bgfx/src/image.cpp
2015-04-07 17:58:14 -07:00

2203 lines
69 KiB
C++

/*
* Copyright 2011-2015 Branimir Karadzic. All rights reserved.
* License: http://www.opensource.org/licenses/BSD-2-Clause
*/
#include "bgfx_p.h"
#include <math.h> // powf, sqrtf
#include "image.h"
namespace bgfx
{
static const ImageBlockInfo s_imageBlockInfo[] =
{
// +------------------ bits per pixel
// | +--------------- block width
// | | +------------ block height
// | | | +-------- block size
// | | | | +----- min blocks x
// | | | | | +-- min blocks y
// | | | | | |
{ 4, 4, 4, 8, 1, 1, 0, 0 }, // BC1
{ 8, 4, 4, 16, 1, 1, 0, 0 }, // BC2
{ 8, 4, 4, 16, 1, 1, 0, 0 }, // BC3
{ 4, 4, 4, 8, 1, 1, 0, 0 }, // BC4
{ 8, 4, 4, 16, 1, 1, 0, 0 }, // BC5
{ 8, 4, 4, 16, 1, 1, 0, 0 }, // BC6H
{ 8, 4, 4, 16, 1, 1, 0, 0 }, // BC7
{ 4, 4, 4, 8, 1, 1, 0, 0 }, // ETC1
{ 4, 4, 4, 8, 1, 1, 0, 0 }, // ETC2
{ 8, 4, 4, 16, 1, 1, 0, 0 }, // ETC2A
{ 4, 4, 4, 8, 1, 1, 0, 0 }, // ETC2A1
{ 2, 8, 4, 8, 2, 2, 0, 0 }, // PTC12
{ 4, 4, 4, 8, 2, 2, 0, 0 }, // PTC14
{ 2, 8, 4, 8, 2, 2, 0, 0 }, // PTC12A
{ 4, 4, 4, 8, 2, 2, 0, 0 }, // PTC14A
{ 2, 8, 4, 8, 2, 2, 0, 0 }, // PTC22
{ 4, 4, 4, 8, 2, 2, 0, 0 }, // PTC24
{ 0, 0, 0, 0, 1, 1, 0, 0 }, // Unknown
{ 1, 8, 1, 1, 1, 1, 0, 0 }, // R1
{ 8, 1, 1, 1, 1, 1, 0, 0 }, // R8
{ 16, 1, 1, 2, 1, 1, 0, 0 }, // R16
{ 16, 1, 1, 2, 1, 1, 0, 0 }, // R16F
{ 32, 1, 1, 4, 1, 1, 0, 0 }, // R32
{ 32, 1, 1, 4, 1, 1, 0, 0 }, // R32F
{ 16, 1, 1, 2, 1, 1, 0, 0 }, // RG8
{ 32, 1, 1, 4, 1, 1, 0, 0 }, // RG16
{ 32, 1, 1, 4, 1, 1, 0, 0 }, // RG16F
{ 64, 1, 1, 8, 1, 1, 0, 0 }, // RG32
{ 64, 1, 1, 8, 1, 1, 0, 0 }, // RG32F
{ 32, 1, 1, 4, 1, 1, 0, 0 }, // BGRA8
{ 32, 1, 1, 4, 1, 1, 0, 0 }, // RGBA8
{ 64, 1, 1, 8, 1, 1, 0, 0 }, // RGBA16
{ 64, 1, 1, 8, 1, 1, 0, 0 }, // RGBA16F
{ 128, 1, 1, 16, 1, 1, 0, 0 }, // RGBA32
{ 128, 1, 1, 16, 1, 1, 0, 0 }, // RGBA32F
{ 16, 1, 1, 2, 1, 1, 0, 0 }, // R5G6B5
{ 16, 1, 1, 2, 1, 1, 0, 0 }, // RGBA4
{ 16, 1, 1, 2, 1, 1, 0, 0 }, // RGB5A1
{ 32, 1, 1, 4, 1, 1, 0, 0 }, // RGB10A2
{ 32, 1, 1, 4, 1, 1, 0, 0 }, // R11G11B10F
{ 0, 0, 0, 0, 1, 1, 0, 0 }, // UnknownDepth
{ 16, 1, 1, 2, 1, 1, 16, 0 }, // D16
{ 24, 1, 1, 3, 1, 1, 24, 0 }, // D24
{ 32, 1, 1, 4, 1, 1, 24, 8 }, // D24S8
{ 32, 1, 1, 4, 1, 1, 32, 0 }, // D32
{ 16, 1, 1, 2, 1, 1, 16, 0 }, // D16F
{ 24, 1, 1, 3, 1, 1, 24, 0 }, // D24F
{ 32, 1, 1, 4, 1, 1, 32, 0 }, // D32F
{ 8, 1, 1, 1, 1, 1, 0, 8 }, // D0S8
};
