bgfx/src/renderer_gl.cpp
Branimir Karadžić 22bbd166d7 Cleanup.
2014-03-09 21:21:53 -07:00

4096 lines
124 KiB
C++

/*
* Copyright 2011-2014 Branimir Karadzic. All rights reserved.
* License: http://www.opensource.org/licenses/BSD-2-Clause
*/
#include "bgfx_p.h"
#if (BGFX_CONFIG_RENDERER_OPENGLES2|BGFX_CONFIG_RENDERER_OPENGLES3|BGFX_CONFIG_RENDERER_OPENGL)
# include "renderer_gl.h"
# include <bx/timer.h>
# include <bx/uint32_t.h>
namespace bgfx
{
static char s_viewName[BGFX_CONFIG_MAX_VIEWS][256];
static const GLenum s_primType[] =
{
GL_TRIANGLES,
GL_LINES,
GL_POINTS,
};
static const char* s_attribName[Attrib::Count] =
{
"a_position",
"a_normal",
"a_tangent",
"a_color0",
"a_color1",
"a_indices",
"a_weight",
"a_texcoord0",
"a_texcoord1",
"a_texcoord2",
"a_texcoord3",
"a_texcoord4",
"a_texcoord5",
"a_texcoord6",
"a_texcoord7",
};
static const char* s_instanceDataName[BGFX_CONFIG_MAX_INSTANCE_DATA_COUNT] =
{
"i_data0",
"i_data1",
"i_data2",
"i_data3",
"i_data4",
};
static const GLenum s_attribType[AttribType::Count] =
{
GL_UNSIGNED_BYTE,
GL_SHORT,
GL_HALF_FLOAT,
GL_FLOAT,
};
struct Blend
{
GLenum m_src;
GLenum m_dst;
bool m_factor;
};
static const Blend s_blendFactor[] =
{
{ 0, 0, false }, // ignored
{ GL_ZERO, GL_ZERO, false },
{ GL_ONE, GL_ONE, false },
{ GL_SRC_COLOR, GL_SRC_COLOR, false },
{ GL_ONE_MINUS_SRC_COLOR, GL_ONE_MINUS_SRC_COLOR, false },
{ GL_SRC_ALPHA, GL_SRC_ALPHA, false },
{ GL_ONE_MINUS_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, false },
{ GL_DST_ALPHA, GL_DST_ALPHA, false },
{ GL_ONE_MINUS_DST_ALPHA, GL_ONE_MINUS_DST_ALPHA, false },
{ GL_DST_COLOR, GL_DST_COLOR, false },
{ GL_ONE_MINUS_DST_COLOR, GL_ONE_MINUS_DST_COLOR, false },
{ GL_SRC_ALPHA_SATURATE, GL_ONE, false },
{ GL_CONSTANT_COLOR, GL_CONSTANT_COLOR, true },
{ GL_ONE_MINUS_CONSTANT_COLOR, GL_ONE_MINUS_CONSTANT_COLOR, true },
};
static const GLenum s_blendEquation[] =
{
GL_FUNC_ADD,
GL_FUNC_SUBTRACT,
GL_FUNC_REVERSE_SUBTRACT,
GL_MIN,
GL_MAX,
};
static const GLenum s_cmpFunc[] =
{
0, // ignored
GL_LESS,
GL_LEQUAL,
GL_EQUAL,
GL_GEQUAL,
GL_GREATER,
GL_NOTEQUAL,
GL_NEVER,
GL_ALWAYS,
};
static const GLenum s_stencilOp[] =
{
GL_ZERO,
GL_KEEP,
GL_REPLACE,
GL_INCR_WRAP,
GL_INCR,
GL_DECR_WRAP,
GL_DECR,
GL_INVERT,
};
static const GLenum s_stencilFace[] =
{
GL_FRONT_AND_BACK,
GL_FRONT,
GL_BACK,
};
static const GLenum s_textureAddress[] =
{
GL_REPEAT,
GL_MIRRORED_REPEAT,
GL_CLAMP_TO_EDGE,
};
static const GLenum s_textureFilterMag[] =
{
GL_LINEAR,
GL_NEAREST,
GL_LINEAR,
};
static const GLenum s_textureFilterMin[][3] =
{
{ GL_LINEAR, GL_LINEAR_MIPMAP_LINEAR, GL_NEAREST_MIPMAP_LINEAR },
{ GL_NEAREST, GL_LINEAR_MIPMAP_NEAREST, GL_NEAREST_MIPMAP_NEAREST },
{ GL_LINEAR, GL_LINEAR_MIPMAP_LINEAR, GL_NEAREST_MIPMAP_LINEAR },
};
struct TextureFormatInfo
{
GLenum m_internalFmt;
GLenum m_fmt;
GLenum m_type;
bool m_supported;
};
static TextureFormatInfo s_textureFormat[TextureFormat::Count] =
{
{ GL_COMPRESSED_RGBA_S3TC_DXT1_EXT, GL_COMPRESSED_RGBA_S3TC_DXT1_EXT, GL_ZERO, false }, // BC1
{ GL_COMPRESSED_RGBA_S3TC_DXT3_EXT, GL_COMPRESSED_RGBA_S3TC_DXT3_EXT, GL_ZERO, false }, // BC2
{ GL_COMPRESSED_RGBA_S3TC_DXT5_EXT, GL_COMPRESSED_RGBA_S3TC_DXT5_EXT, GL_ZERO, false }, // BC3
{ GL_COMPRESSED_LUMINANCE_LATC1_EXT, GL_COMPRESSED_LUMINANCE_LATC1_EXT, GL_ZERO, false }, // BC4
{ GL_COMPRESSED_LUMINANCE_ALPHA_LATC2_EXT, GL_COMPRESSED_LUMINANCE_ALPHA_LATC2_EXT, GL_ZERO, false }, // BC5
{ GL_ETC1_RGB8_OES, GL_ETC1_RGB8_OES, GL_ZERO, false }, // ETC1
{ GL_COMPRESSED_RGB8_ETC2, GL_COMPRESSED_RGB8_ETC2, GL_ZERO, false }, // ETC2
{ GL_COMPRESSED_RGBA8_ETC2_EAC, GL_COMPRESSED_RGBA8_ETC2_EAC, GL_ZERO, false }, // ETC2A
{ GL_COMPRESSED_RGB8_PUNCHTHROUGH_ALPHA1_ETC2, GL_COMPRESSED_RGB8_PUNCHTHROUGH_ALPHA1_ETC2, GL_ZERO, false }, // ETC2A1
{ GL_COMPRESSED_RGB_PVRTC_2BPPV1_IMG, GL_COMPRESSED_RGB_PVRTC_2BPPV1_IMG, GL_ZERO, false }, // PTC12
{ GL_COMPRESSED_RGB_PVRTC_4BPPV1_IMG, GL_COMPRESSED_RGB_PVRTC_4BPPV1_IMG, GL_ZERO, false }, // PTC14
{ GL_COMPRESSED_RGBA_PVRTC_2BPPV1_IMG, GL_COMPRESSED_RGBA_PVRTC_2BPPV1_IMG, GL_ZERO, false }, // PTC12A
{ GL_COMPRESSED_RGBA_PVRTC_4BPPV1_IMG, GL_COMPRESSED_RGBA_PVRTC_4BPPV1_IMG, GL_ZERO, false }, // PTC14A
{ GL_COMPRESSED_RGBA_PVRTC_2BPPV2_IMG, GL_COMPRESSED_RGBA_PVRTC_2BPPV2_IMG, GL_ZERO, false }, // PTC22
{ GL_COMPRESSED_RGBA_PVRTC_4BPPV2_IMG, GL_COMPRESSED_RGBA_PVRTC_4BPPV2_IMG, GL_ZERO, false }, // PTC24
{ GL_ZERO, GL_ZERO, GL_ZERO, true }, // Unknown
{ GL_LUMINANCE, GL_LUMINANCE, GL_UNSIGNED_BYTE, true }, // L8
{ GL_RGBA, GL_RGBA, GL_UNSIGNED_BYTE, true }, // BGRA8
{ GL_RGBA16, GL_RGBA, GL_UNSIGNED_BYTE, true }, // RGBA16
{ GL_RGBA16F, GL_RGBA, GL_HALF_FLOAT, true }, // RGBA16F
{ GL_RGB565, GL_RGB, GL_UNSIGNED_SHORT_5_6_5, true }, // R5G6B5
{ GL_RGBA4, GL_RGBA, GL_UNSIGNED_SHORT_4_4_4_4, true }, // RGBA4
{ GL_RGB5_A1, GL_RGBA, GL_UNSIGNED_SHORT_5_5_5_1, true }, // RGB5A1
{ GL_RGB10_A2, GL_RGBA, GL_UNSIGNED_INT_2_10_10_10_REV, true }, // RGB10A2
{ GL_ZERO, GL_ZERO, GL_ZERO, true }, // UnknownDepth
{ GL_DEPTH_COMPONENT16, GL_DEPTH_COMPONENT, GL_SHORT, false }, // D16
{ GL_DEPTH_COMPONENT24, GL_DEPTH_COMPONENT, GL_UNSIGNED_INT, false }, // D24
{ GL_DEPTH24_STENCIL8, GL_DEPTH_STENCIL, GL_UNSIGNED_INT_24_8, false }, // D24S8
{ GL_DEPTH_COMPONENT32, GL_DEPTH_COMPONENT, GL_UNSIGNED_INT, false }, // D32
{ GL_DEPTH_COMPONENT32F, GL_DEPTH_COMPONENT, GL_FLOAT, false }, // D16F
{ GL_DEPTH_COMPONENT32F, GL_DEPTH_COMPONENT, GL_FLOAT, false }, // D24F
{ GL_DEPTH_COMPONENT32F, GL_DEPTH_COMPONENT, GL_FLOAT, false }, // D32F
{ GL_STENCIL_INDEX8, GL_DEPTH_STENCIL, GL_UNSIGNED_BYTE, false }, // D0S8
};
static const Matrix4 s_bias =
{{{
0.5f, 0.0f, 0.0f, 0.0f,
0.0f, 0.5f, 0.0f, 0.0f,
0.0f, 0.0f, 0.5f, 0.0f,
0.5f, 0.5f, 0.5f, 1.0f,
}}};
struct Extension
{
enum Enum
{
ANGLE_depth_texture,
ANGLE_framebuffer_blit,
ANGLE_framebuffer_multisample,
ANGLE_instanced_arrays,
ANGLE_texture_compression_dxt1,
ANGLE_texture_compression_dxt3,
ANGLE_texture_compression_dxt5,
ANGLE_translated_shader_source,
APPLE_texture_format_BGRA8888,
APPLE_texture_max_level,
ARB_debug_label,
ARB_debug_output,
ARB_depth_clamp,
ARB_ES3_compatibility,
ARB_framebuffer_object,
ARB_framebuffer_sRGB,
ARB_get_program_binary,
ARB_half_float_pixel,
ARB_half_float_vertex,
ARB_instanced_arrays,
ARB_map_buffer_range,
ARB_multisample,
ARB_sampler_objects,
ARB_seamless_cube_map,
ARB_shader_texture_lod,
ARB_texture_compression_rgtc,
ARB_texture_float,
ARB_texture_multisample,
ARB_texture_storage,
ARB_texture_swizzle,
ARB_timer_query,
ARB_uniform_buffer_object,
ARB_vertex_array_object,
ARB_vertex_type_2_10_10_10_rev,
ATI_meminfo,
CHROMIUM_depth_texture,
CHROMIUM_framebuffer_multisample,
CHROMIUM_texture_compression_dxt3,
CHROMIUM_texture_compression_dxt5,
EXT_bgra,
EXT_blend_color,
EXT_blend_minmax,
EXT_blend_subtract,
EXT_debug_label,
EXT_debug_marker,
EXT_frag_depth,
EXT_framebuffer_blit,
EXT_framebuffer_object,
EXT_framebuffer_sRGB,
EXT_occlusion_query_boolean,
EXT_read_format_bgra,
EXT_shader_texture_lod,
EXT_shadow_samplers,
EXT_texture_array,
EXT_texture_compression_dxt1,
EXT_texture_compression_latc,
EXT_texture_compression_rgtc,
EXT_texture_compression_s3tc,
EXT_texture_filter_anisotropic,
EXT_texture_format_BGRA8888,
EXT_texture_sRGB,
EXT_texture_storage,
EXT_texture_swizzle,
EXT_texture_type_2_10_10_10_REV,
EXT_timer_query,
EXT_unpack_subimage,
GOOGLE_depth_texture,
GREMEDY_string_marker,
GREMEDY_frame_terminator,
IMG_multisampled_render_to_texture,
IMG_read_format,
IMG_shader_binary,
IMG_texture_compression_pvrtc,
IMG_texture_compression_pvrtc2,
IMG_texture_format_BGRA8888,
KHR_debug,
NVX_gpu_memory_info,
OES_compressed_ETC1_RGB8_texture,
OES_depth24,
OES_depth32,
OES_depth_texture,
OES_fragment_precision_high,
OES_get_program_binary,
OES_required_internalformat,
OES_packed_depth_stencil,
OES_read_format,
OES_rgb8_rgba8,
OES_standard_derivatives,
OES_texture_3D,
OES_texture_float,
OES_texture_float_linear,
OES_texture_npot,
OES_texture_half_float,
OES_texture_half_float_linear,
OES_vertex_array_object,
OES_vertex_half_float,
OES_vertex_type_10_10_10_2,
Count
};
const char* m_name;
bool m_supported;
bool m_initialize;
};
static Extension s_extension[Extension::Count] =
{
{ "GL_ANGLE_depth_texture", false, true },
{ "GL_ANGLE_framebuffer_blit", false, true },
{ "GL_ANGLE_framebuffer_multisample", false, false },
{ "GL_ANGLE_instanced_arrays", false, true },
{ "GL_ANGLE_texture_compression_dxt1", false, true },
{ "GL_ANGLE_texture_compression_dxt3", false, true },
{ "GL_ANGLE_texture_compression_dxt5", false, true },
{ "GL_ANGLE_translated_shader_source", false, true },
{ "GL_APPLE_texture_format_BGRA8888", false, true },
{ "GL_APPLE_texture_max_level", false, true },
{ "GL_ARB_debug_label", false, true },
{ "GL_ARB_debug_output", BGFX_CONFIG_RENDERER_OPENGL >= 43, true },
{ "GL_ARB_depth_clamp", BGFX_CONFIG_RENDERER_OPENGL >= 32, true },
{ "GL_ARB_ES3_compatibility", BGFX_CONFIG_RENDERER_OPENGL >= 43, true },
{ "GL_ARB_framebuffer_object", BGFX_CONFIG_RENDERER_OPENGL >= 30, true },
{ "GL_ARB_framebuffer_sRGB", BGFX_CONFIG_RENDERER_OPENGL >= 30, true },
{ "GL_ARB_get_program_binary", BGFX_CONFIG_RENDERER_OPENGL >= 41, true },
{ "GL_ARB_half_float_pixel", BGFX_CONFIG_RENDERER_OPENGL >= 30, true },
{ "GL_ARB_half_float_vertex", BGFX_CONFIG_RENDERER_OPENGL >= 30, true },
{ "GL_ARB_instanced_arrays", BGFX_CONFIG_RENDERER_OPENGL >= 33, true },
{ "GL_ARB_map_buffer_range", BGFX_CONFIG_RENDERER_OPENGL >= 30, true },
{ "GL_ARB_multisample", false, true },
{ "GL_ARB_sampler_objects", BGFX_CONFIG_RENDERER_OPENGL >= 33, true },
{ "GL_ARB_seamless_cube_map", BGFX_CONFIG_RENDERER_OPENGL >= 32, true },
{ "GL_ARB_shader_texture_lod", BGFX_CONFIG_RENDERER_OPENGL >= 30, true },
{ "GL_ARB_texture_compression_rgtc", BGFX_CONFIG_RENDERER_OPENGL >= 30, true },
{ "GL_ARB_texture_float", BGFX_CONFIG_RENDERER_OPENGL >= 30, true },
{ "GL_ARB_texture_multisample", BGFX_CONFIG_RENDERER_OPENGL >= 32, true },
{ "GL_ARB_texture_storage", BGFX_CONFIG_RENDERER_OPENGL >= 42, true },
{ "GL_ARB_texture_swizzle", BGFX_CONFIG_RENDERER_OPENGL >= 33, true },
{ "GL_ARB_timer_query", BGFX_CONFIG_RENDERER_OPENGL >= 33, true },
{ "GL_ARB_uniform_buffer_object", BGFX_CONFIG_RENDERER_OPENGL >= 31, true },
{ "GL_ARB_vertex_array_object", BGFX_CONFIG_RENDERER_OPENGL >= 30, true },
{ "GL_ARB_vertex_type_2_10_10_10_rev", false, true },
{ "GL_ATI_meminfo", false, true },
{ "GL_CHROMIUM_depth_texture", false, true },
{ "GL_CHROMIUM_framebuffer_multisample", false, true },
{ "GL_CHROMIUM_texture_compression_dxt3", false, true },
{ "GL_CHROMIUM_texture_compression_dxt5", false, true },
{ "GL_EXT_bgra", false, true },
{ "GL_EXT_blend_color", BGFX_CONFIG_RENDERER_OPENGL >= 31, true },
{ "GL_EXT_blend_minmax", BGFX_CONFIG_RENDERER_OPENGL >= 14, true },
{ "GL_EXT_blend_subtract", BGFX_CONFIG_RENDERER_OPENGL >= 14, true },
{ "GL_EXT_debug_label", false, true },
{ "GL_EXT_debug_marker", false, true },
{ "GL_EXT_frag_depth", false, true }, // GLES2 extension.
{ "GL_EXT_framebuffer_blit", BGFX_CONFIG_RENDERER_OPENGL >= 30, true },
{ "GL_EXT_framebuffer_object", BGFX_CONFIG_RENDERER_OPENGL >= 30, true },
{ "GL_EXT_framebuffer_sRGB", BGFX_CONFIG_RENDERER_OPENGL >= 30, true },
{ "GL_EXT_occlusion_query_boolean", false, true },
{ "GL_EXT_read_format_bgra", false, true },
{ "GL_EXT_shader_texture_lod", false, true }, // GLES2 extension.
