
numInstances = draw.m_numInstances;
numPrimsRendered = numPrimsSubmitted*draw.m_numInstances;
deviceCtx->DrawIndexedInstanced(numIndices
, draw.m_numInstances
, draw.m_startIndex
, draw.m_startVertex
, 0
);
}
}
else
{
numPrimsSubmitted = numVertices/prim.m_div - prim.m_sub;
numInstances = draw.m_numInstances;
numPrimsRendered = numPrimsSubmitted*draw.m_numInstances;
deviceCtx->DrawInstanced(numVertices
, draw.m_numInstances
, draw.m_startVertex
, 0
);
}
statsNumPrimsSubmitted[primIndex] += numPrimsSubmitted;
statsNumPrimsRendered[primIndex] += numPrimsRendered;
statsNumInstances[primIndex] += numInstances;
statsNumIndices += numIndices;
}
}
if (wasCompute)
{
invalidateCompute();
}
if (0 < _render->m_num)
{
captureElapsed = -bx::getHPCounter();
capture();
captureElapsed += bx::getHPCounter();
}
}
PIX_ENDEVENT();
int64_t now = bx::getHPCounter();
elapsed += now;
static int64_t last = now;
int64_t frameTime = now - last;
last = now;
static int64_t min = frameTime;
static int64_t max = frameTime;
min = min > frameTime ? frameTime : min;
max = max < frameTime ? frameTime : max;
if (_render->m_debug & (BGFX_DEBUG_IFH|BGFX_DEBUG_STATS) )
{
PIX_BEGINEVENT(D3DCOLOR_RGBA(0x40, 0x40, 0x40, 0xff), L"debugstats");
TextVideoMem& tvm = m_textVideoMem;
static int64_t next = now;
if (now >= next)
{
next = now + bx::getHPFrequency();
double freq = double(bx::getHPFrequency() );
double toMs = 1000.0/freq;
tvm.clear();
uint16_t pos = 0;
tvm.printf(0, pos++, BGFX_CONFIG_DEBUG ? 0x89 : 0x8f
, " %s / " BX_COMPILER_NAME " / " BX_CPU_NAME " / " BX_ARCH_NAME " / " BX_PLATFORM_NAME " "
, getRendererName()
);
const DXGI_ADAPTER_DESC& desc = m_adapterDesc;
char description[BX_COUNTOF(desc.Description)];
wcstombs(description, desc.Description, BX_COUNTOF(desc.Description) );
tvm.printf(0, pos++, 0x0f, " Device: %s", description);
char dedicatedVideo[16];
bx::prettify(dedicatedVideo, BX_COUNTOF(dedicatedVideo), desc.DedicatedVideoMemory);
char dedicatedSystem[16];
bx::prettify(dedicatedSystem, BX_COUNTOF(dedicatedSystem), desc.DedicatedSystemMemory);
char sharedSystem[16];
bx::prettify(sharedSystem, BX_COUNTOF(sharedSystem), desc.SharedSystemMemory);
tvm.printf(0, pos++, 0x0f, " Memory: %s (video), %s (system), %s (shared)"
, dedicatedVideo
, dedicatedSystem
, sharedSystem
);
pos = 10;
tvm.printf(10, pos++, 0x8e, " Frame: %7.3f, % 7.3f \x1f, % 7.3f \x1e [ms] / % 6.2f FPS "
, double(frameTime)*toMs
, double(min)*toMs
, double(max)*toMs
, freq/frameTime
);
char hmd[16];
bx::snprintf(hmd, BX_COUNTOF(hmd), ", [%c] HMD ", hmdEnabled ? '\xfe' : ' ');
const uint32_t msaa = (m_resolution.m_flags&BGFX_RESET_MSAA_MASK)>>BGFX_RESET_MSAA_SHIFT;
tvm.printf(10, pos++, 0x8e, " Reset flags: [%c] vsync, [%c] MSAAx%d%s, [%c] MaxAnisotropy "
, !!(m_resolution.m_flags&BGFX_RESET_VSYNC) ? '\xfe' : ' '
, 0 != msaa ? '\xfe' : ' '
, 1<<msaa
, m_ovr.isInitialized() ? hmd : ", no-HMD "
, !!(m_resolution.m_flags&BGFX_RESET_MAXANISOTROPY) ? '\xfe' : ' '
);
double elapsedCpuMs = double(elapsed)*toMs;
tvm.printf(10, pos++, 0x8e, " Draw calls: %4d / CPU %3.4f [ms]"
, _render->m_num
, elapsedCpuMs
);
for (uint32_t ii = 0; ii < BX_COUNTOF(s_primName); ++ii)
{
tvm.printf(10, pos++, 0x8e, " %9s: %7d (#inst: %5d), submitted: %7d"
, s_primName[ii]
, statsNumPrimsRendered[ii]
, statsNumInstances[ii]
, statsNumPrimsSubmitted[ii]
);
}
if (NULL != m_renderdocdll)
{
tvm.printf(tvm.m_width-27, 0, 0x1f, " [F11 - RenderDoc capture] ");
}
tvm.printf(10, pos++, 0x8e, " Indices: %7d", statsNumIndices);
tvm.printf(10, pos++, 0x8e, " DVB size: %7d", _render->m_vboffset);
tvm.printf(10, pos++, 0x8e, " DIB size: %7d", _render->m_iboffset);
pos++;
tvm.printf(10, pos++, 0x8e, " State cache: ");
tvm.printf(10, pos++, 0x8e, " Blend | DepthS | Input | Raster | Sampler ");
tvm.printf(10, pos++, 0x8e, " %6d | %6d | %6d | %6d | %6d "
, m_blendStateCache.getCount()
, m_depthStencilStateCache.getCount()
, m_inputLayoutCache.getCount()
, m_rasterizerStateCache.getCount()
, m_samplerStateCache.getCount()
);
pos++;
double captureMs = double(captureElapsed)*toMs;
tvm.printf(10, pos++, 0x8e, " Capture: %3.4f [ms]", captureMs);
uint8_t attr[2] = { 0x89, 0x8a };
uint8_t attrIndex = _render->m_waitSubmit < _render->m_waitRender;
tvm.printf(10, pos++, attr[attrIndex&1], " Submit wait: %3.4f [ms]", _render->m_waitSubmit*toMs);
tvm.printf(10, pos++, attr[(attrIndex+1)&1], " Render wait: %3.4f [ms]", _render->m_waitRender*toMs);
min = frameTime;
max = frameTime;
}
blit(this, _textVideoMemBlitter, tvm);
PIX_ENDEVENT();
}
else if (_render->m_debug & BGFX_DEBUG_TEXT)
{
PIX_BEGINEVENT(D3DCOLOR_RGBA(0x40, 0x40, 0x40, 0xff), L"debugtext");
blit(this, _textVideoMemBlitter, _render->m_textVideoMem);
PIX_ENDEVENT();
}
}
} // namespace bgfx
#else
namespace bgfx
{
RendererContextI* rendererCreateD3D11()
{
return NULL;
}
void rendererDestroyD3D11()
{
}
} // namespace bgfx
#endif // BGFX_CONFIG_RENDERER_DIRECT3D11