BX_STATIC_ASSERT(TextureFormat::Count == BX_COUNTOF(s_imageBlockInfo) );
static const char* s_textureFormatName[] =
{
"BC1", // BC1
"BC2", // BC2
"BC3", // BC3
"BC4", // BC4
"BC5", // BC5
"BC6H", // BC6H
"BC7", // BC7
"ETC1", // ETC1
"ETC2", // ETC2
"ETC2A", // ETC2A
"ETC2A1", // ETC2A1
"PTC12", // PTC12
"PTC14", // PTC14
"PTC12A", // PTC12A
"PTC14A", // PTC14A
"PTC22", // PTC22
"PTC24", // PTC24
"<unknown>", // Unknown
"R1", // R1
"R8", // R8
"R16", // R16
"R16F", // R16F
"R32", // R32
"R32F", // R32F
"RG8", // RG8
"RG16", // RG16
"RG16F", // RG16F
"RG32", // RG32
"RG32F", // RG32F
"BGRA8", // BGRA8
"RGBA8", // RGBA8
"RGBA16", // RGBA16
"RGBA16F", // RGBA16F
"RGBA32", // RGBA32
"RGBA32F", // RGBA32F
"R5G6B5", // R5G6B5
"RGBA4", // RGBA4
"RGB5A1", // RGB5A1
"RGB10A2", // RGB10A2
"R11G11B10F", // R11G11B10F
"<unknown>", // UnknownDepth
"D16", // D16
"D24", // D24
"D24S8", // D24S8
"D32", // D32
"D16F", // D16F
"D24F", // D24F
"D32F", // D32F
"D0S8", // D0S8
};
BX_STATIC_ASSERT(TextureFormat::Count == BX_COUNTOF(s_textureFormatName) );
bool isCompressed(TextureFormat::Enum _format)
{
return _format < TextureFormat::Unknown;
}
bool isColor(TextureFormat::Enum _format)
{
return _format > TextureFormat::Unknown
&& _format < TextureFormat::UnknownDepth
;
}
bool isDepth(TextureFormat::Enum _format)
{
return _format > TextureFormat::UnknownDepth
&& _format < TextureFormat::Count
;
}
uint8_t getBitsPerPixel(TextureFormat::Enum _format)
{
return s_imageBlockInfo[_format].bitsPerPixel;
}
const ImageBlockInfo& getBlockInfo(TextureFormat::Enum _format)
{
return s_imageBlockInfo[_format];
}
uint8_t getBlockSize(TextureFormat::Enum _format)
{
return s_imageBlockInfo[_format].blockSize;
}
const char* getName(TextureFormat::Enum _format)
{
return s_textureFormatName[_format];
}
void imageSolid(uint32_t _width, uint32_t _height, uint32_t _solid, void* _dst)
{
uint32_t* dst = (uint32_t*)_dst;
for (uint32_t ii = 0, num = _width*_height; ii < num; ++ii)
{
*dst++ = _solid;
}
}
void imageCheckerboard(uint32_t _width, uint32_t _height, uint32_t _step, uint32_t _0, uint32_t _1, void* _dst)
{
uint32_t* dst = (uint32_t*)_dst;
for (uint32_t yy = 0; yy < _height; ++yy)
{
for (uint32_t xx = 0; xx < _width; ++xx)
{
uint32_t abgr = ( (xx/_step)&1) ^ ( (yy/_step)&1) ? _1 : _0;
*dst++ = abgr;
}
}
}
void imageRgba8Downsample2x2Ref(uint32_t _width, uint32_t _height, uint32_t _srcPitch, const void* _src, void* _dst)
{
const uint32_t dstwidth = _width/2;