{ "GL_EXT_shadow_samplers", false, true },
{ "GL_EXT_texture_array", BGFX_CONFIG_RENDERER_OPENGL >= 30, true },
{ "GL_EXT_texture_compression_dxt1", false, true },
{ "GL_EXT_texture_compression_latc", false, true },
{ "GL_EXT_texture_compression_rgtc", BGFX_CONFIG_RENDERER_OPENGL >= 30, true },
{ "GL_EXT_texture_compression_s3tc", false, true },
{ "GL_EXT_texture_filter_anisotropic", false, true },
{ "GL_EXT_texture_format_BGRA8888", false, true },
{ "GL_EXT_texture_sRGB", false, true },
{ "GL_EXT_texture_storage", false, true },
{ "GL_EXT_texture_swizzle", false, true },
{ "GL_EXT_texture_type_2_10_10_10_REV", false, true },
{ "GL_EXT_timer_query", false, true },
{ "GL_EXT_unpack_subimage", false, true },
{ "GL_GOOGLE_depth_texture", false, true },
{ "GL_GREMEDY_string_marker", false, true },
{ "GL_GREMEDY_frame_terminator", false, true },
{ "GL_IMG_multisampled_render_to_texture", false, true },
{ "GL_IMG_read_format", false, true },
{ "GL_IMG_shader_binary", false, true },
{ "GL_IMG_texture_compression_pvrtc", false, true },
{ "GL_IMG_texture_compression_pvrtc2", false, true },
{ "GL_IMG_texture_format_BGRA8888", false, true },
{ "GL_KHR_debug", BGFX_CONFIG_RENDERER_OPENGL >= 43, true },
{ "GL_NVX_gpu_memory_info", false, true },
{ "GL_OES_compressed_ETC1_RGB8_texture", false, true },
{ "GL_OES_depth24", false, true },
{ "GL_OES_depth32", false, true },
{ "GL_OES_depth_texture", false, true },
{ "GL_OES_fragment_precision_high", false, true },
{ "GL_OES_get_program_binary", false, true },
{ "GL_OES_required_internalformat", false, true },
{ "GL_OES_packed_depth_stencil", false, true },
{ "GL_OES_read_format", false, true },
{ "GL_OES_rgb8_rgba8", false, true },
{ "GL_OES_standard_derivatives", false, true },
{ "GL_OES_texture_3D", false, true },
{ "GL_OES_texture_float", false, true },
{ "GL_OES_texture_float_linear", false, true },
{ "GL_OES_texture_npot", false, true },
{ "GL_OES_texture_half_float", false, true },
{ "GL_OES_texture_half_float_linear", false, true },
{ "GL_OES_vertex_array_object", false, !BX_PLATFORM_IOS },
{ "GL_OES_vertex_half_float", false, true },
{ "GL_OES_vertex_type_10_10_10_2", false, true },
};
static const char* s_ARB_shader_texture_lod[] =
{
"texture2DLod",
"texture2DProjLod",
"texture3DLod",
"texture3DProjLod",
"textureCubeLod",
"shadow2DLod",
"shadow2DProjLod",
NULL
// "texture1DLod",
// "texture1DProjLod",
// "shadow1DLod",
// "shadow1DProjLod",
};
static const char* s_EXT_shader_texture_lod[] =
{
"texture2DLod",
"texture2DProjLod",
"textureCubeLod",
NULL
// "texture2DGrad",
// "texture2DProjGrad",
// "textureCubeGrad",
};
static const char* s_EXT_shadow_samplers[] =
{
"shadow2D",
"shadow2DProj",
NULL
};
static const char* s_OES_standard_derivatives[] =
{
"dFdx",
"dFdy",
"fwidth",
NULL
};
static const char* s_OES_texture_3D[] =
{
"texture3D",
"texture3DProj",
"texture3DLod",
"texture3DProjLod",
NULL
};
#if !BGFX_CONFIG_RENDERER_OPENGLES3
static void GL_APIENTRY stubVertexAttribDivisor(GLuint /*_index*/, GLuint /*_divisor*/)
{
}
static void GL_APIENTRY stubDrawArraysInstanced(GLenum _mode, GLint _first, GLsizei _count, GLsizei /*_primcount*/)
{
GL_CHECK(glDrawArrays(_mode, _first, _count) );
}
static void GL_APIENTRY stubDrawElementsInstanced(GLenum _mode, GLsizei _count, GLenum _type, const GLvoid* _indices, GLsizei /*_primcount*/)
{
GL_CHECK(glDrawElements(_mode, _count, _type, _indices) );
}
#endif // !BGFX_CONFIG_RENDERER_OPENGLES3
static void GL_APIENTRY stubFrameTerminatorGREMEDY()
{
}
static void GL_APIENTRY stubInsertEventMarker(GLsizei /*_length*/, const char* /*_marker*/)
{
}
static void GL_APIENTRY stubInsertEventMarkerGREMEDY(GLsizei _length, const char* _marker)
{
// If <marker> is a null-terminated string then <length> should not
// include the terminator.
//
// If <length> is 0 then <marker> is assumed to be null-terminated.
uint32_t size = (0 == _length ? strlen(_marker) : _length) + 1;
size *= sizeof(wchar_t);
wchar_t* name = (wchar_t*)alloca(size);
mbstowcs(name, _marker, size-2);
GL_CHECK(glStringMarkerGREMEDY(_length, _marker) );
}
static void GL_APIENTRY stubObjectLabel(GLenum /*_identifier*/, GLuint /*_name*/, GLsizei /*_length*/, const char* /*_label*/)
{
}
typedef void (*PostSwapBuffersFn)(uint32_t _width, uint32_t _height);
static const char* getGLString(GLenum _name)
{
const char* str = (const char*)glGetString(_name);
glGetError(); // ignore error if glGetString returns NULL.
if (NULL != str)
{
return str;
}
return "<unknown>";
}
static uint32_t getGLStringHash(GLenum _name)
{
const char* str = (const char*)glGetString(_name);
glGetError(); // ignore error if glGetString returns NULL.
if (NULL != str)
{
return bx::hashMurmur2A(str, (uint32_t)strlen(str) );
}
return 0;
}
void dumpExtensions(const char* _extensions)
{
if (NULL != _extensions)
{
char name[1024];
const char* pos = _extensions;
const char* end = _extensions + strlen(_extensions);
while (pos < end)
{
uint32_t len;
const char* space = strchr(pos, ' ');
if (NULL != space)
{
len = bx::uint32_min(sizeof(name), (uint32_t)(space - pos) );
}
else
{
len = bx::uint32_min(sizeof(name), (uint32_t)strlen(pos) );
}
strncpy(name, pos, len);
name[len] = '\0';
BX_TRACE("\t%s", name);
pos += len+1;
}
}
}
const char* toString(GLenum _enum)
{
#if defined(GL_DEBUG_SOURCE_API_ARB)
switch (_enum)
{
case GL_DEBUG_SOURCE_API_ARB: return "API";
case GL_DEBUG_SOURCE_WINDOW_SYSTEM_ARB: return "WinSys";
case GL_DEBUG_SOURCE_SHADER_COMPILER_ARB: return "Shader";
case GL_DEBUG_SOURCE_THIRD_PARTY_ARB: return "3rdparty";
case GL_DEBUG_SOURCE_APPLICATION_ARB: return "Application";
case GL_DEBUG_SOURCE_OTHER_ARB: return "Other";
case GL_DEBUG_TYPE_ERROR_ARB: return "Error";
case GL_DEBUG_TYPE_DEPRECATED_BEHAVIOR_ARB: return "Deprecated behavior";
case GL_DEBUG_TYPE_UNDEFINED_BEHAVIOR_ARB: return "Undefined behavior";
case GL_DEBUG_TYPE_PORTABILITY_ARB: return "Portability";
case GL_DEBUG_TYPE_PERFORMANCE_ARB: return "Performance";
case GL_DEBUG_TYPE_OTHER_ARB: return "Other";
case GL_DEBUG_SEVERITY_HIGH_ARB: return "High";
case GL_DEBUG_SEVERITY_MEDIUM_ARB: return "Medium";
case GL_DEBUG_SEVERITY_LOW_ARB: return "Low";
default:
break;
}
#else
BX_UNUSED(_enum);
#endif // defined(GL_DEBUG_SOURCE_API_ARB)
return "<unknown>";
}
static void GL_APIENTRY debugProcCb(GLenum _source, GLenum _type, GLuint _id, GLenum _severity, GLsizei /*_length*/, const GLchar* _message, const void* /*_userParam*/)
{
BX_UNUSED(debugProcCb(_source, _type, _id, _severity, 0, NULL, NULL) );
BX_TRACE("src %s, type %s, id %d, severity %s, '%s'"
, toString(_source)
, toString(_type)
, _id
, toString(_severity)
, _message
);
BX_UNUSED(_source, _type, _id, _severity, _message);
}
GLint glGet(GLenum _pname)
{
GLint result = 0;
glGetIntegerv(_pname, &result);
GLenum err = glGetError();
BX_WARN(0 == err, "glGetIntegerv(0x%04x, ...) failed with GL error: 0x%04x.", _pname, err);
return 0 == err ? result : 0;
}
struct RendererContext
{
RendererContext()
: m_rtMsaa(false)
, m_capture(NULL)
, m_captureSize(0)
, m_maxAnisotropy(0.0f)
, m_maxMsaa(0)
, m_vao(0)
, m_vaoSupport(false)
, m_samplerObjectSupport(false)
, m_shadowSamplersSupport(false)
, m_programBinarySupport(false)
, m_textureSwizzleSupport(false)
, m_depthTextureSupport(false)
, m_useClearQuad(true)
, m_flip(false)
, m_hash( (BX_PLATFORM_WINDOWS<<1) | BX_ARCH_64BIT)
, m_backBufferFbo(0)
, m_msaaBackBufferFbo(0)
{
m_fbh.idx = invalidHandle;
memset(&m_resolution, 0, sizeof(m_resolution) );
}
void updateResolution(const Resolution& _resolution)
{
if (m_resolution.m_width != _resolution.m_width
|| m_resolution.m_height != _resolution.m_height
|| m_resolution.m_flags != _resolution.m_flags)
{
m_textVideoMem.resize(false, _resolution.m_width, _resolution.m_height);
m_textVideoMem.clear();
m_resolution = _resolution;
uint32_t msaa = (m_resolution.m_flags&BGFX_RESET_MSAA_MASK)>>BGFX_RESET_MSAA_SHIFT;
msaa = bx::uint32_min(m_maxMsaa, msaa == 0 ? 0 : 1<<msaa);
bool vsync = !!(m_resolution.m_flags&BGFX_RESET_VSYNC);
setRenderContextSize(_resolution.m_width, _resolution.m_height, msaa, vsync);
updateCapture();
}
}
uint32_t setFrameBuffer(FrameBufferHandle _fbh, uint32_t _height, bool _msaa = true)
{
if (isValid(m_fbh)
&& m_fbh.idx != _fbh.idx
&& m_rtMsaa)
{
FrameBuffer& frameBuffer = m_frameBuffers[m_fbh.idx];
frameBuffer.resolve();
}
if (!isValid(_fbh) )
{
GL_CHECK(glBindFramebuffer(GL_FRAMEBUFFER, m_msaaBackBufferFbo) );
}
else
{
FrameBuffer& frameBuffer = m_frameBuffers[_fbh.idx];
GL_CHECK(glBindFramebuffer(GL_FRAMEBUFFER, frameBuffer.m_fbo[0]) );
_height = frameBuffer.m_height;
}
m_fbh = _fbh;
m_rtMsaa = _msaa;
return _height;
}
void createMsaaFbo(uint32_t _width, uint32_t _height, uint32_t _msaa)
{
if (1 < _msaa)
{
GL_CHECK(glGenFramebuffers(1, &m_msaaBackBufferFbo) );
GL_CHECK(glBindFramebuffer(GL_FRAMEBUFFER, m_msaaBackBufferFbo) );
GL_CHECK(glGenRenderbuffers(BX_COUNTOF(m_msaaBackBufferRbos), m_msaaBackBufferRbos) );
GL_CHECK(glBindRenderbuffer(GL_RENDERBUFFER, m_msaaBackBufferRbos[0]) );
GL_CHECK(glRenderbufferStorageMultisample(GL_RENDERBUFFER, _msaa, GL_RGBA8, _width, _height) );
GL_CHECK(glBindRenderbuffer(GL_RENDERBUFFER, m_msaaBackBufferRbos[1]) );
GL_CHECK(glRenderbufferStorageMultisample(GL_RENDERBUFFER, _msaa, GL_DEPTH24_STENCIL8, _width, _height) );
GL_CHECK(glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_RENDERBUFFER, m_msaaBackBufferRbos[0]) );
GLenum attachment = BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGLES2) ? GL_DEPTH_ATTACHMENT : GL_DEPTH_STENCIL_ATTACHMENT;
GL_CHECK(glFramebufferRenderbuffer(GL_FRAMEBUFFER, attachment, GL_RENDERBUFFER, m_msaaBackBufferRbos[1]) );
BX_CHECK(GL_FRAMEBUFFER_COMPLETE == glCheckFramebufferStatus(GL_FRAMEBUFFER)
, "glCheckFramebufferStatus failed 0x%08x"
, glCheckFramebufferStatus(GL_FRAMEBUFFER)
);
GL_CHECK(glBindFramebuffer(GL_FRAMEBUFFER, m_msaaBackBufferFbo) );
}
}
void destroyMsaaFbo()
{
if (0 != m_msaaBackBufferFbo)
{
GL_CHECK(glDeleteFramebuffers(1, &m_msaaBackBufferFbo) );
GL_CHECK(glDeleteRenderbuffers(BX_COUNTOF(m_msaaBackBufferRbos), m_msaaBackBufferRbos) );
m_msaaBackBufferFbo = 0;
}
}
void blitMsaaFbo()
{
if (0 != m_msaaBackBufferFbo)
{
GL_CHECK(glDisable(GL_SCISSOR_TEST) );
GL_CHECK(glBindFramebuffer(GL_FRAMEBUFFER, m_backBufferFbo) );
GL_CHECK(glBindFramebuffer(GL_READ_FRAMEBUFFER, m_msaaBackBufferFbo) );
GL_CHECK(glBindFramebuffer(GL_DRAW_FRAMEBUFFER, 0) );
uint32_t width = m_resolution.m_width;
uint32_t height = m_resolution.m_height;
GLenum filter = BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGLES2) ? GL_NEAREST : GL_LINEAR;
GL_CHECK(glBlitFramebuffer(0
, 0
, width
, height
, 0
, 0
, width
, height
, GL_COLOR_BUFFER_BIT
, filter
) );
GL_CHECK(glBindFramebuffer(GL_FRAMEBUFFER, m_backBufferFbo) );
}
}
void setRenderContextSize(uint32_t _width, uint32_t _height, uint32_t _msaa = 0, bool _vsync = false)
{
if (_width != 0
|| _height != 0)
{
if (!m_glctx.isValid() )
{
m_glctx.create(_width, _height);
#if BX_PLATFORM_IOS
// BK - Temp, need to figure out how to deal with FBO created by context.
m_backBufferFbo = m_glctx.m_fbo;
m_msaaBackBufferFbo = m_glctx.m_fbo;
#endif // BX_PLATFORM_IOS
}
else
{
destroyMsaaFbo();
m_glctx.resize(_width, _height, _vsync);
createMsaaFbo(_width, _height, _msaa);
}
}
m_flip = true;
}
void flip()
{
if (m_flip)
{
m_glctx.swap();
}
}
void invalidateCache()
{
if (m_vaoSupport)
{
m_vaoStateCache.invalidate();
}
if (BX_ENABLED(!BGFX_CONFIG_RENDERER_OPENGLES2)
&& m_samplerObjectSupport)
{
m_samplerStateCache.invalidate();
}
}
void setSamplerState(uint32_t _stage, uint32_t _numMips, uint32_t _flags)
{
if (BX_ENABLED(!BGFX_CONFIG_RENDERER_OPENGLES2) )
{
if (0 == (BGFX_SAMPLER_DEFAULT_FLAGS & _flags) )
{
_flags = (_flags&(~BGFX_TEXTURE_RESERVED_MASK) ) | (_numMips<<BGFX_TEXTURE_RESERVED_SHIFT);
GLuint sampler = m_samplerStateCache.find(_flags);
if (UINT32_MAX == sampler)
{
sampler = m_samplerStateCache.add(_flags);
GL_CHECK(glSamplerParameteri(sampler, GL_TEXTURE_WRAP_S, s_textureAddress[(_flags&BGFX_TEXTURE_U_MASK)>>BGFX_TEXTURE_U_SHIFT]) );
GL_CHECK(glSamplerParameteri(sampler, GL_TEXTURE_WRAP_T, s_textureAddress[(_flags&BGFX_TEXTURE_V_MASK)>>BGFX_TEXTURE_V_SHIFT]) );
GL_CHECK(glSamplerParameteri(sampler, GL_TEXTURE_WRAP_R, s_textureAddress[(_flags&BGFX_TEXTURE_W_MASK)>>BGFX_TEXTURE_W_SHIFT]) );
const uint32_t mag = (_flags&BGFX_TEXTURE_MAG_MASK)>>BGFX_TEXTURE_MAG_SHIFT;
const uint32_t min = (_flags&BGFX_TEXTURE_MIN_MASK)>>BGFX_TEXTURE_MIN_SHIFT;
const uint32_t mip = (_flags&BGFX_TEXTURE_MIP_MASK)>>BGFX_TEXTURE_MIP_SHIFT;
GLenum minFilter = s_textureFilterMin[min][1 < _numMips ? mip+1 : 0];
GL_CHECK(glSamplerParameteri(sampler, GL_TEXTURE_MAG_FILTER, s_textureFilterMag[mag]) );
GL_CHECK(glSamplerParameteri(sampler, GL_TEXTURE_MIN_FILTER, minFilter) );
if (0 != (_flags & (BGFX_TEXTURE_MIN_ANISOTROPIC|BGFX_TEXTURE_MAG_ANISOTROPIC) )
&& 0.0f < m_maxAnisotropy)
{
GL_CHECK(glSamplerParameterf(sampler, GL_TEXTURE_MAX_ANISOTROPY_EXT, m_maxAnisotropy) );
}
if (BX_ENABLED(!BGFX_CONFIG_RENDERER_OPENGLES2)
|| m_shadowSamplersSupport)
{
const uint32_t cmpFunc = (_flags&BGFX_TEXTURE_COMPARE_MASK)>>BGFX_TEXTURE_COMPARE_SHIFT;
if (0 == cmpFunc)
{
GL_CHECK(glSamplerParameteri(sampler, GL_TEXTURE_COMPARE_MODE, GL_NONE) );
}
else
{
GL_CHECK(glSamplerParameteri(sampler, GL_TEXTURE_COMPARE_MODE, GL_COMPARE_REF_TO_TEXTURE) );
GL_CHECK(glSamplerParameteri(sampler, GL_TEXTURE_COMPARE_FUNC, s_cmpFunc[cmpFunc]) );
}
}
}
GL_CHECK(glBindSampler(_stage, sampler) );
}
else
{
GL_CHECK(glBindSampler(_stage, 0) );
}
}
}
void updateCapture()
{
if (m_resolution.m_flags&BGFX_RESET_CAPTURE)
{
m_captureSize = m_resolution.m_width*m_resolution.m_height*4;
m_capture = BX_REALLOC(g_allocator, m_capture, m_captureSize);
g_callback->captureBegin(m_resolution.m_width, m_resolution.m_height, m_resolution.m_width*4, TextureFormat::BGRA8, true);
}
else
{
captureFinish();
}
}
void capture()
{
if (NULL != m_capture)
{
GL_CHECK(glReadPixels(0
, 0
, m_resolution.m_width
, m_resolution.m_height
, m_readPixelsFmt
, GL_UNSIGNED_BYTE
, m_capture
) );
g_callback->captureFrame(m_capture, m_captureSize);
}
}
void captureFinish()
{
if (NULL != m_capture)
{
g_callback->captureEnd();
BX_FREE(g_allocator, m_capture);
m_capture = NULL;
m_captureSize = 0;
}
}
void saveScreenShot(const char* _filePath)
{
uint32_t length = m_resolution.m_width*m_resolution.m_height*4;
uint8_t* data = (uint8_t*)BX_ALLOC(g_allocator, length);
uint32_t width = m_resolution.m_width;
uint32_t height = m_resolution.m_height;
GL_CHECK(glReadPixels(0
, 0
, width
, height
, m_readPixelsFmt
, GL_UNSIGNED_BYTE
, data
) );
if (GL_RGBA == m_readPixelsFmt)
{
imageSwizzleBgra8(width, height, width*4, data, data);
}
g_callback->screenShot(_filePath
, width
, height
, width*4
, data
, length
, true
);
BX_FREE(g_allocator, data);
}
void init()
{
setRenderContextSize(BGFX_DEFAULT_WIDTH, BGFX_DEFAULT_HEIGHT);
m_vendor = getGLString(GL_VENDOR);
m_renderer = getGLString(GL_RENDERER);
m_version = getGLString(GL_VERSION);
m_glslVersion = getGLString(GL_SHADING_LANGUAGE_VERSION);
GLint numCmpFormats = 0;
GL_CHECK(glGetIntegerv(GL_NUM_COMPRESSED_TEXTURE_FORMATS, &numCmpFormats) );
BX_TRACE("GL_NUM_COMPRESSED_TEXTURE_FORMATS %d", numCmpFormats);
GLint* cmpFormat = NULL;
if (0 < numCmpFormats)
{
numCmpFormats = numCmpFormats > 256 ? 256 : numCmpFormats;
cmpFormat = (GLint*)alloca(sizeof(GLint)*numCmpFormats);
GL_CHECK(glGetIntegerv(GL_COMPRESSED_TEXTURE_FORMATS, cmpFormat) );
for (GLint ii = 0; ii < numCmpFormats; ++ii)
{
GLint internalFmt = cmpFormat[ii];
uint32_t fmt = uint32_t(TextureFormat::Unknown);
for (uint32_t jj = 0; jj < fmt; ++jj)
{
if (s_textureFormat[jj].m_internalFmt == (GLenum)internalFmt)
{
s_textureFormat[jj].m_supported = true;
fmt = jj;
}
}
BX_TRACE(" %3d: %8x %s", ii, internalFmt, getName( (TextureFormat::Enum)fmt) );
}
}
if (BX_ENABLED(BGFX_CONFIG_DEBUG) )
{
#define GL_GET(_pname, _min) BX_TRACE(" " #_pname " %d (min: %d)", glGet(_pname), _min)
BX_TRACE("Defaults:");
#if BGFX_CONFIG_RENDERER_OPENGL >= 41 || BGFX_CONFIG_RENDERER_OPENGLES2 || BGFX_CONFIG_RENDERER_OPENGLES3
GL_GET(GL_MAX_FRAGMENT_UNIFORM_VECTORS, 16);
GL_GET(GL_MAX_VERTEX_UNIFORM_VECTORS, 128);
GL_GET(GL_MAX_VARYING_VECTORS, 8);
#else
GL_GET(GL_MAX_FRAGMENT_UNIFORM_COMPONENTS, 16 * 4);
GL_GET(GL_MAX_VERTEX_UNIFORM_COMPONENTS, 128 * 4);
GL_GET(GL_MAX_VARYING_FLOATS, 8 * 4);
#endif // BGFX_CONFIG_RENDERER_OPENGL >= 41 || BGFX_CONFIG_RENDERER_OPENGLES2 || BGFX_CONFIG_RENDERER_OPENGLES3
GL_GET(GL_MAX_VERTEX_ATTRIBS, 8);
GL_GET(GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS, 8);
GL_GET(GL_MAX_CUBE_MAP_TEXTURE_SIZE, 16);
GL_GET(GL_MAX_TEXTURE_IMAGE_UNITS, 8);
GL_GET(GL_MAX_TEXTURE_SIZE, 64);
GL_GET(GL_MAX_VERTEX_TEXTURE_IMAGE_UNITS, 0);
GL_GET(GL_MAX_RENDERBUFFER_SIZE, 1);
#undef GL_GET
BX_TRACE(" Vendor: %s", m_vendor);
BX_TRACE(" Renderer: %s", m_renderer);
BX_TRACE(" Version: %s", m_version);
BX_TRACE("GLSL version: %s", m_glslVersion);
}
// Initial binary shader hash depends on driver version.