const uint32_t dstheight = _height/2;
if (0 == dstwidth
|| 0 == dstheight)
{
return;
}
uint8_t* dst = (uint8_t*)_dst;
const uint8_t* src = (const uint8_t*)_src;
for (uint32_t yy = 0, ystep = _srcPitch*2; yy < dstheight; ++yy, src += ystep)
{
const uint8_t* rgba = src;
for (uint32_t xx = 0; xx < dstwidth; ++xx, rgba += 8, dst += 4)
{
float rr = powf(rgba[ 0], 2.2f);
float gg = powf(rgba[ 1], 2.2f);
float bb = powf(rgba[ 2], 2.2f);
float aa = rgba[ 3];
rr += powf(rgba[ 4], 2.2f);
gg += powf(rgba[ 5], 2.2f);
bb += powf(rgba[ 6], 2.2f);
aa += rgba[ 7];
rr += powf(rgba[_srcPitch+0], 2.2f);
gg += powf(rgba[_srcPitch+1], 2.2f);
bb += powf(rgba[_srcPitch+2], 2.2f);
aa += rgba[_srcPitch+3];
rr += powf(rgba[_srcPitch+4], 2.2f);
gg += powf(rgba[_srcPitch+5], 2.2f);
bb += powf(rgba[_srcPitch+6], 2.2f);
aa += rgba[_srcPitch+7];
rr *= 0.25f;
gg *= 0.25f;
bb *= 0.25f;
aa *= 0.25f;
rr = powf(rr, 1.0f/2.2f);
gg = powf(gg, 1.0f/2.2f);
bb = powf(bb, 1.0f/2.2f);
dst[0] = (uint8_t)rr;
dst[1] = (uint8_t)gg;
dst[2] = (uint8_t)bb;
dst[3] = (uint8_t)aa;
}
}
}
void imageRgba8Downsample2x2(uint32_t _width, uint32_t _height, uint32_t _srcPitch, const void* _src, void* _dst)
{
const uint32_t dstwidth = _width/2;
const uint32_t dstheight = _height/2;
if (0 == dstwidth
|| 0 == dstheight)
{
return;
}
uint8_t* dst = (uint8_t*)_dst;
const uint8_t* src = (const uint8_t*)_src;
using namespace bx;
const float4_t unpack = float4_ld(1.0f, 1.0f/256.0f, 1.0f/65536.0f, 1.0f/16777216.0f);
const float4_t pack = float4_ld(1.0f, 256.0f*0.5f, 65536.0f, 16777216.0f*0.5f);
const float4_t umask = float4_ild(0xff, 0xff00, 0xff0000, 0xff000000);
const float4_t pmask = float4_ild(0xff, 0x7f80, 0xff0000, 0x7f800000);
const float4_t wflip = float4_ild(0, 0, 0, 0x80000000);
const float4_t wadd = float4_ld(0.0f, 0.0f, 0.0f, 32768.0f*65536.0f);
const float4_t gamma = float4_ld(1.0f/2.2f, 1.0f/2.2f, 1.0f/2.2f, 1.0f);
const float4_t linear = float4_ld(2.2f, 2.2f, 2.2f, 1.0f);
const float4_t quater = float4_splat(0.25f);
for (uint32_t yy = 0, ystep = _srcPitch*2; yy < dstheight; ++yy, src += ystep)
{
const uint8_t* rgba = src;
for (uint32_t xx = 0; xx < dstwidth; ++xx, rgba += 8, dst += 4)
{
const float4_t abgr0 = float4_splat(rgba);
const float4_t abgr1 = float4_splat(rgba+4);
const float4_t abgr2 = float4_splat(rgba+_srcPitch);
const float4_t abgr3 = float4_splat(rgba+_srcPitch+4);
const float4_t abgr0m = float4_and(abgr0, umask);