m_hash = ( (BX_PLATFORM_WINDOWS<<1) | BX_ARCH_64BIT)
^ (uint64_t(getGLStringHash(GL_VENDOR ) )<<32)
^ (uint64_t(getGLStringHash(GL_RENDERER) )<<0 )
^ (uint64_t(getGLStringHash(GL_VERSION ) )<<16)
;
if (BX_ENABLED(BGFX_CONFIG_RENDERER_USE_EXTENSIONS) )
{
const char* extensions = (const char*)glGetString(GL_EXTENSIONS);
glGetError(); // ignore error if glGetString returns NULL.
if (NULL != extensions)
{
char name[1024];
const char* pos = extensions;
const char* end = extensions + strlen(extensions);
uint32_t index = 0;
while (pos < end)
{
uint32_t len;
const char* space = strchr(pos, ' ');
if (NULL != space)
{
len = bx::uint32_min(sizeof(name), (uint32_t)(space - pos) );
}
else
{
len = bx::uint32_min(sizeof(name), (uint32_t)strlen(pos) );
}
strncpy(name, pos, len);
name[len] = '\0';
bool supported = false;
for (uint32_t ii = 0; ii < Extension::Count; ++ii)
{
Extension& extension = s_extension[ii];
if (!extension.m_supported
&& extension.m_initialize)
{
if (0 == strcmp(name, extension.m_name) )
{
extension.m_supported = true;
supported = true;
break;
}
}
}
BX_TRACE("GL_EXTENSION %3d%s: %s", index, supported ? " (supported)" : "", name);
BX_UNUSED(supported);
pos += len+1;
++index;
}
BX_TRACE("Supported extensions:");
for (uint32_t ii = 0; ii < Extension::Count; ++ii)
{
if (s_extension[ii].m_supported)
{
BX_TRACE("\t%2d: %s", ii, s_extension[ii].m_name);
}
}
}
}
bool bc123Supported = s_extension[Extension::EXT_texture_compression_s3tc].m_supported;
s_textureFormat[TextureFormat::BC1].m_supported |= bc123Supported
|| s_extension[Extension::ANGLE_texture_compression_dxt1].m_supported
|| s_extension[Extension::EXT_texture_compression_dxt1].m_supported
;
if (!s_textureFormat[TextureFormat::BC1].m_supported
&& (s_textureFormat[TextureFormat::BC2].m_supported || s_textureFormat[TextureFormat::BC3].m_supported) )
{
// If RGBA_S3TC_DXT1 is not supported, maybe RGB_S3TC_DXT1 is?
for (GLint ii = 0; ii < numCmpFormats; ++ii)
{
if (GL_COMPRESSED_RGB_S3TC_DXT1_EXT == cmpFormat[ii])
{
s_textureFormat[TextureFormat::BC1].m_internalFmt = GL_COMPRESSED_RGB_S3TC_DXT1_EXT;
s_textureFormat[TextureFormat::BC1].m_fmt = GL_COMPRESSED_RGB_S3TC_DXT1_EXT;
s_textureFormat[TextureFormat::BC1].m_supported = true;
break;
}
}
}
s_textureFormat[TextureFormat::BC2].m_supported |= bc123Supported
|| s_extension[Extension::ANGLE_texture_compression_dxt3].m_supported
|| s_extension[Extension::CHROMIUM_texture_compression_dxt3].m_supported
;
s_textureFormat[TextureFormat::BC3].m_supported |= bc123Supported
|| s_extension[Extension::ANGLE_texture_compression_dxt5].m_supported
|| s_extension[Extension::CHROMIUM_texture_compression_dxt5].m_supported
;
bool bc45Supported = s_extension[Extension::EXT_texture_compression_latc].m_supported
|| s_extension[Extension::ARB_texture_compression_rgtc].m_supported
|| s_extension[Extension::EXT_texture_compression_rgtc].m_supported
;
s_textureFormat[TextureFormat::BC4].m_supported |= bc45Supported;
s_textureFormat[TextureFormat::BC5].m_supported |= bc45Supported;
bool etc1Supported = s_extension[Extension::OES_compressed_ETC1_RGB8_texture].m_supported;
s_textureFormat[TextureFormat::ETC1].m_supported |= etc1Supported;
bool etc2Supported = !!BGFX_CONFIG_RENDERER_OPENGLES3
|| s_extension[Extension::ARB_ES3_compatibility].m_supported
;
s_textureFormat[TextureFormat::ETC2 ].m_supported |= etc2Supported;
s_textureFormat[TextureFormat::ETC2A ].m_supported |= etc2Supported;
s_textureFormat[TextureFormat::ETC2A1].m_supported |= etc2Supported;
if (!s_textureFormat[TextureFormat::ETC1].m_supported
&& s_textureFormat[TextureFormat::ETC2].m_supported)
{
// When ETC2 is supported override ETC1 texture format settings.
s_textureFormat[TextureFormat::ETC1].m_internalFmt = GL_COMPRESSED_RGB8_ETC2;
s_textureFormat[TextureFormat::ETC1].m_fmt = GL_COMPRESSED_RGB8_ETC2;
s_textureFormat[TextureFormat::ETC1].m_supported = true;
}
bool ptc1Supported = s_extension[Extension::IMG_texture_compression_pvrtc ].m_supported;
s_textureFormat[TextureFormat::PTC12 ].m_supported |= ptc1Supported;
s_textureFormat[TextureFormat::PTC14 ].m_supported |= ptc1Supported;
s_textureFormat[TextureFormat::PTC12A].m_supported |= ptc1Supported;
s_textureFormat[TextureFormat::PTC14A].m_supported |= ptc1Supported;
bool ptc2Supported = s_extension[Extension::IMG_texture_compression_pvrtc2].m_supported;
s_textureFormat[TextureFormat::PTC22].m_supported |= ptc2Supported;
s_textureFormat[TextureFormat::PTC24].m_supported |= ptc2Supported;
uint64_t supportedCompressedFormats = 0
| (s_textureFormat[TextureFormat::BC1 ].m_supported ? BGFX_CAPS_TEXTURE_FORMAT_BC1 : 0)
| (s_textureFormat[TextureFormat::BC2 ].m_supported ? BGFX_CAPS_TEXTURE_FORMAT_BC2 : 0)
| (s_textureFormat[TextureFormat::BC3 ].m_supported ? BGFX_CAPS_TEXTURE_FORMAT_BC3 : 0)
| (s_textureFormat[TextureFormat::BC4 ].m_supported ? BGFX_CAPS_TEXTURE_FORMAT_BC4 : 0)
| (s_textureFormat[TextureFormat::BC5 ].m_supported ? BGFX_CAPS_TEXTURE_FORMAT_BC5 : 0)
| (s_textureFormat[TextureFormat::ETC1 ].m_supported ? BGFX_CAPS_TEXTURE_FORMAT_ETC1 : 0)
| (s_textureFormat[TextureFormat::ETC2 ].m_supported ? BGFX_CAPS_TEXTURE_FORMAT_ETC2 : 0)
| (s_textureFormat[TextureFormat::ETC2A ].m_supported ? BGFX_CAPS_TEXTURE_FORMAT_ETC2A : 0)
| (s_textureFormat[TextureFormat::ETC2A1].m_supported ? BGFX_CAPS_TEXTURE_FORMAT_ETC2A1 : 0)
| (s_textureFormat[TextureFormat::PTC12 ].m_supported ? BGFX_CAPS_TEXTURE_FORMAT_PTC12 : 0)
| (s_textureFormat[TextureFormat::PTC14 ].m_supported ? BGFX_CAPS_TEXTURE_FORMAT_PTC14 : 0)
| (s_textureFormat[TextureFormat::PTC14A].m_supported ? BGFX_CAPS_TEXTURE_FORMAT_PTC14A : 0)
| (s_textureFormat[TextureFormat::PTC12A].m_supported ? BGFX_CAPS_TEXTURE_FORMAT_PTC12A : 0)
| (s_textureFormat[TextureFormat::PTC22 ].m_supported ? BGFX_CAPS_TEXTURE_FORMAT_PTC22 : 0)
| (s_textureFormat[TextureFormat::PTC24 ].m_supported ? BGFX_CAPS_TEXTURE_FORMAT_PTC24 : 0)
;
g_caps.supported |= supportedCompressedFormats;
g_caps.supported |= !!(BGFX_CONFIG_RENDERER_OPENGL|BGFX_CONFIG_RENDERER_OPENGLES3)|s_extension[Extension::OES_texture_3D].m_supported
? BGFX_CAPS_TEXTURE_3D
: 0
;
g_caps.supported |= !!(BGFX_CONFIG_RENDERER_OPENGL|BGFX_CONFIG_RENDERER_OPENGLES3)|s_extension[Extension::EXT_shadow_samplers].m_supported
? BGFX_CAPS_TEXTURE_COMPARE_ALL
: 0
;
g_caps.supported |= !!(BGFX_CONFIG_RENDERER_OPENGL|BGFX_CONFIG_RENDERER_OPENGLES3)|s_extension[Extension::OES_vertex_half_float].m_supported
? BGFX_CAPS_VERTEX_ATTRIB_HALF
: 0
;
g_caps.supported |= !!(BGFX_CONFIG_RENDERER_OPENGL|BGFX_CONFIG_RENDERER_OPENGLES3)|s_extension[Extension::EXT_frag_depth].m_supported
? BGFX_CAPS_FRAGMENT_DEPTH
: 0
;
g_caps.maxTextureSize = glGet(GL_MAX_TEXTURE_SIZE);
if (BX_ENABLED(!BGFX_CONFIG_RENDERER_OPENGLES2) )
{
g_caps.maxFBAttachments = bx::uint32_min(glGet(GL_MAX_COLOR_ATTACHMENTS), BGFX_CONFIG_MAX_FRAME_BUFFER_ATTACHMENTS);
}
m_vaoSupport = !!BGFX_CONFIG_RENDERER_OPENGLES3
|| s_extension[Extension::ARB_vertex_array_object].m_supported
|| s_extension[Extension::OES_vertex_array_object].m_supported
;
if (BX_ENABLED(BX_PLATFORM_NACL) )
{
m_vaoSupport &= NULL != glGenVertexArrays
&& NULL != glDeleteVertexArrays
&& NULL != glBindVertexArray
;
}
if (m_vaoSupport)
{
GL_CHECK(glGenVertexArrays(1, &m_vao) );
}
m_samplerObjectSupport = !!BGFX_CONFIG_RENDERER_OPENGLES3
|| s_extension[Extension::ARB_sampler_objects].m_supported
;
m_shadowSamplersSupport = !!(BGFX_CONFIG_RENDERER_OPENGL|BGFX_CONFIG_RENDERER_OPENGLES3)
|| s_extension[Extension::EXT_shadow_samplers].m_supported
;
m_programBinarySupport = !!BGFX_CONFIG_RENDERER_OPENGLES3
|| s_extension[Extension::ARB_get_program_binary].m_supported
|| s_extension[Extension::OES_get_program_binary].m_supported
|| s_extension[Extension::IMG_shader_binary].m_supported
;
m_textureSwizzleSupport = false
|| s_extension[Extension::ARB_texture_swizzle].m_supported
|| s_extension[Extension::EXT_texture_swizzle].m_supported
;
m_depthTextureSupport = !!(BGFX_CONFIG_RENDERER_OPENGL|BGFX_CONFIG_RENDERER_OPENGLES3)
|| s_extension[Extension::ANGLE_depth_texture].m_supported
|| s_extension[Extension::CHROMIUM_depth_texture].m_supported
|| s_extension[Extension::GOOGLE_depth_texture].m_supported
|| s_extension[Extension::OES_depth_texture].m_supported
;
g_caps.supported |= m_depthTextureSupport
? (BGFX_CAPS_TEXTURE_DEPTH_MASK|BGFX_CAPS_TEXTURE_COMPARE_LEQUAL)
: 0
;
if (s_extension[Extension::EXT_texture_filter_anisotropic].m_supported)
{
GL_CHECK(glGetFloatv(GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT, &m_maxAnisotropy) );
}
if (s_extension[Extension::ARB_texture_multisample].m_supported
|| s_extension[Extension::ANGLE_framebuffer_multisample].m_supported)
{
GL_CHECK(glGetIntegerv(GL_MAX_SAMPLES, &m_maxMsaa) );
}
if (s_extension[Extension::OES_read_format].m_supported
&& (s_extension[Extension::IMG_read_format].m_supported || s_extension[Extension::EXT_read_format_bgra].m_supported) )
{
m_readPixelsFmt = GL_BGRA_EXT;
}
else
{
m_readPixelsFmt = GL_RGBA;
}
if (s_extension[Extension::EXT_texture_format_BGRA8888].m_supported
|| s_extension[Extension::EXT_bgra].m_supported
|| s_extension[Extension::IMG_texture_format_BGRA8888].m_supported
|| s_extension[Extension::APPLE_texture_format_BGRA8888].m_supported)
{
if (BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGL) )
{
m_readPixelsFmt = GL_BGRA_EXT;
}
s_textureFormat[TextureFormat::BGRA8].m_fmt = GL_BGRA_EXT;
// Mixing GLES and GL extensions here. OpenGL EXT_bgra wants
// format to be BGRA but internal format to stay RGBA, but
// EXT_texture_format_BGRA8888 wants both format and internal
// format to be BGRA.