const float4_t abgr1m = float4_and(abgr1, umask);
const float4_t abgr2m = float4_and(abgr2, umask);
const float4_t abgr3m = float4_and(abgr3, umask);
const float4_t abgr0x = float4_xor(abgr0m, wflip);
const float4_t abgr1x = float4_xor(abgr1m, wflip);
const float4_t abgr2x = float4_xor(abgr2m, wflip);
const float4_t abgr3x = float4_xor(abgr3m, wflip);
const float4_t abgr0f = float4_itof(abgr0x);
const float4_t abgr1f = float4_itof(abgr1x);
const float4_t abgr2f = float4_itof(abgr2x);
const float4_t abgr3f = float4_itof(abgr3x);
const float4_t abgr0c = float4_add(abgr0f, wadd);
const float4_t abgr1c = float4_add(abgr1f, wadd);
const float4_t abgr2c = float4_add(abgr2f, wadd);
const float4_t abgr3c = float4_add(abgr3f, wadd);
const float4_t abgr0n = float4_mul(abgr0c, unpack);
const float4_t abgr1n = float4_mul(abgr1c, unpack);
const float4_t abgr2n = float4_mul(abgr2c, unpack);
const float4_t abgr3n = float4_mul(abgr3c, unpack);
const float4_t abgr0l = float4_pow(abgr0n, linear);
const float4_t abgr1l = float4_pow(abgr1n, linear);
const float4_t abgr2l = float4_pow(abgr2n, linear);
const float4_t abgr3l = float4_pow(abgr3n, linear);
const float4_t sum0 = float4_add(abgr0l, abgr1l);
const float4_t sum1 = float4_add(abgr2l, abgr3l);
const float4_t sum2 = float4_add(sum0, sum1);
const float4_t avg0 = float4_mul(sum2, quater);
const float4_t avg1 = float4_pow(avg0, gamma);
const float4_t avg2 = float4_mul(avg1, pack);
const float4_t ftoi0 = float4_ftoi(avg2);
const float4_t ftoi1 = float4_and(ftoi0, pmask);
const float4_t zwxy = float4_swiz_zwxy(ftoi1);
const float4_t tmp0 = float4_or(ftoi1, zwxy);
const float4_t yyyy = float4_swiz_yyyy(tmp0);
const float4_t tmp1 = float4_iadd(yyyy, yyyy);
const float4_t result = float4_or(tmp0, tmp1);
float4_stx(dst, result);
}
}
}
void imageSwizzleBgra8Ref(uint32_t _width, uint32_t _height, uint32_t _srcPitch, const void* _src, void* _dst)
{
const uint8_t* src = (uint8_t*) _src;
const uint8_t* next = src + _srcPitch;
uint8_t* dst = (uint8_t*)_dst;
for (uint32_t yy = 0; yy < _height; ++yy, src = next, next += _srcPitch)
{
for (uint32_t xx = 0; xx < _width; ++xx, src += 4, dst += 4)
{
uint8_t rr = src[0];
uint8_t gg = src[1];
uint8_t bb = src[2];
uint8_t aa = src[3];
dst[0] = bb;
dst[1] = gg;
dst[2] = rr;
dst[3] = aa;
}
}
}
void imageSwizzleBgra8(uint32_t _width, uint32_t _height, uint32_t _srcPitch, const void* _src, void* _dst)
{
// Test can we do four 4-byte pixels at the time.