//
// Reference:
// https://www.khronos.org/registry/gles/extensions/EXT/EXT_texture_format_BGRA8888.txt
// https://www.opengl.org/registry/specs/EXT/bgra.txt
if (!s_extension[Extension::EXT_bgra].m_supported)
{
s_textureFormat[TextureFormat::BGRA8].m_internalFmt = GL_BGRA_EXT;
}
}
if (s_extension[Extension::EXT_texture_compression_rgtc].m_supported)
{
s_textureFormat[TextureFormat::BC4].m_fmt = GL_COMPRESSED_RED_RGTC1_EXT;
s_textureFormat[TextureFormat::BC4].m_internalFmt = GL_COMPRESSED_RED_RGTC1_EXT;
s_textureFormat[TextureFormat::BC5].m_fmt = GL_COMPRESSED_RED_GREEN_RGTC2_EXT;
s_textureFormat[TextureFormat::BC5].m_internalFmt = GL_COMPRESSED_RED_GREEN_RGTC2_EXT;
}
if (BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGLES3) )
{
g_caps.supported |= BGFX_CAPS_INSTANCING;
}
else
{
if (!BX_ENABLED(BX_PLATFORM_IOS) )
{
if (s_extension[Extension::ARB_instanced_arrays].m_supported
|| s_extension[Extension::ANGLE_instanced_arrays].m_supported)
{
if (NULL != glVertexAttribDivisor
&& NULL != glDrawArraysInstanced
&& NULL != glDrawElementsInstanced)
{
g_caps.supported |= BGFX_CAPS_INSTANCING;
}
}
}
if (0 == (g_caps.supported & BGFX_CAPS_INSTANCING) )
{
glVertexAttribDivisor = stubVertexAttribDivisor;
glDrawArraysInstanced = stubDrawArraysInstanced;
glDrawElementsInstanced = stubDrawElementsInstanced;
}
}
#if BGFX_CONFIG_RENDERER_OPENGL
if (BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGL >= 31) )
{
s_textureFormat[TextureFormat::L8].m_internalFmt = GL_R8;
s_textureFormat[TextureFormat::L8].m_fmt = GL_RED;
}
if (s_extension[Extension::ARB_debug_output].m_supported
|| s_extension[Extension::KHR_debug].m_supported)
{
GL_CHECK(glDebugMessageCallback(debugProcCb, NULL) );
GL_CHECK(glDebugMessageControl(GL_DONT_CARE, GL_DONT_CARE, GL_DEBUG_SEVERITY_MEDIUM_ARB, 0, NULL, GL_TRUE) );
}
if (s_extension[Extension::ARB_seamless_cube_map].m_supported)
{
GL_CHECK(glEnable(GL_TEXTURE_CUBE_MAP_SEAMLESS) );
}
if (s_extension[Extension::ARB_depth_clamp].m_supported)
{
GL_CHECK(glEnable(GL_DEPTH_CLAMP) );
}
#endif // BGFX_CONFIG_RENDERER_OPENGL
if (NULL == glFrameTerminatorGREMEDY)
{
glFrameTerminatorGREMEDY = stubFrameTerminatorGREMEDY;
}
if (NULL == glInsertEventMarker)
{
glInsertEventMarker = NULL != glStringMarkerGREMEDY
? stubInsertEventMarkerGREMEDY
: stubInsertEventMarker
;
}
if (NULL == glObjectLabel)
{
glObjectLabel = stubObjectLabel;
}
if (BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGL) )
{
m_queries.create();
}
}
void shutdown()
{
captureFinish();
invalidateCache();
if (BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGL) )
{
m_queries.destroy();
}
destroyMsaaFbo();
m_glctx.destroy();
m_flip = false;
}
IndexBuffer m_indexBuffers[BGFX_CONFIG_MAX_INDEX_BUFFERS];
VertexBuffer m_vertexBuffers[BGFX_CONFIG_MAX_VERTEX_BUFFERS];
Shader m_vertexShaders[BGFX_CONFIG_MAX_VERTEX_SHADERS];
Shader m_fragmentShaders[BGFX_CONFIG_MAX_FRAGMENT_SHADERS];
Program m_program[BGFX_CONFIG_MAX_PROGRAMS];
Texture m_textures[BGFX_CONFIG_MAX_TEXTURES];
VertexDecl m_vertexDecls[BGFX_CONFIG_MAX_VERTEX_DECLS];
FrameBuffer m_frameBuffers[BGFX_CONFIG_MAX_FRAME_BUFFERS];
UniformRegistry m_uniformReg;
void* m_uniforms[BGFX_CONFIG_MAX_UNIFORMS];
Queries m_queries;
VaoStateCache m_vaoStateCache;
SamplerStateCache m_samplerStateCache;
TextVideoMem m_textVideoMem;
bool m_rtMsaa;
FrameBufferHandle m_fbh;
Resolution m_resolution;
void* m_capture;
uint32_t m_captureSize;
float m_maxAnisotropy;
int32_t m_maxMsaa;
GLuint m_vao;
bool m_vaoSupport;
bool m_samplerObjectSupport;
bool m_shadowSamplersSupport;
bool m_programBinarySupport;
bool m_textureSwizzleSupport;
bool m_depthTextureSupport;
bool m_useClearQuad;
bool m_flip;
uint64_t m_hash;
GLenum m_readPixelsFmt;
GLuint m_backBufferFbo;
GLuint m_msaaBackBufferFbo;
GLuint m_msaaBackBufferRbos[2];
GlContext m_glctx;
const char* m_vendor;
const char* m_renderer;
const char* m_version;
const char* m_glslVersion;
};
RendererContext* s_renderCtx;
const char* glslTypeName(GLuint _type)
{
#define GLSL_TYPE(_ty) case _ty: return #_ty
switch (_type)
{
GLSL_TYPE(GL_FLOAT);
GLSL_TYPE(GL_FLOAT_VEC2);
GLSL_TYPE(GL_FLOAT_VEC3);
GLSL_TYPE(GL_FLOAT_VEC4);
GLSL_TYPE(GL_FLOAT_MAT2);
GLSL_TYPE(GL_FLOAT_MAT3);
GLSL_TYPE(GL_FLOAT_MAT4);
// GLSL_TYPE(GL_FLOAT_MAT2x3);
// GLSL_TYPE(GL_FLOAT_MAT2x4);
// GLSL_TYPE(GL_FLOAT_MAT3x2);
// GLSL_TYPE(GL_FLOAT_MAT3x4);
// GLSL_TYPE(GL_FLOAT_MAT4x2);
// GLSL_TYPE(GL_FLOAT_MAT4x3);
// GLSL_TYPE(GL_SAMPLER_1D);
GLSL_TYPE(GL_SAMPLER_2D);
GLSL_TYPE(GL_SAMPLER_3D);
GLSL_TYPE(GL_SAMPLER_CUBE);
// GLSL_TYPE(GL_SAMPLER_1D_SHADOW);
GLSL_TYPE(GL_SAMPLER_2D_SHADOW);
}
#undef GLSL_TYPE
return "UNKNOWN GLSL TYPE!";
}
const char* glEnumName(GLenum _enum)
{
#define GLENUM(_ty) case _ty: return #_ty
switch (_enum)
{
GLENUM(GL_TEXTURE);
GLENUM(GL_RENDERBUFFER);
}
#undef GLENUM
return "UNKNOWN GLENUM!";
}
UniformType::Enum convertGlType(GLenum _type)
{
switch (_type)
{
case GL_FLOAT:
return UniformType::Uniform1fv;
case GL_FLOAT_VEC2:
return UniformType::Uniform2fv;
case GL_FLOAT_VEC3:
return UniformType::Uniform3fv;
case GL_FLOAT_VEC4:
return UniformType::Uniform4fv;
case GL_FLOAT_MAT2:
break;
case GL_FLOAT_MAT3:
return UniformType::Uniform3x3fv;
case GL_FLOAT_MAT4:
return UniformType::Uniform4x4fv;
// case GL_FLOAT_MAT2x3:
// case GL_FLOAT_MAT2x4:
// case GL_FLOAT_MAT3x2:
// case GL_FLOAT_MAT3x4:
// case GL_FLOAT_MAT4x2:
// case GL_FLOAT_MAT4x3:
// break;
// case GL_SAMPLER_1D:
case GL_SAMPLER_2D:
case GL_SAMPLER_3D:
case GL_SAMPLER_CUBE:
// case GL_SAMPLER_1D_SHADOW:
case GL_SAMPLER_2D_SHADOW:
return UniformType::Uniform1iv;
};
return UniformType::End;
}
void Program::create(const Shader& _vsh, const Shader& _fsh)
{
m_id = glCreateProgram();
BX_TRACE("program create: %d: %d, %d", m_id, _vsh.m_id, _fsh.m_id);
bool cached = false;
uint64_t id = (uint64_t(_vsh.m_hash)<<32) | _fsh.m_hash;
id ^= s_renderCtx->m_hash;
if (s_renderCtx->m_programBinarySupport)
{
uint32_t length = g_callback->cacheReadSize(id);
cached = length > 0;
if (cached)
{
void* data = BX_ALLOC(g_allocator, length);
if (g_callback->cacheRead(id, data, length) )
{
bx::MemoryReader reader(data, length);
GLenum format;
bx::read(&reader, format);
GL_CHECK(glProgramBinary(m_id, format, reader.getDataPtr(), (GLsizei)reader.remaining() ) );
}
BX_FREE(g_allocator, data);
}
#if BGFX_CONFIG_RENDERER_OPENGL
GL_CHECK(glProgramParameteri(m_id, GL_PROGRAM_BINARY_RETRIEVABLE_HINT, GL_TRUE) );
#endif // BGFX_CONFIG_RENDERER_OPENGL
}
if (!cached)
{
GL_CHECK(glAttachShader(m_id, _vsh.m_id) );
GL_CHECK(glAttachShader(m_id, _fsh.m_id) );
GL_CHECK(glLinkProgram(m_id) );
GLint linked = 0;
GL_CHECK(glGetProgramiv(m_id, GL_LINK_STATUS, &linked) );
if (0 == linked)
{
char log[1024];
GL_CHECK(glGetProgramInfoLog(m_id, sizeof(log), NULL, log) );
BX_TRACE("%d: %s", linked, log);
GL_CHECK(glDeleteProgram(m_id) );
return;
}
if (s_renderCtx->m_programBinarySupport)
{
GLint programLength;
GLenum format;
GL_CHECK(glGetProgramiv(m_id, GL_PROGRAM_BINARY_LENGTH, &programLength) );
if (0 < programLength)
{
uint32_t length = programLength + 4;
uint8_t* data = (uint8_t*)BX_ALLOC(g_allocator, length);
GL_CHECK(glGetProgramBinary(m_id, programLength, NULL, &format, &data[4]) );
*(uint32_t*)data = format;
g_callback->cacheWrite(id, data, length);
BX_FREE(g_allocator, data);
}
}
}
init();
if (!cached)
{
// Must be after init, otherwise init might fail to lookup shader
// info (NVIDIA Tegra 3 OpenGL ES 2.0 14.01003).
GL_CHECK(glDetachShader(m_id, _vsh.m_id) );
GL_CHECK(glDetachShader(m_id, _fsh.m_id) );
}
}
void Program::destroy()
{
if (NULL != m_constantBuffer)
{
ConstantBuffer::destroy(m_constantBuffer);
m_constantBuffer = NULL;
}
m_numPredefined = 0;
if (0 != m_id)
{
GL_CHECK(glUseProgram(0) );
GL_CHECK(glDeleteProgram(m_id) );
m_id = 0;
}
m_vcref.invalidate(s_renderCtx->m_vaoStateCache);
}
void Program::init()
{
GLint activeAttribs;
GLint activeUniforms;
#if BGFX_CONFIG_RENDERER_OPENGL >= 31
GL_CHECK(glBindFragDataLocation(m_id, 0, "bgfx_FragColor") );
#endif // BGFX_CONFIG_RENDERER_OPENGL >= 31
GL_CHECK(glGetProgramiv(m_id, GL_ACTIVE_ATTRIBUTES, &activeAttribs) );
GL_CHECK(glGetProgramiv(m_id, GL_ACTIVE_UNIFORMS, &activeUniforms) );
GLint max0, max1;
GL_CHECK(glGetProgramiv(m_id, GL_ACTIVE_ATTRIBUTE_MAX_LENGTH, &max0) );
GL_CHECK(glGetProgramiv(m_id, GL_ACTIVE_UNIFORM_MAX_LENGTH, &max1) );
GLint maxLength = bx::uint32_max(max0, max1);
char* name = (char*)alloca(maxLength + 1);
BX_TRACE("Program %d", m_id);
BX_TRACE("Attributes (%d):", activeAttribs);
for (int32_t ii = 0; ii < activeAttribs; ++ii)
{
GLint size;
GLenum type;
GL_CHECK(glGetActiveAttrib(m_id, ii, maxLength + 1, NULL, &size, &type, name) );
BX_TRACE("\t%s %s is at location %d"
, glslTypeName(type)
, name
, glGetAttribLocation(m_id, name)
);
}
m_numPredefined = 0;
m_constantBuffer = ConstantBuffer::create(1024);
m_numSamplers = 0;
BX_TRACE("Uniforms (%d):", activeUniforms);
for (int32_t ii = 0; ii < activeUniforms; ++ii)
{
GLint num;
GLenum gltype;
GL_CHECK(glGetActiveUniform(m_id, ii, maxLength + 1, NULL, &num, &gltype, name) );
GLint loc = glGetUniformLocation(m_id, name);
int offset = 0;
char* array = strchr(name, '[');
if (NULL != array)
{
BX_TRACE("--- %s", name);
*array = '\0';
array++;
char* end = strchr(array, ']');
*end = '\0';
offset = atoi(array);
}
switch (gltype)
{
case GL_SAMPLER_2D:
case GL_SAMPLER_3D:
case GL_SAMPLER_CUBE:
case GL_SAMPLER_2D_SHADOW:
BX_TRACE("Sampler %d at %d.", m_numSamplers, loc);
m_sampler[m_numSamplers] = loc;
m_numSamplers++;
break;
default:
break;
}
const void* data = NULL;
PredefinedUniform::Enum predefined = nameToPredefinedUniformEnum(name);
if (PredefinedUniform::Count != predefined)
{
m_predefined[m_numPredefined].m_loc = loc;
m_predefined[m_numPredefined].m_type = predefined;
m_predefined[m_numPredefined].m_count = num;
m_numPredefined++;
}
else
{
const UniformInfo* info = s_renderCtx->m_uniformReg.find(name);
if (NULL != info)
{
data = info->m_data;
UniformType::Enum type = convertGlType(gltype);
m_constantBuffer->writeUniformRef(type, 0, data, num);
m_constantBuffer->write(loc);
BX_TRACE("store %s %p", name, data);
}
}
BX_TRACE("\tuniform %s %s%s is at location %d, size %d (%p), offset %d"
, glslTypeName(gltype)
, name
, PredefinedUniform::Count != predefined ? "*" : ""
, loc
, num
, data
, offset
);
BX_UNUSED(offset);
}
m_constantBuffer->finish();
memset(m_attributes, 0xff, sizeof(m_attributes) );
uint32_t used = 0;
for (uint32_t ii = 0; ii < Attrib::Count; ++ii)
{
GLint loc = glGetAttribLocation(m_id, s_attribName[ii]);
if (-1 != loc)
{
BX_TRACE("attr %s: %d", s_attribName[ii], loc);
m_attributes[ii] = loc;
m_used[used++] = ii;
}
}
m_used[used] = Attrib::Count;
used = 0;
for (uint32_t ii = 0; ii < BX_COUNTOF(s_instanceDataName); ++ii)
{
GLuint loc = glGetAttribLocation(m_id, s_instanceDataName[ii]);
if (GLuint(-1) != loc )
{
BX_TRACE("instance data %s: %d", s_instanceDataName[ii], loc);
m_instanceData[used++] = loc;
}
}
m_instanceData[used] = 0xffff;
}
void Program::bindAttributes(const VertexDecl& _vertexDecl, uint32_t _baseVertex) const
{
for (uint32_t ii = 0; Attrib::Count != m_used[ii]; ++ii)
{
Attrib::Enum attr = Attrib::Enum(m_used[ii]);
GLint loc = m_attributes[attr];
uint8_t num;
AttribType::Enum type;
bool normalized;
bool asInt;
_vertexDecl.decode(attr, num, type, normalized, asInt);
if (-1 != loc)
{
if (0xff != _vertexDecl.m_attributes[attr])
{
GL_CHECK(glEnableVertexAttribArray(loc) );
GL_CHECK(glVertexAttribDivisor(loc, 0) );
uint32_t baseVertex = _baseVertex*_vertexDecl.m_stride + _vertexDecl.m_offset[attr];
GL_CHECK(glVertexAttribPointer(loc, num, s_attribType[type], normalized, _vertexDecl.m_stride, (void*)(uintptr_t)baseVertex) );
}
else
{
GL_CHECK(glDisableVertexAttribArray(loc) );
}
}
}
}
void Program::bindInstanceData(uint32_t _stride, uint32_t _baseVertex) const
{
uint32_t baseVertex = _baseVertex;
for (uint32_t ii = 0; 0xffff != m_instanceData[ii]; ++ii)
{
GLint loc = m_instanceData[ii];
GL_CHECK(glEnableVertexAttribArray(loc) );
GL_CHECK(glVertexAttribPointer(loc, 4, GL_FLOAT, GL_FALSE, _stride, (void*)(uintptr_t)baseVertex) );
GL_CHECK(glVertexAttribDivisor(loc, 1) );
baseVertex += 16;
}
}
void IndexBuffer::destroy()
{
GL_CHECK(glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0) );
GL_CHECK(glDeleteBuffers(1, &m_id) );
m_vcref.invalidate(s_renderCtx->m_vaoStateCache);
}
void VertexBuffer::destroy()
{
GL_CHECK(glBindBuffer(GL_ARRAY_BUFFER, 0) );
GL_CHECK(glDeleteBuffers(1, &m_id) );
m_vcref.invalidate(s_renderCtx->m_vaoStateCache);
}
static void texImage(GLenum _target, GLint _level, GLint _internalFormat, GLsizei _width, GLsizei _height, GLsizei _depth, GLint _border, GLenum _format, GLenum _type, const GLvoid* _data)
{
if (BX_ENABLED(!BGFX_CONFIG_RENDERER_OPENGL) )
{
_internalFormat = _format; // GLES wants internal format to match format...
}
if (_target == GL_TEXTURE_3D)
{
GL_CHECK(glTexImage3D(_target, _level, _internalFormat, _width, _height, _depth, _border, _format, _type, _data) );
}
else
{
BX_UNUSED(_depth);
GL_CHECK(glTexImage2D(_target, _level, _internalFormat, _width, _height, _border, _format, _type, _data) );
}
}
static void texSubImage(GLenum _target, GLint _level, GLint _xoffset, GLint _yoffset, GLint _zoffset, GLsizei _width, GLsizei _height, GLsizei _depth, GLenum _format, GLenum _type, const GLvoid* _data)
{
if (_target == GL_TEXTURE_3D)
{
GL_CHECK(glTexSubImage3D(_target, _level, _xoffset, _yoffset, _zoffset, _width, _height, _depth, _format, _type, _data) );
}
else
{
BX_UNUSED(_zoffset, _depth);
GL_CHECK(glTexSubImage2D(_target, _level, _xoffset, _yoffset, _width, _height, _format, _type, _data) );
}
}
static void compressedTexImage(GLenum _target, GLint _level, GLenum _internalformat, GLsizei _width, GLsizei _height, GLsizei _depth, GLint _border, GLsizei _imageSize, const GLvoid* _data)
{
if (_target == GL_TEXTURE_3D)
{
GL_CHECK(glCompressedTexImage3D(_target, _level, _internalformat, _width, _height, _depth, _border, _imageSize, _data) );
}
else
{
BX_UNUSED(_depth);
GL_CHECK(glCompressedTexImage2D(_target, _level, _internalformat, _width, _height, _border, _imageSize, _data) );
}
}
static void compressedTexSubImage(GLenum _target, GLint _level, GLint _xoffset, GLint _yoffset, GLint _zoffset, GLsizei _width, GLsizei _height, GLsizei _depth, GLenum _format, GLsizei _imageSize, const GLvoid* _data)
{
if (_target == GL_TEXTURE_3D)
{
GL_CHECK(glCompressedTexSubImage3D(_target, _level, _xoffset, _yoffset, _zoffset, _width, _height, _depth, _format, _imageSize, _data) );
}
else
{
BX_UNUSED(_zoffset, _depth);
GL_CHECK(glCompressedTexSubImage2D(_target, _level, _xoffset, _yoffset, _width, _height, _format, _imageSize, _data) );
}
}
bool Texture::init(GLenum _target, uint32_t _width, uint32_t _height, uint8_t _format, uint8_t _numMips, uint32_t _flags)
{
m_target = _target;
m_numMips = _numMips;
m_flags = _flags;
m_currentFlags = UINT32_MAX;
m_width = _width;
m_height = _height;
m_requestedFormat = _format;
m_textureFormat = _format;
const bool bufferOnly = 0 != (m_flags&BGFX_TEXTURE_RT_BUFFER_ONLY);
if (!bufferOnly)
{
GL_CHECK(glGenTextures(1, &m_id) );
BX_CHECK(0 != m_id, "Failed to generate texture id.");
GL_CHECK(glBindTexture(_target, m_id) );
setSamplerState(_flags);
const TextureFormatInfo& tfi = s_textureFormat[_format];
m_fmt = tfi.m_fmt;
m_type = tfi.m_type;
const bool compressed = isCompressed(TextureFormat::Enum(_format) );
const bool decompress = !tfi.m_supported && compressed;
if (decompress)
{
m_textureFormat = (uint8_t)TextureFormat::BGRA8;
const TextureFormatInfo& tfi = s_textureFormat[TextureFormat::BGRA8];
m_fmt = tfi.m_fmt;
m_type = tfi.m_type;
}
#if BGFX_CONFIG_RENDERER_OPENGL
if (GL_RGBA == m_fmt
&& s_renderCtx->m_textureSwizzleSupport)
{
GLint swizzleMask[] = { GL_BLUE, GL_GREEN, GL_RED, GL_ALPHA };
GL_CHECK(glTexParameteriv(GL_TEXTURE_2D, GL_TEXTURE_SWIZZLE_RGBA, swizzleMask) );
}
#endif // BGFX_CONFIG_RENDERER_OPENGL
}
const bool renderTarget = 0 != (m_flags&BGFX_TEXTURE_RT_MASK);
if (renderTarget)
{
uint32_t msaaQuality = ( (m_flags&BGFX_TEXTURE_RT_MSAA_MASK)>>BGFX_TEXTURE_RT_MSAA_SHIFT);
msaaQuality = bx::uint32_satsub(msaaQuality, 1);
msaaQuality = bx::uint32_min(s_renderCtx->m_maxMsaa, msaaQuality == 0 ? 0 : 1<<msaaQuality);
if (0 != msaaQuality
|| bufferOnly)
{
GL_CHECK(glGenRenderbuffers(1, &m_rbo) );
BX_CHECK(0 != m_rbo, "Failed to generate renderbuffer id.");
GL_CHECK(glBindRenderbuffer(GL_RENDERBUFFER, m_rbo) );
if (0 == msaaQuality)
{
GL_CHECK(glRenderbufferStorage(GL_RENDERBUFFER
, s_textureFormat[m_textureFormat].m_internalFmt
, _width
, _height
) );
}
else if (BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGL|BGFX_CONFIG_RENDERER_OPENGLES3) )
{
GL_CHECK(glRenderbufferStorageMultisample(GL_RENDERBUFFER
, msaaQuality
, s_textureFormat[m_textureFormat].m_internalFmt
, _width
, _height
) );
}
GL_CHECK(glBindRenderbuffer(GL_RENDERBUFFER, 0) );
if (bufferOnly)
{
// This is render buffer, there is no sampling, no need
// to create texture.
return false;
}
}
}
return true;
}
void Texture::create(const Memory* _mem, uint32_t _flags, uint8_t _skip)
{
ImageContainer imageContainer;
if (imageParse(imageContainer, _mem->data, _mem->size) )
{
uint8_t numMips = imageContainer.m_numMips;
const uint32_t startLod = bx::uint32_min(_skip, numMips-1);
numMips -= startLod;
const ImageBlockInfo& blockInfo = getBlockInfo(TextureFormat::Enum(imageContainer.m_format) );
const uint32_t textureWidth = bx::uint32_max(blockInfo.blockWidth, imageContainer.m_width >>startLod);
const uint32_t textureHeight = bx::uint32_max(blockInfo.blockHeight, imageContainer.m_height>>startLod);
GLenum target = GL_TEXTURE_2D;
if (imageContainer.m_cubeMap)
{
target = GL_TEXTURE_CUBE_MAP;
}
else if (imageContainer.m_depth > 1)
{
target = GL_TEXTURE_3D;
}
if (!init(target
, textureWidth
, textureHeight
, imageContainer.m_format
, numMips
, _flags
) )
{
return;
}
target = GL_TEXTURE_CUBE_MAP == m_target ? GL_TEXTURE_CUBE_MAP_POSITIVE_X : m_target;
const GLenum internalFmt = s_textureFormat[m_textureFormat].m_internalFmt;
const bool swizzle = true
&& TextureFormat::BGRA8 == m_textureFormat
&& GL_RGBA == m_fmt
&& !s_renderCtx->m_textureSwizzleSupport
;
const bool convert = m_textureFormat != m_requestedFormat;
const bool compressed = isCompressed(TextureFormat::Enum(m_textureFormat) );
uint32_t blockWidth = 1;
uint32_t blockHeight = 1;
if (convert && compressed)
{
blockWidth = blockInfo.blockWidth;
blockHeight = blockInfo.blockHeight;
}
BX_WARN(!swizzle && !convert, "Texture %s%s%s from %s to %s."
, swizzle ? "swizzle" : ""
, swizzle&&convert ? " and " : ""
, convert ? "convert" : ""
, getName( (TextureFormat::Enum)m_requestedFormat)
, getName( (TextureFormat::Enum)m_textureFormat)
);
uint8_t* temp = NULL;
if (convert || swizzle)
{
temp = (uint8_t*)BX_ALLOC(g_allocator, textureWidth*textureHeight*4);
}
for (uint8_t side = 0, numSides = imageContainer.m_cubeMap ? 6 : 1; side < numSides; ++side)
{
uint32_t width = textureWidth;
uint32_t height = textureHeight;
uint32_t depth = imageContainer.m_depth;
for (uint32_t lod = 0, num = numMips; lod < num; ++lod)
{
width = bx::uint32_max(blockWidth, width);
height = bx::uint32_max(blockHeight, height);
depth = bx::uint32_max(1, depth);
ImageMip mip;
if (imageGetRawData(imageContainer, side, lod+startLod, _mem->data, _mem->size, mip) )
{
if (compressed)
{
compressedTexImage(target+side
, lod
, internalFmt
, width
, height
, depth
, 0
, mip.m_size
, mip.m_data
);
}
else
{
const uint8_t* data = mip.m_data;
if (convert)
{
imageDecodeToBgra8(temp, mip.m_data, mip.m_width, mip.m_height, mip.m_width*4, mip.m_format);
data = temp;
}
if (swizzle)
{
imageSwizzleBgra8(width, height, mip.m_width*4, data, temp);
data = temp;
}
texImage(target+side
, lod
, internalFmt
, width
, height
, depth
, 0
, m_fmt
, m_type
, data
);
}
}
else
{
if (compressed)
{
uint32_t size = bx::uint32_max(1, (width + 3)>>2)
* bx::uint32_max(1, (height + 3)>>2)
* 4*4*getBitsPerPixel(TextureFormat::Enum(m_textureFormat) )/8
;
compressedTexImage(target+side
, lod
, internalFmt
, width
, height
, depth
, 0
, size
, NULL
);
}
else
{
texImage(target+side
, lod
, internalFmt
, width
, height
, depth
, 0
, m_fmt
, m_type
, NULL
);
}
}
width >>= 1;
height >>= 1;
depth >>= 1;
}
}
if (NULL != temp)
{
BX_FREE(g_allocator, temp);
}
}
GL_CHECK(glBindTexture(m_target, 0) );
}
void Texture::destroy()
{
if (0 != m_id)
{
GL_CHECK(glBindTexture(m_target, 0) );
GL_CHECK(glDeleteTextures(1, &m_id) );
m_id = 0;
}
if (0 != m_rbo)
{
GL_CHECK(glDeleteRenderbuffers(1, &m_rbo) );
m_rbo = 0;
}
}
void Texture::update(uint8_t _side, uint8_t _mip, const Rect& _rect, uint16_t _z, uint16_t _depth, uint16_t _pitch, const Memory* _mem)
{
BX_UNUSED(_z, _depth);
const uint32_t bpp = getBitsPerPixel(TextureFormat::Enum(m_textureFormat) );
const uint32_t rectpitch = _rect.m_width*bpp/8;
uint32_t srcpitch = UINT16_MAX == _pitch ? rectpitch : _pitch;
GL_CHECK(glBindTexture(m_target, m_id) );
GL_CHECK(glPixelStorei(GL_UNPACK_ALIGNMENT, 1) );
GLenum target = GL_TEXTURE_CUBE_MAP == m_target ? GL_TEXTURE_CUBE_MAP_POSITIVE_X : m_target;
const bool swizzle = true
&& TextureFormat::BGRA8 == m_textureFormat
&& GL_RGBA == m_fmt
&& !s_renderCtx->m_textureSwizzleSupport
;
const bool unpackRowLength = !!BGFX_CONFIG_RENDERER_OPENGL || s_extension[Extension::EXT_unpack_subimage].m_supported;
const bool convert = m_textureFormat != m_requestedFormat;
const bool compressed = isCompressed(TextureFormat::Enum(m_textureFormat) );
const uint32_t width = _rect.m_width;
const uint32_t height = _rect.m_height;
uint8_t* temp = NULL;
if (convert
|| swizzle
|| !unpackRowLength)
{
temp = (uint8_t*)BX_ALLOC(g_allocator, rectpitch*height);
}
else if (unpackRowLength)
{
GL_CHECK(glPixelStorei(GL_UNPACK_ROW_LENGTH, srcpitch*8/bpp) );
}
if (compressed)
{
const uint8_t* data = _mem->data;
if (!unpackRowLength)
{
imageCopy(width, height, bpp, srcpitch, data, temp);
data = temp;
}
GL_CHECK(compressedTexSubImage(target+_side
, _mip
, _rect.m_x
, _rect.m_y
, _z
, _rect.m_width
, _rect.m_height
, _depth
, m_fmt
, _mem->size
, data
) );
}
else
{
const uint8_t* data = _mem->data;
if (convert)
{
imageDecodeToBgra8(temp, data, width, height, srcpitch, m_requestedFormat);
data = temp;
srcpitch = rectpitch;
}
if (swizzle)
{
imageSwizzleBgra8(width, height, srcpitch, data, temp);
data = temp;
}
else if (!unpackRowLength && !convert)
{
imageCopy(width, height, bpp, srcpitch, data, temp);
data = temp;
}
GL_CHECK(texSubImage(target+_side
, _mip
, _rect.m_x
, _rect.m_y
, _z
, _rect.m_width
, _rect.m_height
, _depth
, m_fmt
, m_type
, data
) );
}
if (NULL != temp)
{
BX_FREE(g_allocator, temp);
}
}
void Texture::setSamplerState(uint32_t _flags)
{
const uint32_t flags = _flags&(~BGFX_TEXTURE_RESERVED_MASK);
if ( (0 != (BGFX_SAMPLER_DEFAULT_FLAGS & _flags) && m_flags != m_currentFlags)
|| m_currentFlags != flags)
{
const GLenum target = m_target;
const uint8_t numMips = m_numMips;
GL_CHECK(glTexParameteri(target, GL_TEXTURE_WRAP_S, s_textureAddress[(flags&BGFX_TEXTURE_U_MASK)>>BGFX_TEXTURE_U_SHIFT]) );
GL_CHECK(glTexParameteri(target, GL_TEXTURE_WRAP_T, s_textureAddress[(flags&BGFX_TEXTURE_V_MASK)>>BGFX_TEXTURE_V_SHIFT]) );
if (BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGL|BGFX_CONFIG_RENDERER_OPENGLES3)
|| s_extension[Extension::APPLE_texture_max_level].m_supported)
{
GL_CHECK(glTexParameteri(target, GL_TEXTURE_MAX_LEVEL, numMips-1) );
}
if (target == GL_TEXTURE_3D)
{
GL_CHECK(glTexParameteri(target, GL_TEXTURE_WRAP_R, s_textureAddress[(flags&BGFX_TEXTURE_W_MASK)>>BGFX_TEXTURE_W_SHIFT]) );
}
const uint32_t mag = (flags&BGFX_TEXTURE_MAG_MASK)>>BGFX_TEXTURE_MAG_SHIFT;
const uint32_t min = (flags&BGFX_TEXTURE_MIN_MASK)>>BGFX_TEXTURE_MIN_SHIFT;
const uint32_t mip = (flags&BGFX_TEXTURE_MIP_MASK)>>BGFX_TEXTURE_MIP_SHIFT;
const GLenum minFilter = s_textureFilterMin[min][1 < numMips ? mip+1 : 0];
GL_CHECK(glTexParameteri(target, GL_TEXTURE_MAG_FILTER, s_textureFilterMag[mag]) );
GL_CHECK(glTexParameteri(target, GL_TEXTURE_MIN_FILTER, minFilter) );
if (0 != (flags & (BGFX_TEXTURE_MIN_ANISOTROPIC|BGFX_TEXTURE_MAG_ANISOTROPIC) )
&& 0.0f < s_renderCtx->m_maxAnisotropy)
{
GL_CHECK(glTexParameterf(target, GL_TEXTURE_MAX_ANISOTROPY_EXT, s_renderCtx->m_maxAnisotropy) );
}
if (!BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGLES2)
|| s_renderCtx->m_shadowSamplersSupport)
{
const uint32_t cmpFunc = (flags&BGFX_TEXTURE_COMPARE_MASK)>>BGFX_TEXTURE_COMPARE_SHIFT;
if (0 == cmpFunc)
{
GL_CHECK(glTexParameteri(m_target, GL_TEXTURE_COMPARE_MODE, GL_NONE) );
}
else
{
GL_CHECK(glTexParameteri(m_target, GL_TEXTURE_COMPARE_MODE, GL_COMPARE_REF_TO_TEXTURE) );
GL_CHECK(glTexParameteri(m_target, GL_TEXTURE_COMPARE_FUNC, s_cmpFunc[cmpFunc]) );
}
}
m_currentFlags = flags;
}
}
void Texture::commit(uint32_t _stage, uint32_t _flags)
{
GL_CHECK(glActiveTexture(GL_TEXTURE0+_stage) );
GL_CHECK(glBindTexture(m_target, m_id) );
if (BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGLES2) )
{
// GLES2 doesn't have support for sampler object.
setSamplerState(_flags);
}
else if (BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGL < 31) )
{
// In case that GL 2.1 sampler object is supported via extension.
if (s_renderCtx->m_samplerObjectSupport)
{
s_renderCtx->setSamplerState(_stage, m_numMips, _flags);
}
else
{
setSamplerState(_flags);
}
}
else
{
// Everything else has sampler object.
s_renderCtx->setSamplerState(_stage, m_numMips, _flags);
}
}
void writeString(bx::WriterI* _writer, const char* _str)
{
bx::write(_writer, _str, (int32_t)strlen(_str) );
}
void strins(char* _str, const char* _insert)
{
size_t len = strlen(_insert);
memmove(&_str[len], _str, strlen(_str)+1);
memcpy(_str, _insert, len);
}
void Shader::create(GLenum _type, Memory* _mem)
{
m_id = glCreateShader(_type);
m_type = _type;
bx::MemoryReader reader(_mem->data, _mem->size);
m_hash = bx::hashMurmur2A(_mem->data, _mem->size);
uint32_t magic;
bx::read(&reader, magic);
uint32_t iohash;
bx::read(&reader, iohash);
const char* code = (const char*)reader.getDataPtr();
if (0 != m_id)
{
int32_t codeLen = (int32_t)strlen(code);
int32_t tempLen = codeLen + (4<<10);
char* temp = (char*)alloca(tempLen);
bx::StaticMemoryBlockWriter writer(temp, tempLen);
if (BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGLES2) )
{
bool usesDerivatives = s_extension[Extension::OES_standard_derivatives].m_supported
&& bx::findIdentifierMatch(code, s_OES_standard_derivatives)
;
bool usesFragDepth = !!bx::findIdentifierMatch(code, "gl_FragDepth");
bool usesShadowSamplers = !!bx::findIdentifierMatch(code, s_EXT_shadow_samplers);
bool usesTexture3D = s_extension[Extension::OES_texture_3D].m_supported
&& bx::findIdentifierMatch(code, s_OES_texture_3D)
;
bool usesTextureLod = !!bx::findIdentifierMatch(code, s_EXT_shader_texture_lod);
if (usesDerivatives)
{
writeString(&writer, "#extension GL_OES_standard_derivatives : enable\n");
}
bool insertFragDepth = false;
if (usesFragDepth)
{
BX_WARN(s_extension[Extension::EXT_frag_depth].m_supported, "EXT_frag_depth is used but not supported by GLES2 driver.");
if (s_extension[Extension::EXT_frag_depth].m_supported)
{
writeString(&writer
, "#extension GL_EXT_frag_depth : enable\n"
"#define bgfx_FragDepth gl_FragDepthEXT\n"
);
char str[128];
bx::snprintf(str, BX_COUNTOF(str), "%s float gl_FragDepthEXT;\n"
, s_extension[Extension::OES_fragment_precision_high].m_supported ? "highp" : "mediump"
);
writeString(&writer, str);
}
else
{
insertFragDepth = true;
}
}
if (usesShadowSamplers)
{
if (s_renderCtx->m_shadowSamplersSupport)
{
writeString(&writer
, "#extension GL_EXT_shadow_samplers : enable\n"
"#define shadow2D shadow2DEXT\n"
"#define shadow2DProj shadow2DProjEXT\n"
);
}
else
{
writeString(&writer
, "#define sampler2DShadow sampler2D\n"
"#define shadow2D(_sampler, _coord) step(_coord.z, texture2D(_sampler, _coord.xy).x)\n"
"#define shadow2DProj(_sampler, _coord) step(_coord.z/_coord.w, texture2DProj(_sampler, _coord).x)\n"
);
}
}
if (usesTexture3D)
{
writeString(&writer, "#extension GL_OES_texture_3D : enable\n");
}
if (usesTextureLod)
{
BX_WARN(s_extension[Extension::EXT_shader_texture_lod].m_supported, "EXT_shader_texture_lod is used but not supported by GLES2 driver.");
if (s_extension[Extension::EXT_shader_texture_lod].m_supported)
{
writeString(&writer
, "#extension GL_EXT_shader_texture_lod : enable\n"
"#define texture2DLod texture2DLodEXT\n"
"#define texture2DProjLod texture2DProjLodEXT\n"
"#define textureCubeLod textureCubeLodEXT\n"
);
}
else
{
writeString(&writer
, "#define texture2DLod(_sampler, _coord, _level) texture2D(_sampler, _coord)\n"
"#define texture2DProjLod(_sampler, _coord, _level) texture2DProj(_sampler, _coord)\n"
"#define textureCubeLod(_sampler, _coord, _level) textureCube(_sampler, _coord)\n"
);
}
}
writeString(&writer, "precision highp float;\n");
bx::write(&writer, code, codeLen);
bx::write(&writer, '\0');
if (insertFragDepth)
{
char* entry = strstr(temp, "void main ()");
if (NULL != entry)
{
char* brace = strstr(entry, "{");
if (NULL != brace)
{
const char* end = bx::strmb(brace, '{', '}');
if (NULL != end)
{
strins(brace+1, "\n float bgfx_FragDepth = 0.0;\n");
}
}
}
}
// Replace all instances of gl_FragDepth with bgfx_FragDepth.