if (0 != (_width&0x3)
|| _width < 4
|| !bx::isPtrAligned(_src, 16)
|| !bx::isPtrAligned(_dst, 16) )
{
BX_WARN(false, "Image swizzle is taking slow path.");
BX_WARN(bx::isPtrAligned(_src, 16), "Source %p is not 16-byte aligned.", _src);
BX_WARN(bx::isPtrAligned(_dst, 16), "Destination %p is not 16-byte aligned.", _dst);
BX_WARN(_width < 4, "Image width must be multiple of 4 (width %d).", _width);
imageSwizzleBgra8Ref(_width, _height, _srcPitch, _src, _dst);
return;
}
using namespace bx;
const float4_t mf0f0 = float4_isplat(0xff00ff00);
const float4_t m0f0f = float4_isplat(0x00ff00ff);
const uint8_t* src = (uint8_t*) _src;
const uint8_t* next = src + _srcPitch;
uint8_t* dst = (uint8_t*)_dst;
const uint32_t width = _width/4;
for (uint32_t yy = 0; yy < _height; ++yy, src = next, next += _srcPitch)
{
for (uint32_t xx = 0; xx < width; ++xx, src += 16, dst += 16)
{
const float4_t tabgr = float4_ld(src);
const float4_t t00ab = float4_srl(tabgr, 16);
const float4_t tgr00 = float4_sll(tabgr, 16);
const float4_t tgrab = float4_or(t00ab, tgr00);
const float4_t ta0g0 = float4_and(tabgr, mf0f0);
const float4_t t0r0b = float4_and(tgrab, m0f0f);
const float4_t targb = float4_or(ta0g0, t0r0b);
float4_st(dst, targb);
}
}
}
void imageCopy(uint32_t _width, uint32_t _height, uint32_t _bpp, uint32_t _srcPitch, const void* _src, void* _dst)
{
const uint32_t pitch = _width*_bpp/8;
const uint8_t* src = (uint8_t*) _src;
const uint8_t* next = src + _srcPitch;
uint8_t* dst = (uint8_t*)_dst;
for (uint32_t yy = 0; yy < _height; ++yy, src = next, next += _srcPitch, dst += pitch)
{
memcpy(dst, src, pitch);
}
}
void imageWriteTga(bx::WriterI* _writer, uint32_t _width, uint32_t _height, uint32_t _srcPitch, const void* _src, bool _grayscale, bool _yflip)
{
uint8_t type = _grayscale ? 3 : 2;
uint8_t bpp = _grayscale ? 8 : 32;
uint8_t header[18] = {};
header[2] = type;
header[12] = _width&0xff;
header[13] = (_width>>8)&0xff;
header[14] = _height&0xff;
header[15] = (_height>>8)&0xff;
header[16] = bpp;
header[17] = 32;
bx::write(_writer, header, sizeof(header) );
uint32_t dstPitch = _width*bpp/8;
if (_yflip)
{
uint8_t* data = (uint8_t*)_src + _srcPitch*_height - _srcPitch;
for (uint32_t yy = 0; yy < _height; ++yy)
{
bx::write(_writer, data, dstPitch);
data -= _srcPitch;
}
}
else if (_srcPitch == dstPitch)
{
bx::write(_writer, _src, _height*_srcPitch);
}
else
{
uint8_t* data = (uint8_t*)_src;
for (uint32_t yy = 0; yy < _height; ++yy)
{
bx::write(_writer, data, dstPitch);
data += _srcPitch;
}
}
}
uint8_t bitRangeConvert(uint32_t _in, uint32_t _from, uint32_t _to)
{
using namespace bx;
uint32_t tmp0 = uint32_sll(1, _to);
uint32_t tmp1 = uint32_sll(1, _from);
uint32_t tmp2 = uint32_dec(tmp0);
uint32_t tmp3 = uint32_dec(tmp1);
uint32_t tmp4 = uint32_mul(_in, tmp2);
uint32_t tmp5 = uint32_add(tmp3, tmp4);
uint32_t tmp6 = uint32_srl(tmp5, _from);
uint32_t tmp7 = uint32_add(tmp5, tmp6);
uint32_t result = uint32_srl(tmp7, _from);
return uint8_t(result);
}