for (const char* fragDepth = bx::findIdentifierMatch(temp, "gl_FragDepth"); NULL != fragDepth; fragDepth = bx::findIdentifierMatch(fragDepth, "gl_FragDepth") )
{
char* insert = const_cast<char*>(fragDepth);
strins(insert, "bg");
memcpy(insert + 2, "fx", 2);
}
}
else if (BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGLES3) )
{
writeString(&writer, "precision highp float;\n");
bx::write(&writer, code, codeLen);
bx::write(&writer, '\0');
}
else if (BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGL <= 21) )
{
bool usesTextureLod = s_extension[Extension::ARB_shader_texture_lod].m_supported
&& bx::findIdentifierMatch(code, s_ARB_shader_texture_lod)
;
if (usesTextureLod)
{
writeString(&writer, "#version 120\n");
if (_type == GL_FRAGMENT_SHADER)
{
writeString(&writer, "#extension GL_ARB_shader_texture_lod : enable\n");
}
}
writeString(&writer
, "#define lowp\n"
"#define mediump\n"
"#define highp\n"
);
bx::write(&writer, code, codeLen);
bx::write(&writer, '\0');
}
else if (BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGL >= 31) )
{
writeString(&writer, "#version 140\n");
if (_type == GL_FRAGMENT_SHADER)
{
writeString(&writer, "#define varying in\n");
writeString(&writer, "#define texture2D texture\n");
writeString(&writer, "#define texture2DLod textureLod\n");
writeString(&writer, "#define texture2DProj textureProj\n");
writeString(&writer, "#define shadow2D(_sampler, _coord) vec2(textureProj(_sampler, vec4(_coord, 1.0) ) )\n");
writeString(&writer, "#define shadow2DProj(_sampler, _coord) vec2(textureProj(_sampler, _coord) ) )\n");
writeString(&writer, "#define texture3D texture\n");
writeString(&writer, "#define texture3DLod textureLod\n");
writeString(&writer, "#define textureCube texture\n");
writeString(&writer, "#define textureCubeLod textureLod\n");
writeString(&writer, "out vec4 bgfx_FragColor;\n");
writeString(&writer, "#define gl_FragColor bgfx_FragColor\n");
}
else
{
writeString(&writer, "#define attribute in\n");
writeString(&writer, "#define varying out\n");
}
writeString(&writer
, "#define lowp\n"
"#define mediump\n"
"#define highp\n"
);
bx::write(&writer, code, codeLen);
bx::write(&writer, '\0');
}
code = temp;
GL_CHECK(glShaderSource(m_id, 1, (const GLchar**)&code, NULL) );
GL_CHECK(glCompileShader(m_id) );
GLint compiled = 0;
GL_CHECK(glGetShaderiv(m_id, GL_COMPILE_STATUS, &compiled) );
if (0 == compiled)
{
BX_TRACE("\n####\n%s\n####", code);
GLsizei len;
char log[1024];
GL_CHECK(glGetShaderInfoLog(m_id, sizeof(log), &len, log) );
BX_TRACE("Failed to compile shader. %d: %s", compiled, log);
GL_CHECK(glDeleteShader(m_id) );
BGFX_FATAL(false, bgfx::Fatal::InvalidShader, "Failed to compile shader.");
}
else if (BX_ENABLED(BGFX_CONFIG_DEBUG)
&& s_extension[Extension::ANGLE_translated_shader_source].m_supported)
{
GLsizei len;
GL_CHECK(glGetShaderiv(m_id, GL_TRANSLATED_SHADER_SOURCE_LENGTH_ANGLE, &len) );
char* source = (char*)alloca(len);
GL_CHECK(glGetTranslatedShaderSourceANGLE(m_id, len, &len, source) );
BX_TRACE("ANGLE source (len: %d):\n%s\n####", len, source);
}
}
}
void Shader::destroy()
{
if (0 != m_id)
{
GL_CHECK(glDeleteShader(m_id) );
m_id = 0;
}
}
void FrameBuffer::create(uint8_t _num, const TextureHandle* _handles)
{
GL_CHECK(glGenFramebuffers(1, &m_fbo[0]) );
GL_CHECK(glBindFramebuffer(GL_FRAMEBUFFER, m_fbo[0]) );
bool needResolve = false;
uint32_t colorIdx = 0;
for (uint32_t ii = 0; ii < _num; ++ii)
{
TextureHandle handle = _handles[ii];
if (isValid(handle) )
{
const Texture& texture = s_renderCtx->m_textures[handle.idx];
if (0 == colorIdx)
{
m_width = texture.m_width;
m_height = texture.m_height;
}
GLenum attachment = GL_COLOR_ATTACHMENT0 + colorIdx;
if (isDepth( (TextureFormat::Enum)texture.m_textureFormat) )
{
attachment = GL_DEPTH_ATTACHMENT;
}
else
{
++colorIdx;
}
if (0 != texture.m_rbo)
{
GL_CHECK(glFramebufferRenderbuffer(GL_FRAMEBUFFER
, attachment
, GL_RENDERBUFFER
, texture.m_rbo
) );
}
else
{
GL_CHECK(glFramebufferTexture2D(GL_FRAMEBUFFER
, attachment
, texture.m_target
, texture.m_id
, 0
) );
}
needResolve |= (0 != texture.m_rbo) && (0 != texture.m_id);
}
}
if (BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGL) )
{
if (0 == colorIdx)
{
// When only depth is attached disable draw buffer to avoid
// GL_FRAMEBUFFER_INCOMPLETE_DRAW_BUFFER.
GL_CHECK(glDrawBuffer(GL_NONE) );
}
// Disable read buffer to avoid GL_FRAMEBUFFER_INCOMPLETE_READ_BUFFER.
GL_CHECK(glReadBuffer(GL_NONE) );
}
BX_CHECK(GL_FRAMEBUFFER_COMPLETE == glCheckFramebufferStatus(GL_FRAMEBUFFER)
, "glCheckFramebufferStatus failed 0x%08x"
, glCheckFramebufferStatus(GL_FRAMEBUFFER)
);
if (needResolve)
{
GL_CHECK(glGenFramebuffers(1, &m_fbo[1]) );
GL_CHECK(glBindFramebuffer(GL_FRAMEBUFFER, m_fbo[1]) );
for (uint32_t ii = 0, colorIdx = 0; ii < _num; ++ii)
{
TextureHandle handle = _handles[ii];
if (isValid(handle) )
{
const Texture& texture = s_renderCtx->m_textures[handle.idx];
if (0 != texture.m_id)
{
GLenum attachment = GL_COLOR_ATTACHMENT0 + colorIdx;
if (isDepth( (TextureFormat::Enum)texture.m_textureFormat) )
{
attachment = GL_DEPTH_ATTACHMENT;
}
else
{
++colorIdx;
GL_CHECK(glFramebufferTexture2D(GL_FRAMEBUFFER
, attachment
, texture.m_target
, texture.m_id
, 0
) );
}
}
}
}
BX_CHECK(GL_FRAMEBUFFER_COMPLETE == glCheckFramebufferStatus(GL_FRAMEBUFFER)
, "glCheckFramebufferStatus failed 0x%08x"
, glCheckFramebufferStatus(GL_FRAMEBUFFER)
);
}
GL_CHECK(glBindFramebuffer(GL_FRAMEBUFFER, s_renderCtx->m_msaaBackBufferFbo) );
}
void FrameBuffer::destroy()
{
GL_CHECK(glDeleteFramebuffers(0 == m_fbo[1] ? 1 : 2, m_fbo) );
memset(m_fbo, 0, sizeof(m_fbo) );
}
void FrameBuffer::resolve()
{
if (0 != m_fbo[1])
{
GL_CHECK(glBindFramebuffer(GL_READ_FRAMEBUFFER, m_fbo[0]) );
GL_CHECK(glReadBuffer(GL_COLOR_ATTACHMENT0) );
GL_CHECK(glBindFramebuffer(GL_DRAW_FRAMEBUFFER, m_fbo[1]) );
GL_CHECK(glBlitFramebuffer(0
, 0
, m_width
, m_height
, 0
, 0
, m_width
, m_height
, GL_COLOR_BUFFER_BIT
, GL_LINEAR
) );
GL_CHECK(glBindFramebuffer(GL_READ_FRAMEBUFFER, m_fbo[0]) );
GL_CHECK(glReadBuffer(GL_NONE) );
GL_CHECK(glBindFramebuffer(GL_FRAMEBUFFER, s_renderCtx->m_msaaBackBufferFbo) );
}
}
void ConstantBuffer::commit()
{
reset();
do
{
uint32_t opcode = read();
if (UniformType::End == opcode)
{
break;
}
UniformType::Enum type;
uint16_t ignore;
uint16_t num;
uint16_t copy;
decodeOpcode(opcode, type, ignore, num, copy);
const char* data;
if (copy)
{
data = read(g_uniformTypeSize[type]*num);
}
else
{
memcpy(&data, read(sizeof(void*) ), sizeof(void*) );
}
uint32_t loc = read();
#define CASE_IMPLEMENT_UNIFORM(_uniform, _glsuffix, _dxsuffix, _type) \
case UniformType::_uniform: \
{ \
_type* value = (_type*)data; \
GL_CHECK(glUniform##_glsuffix(loc, num, value) ); \
} \
break;
#define CASE_IMPLEMENT_UNIFORM_T(_uniform, _glsuffix, _dxsuffix, _type) \
case UniformType::_uniform: \
{ \
_type* value = (_type*)data; \
GL_CHECK(glUniform##_glsuffix(loc, num, GL_FALSE, value) ); \
} \
break;
switch (type)
{
// case ConstantType::Uniform1iv:
// {
// int* value = (int*)data;
// BX_TRACE("Uniform1iv sampler %d, loc %d (num %d, copy %d)", *value, loc, num, copy);
// GL_CHECK(glUniform1iv(loc, num, value) );
// }
// break;
CASE_IMPLEMENT_UNIFORM(Uniform1i, 1iv, I, int);
CASE_IMPLEMENT_UNIFORM(Uniform1f, 1fv, F, float);
CASE_IMPLEMENT_UNIFORM(Uniform1iv, 1iv, I, int);
CASE_IMPLEMENT_UNIFORM(Uniform1fv, 1fv, F, float);
CASE_IMPLEMENT_UNIFORM(Uniform2fv, 2fv, F, float);
CASE_IMPLEMENT_UNIFORM(Uniform3fv, 3fv, F, float);
CASE_IMPLEMENT_UNIFORM(Uniform4fv, 4fv, F, float);
CASE_IMPLEMENT_UNIFORM_T(Uniform3x3fv, Matrix3fv, F, float);
CASE_IMPLEMENT_UNIFORM_T(Uniform4x4fv, Matrix4fv, F, float);
case UniformType::End:
break;
default:
BX_TRACE("%4d: INVALID 0x%08x, t %d, l %d, n %d, c %d", m_pos, opcode, type, loc, num, copy);
break;
}
#undef CASE_IMPLEMENT_UNIFORM
#undef CASE_IMPLEMENT_UNIFORM_T
} while (true);
}
void TextVideoMemBlitter::setup()
{
if (0 != s_renderCtx->m_vao)
{
GL_CHECK(glBindVertexArray(s_renderCtx->m_vao) );
}
uint32_t width = s_renderCtx->m_resolution.m_width;
uint32_t height = s_renderCtx->m_resolution.m_height;
GL_CHECK(glBindFramebuffer(GL_FRAMEBUFFER, s_renderCtx->m_backBufferFbo) );
GL_CHECK(glViewport(0, 0, width, height) );
GL_CHECK(glDisable(GL_SCISSOR_TEST) );
GL_CHECK(glDisable(GL_STENCIL_TEST) );
GL_CHECK(glDisable(GL_DEPTH_TEST) );
GL_CHECK(glDepthFunc(GL_ALWAYS) );
GL_CHECK(glDisable(GL_CULL_FACE) );
GL_CHECK(glDisable(GL_BLEND) );
GL_CHECK(glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE) );
Program& program = s_renderCtx->m_program[m_program.idx];
GL_CHECK(glUseProgram(program.m_id) );
GL_CHECK(glUniform1i(program.m_sampler[0], 0) );
float proj[16];
mtxOrtho(proj, 0.0f, (float)width, (float)height, 0.0f, 0.0f, 1000.0f);
GL_CHECK(glUniformMatrix4fv(program.m_predefined[0].m_loc
, 1
, GL_FALSE
, proj
) );
GL_CHECK(glActiveTexture(GL_TEXTURE0) );
GL_CHECK(glBindTexture(GL_TEXTURE_2D, s_renderCtx->m_textures[m_texture.idx].m_id) );
}
void TextVideoMemBlitter::render(uint32_t _numIndices)
{
uint32_t numVertices = _numIndices*4/6;
s_renderCtx->m_indexBuffers[m_ib->handle.idx].update(0, _numIndices*2, m_ib->data);
s_renderCtx->m_vertexBuffers[m_vb->handle.idx].update(0, numVertices*m_decl.m_stride, m_vb->data);
VertexBuffer& vb = s_renderCtx->m_vertexBuffers[m_vb->handle.idx];
GL_CHECK(glBindBuffer(GL_ARRAY_BUFFER, vb.m_id) );
IndexBuffer& ib = s_renderCtx->m_indexBuffers[m_ib->handle.idx];
GL_CHECK(glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ib.m_id) );
Program& program = s_renderCtx->m_program[m_program.idx];
program.bindAttributes(m_decl, 0);
GL_CHECK(glDrawElements(GL_TRIANGLES
, _numIndices
, GL_UNSIGNED_SHORT
, (void*)0
) );
}
void ClearQuad::clear(const Rect& _rect, const Clear& _clear, uint32_t _height)
{
if (BX_ENABLED(BGFX_CONFIG_CLEAR_QUAD)
&& s_renderCtx->m_useClearQuad)
{
const GLuint defaultVao = s_renderCtx->m_vao;
if (0 != defaultVao)
{
GL_CHECK(glBindVertexArray(defaultVao) );
}
GL_CHECK(glDisable(GL_SCISSOR_TEST) );
GL_CHECK(glDisable(GL_CULL_FACE) );
GL_CHECK(glDisable(GL_BLEND) );
GLboolean colorMask = !!(BGFX_CLEAR_COLOR_BIT & _clear.m_flags);
GL_CHECK(glColorMask(colorMask, colorMask, colorMask, colorMask) );
if (BGFX_CLEAR_DEPTH_BIT & _clear.m_flags)
{
GL_CHECK(glEnable(GL_DEPTH_TEST) );
GL_CHECK(glDepthFunc(GL_ALWAYS) );
GL_CHECK(glDepthMask(GL_TRUE) );
}
else
{
GL_CHECK(glDisable(GL_DEPTH_TEST) );
}
if (BGFX_CLEAR_STENCIL_BIT & _clear.m_flags)
{
GL_CHECK(glEnable(GL_STENCIL_TEST) );
GL_CHECK(glStencilFuncSeparate(GL_FRONT_AND_BACK, GL_ALWAYS, _clear.m_stencil, 0xff) );
GL_CHECK(glStencilOpSeparate(GL_FRONT_AND_BACK, GL_REPLACE, GL_REPLACE, GL_REPLACE) );
}
else
{
GL_CHECK(glDisable(GL_STENCIL_TEST) );
}
VertexBuffer& vb = s_renderCtx->m_vertexBuffers[m_vb->handle.idx];
VertexDecl& vertexDecl = s_renderCtx->m_vertexDecls[m_vb->decl.idx];
{
struct Vertex
{
float m_x;
float m_y;
float m_z;
uint32_t m_abgr;
} * vertex = (Vertex*)m_vb->data;
BX_CHECK(vertexDecl.m_stride == sizeof(Vertex), "Stride/Vertex mismatch (stride %d, sizeof(Vertex) %d)", vertexDecl.m_stride, sizeof(Vertex) );
const uint32_t abgr = bx::endianSwap(_clear.m_rgba);
const float depth = _clear.m_depth;
vertex->m_x = -1.0f;
vertex->m_y = -1.0f;
vertex->m_z = depth;
vertex->m_abgr = abgr;
vertex++;
vertex->m_x = 1.0f;
vertex->m_y = -1.0f;
vertex->m_z = depth;
vertex->m_abgr = abgr;
vertex++;
vertex->m_x = 1.0f;
vertex->m_y = 1.0f;
vertex->m_z = depth;
vertex->m_abgr = abgr;
vertex++;
vertex->m_x = -1.0f;
vertex->m_y = 1.0f;
vertex->m_z = depth;
vertex->m_abgr = abgr;
}
s_renderCtx->m_vertexBuffers[m_vb->handle.idx].update(0, 4*m_decl.m_stride, m_vb->data);
GL_CHECK(glBindBuffer(GL_ARRAY_BUFFER, vb.m_id) );
IndexBuffer& ib = s_renderCtx->m_indexBuffers[m_ib.idx];
GL_CHECK(glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ib.m_id) );
Program& program = s_renderCtx->m_program[m_program.idx];
GL_CHECK(glUseProgram(program.m_id) );
program.bindAttributes(vertexDecl, 0);
GL_CHECK(glDrawElements(GL_TRIANGLES
, 6
, GL_UNSIGNED_SHORT
, (void*)0
) );
}
else
{
GLuint flags = 0;
if (BGFX_CLEAR_COLOR_BIT & _clear.m_flags)
{
flags |= GL_COLOR_BUFFER_BIT;
uint32_t rgba = _clear.m_rgba;
float rr = (rgba>>24)/255.0f;
float gg = ( (rgba>>16)&0xff)/255.0f;
float bb = ( (rgba>>8)&0xff)/255.0f;
float aa = (rgba&0xff)/255.0f;
GL_CHECK(glClearColor(rr, gg, bb, aa) );
GL_CHECK(glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE) );
}
if (BGFX_CLEAR_DEPTH_BIT & _clear.m_flags)
{
flags |= GL_DEPTH_BUFFER_BIT;
GL_CHECK(glClearDepth(_clear.m_depth) );
GL_CHECK(glDepthMask(GL_TRUE) );
}
if (BGFX_CLEAR_STENCIL_BIT & _clear.m_flags)
{
flags |= GL_STENCIL_BUFFER_BIT;
GL_CHECK(glClearStencil(_clear.m_stencil) );
}
if (0 != flags)
{
GL_CHECK(glEnable(GL_SCISSOR_TEST) );
GL_CHECK(glScissor(_rect.m_x, _height-_rect.m_height-_rect.m_y, _rect.m_width, _rect.m_height) );
GL_CHECK(glClear(flags) );
GL_CHECK(glDisable(GL_SCISSOR_TEST) );
}
}
}
void Context::rendererFlip()
{
if (NULL != s_renderCtx)
{
s_renderCtx->flip();
}
}
void Context::rendererInit()
{
s_renderCtx = BX_NEW(g_allocator, RendererContext);
s_renderCtx->init();
}
void Context::rendererShutdown()
{
if (s_renderCtx->m_vaoSupport)
{
GL_CHECK(glBindVertexArray(0) );
GL_CHECK(glDeleteVertexArrays(1, &s_renderCtx->m_vao) );
s_renderCtx->m_vao = 0;
}
s_renderCtx->shutdown();
BX_DELETE(g_allocator, s_renderCtx);
s_renderCtx = NULL;
}
void Context::rendererCreateIndexBuffer(IndexBufferHandle _handle, Memory* _mem)
{
s_renderCtx->m_indexBuffers[_handle.idx].create(_mem->size, _mem->data);
}
void Context::rendererDestroyIndexBuffer(IndexBufferHandle _handle)
{
s_renderCtx->m_indexBuffers[_handle.idx].destroy();
}
void Context::rendererCreateVertexDecl(VertexDeclHandle _handle, const VertexDecl& _decl)
{
VertexDecl& decl = s_renderCtx->m_vertexDecls[_handle.idx];
memcpy(&decl, &_decl, sizeof(VertexDecl) );
dump(decl);
}
void Context::rendererDestroyVertexDecl(VertexDeclHandle /*_handle*/)
{
}
void Context::rendererCreateVertexBuffer(VertexBufferHandle _handle, Memory* _mem, VertexDeclHandle _declHandle)
{
s_renderCtx->m_vertexBuffers[_handle.idx].create(_mem->size, _mem->data, _declHandle);
}
void Context::rendererDestroyVertexBuffer(VertexBufferHandle _handle)
{
s_renderCtx->m_vertexBuffers[_handle.idx].destroy();
}
void Context::rendererCreateDynamicIndexBuffer(IndexBufferHandle _handle, uint32_t _size)
{
s_renderCtx->m_indexBuffers[_handle.idx].create(_size, NULL);
}
void Context::rendererUpdateDynamicIndexBuffer(IndexBufferHandle _handle, uint32_t _offset, uint32_t _size, Memory* _mem)
{
s_renderCtx->m_indexBuffers[_handle.idx].update(_offset, bx::uint32_min(_size, _mem->size), _mem->data);
}
void Context::rendererDestroyDynamicIndexBuffer(IndexBufferHandle _handle)
{
s_renderCtx->m_indexBuffers[_handle.idx].destroy();
}
void Context::rendererCreateDynamicVertexBuffer(VertexBufferHandle _handle, uint32_t _size)
{
VertexDeclHandle decl = BGFX_INVALID_HANDLE;
s_renderCtx->m_vertexBuffers[_handle.idx].create(_size, NULL, decl);
}
void Context::rendererUpdateDynamicVertexBuffer(VertexBufferHandle _handle, uint32_t _offset, uint32_t _size, Memory* _mem)
{
s_renderCtx->m_vertexBuffers[_handle.idx].update(_offset, bx::uint32_min(_size, _mem->size), _mem->data);
}
void Context::rendererDestroyDynamicVertexBuffer(VertexBufferHandle _handle)
{
s_renderCtx->m_vertexBuffers[_handle.idx].destroy();
}
void Context::rendererCreateVertexShader(VertexShaderHandle _handle, Memory* _mem)
{
s_renderCtx->m_vertexShaders[_handle.idx].create(GL_VERTEX_SHADER, _mem);
}
void Context::rendererDestroyVertexShader(VertexShaderHandle _handle)
{
s_renderCtx->m_vertexShaders[_handle.idx].destroy();
}
void Context::rendererCreateFragmentShader(FragmentShaderHandle _handle, Memory* _mem)
{
s_renderCtx->m_fragmentShaders[_handle.idx].create(GL_FRAGMENT_SHADER, _mem);
}
void Context::rendererDestroyFragmentShader(FragmentShaderHandle _handle)
{
s_renderCtx->m_fragmentShaders[_handle.idx].destroy();
}
void Context::rendererCreateProgram(ProgramHandle _handle, VertexShaderHandle _vsh, FragmentShaderHandle _fsh)
{
Shader dummyFragmentShader;
s_renderCtx->m_program[_handle.idx].create(s_renderCtx->m_vertexShaders[_vsh.idx], isValid(_fsh) ? s_renderCtx->m_fragmentShaders[_fsh.idx] : dummyFragmentShader);
}
void Context::rendererDestroyProgram(FragmentShaderHandle _handle)
{
s_renderCtx->m_program[_handle.idx].destroy();
}
void Context::rendererCreateTexture(TextureHandle _handle, Memory* _mem, uint32_t _flags, uint8_t _skip)
{
s_renderCtx->m_textures[_handle.idx].create(_mem, _flags, _skip);
}
void Context::rendererUpdateTextureBegin(TextureHandle /*_handle*/, uint8_t /*_side*/, uint8_t /*_mip*/)
{
}
void Context::rendererUpdateTexture(TextureHandle _handle, uint8_t _side, uint8_t _mip, const Rect& _rect, uint16_t _z, uint16_t _depth, uint16_t _pitch, const Memory* _mem)
{
s_renderCtx->m_textures[_handle.idx].update(_side, _mip, _rect, _z, _depth, _pitch, _mem);
}
void Context::rendererUpdateTextureEnd()
{
}
void Context::rendererDestroyTexture(TextureHandle _handle)
{
s_renderCtx->m_textures[_handle.idx].destroy();
}
void Context::rendererCreateFrameBuffer(FrameBufferHandle _handle, uint8_t _num, const TextureHandle* _textureHandles)
{
s_renderCtx->m_frameBuffers[_handle.idx].create(_num, _textureHandles);
}
void Context::rendererDestroyFrameBuffer(FrameBufferHandle _handle)
{
s_renderCtx->m_frameBuffers[_handle.idx].destroy();
}
void Context::rendererCreateUniform(UniformHandle _handle, UniformType::Enum _type, uint16_t _num, const char* _name)
{
uint32_t size = g_uniformTypeSize[_type]*_num;
void* data = BX_ALLOC(g_allocator, size);
memset(data, 0, size);
s_renderCtx->m_uniforms[_handle.idx] = data;
s_renderCtx->m_uniformReg.add(_name, s_renderCtx->m_uniforms[_handle.idx]);
}
void Context::rendererDestroyUniform(UniformHandle _handle)
{
BX_FREE(g_allocator, s_renderCtx->m_uniforms[_handle.idx]);
}
void Context::rendererSaveScreenShot(const char* _filePath)
{
s_renderCtx->saveScreenShot(_filePath);
}
void Context::rendererUpdateViewName(uint8_t _id, const char* _name)
{
bx::strlcpy(&s_viewName[_id][0], _name, BX_COUNTOF(s_viewName[0]) );
}
void Context::rendererUpdateUniform(uint16_t _loc, const void* _data, uint32_t _size)
{
memcpy(s_renderCtx->m_uniforms[_loc], _data, _size);
}
void Context::rendererSetMarker(const char* _marker, uint32_t _size)
{
GL_CHECK(glInsertEventMarker(_size, _marker) );
}
void Context::rendererSubmit()
{
const GLuint defaultVao = s_renderCtx->m_vao;
if (0 != defaultVao)
{
GL_CHECK(glBindVertexArray(defaultVao) );
}
GL_CHECK(glBindFramebuffer(GL_FRAMEBUFFER, s_renderCtx->m_backBufferFbo) );
s_renderCtx->updateResolution(m_render->m_resolution);
int64_t elapsed = -bx::getHPCounter();
int64_t captureElapsed = 0;
if (BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGL)
&& (m_render->m_debug & (BGFX_DEBUG_IFH|BGFX_DEBUG_STATS) ) )
{
s_renderCtx->m_queries.begin(0, GL_TIME_ELAPSED);
}
if (0 < m_render->m_iboffset)
{
TransientIndexBuffer* ib = m_render->m_transientIb;
s_renderCtx->m_indexBuffers[ib->handle.idx].update(0, m_render->m_iboffset, ib->data);
}
if (0 < m_render->m_vboffset)
{
TransientVertexBuffer* vb = m_render->m_transientVb;
s_renderCtx->m_vertexBuffers[vb->handle.idx].update(0, m_render->m_vboffset, vb->data);
}
m_render->sort();
RenderState currentState;
currentState.reset();
currentState.m_flags = BGFX_STATE_NONE;
currentState.m_stencil = packStencil(BGFX_STENCIL_NONE, BGFX_STENCIL_NONE);
Matrix4 viewProj[BGFX_CONFIG_MAX_VIEWS];
for (uint32_t ii = 0; ii < BGFX_CONFIG_MAX_VIEWS; ++ii)
{
float4x4_mul(&viewProj[ii].un.f4x4, &m_render->m_view[ii].un.f4x4, &m_render->m_proj[ii].un.f4x4);
}
uint16_t programIdx = invalidHandle;
SortKey key;
uint8_t view = 0xff;
FrameBufferHandle fbh = BGFX_INVALID_HANDLE;
int32_t height = m_render->m_resolution.m_height;
float alphaRef = 0.0f;
uint32_t blendFactor = 0;
GLenum primType = m_render->m_debug&BGFX_DEBUG_WIREFRAME ? GL_LINES : GL_TRIANGLES;
uint32_t primNumVerts = 3;
uint32_t baseVertex = 0;
GLuint currentVao = 0;
bool viewHasScissor = false;
Rect viewScissorRect;
viewScissorRect.clear();
uint32_t statsNumPrimsSubmitted = 0;
uint32_t statsNumIndices = 0;
uint32_t statsNumInstances = 0;
uint32_t statsNumPrimsRendered = 0;
if (0 == (m_render->m_debug&BGFX_DEBUG_IFH) )
{
GL_CHECK(glBindFramebuffer(GL_FRAMEBUFFER, s_renderCtx->m_msaaBackBufferFbo) );
for (uint32_t item = 0, numItems = m_render->m_num; item < numItems; ++item)
{
key.decode(m_render->m_sortKeys[item]);
const RenderState& state = m_render->m_renderState[m_render->m_sortValues[item] ];
const uint64_t newFlags = state.m_flags;
uint64_t changedFlags = currentState.m_flags ^ state.m_flags;
currentState.m_flags = newFlags;
const uint64_t newStencil = state.m_stencil;
uint64_t changedStencil = currentState.m_stencil ^ state.m_stencil;
currentState.m_stencil = newStencil;
if (key.m_view != view)
{
currentState.clear();
currentState.m_scissor = !state.m_scissor;
changedFlags = BGFX_STATE_MASK;
changedStencil = packStencil(BGFX_STENCIL_MASK, BGFX_STENCIL_MASK);
currentState.m_flags = newFlags;
currentState.m_stencil = newStencil;
GL_CHECK(glInsertEventMarker(0, s_viewName[key.m_view]) );
view = key.m_view;
programIdx = invalidHandle;
if (m_render->m_fb[view].idx != fbh.idx)
{
fbh = m_render->m_fb[view];
height = s_renderCtx->setFrameBuffer(fbh, m_render->m_resolution.m_height);
}
const Rect& rect = m_render->m_rect[view];
const Rect& scissorRect = m_render->m_scissor[view];
viewHasScissor = !scissorRect.isZero();
viewScissorRect = viewHasScissor ? scissorRect : rect;
GL_CHECK(glViewport(rect.m_x, height-rect.m_height-rect.m_y, rect.m_width, rect.m_height) );
Clear& clear = m_render->m_clear[view];
if (BGFX_CLEAR_NONE != clear.m_flags)
{
m_clearQuad.clear(rect, clear, height);
}
GL_CHECK(glDisable(GL_STENCIL_TEST) );
GL_CHECK(glEnable(GL_DEPTH_TEST) );
GL_CHECK(glDepthFunc(GL_LESS) );
GL_CHECK(glEnable(GL_CULL_FACE) );
GL_CHECK(glDisable(GL_BLEND) );
}
uint16_t scissor = state.m_scissor;
if (currentState.m_scissor != scissor)
{
currentState.m_scissor = scissor;
if (UINT16_MAX == scissor)
{
if (viewHasScissor)
{
GL_CHECK(glEnable(GL_SCISSOR_TEST) );
GL_CHECK(glScissor(viewScissorRect.m_x, height-viewScissorRect.m_height-viewScissorRect.m_y, viewScissorRect.m_width, viewScissorRect.m_height) );
}
else
{
GL_CHECK(glDisable(GL_SCISSOR_TEST) );
}
}
else
{
Rect scissorRect;
scissorRect.intersect(viewScissorRect, m_render->m_rectCache.m_cache[scissor]);
GL_CHECK(glEnable(GL_SCISSOR_TEST) );
GL_CHECK(glScissor(scissorRect.m_x, height-scissorRect.m_height-scissorRect.m_y, scissorRect.m_width, scissorRect.m_height) );
}
}
if (0 != changedStencil)
{
if (0 != newStencil)
{
GL_CHECK(glEnable(GL_STENCIL_TEST) );
uint32_t bstencil = unpackStencil(1, newStencil);
uint32_t frontAndBack = bstencil != BGFX_STENCIL_NONE && bstencil != unpackStencil(0, newStencil);
// uint32_t bchanged = unpackStencil(1, changedStencil);
// if (BGFX_STENCIL_FUNC_RMASK_MASK & bchanged)
// {
// uint32_t wmask = (bstencil&BGFX_STENCIL_FUNC_RMASK_MASK)>>BGFX_STENCIL_FUNC_RMASK_SHIFT;
// GL_CHECK(glStencilMask(wmask) );
// }
for (uint32_t ii = 0, num = frontAndBack+1; ii < num; ++ii)
{
uint32_t stencil = unpackStencil(ii, newStencil);
uint32_t changed = unpackStencil(ii, changedStencil);
GLenum face = s_stencilFace[frontAndBack+ii];
if ( (BGFX_STENCIL_TEST_MASK|BGFX_STENCIL_FUNC_REF_MASK|BGFX_STENCIL_FUNC_RMASK_MASK) & changed)
{
GLint ref = (stencil&BGFX_STENCIL_FUNC_REF_MASK)>>BGFX_STENCIL_FUNC_REF_SHIFT;
GLint mask = (stencil&BGFX_STENCIL_FUNC_RMASK_MASK)>>BGFX_STENCIL_FUNC_RMASK_SHIFT;
uint32_t func = (stencil&BGFX_STENCIL_TEST_MASK)>>BGFX_STENCIL_TEST_SHIFT;
GL_CHECK(glStencilFuncSeparate(face, s_cmpFunc[func], ref, mask));
}
if ( (BGFX_STENCIL_OP_FAIL_S_MASK|BGFX_STENCIL_OP_FAIL_Z_MASK|BGFX_STENCIL_OP_PASS_Z_MASK) & changed)
{
uint32_t sfail = (stencil&BGFX_STENCIL_OP_FAIL_S_MASK)>>BGFX_STENCIL_OP_FAIL_S_SHIFT;
uint32_t zfail = (stencil&BGFX_STENCIL_OP_FAIL_Z_MASK)>>BGFX_STENCIL_OP_FAIL_Z_SHIFT;
uint32_t zpass = (stencil&BGFX_STENCIL_OP_PASS_Z_MASK)>>BGFX_STENCIL_OP_PASS_Z_SHIFT;
GL_CHECK(glStencilOpSeparate(face, s_stencilOp[sfail], s_stencilOp[zfail], s_stencilOp[zpass]) );
}
}
}
else
{
GL_CHECK(glDisable(GL_STENCIL_TEST) );
}
}
if ( (0
| BGFX_STATE_CULL_MASK
| BGFX_STATE_DEPTH_WRITE
| BGFX_STATE_DEPTH_TEST_MASK
| BGFX_STATE_ALPHA_MASK
| BGFX_STATE_RGB_WRITE
| BGFX_STATE_BLEND_MASK
| BGFX_STATE_BLEND_EQUATION_MASK
| BGFX_STATE_ALPHA_REF_MASK
| BGFX_STATE_PT_MASK
| BGFX_STATE_POINT_SIZE_MASK
| BGFX_STATE_MSAA
) & changedFlags)
{
if (BGFX_STATE_CULL_MASK & changedFlags)
{
if (BGFX_STATE_CULL_CW & newFlags)
{
GL_CHECK(glEnable(GL_CULL_FACE) );
GL_CHECK(glCullFace(GL_BACK) );
}
else if (BGFX_STATE_CULL_CCW & newFlags)
{
GL_CHECK(glEnable(GL_CULL_FACE) );
GL_CHECK(glCullFace(GL_FRONT) );
}
else
{
GL_CHECK(glDisable(GL_CULL_FACE) );
}
}
if (BGFX_STATE_DEPTH_WRITE & changedFlags)
{
GL_CHECK(glDepthMask(!!(BGFX_STATE_DEPTH_WRITE & newFlags) ) );
}
if (BGFX_STATE_DEPTH_TEST_MASK & changedFlags)
{
uint32_t func = (newFlags&BGFX_STATE_DEPTH_TEST_MASK)>>BGFX_STATE_DEPTH_TEST_SHIFT;
if (0 != func)
{
GL_CHECK(glEnable(GL_DEPTH_TEST) );
GL_CHECK(glDepthFunc(s_cmpFunc[func]) );
}
else
{
GL_CHECK(glDisable(GL_DEPTH_TEST) );
}
}
if (BGFX_STATE_ALPHA_REF_MASK & changedFlags)
{
uint32_t ref = (newFlags&BGFX_STATE_ALPHA_REF_MASK)>>BGFX_STATE_ALPHA_REF_SHIFT;
alphaRef = ref/255.0f;
}
#if BGFX_CONFIG_RENDERER_OPENGL
if ( (BGFX_STATE_PT_POINTS|BGFX_STATE_POINT_SIZE_MASK) & changedFlags)
{
float pointSize = (float)(bx::uint32_max(1, (newFlags&BGFX_STATE_POINT_SIZE_MASK)>>BGFX_STATE_POINT_SIZE_SHIFT) );
GL_CHECK(glPointSize(pointSize) );
}
if (BGFX_STATE_MSAA & changedFlags)
{
if (BGFX_STATE_MSAA & newFlags)
{
GL_CHECK(glEnable(GL_MULTISAMPLE) );
}
else
{
GL_CHECK(glDisable(GL_MULTISAMPLE) );
}
}
#endif // BGFX_CONFIG_RENDERER_OPENGL
if ( (BGFX_STATE_ALPHA_WRITE|BGFX_STATE_RGB_WRITE) & changedFlags)
{
GLboolean alpha = !!(newFlags&BGFX_STATE_ALPHA_WRITE);
GLboolean rgb = !!(newFlags&BGFX_STATE_RGB_WRITE);
GL_CHECK(glColorMask(rgb, rgb, rgb, alpha) );
}
if ( (BGFX_STATE_BLEND_MASK|BGFX_STATE_BLEND_EQUATION_MASK) & changedFlags)
{
if (BGFX_STATE_BLEND_MASK & newFlags)
{
uint32_t blend = (newFlags&BGFX_STATE_BLEND_MASK)>>BGFX_STATE_BLEND_SHIFT;
uint32_t equation = (newFlags&BGFX_STATE_BLEND_EQUATION_MASK)>>BGFX_STATE_BLEND_EQUATION_SHIFT;
uint32_t src = blend&0xf;
uint32_t dst = (blend>>4)&0xf;
GL_CHECK(glEnable(GL_BLEND) );
GL_CHECK(glBlendFunc(s_blendFactor[src].m_src, s_blendFactor[dst].m_dst) );
GL_CHECK(glBlendEquation(s_blendEquation[equation]) );
if ( (s_blendFactor[src].m_factor || s_blendFactor[dst].m_factor)
&& blendFactor != state.m_rgba)
{
blendFactor = state.m_rgba;
GLclampf rr = (blendFactor>>24)/255.0f;
GLclampf gg = ( (blendFactor>>16)&0xff)/255.0f;
GLclampf bb = ( (blendFactor>>8)&0xff)/255.0f;
GLclampf aa = (blendFactor&0xff)/255.0f;
GL_CHECK(glBlendColor(rr, gg, bb, aa) );
}
}
else
{
GL_CHECK(glDisable(GL_BLEND) );
}
}
uint8_t primIndex = uint8_t( (newFlags&BGFX_STATE_PT_MASK)>>BGFX_STATE_PT_SHIFT);
primType = m_render->m_debug&BGFX_DEBUG_WIREFRAME ? GL_LINES : s_primType[primIndex];
primNumVerts = 3-primIndex;
}
bool programChanged = false;
bool constantsChanged = state.m_constBegin < state.m_constEnd;
bool bindAttribs = false;
rendererUpdateUniforms(m_render->m_constantBuffer, state.m_constBegin, state.m_constEnd);
if (key.m_program != programIdx)
{
programIdx = key.m_program;
GLuint id = invalidHandle == programIdx ? 0 : s_renderCtx->m_program[programIdx].m_id;
GL_CHECK(glUseProgram(id) );
programChanged =
constantsChanged =
bindAttribs = true;
}
if (invalidHandle != programIdx)
{
Program& program = s_renderCtx->m_program[programIdx];
if (constantsChanged)
{
program.commit();
}
for (uint32_t ii = 0, num = program.m_numPredefined; ii < num; ++ii)
{
PredefinedUniform& predefined = program.m_predefined[ii];
switch (predefined.m_type)
{
case PredefinedUniform::ViewRect:
{
float rect[4];
rect[0] = m_render->m_rect[view].m_x;
rect[1] = m_render->m_rect[view].m_y;
rect[2] = m_render->m_rect[view].m_width;
rect[3] = m_render->m_rect[view].m_height;
GL_CHECK(glUniform4fv(predefined.m_loc
, 1
, &rect[0]
) );
}
break;
case PredefinedUniform::ViewTexel:
{
float rect[4];
rect[0] = 1.0f/float(m_render->m_rect[view].m_width);
rect[1] = 1.0f/float(m_render->m_rect[view].m_height);
GL_CHECK(glUniform4fv(predefined.m_loc
, 1
, &rect[0]
) );
}
break;
case PredefinedUniform::View:
{
GL_CHECK(glUniformMatrix4fv(predefined.m_loc
, 1
, GL_FALSE
, m_render->m_view[view].un.val
) );
}
break;
case PredefinedUniform::ViewProj:
{
GL_CHECK(glUniformMatrix4fv(predefined.m_loc
, 1
, GL_FALSE
, viewProj[view].un.val
) );
}
break;
case PredefinedUniform::Model:
{
const Matrix4& model = m_render->m_matrixCache.m_cache[state.m_matrix];
GL_CHECK(glUniformMatrix4fv(predefined.m_loc
, bx::uint32_min(predefined.m_count, state.m_num)
, GL_FALSE
, model.un.val
) );
}
break;
case PredefinedUniform::ModelView:
{
Matrix4 modelView;
const Matrix4& model = m_render->m_matrixCache.m_cache[state.m_matrix];
bx::float4x4_mul(&modelView.un.f4x4, &model.un.f4x4, &m_render->m_view[view].un.f4x4);
GL_CHECK(glUniformMatrix4fv(predefined.m_loc
, 1
, GL_FALSE
, modelView.un.val
) );
}
break;
case PredefinedUniform::ModelViewProj:
{
Matrix4 modelViewProj;
const Matrix4& model = m_render->m_matrixCache.m_cache[state.m_matrix];
bx::float4x4_mul(&modelViewProj.un.f4x4, &model.un.f4x4, &viewProj[view].un.f4x4);
GL_CHECK(glUniformMatrix4fv(predefined.m_loc
, 1
, GL_FALSE
, modelViewProj.un.val
) );
}
break;
case PredefinedUniform::ModelViewProjX:
{
const Matrix4& model = m_render->m_matrixCache.m_cache[state.m_matrix];
uint8_t other = m_render->m_other[view];
Matrix4 viewProjBias;
bx::float4x4_mul(&viewProjBias.un.f4x4, &viewProj[other].un.f4x4, &s_bias.un.f4x4);
Matrix4 modelViewProj;
bx::float4x4_mul(&modelViewProj.un.f4x4, &model.un.f4x4, &viewProjBias.un.f4x4);
GL_CHECK(glUniformMatrix4fv(predefined.m_loc
, 1
, GL_FALSE
, modelViewProj.un.val
) );
}
break;
case PredefinedUniform::ViewProjX:
{
uint8_t other = m_render->m_other[view];
Matrix4 viewProjBias;
bx::float4x4_mul(&viewProjBias.un.f4x4, &viewProj[other].un.f4x4, &s_bias.un.f4x4);
GL_CHECK(glUniformMatrix4fv(predefined.m_loc
, 1
, GL_FALSE
, viewProjBias.un.val
) );
}
break;
case PredefinedUniform::AlphaRef:
{
GL_CHECK(glUniform1f(predefined.m_loc, alphaRef) );
}
break;
case PredefinedUniform::Count:
break;
}
}
// if (BGFX_STATE_TEX_MASK & changedFlags)
{
uint64_t flag = BGFX_STATE_TEX0;
for (uint32_t stage = 0; stage < BGFX_STATE_TEX_COUNT; ++stage)
{
const Sampler& sampler = state.m_sampler[stage];
Sampler& current = currentState.m_sampler[stage];
if (current.m_idx != sampler.m_idx
|| current.m_flags != sampler.m_flags
|| programChanged)
{
if (invalidHandle != sampler.m_idx)
{
Texture& texture = s_renderCtx->m_textures[sampler.m_idx];
texture.commit(stage, sampler.m_flags);
}
}
current = sampler;
flag <<= 1;
}
}
if (0 != defaultVao
&& 0 == state.m_startVertex
&& 0 == state.m_instanceDataOffset)
{
if (programChanged
|| currentState.m_vertexBuffer.idx != state.m_vertexBuffer.idx
|| currentState.m_indexBuffer.idx != state.m_indexBuffer.idx
|| currentState.m_instanceDataBuffer.idx != state.m_instanceDataBuffer.idx
|| currentState.m_instanceDataOffset != state.m_instanceDataOffset
|| currentState.m_instanceDataStride != state.m_instanceDataStride)
{
bx::HashMurmur2A murmur;
murmur.begin();
murmur.add(state.m_vertexBuffer.idx);
murmur.add(state.m_indexBuffer.idx);
murmur.add(state.m_instanceDataBuffer.idx);
murmur.add(state.m_instanceDataOffset);
murmur.add(state.m_instanceDataStride);
murmur.add(programIdx);
uint32_t hash = murmur.end();
currentState.m_vertexBuffer = state.m_vertexBuffer;
currentState.m_indexBuffer = state.m_indexBuffer;
currentState.m_instanceDataOffset = state.m_instanceDataOffset;
currentState.m_instanceDataStride = state.m_instanceDataStride;
baseVertex = state.m_startVertex;
GLuint id = s_renderCtx->m_vaoStateCache.find(hash);
if (UINT32_MAX != id)
{
currentVao = id;
GL_CHECK(glBindVertexArray(id) );
}
else
{
id = s_renderCtx->m_vaoStateCache.add(hash);
currentVao = id;
GL_CHECK(glBindVertexArray(id) );
Program& program = s_renderCtx->m_program[programIdx];
program.add(hash);
if (isValid(state.m_vertexBuffer) )
{
VertexBuffer& vb = s_renderCtx->m_vertexBuffers[state.m_vertexBuffer.idx];
vb.add(hash);
GL_CHECK(glBindBuffer(GL_ARRAY_BUFFER, vb.m_id) );
uint16_t decl = !isValid(vb.m_decl) ? state.m_vertexDecl.idx : vb.m_decl.idx;
program.bindAttributes(s_renderCtx->m_vertexDecls[decl], state.m_startVertex);
if (isValid(state.m_instanceDataBuffer) )
{
VertexBuffer& instanceVb = s_renderCtx->m_vertexBuffers[state.m_instanceDataBuffer.idx];
instanceVb.add(hash);
GL_CHECK(glBindBuffer(GL_ARRAY_BUFFER, instanceVb.m_id) );
program.bindInstanceData(state.m_instanceDataStride, state.m_instanceDataOffset);
}
}
else
{
GL_CHECK(glBindBuffer(GL_ARRAY_BUFFER, 0) );
}
if (isValid(state.m_indexBuffer) )
{
IndexBuffer& ib = s_renderCtx->m_indexBuffers[state.m_indexBuffer.idx];
ib.add(hash);
GL_CHECK(glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ib.m_id) );
}
else
{
GL_CHECK(glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0) );
}
}
}
}
else
{
if (0 != defaultVao
&& 0 != currentVao)
{
GL_CHECK(glBindVertexArray(defaultVao) );
currentState.m_vertexBuffer.idx = invalidHandle;
currentState.m_indexBuffer.idx = invalidHandle;
bindAttribs = true;
currentVao = 0;
}
if (programChanged
|| currentState.m_vertexBuffer.idx != state.m_vertexBuffer.idx
|| currentState.m_instanceDataBuffer.idx != state.m_instanceDataBuffer.idx
|| currentState.m_instanceDataOffset != state.m_instanceDataOffset
|| currentState.m_instanceDataStride != state.m_instanceDataStride)
{
currentState.m_vertexBuffer = state.m_vertexBuffer;
currentState.m_instanceDataBuffer.idx = state.m_instanceDataBuffer.idx;
currentState.m_instanceDataOffset = state.m_instanceDataOffset;
currentState.m_instanceDataStride = state.m_instanceDataStride;
uint16_t handle = state.m_vertexBuffer.idx;
if (invalidHandle != handle)
{
VertexBuffer& vb = s_renderCtx->m_vertexBuffers[handle];
GL_CHECK(glBindBuffer(GL_ARRAY_BUFFER, vb.m_id) );
bindAttribs = true;
}
else
{
GL_CHECK(glBindBuffer(GL_ARRAY_BUFFER, 0) );
}
}
if (currentState.m_indexBuffer.idx != state.m_indexBuffer.idx)
{
currentState.m_indexBuffer = state.m_indexBuffer;
uint16_t handle = state.m_indexBuffer.idx;
if (invalidHandle != handle)
{
IndexBuffer& ib = s_renderCtx->m_indexBuffers[handle];
GL_CHECK(glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ib.m_id) );
}
else
{
GL_CHECK(glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0) );
}
}
if (isValid(currentState.m_vertexBuffer) )
{
if (baseVertex != state.m_startVertex
|| bindAttribs)
{
baseVertex = state.m_startVertex;
const VertexBuffer& vb = s_renderCtx->m_vertexBuffers[state.m_vertexBuffer.idx];
uint16_t decl = !isValid(vb.m_decl) ? state.m_vertexDecl.idx : vb.m_decl.idx;
const Program& program = s_renderCtx->m_program[programIdx];
program.bindAttributes(s_renderCtx->m_vertexDecls[decl], state.m_startVertex);
if (isValid(state.m_instanceDataBuffer) )
{
GL_CHECK(glBindBuffer(GL_ARRAY_BUFFER, s_renderCtx->m_vertexBuffers[state.m_instanceDataBuffer.idx].m_id) );
program.bindInstanceData(state.m_instanceDataStride, state.m_instanceDataOffset);
}
}
}
}
if (isValid(currentState.m_vertexBuffer) )
{
uint32_t numVertices = state.m_numVertices;
if (UINT32_MAX == numVertices)
{
const VertexBuffer& vb = s_renderCtx->m_vertexBuffers[currentState.m_vertexBuffer.idx];
uint16_t decl = !isValid(vb.m_decl) ? state.m_vertexDecl.idx : vb.m_decl.idx;
const VertexDecl& vertexDecl = s_renderCtx->m_vertexDecls[decl];
numVertices = vb.m_size/vertexDecl.m_stride;
}
uint32_t numIndices = 0;
uint32_t numPrimsSubmitted = 0;
uint32_t numInstances = 0;
uint32_t numPrimsRendered = 0;
if (isValid(state.m_indexBuffer) )
{
if (UINT32_MAX == state.m_numIndices)
{
numIndices = s_renderCtx->m_indexBuffers[state.m_indexBuffer.idx].m_size/2;
numPrimsSubmitted = numIndices/primNumVerts;
numInstances = state.m_numInstances;
numPrimsRendered = numPrimsSubmitted*state.m_numInstances;
GL_CHECK(glDrawElementsInstanced(primType
, numIndices
, GL_UNSIGNED_SHORT
, (void*)0
, state.m_numInstances
) );
}
else if (primNumVerts <= state.m_numIndices)
{
numIndices = state.m_numIndices;
numPrimsSubmitted = numIndices/primNumVerts;
numInstances = state.m_numInstances;
numPrimsRendered = numPrimsSubmitted*state.m_numInstances;
GL_CHECK(glDrawElementsInstanced(primType
, numIndices
, GL_UNSIGNED_SHORT
, (void*)(uintptr_t)(state.m_startIndex*2)
, state.m_numInstances
) );
}
}
else
{
numPrimsSubmitted = numVertices/primNumVerts;
numInstances = state.m_numInstances;
numPrimsRendered = numPrimsSubmitted*state.m_numInstances;
GL_CHECK(glDrawArraysInstanced(primType
, 0
, numVertices
, state.m_numInstances
) );
}
statsNumPrimsSubmitted += numPrimsSubmitted;
statsNumIndices += numIndices;
statsNumInstances += numInstances;
statsNumPrimsRendered += numPrimsRendered;
}
}
}
s_renderCtx->blitMsaaFbo();
if (0 < m_render->m_num)
{
captureElapsed = -bx::getHPCounter();
s_renderCtx->capture();
captureElapsed += bx::getHPCounter();
}
}
int64_t now = bx::getHPCounter();
elapsed += now;
static int64_t last = now;
int64_t frameTime = now - last;
last = now;
static int64_t min = frameTime;
static int64_t max = frameTime;
min = min > frameTime ? frameTime : min;
max = max < frameTime ? frameTime : max;
if (m_render->m_debug & (BGFX_DEBUG_IFH|BGFX_DEBUG_STATS) )
{
double elapsedGpuMs = 0.0;
#if BGFX_CONFIG_RENDERER_OPENGL
s_renderCtx->m_queries.end(GL_TIME_ELAPSED);
uint64_t elapsedGl = s_renderCtx->m_queries.getResult(0);
elapsedGpuMs = double(elapsedGl)/1e6;
#endif // BGFX_CONFIG_RENDERER_OPENGL
TextVideoMem& tvm = s_renderCtx->m_textVideoMem;
static int64_t next = now;
if (now >= next)
{
next = now + bx::getHPFrequency();
double freq = double(bx::getHPFrequency() );
double toMs = 1000.0/freq;
tvm.clear();
uint16_t pos = 0;
tvm.printf(0, pos++, BGFX_CONFIG_DEBUG ? 0x89 : 0x8f, " " BGFX_RENDERER_NAME " / " BX_COMPILER_NAME " / " BX_CPU_NAME " / " BX_ARCH_NAME " / " BX_PLATFORM_NAME " ");
tvm.printf(0, pos++, 0x0f, " Vendor: %s", s_renderCtx->m_vendor);
tvm.printf(0, pos++, 0x0f, " Renderer: %s", s_renderCtx->m_renderer);
tvm.printf(0, pos++, 0x0f, " Version: %s", s_renderCtx->m_version);
tvm.printf(0, pos++, 0x0f, "GLSL version: %s", s_renderCtx->m_glslVersion);
pos = 10;
tvm.printf(10, pos++, 0x8e, " Frame CPU: %7.3f, % 7.3f \x1f, % 7.3f \x1e [ms] / % 6.2f FPS "
, double(frameTime)*toMs
, double(min)*toMs
, double(max)*toMs
, freq/frameTime
);
const uint32_t msaa = (m_resolution.m_flags&BGFX_RESET_MSAA_MASK)>>BGFX_RESET_MSAA_SHIFT;
tvm.printf(10, pos++, 0x8e, " Reset flags: [%c] vsync, [%c] MSAAx%d "
, !!(m_resolution.m_flags&BGFX_RESET_VSYNC) ? '\xfe' : ' '
, 0 != msaa ? '\xfe' : ' '
, 1<<msaa
);
double elapsedCpuMs = double(elapsed)*toMs;
tvm.printf(10, pos++, 0x8e, " Draw calls: %4d / CPU %3.4f [ms] %c GPU %3.4f [ms]"
, m_render->m_num
, elapsedCpuMs
, elapsedCpuMs > elapsedGpuMs ? '>' : '<'
, elapsedGpuMs
);
tvm.printf(10, pos++, 0x8e, " Prims: %7d (#inst: %5d), submitted: %7d"
, statsNumPrimsRendered
, statsNumInstances
, statsNumPrimsSubmitted
);
double captureMs = double(captureElapsed)*toMs;
tvm.printf(10, pos++, 0x8e, " Capture: %3.4f [ms]", captureMs);
tvm.printf(10, pos++, 0x8e, " Indices: %7d", statsNumIndices);
tvm.printf(10, pos++, 0x8e, " DVB size: %7d", m_render->m_vboffset);
tvm.printf(10, pos++, 0x8e, " DIB size: %7d", m_render->m_iboffset);
#if BGFX_CONFIG_RENDERER_OPENGL
if (s_extension[Extension::ATI_meminfo].m_supported)
{
GLint vboFree[4];
GL_CHECK(glGetIntegerv(GL_VBO_FREE_MEMORY_ATI, vboFree) );
GLint texFree[4];
GL_CHECK(glGetIntegerv(GL_TEXTURE_FREE_MEMORY_ATI, texFree) );
GLint rbfFree[4];
GL_CHECK(glGetIntegerv(GL_RENDERBUFFER_FREE_MEMORY_ATI, rbfFree) );
pos++;
tvm.printf(10, pos++, 0x8c, " -------------| free| free b| aux| aux fb");
tvm.printf(10, pos++, 0x8e, " VBO: %7d, %7d, %7d, %7d", vboFree[0], vboFree[1], vboFree[2], vboFree[3]);
tvm.printf(10, pos++, 0x8e, " Texture: %7d, %7d, %7d, %7d", texFree[0], texFree[1], texFree[2], texFree[3]);
tvm.printf(10, pos++, 0x8e, " Render Buffer: %7d, %7d, %7d, %7d", rbfFree[0], rbfFree[1], rbfFree[2], rbfFree[3]);
}
else if (s_extension[Extension::NVX_gpu_memory_info].m_supported)
{
GLint dedicated;
GL_CHECK(glGetIntegerv(GL_GPU_MEMORY_INFO_DEDICATED_VIDMEM_NVX, &dedicated) );
GLint totalAvail;
GL_CHECK(glGetIntegerv(GL_GPU_MEMORY_INFO_TOTAL_AVAILABLE_MEMORY_NVX, &totalAvail) );
GLint currAvail;
GL_CHECK(glGetIntegerv(GL_GPU_MEMORY_INFO_CURRENT_AVAILABLE_VIDMEM_NVX, &currAvail) );
GLint evictedCount;
GL_CHECK(glGetIntegerv(GL_GPU_MEMORY_INFO_EVICTION_COUNT_NVX, &evictedCount) );
GLint evictedMemory;
GL_CHECK(glGetIntegerv(GL_GPU_MEMORY_INFO_EVICTED_MEMORY_NVX, &evictedMemory) );
pos++;
tvm.printf(10, pos++, 0x8c, "----------|");
tvm.printf(10, pos++, 0x8e, " Dedicated: %7d", dedicated);
tvm.printf(10, pos++, 0x8e, " Available: %7d (%7d)", currAvail, totalAvail);
tvm.printf(10, pos++, 0x8e, " Eviction: %7d / %7d", evictedCount, evictedMemory);
}
#endif // BGFX_CONFIG_RENDERER_OPENGL
uint8_t attr[2] = { 0x89, 0x8a };
uint8_t attrIndex = m_render->m_waitSubmit < m_render->m_waitRender;
pos++;
tvm.printf(10, pos++, attr[attrIndex&1], "Submit wait: %3.4f [ms]", double(m_render->m_waitSubmit)*toMs);
tvm.printf(10, pos++, attr[(attrIndex+1)&1], "Render wait: %3.4f [ms]", double(m_render->m_waitRender)*toMs);
min = frameTime;
max = frameTime;
}
m_textVideoMemBlitter.blit(tvm);
}
else if (m_render->m_debug & BGFX_DEBUG_TEXT)
{
m_textVideoMemBlitter.blit(m_render->m_textVideoMem);
}
GL_CHECK(glFrameTerminatorGREMEDY() );
}
}
#endif // (BGFX_CONFIG_RENDERER_OPENGLES2|BGFX_CONFIG_RENDERER_OPENGLES3|BGFX_CONFIG_RENDERER_OPENGL)