void decodeBlockDxt(uint8_t _dst[16*4], const uint8_t _src[8])
{
uint8_t colors[4*3];
uint32_t c0 = _src[0] | (_src[1] << 8);
colors[0] = bitRangeConvert( (c0>> 0)&0x1f, 5, 8);
colors[1] = bitRangeConvert( (c0>> 5)&0x3f, 6, 8);
colors[2] = bitRangeConvert( (c0>>11)&0x1f, 5, 8);
uint32_t c1 = _src[2] | (_src[3] << 8);
colors[3] = bitRangeConvert( (c1>> 0)&0x1f, 5, 8);
colors[4] = bitRangeConvert( (c1>> 5)&0x3f, 6, 8);
colors[5] = bitRangeConvert( (c1>>11)&0x1f, 5, 8);
colors[6] = (2*colors[0] + colors[3]) / 3;
colors[7] = (2*colors[1] + colors[4]) / 3;
colors[8] = (2*colors[2] + colors[5]) / 3;
colors[ 9] = (colors[0] + 2*colors[3]) / 3;
colors[10] = (colors[1] + 2*colors[4]) / 3;
colors[11] = (colors[2] + 2*colors[5]) / 3;
for (uint32_t ii = 0, next = 8*4; ii < 16*4; ii += 4, next += 2)
{
int idx = ( (_src[next>>3] >> (next & 7) ) & 3) * 3;
_dst[ii+0] = colors[idx+0];
_dst[ii+1] = colors[idx+1];
_dst[ii+2] = colors[idx+2];
}
}
void decodeBlockDxt1(uint8_t _dst[16*4], const uint8_t _src[8])
{
uint8_t colors[4*4];
uint32_t c0 = _src[0] | (_src[1] << 8);
colors[0] = bitRangeConvert( (c0>> 0)&0x1f, 5, 8);
colors[1] = bitRangeConvert( (c0>> 5)&0x3f, 6, 8);
colors[2] = bitRangeConvert( (c0>>11)&0x1f, 5, 8);
colors[3] = 255;
uint32_t c1 = _src[2] | (_src[3] << 8);
colors[4] = bitRangeConvert( (c1>> 0)&0x1f, 5, 8);
colors[5] = bitRangeConvert( (c1>> 5)&0x3f, 6, 8);
colors[6] = bitRangeConvert( (c1>>11)&0x1f, 5, 8);
colors[7] = 255;
if (c0 > c1)
{
colors[ 8] = (2*colors[0] + colors[4]) / 3;
colors[ 9] = (2*colors[1] + colors[5]) / 3;
colors[10] = (2*colors[2] + colors[6]) / 3;
colors[11] = 255;
colors[12] = (colors[0] + 2*colors[4]) / 3;
colors[13] = (colors[1] + 2*colors[5]) / 3;
colors[14] = (colors[2] + 2*colors[6]) / 3;
colors[15] = 255;
}
else
{
colors[ 8] = (colors[0] + colors[4]) / 2;
colors[ 9] = (colors[1] + colors[5]) / 2;
colors[10] = (colors[2] + colors[6]) / 2;
colors[11] = 255;
colors[12] = 0;
colors[13] = 0;
colors[14] = 0;
colors[15] = 0;
}
for (uint32_t ii = 0, next = 8*4; ii < 16*4; ii += 4, next += 2)
{
int idx = ( (_src[next>>3] >> (next & 7) ) & 3) * 4;
_dst[ii+0] = colors[idx+0];
_dst[ii+1] = colors[idx+1];
_dst[ii+2] = colors[idx+2];
_dst[ii+3] = colors[idx+3];
}
}
void decodeBlockDxt23A(uint8_t _dst[16*4], const uint8_t _src[8])
{
for (uint32_t ii = 0, next = 0; ii < 16*4; ii += 4, next += 4)
{
uint32_t c0 = (_src[next>>3] >> (next&7) ) & 0xf;
_dst[ii] = bitRangeConvert(c0, 4, 8);
}
}
void decodeBlockDxt45A(uint8_t _dst[16*4], const uint8_t _src[8])
{
uint8_t alpha[8];
alpha[0] = _src[0];
alpha[1] = _src[1];
if (alpha[0] > alpha[1])
{
alpha[2] = (6*alpha[0] + 1*alpha[1]) / 7;
alpha[3] = (5*alpha[0] + 2*alpha[1]) / 7;
alpha[4] = (4*alpha[0] + 3*alpha[1]) / 7;
alpha[5] = (3*alpha[0] + 4*alpha[1]) / 7;
alpha[6] = (2*alpha[0] + 5*alpha[1]) / 7;
alpha[7] = (1*alpha[0] + 6*alpha[1]) / 7;
}
else
{
alpha[2] = (4*alpha[0] + 1*alpha[1]) / 5;
alpha[3] = (3*alpha[0] + 2*alpha[1]) / 5;
alpha[4] = (2*alpha[0] + 3*alpha[1]) / 5;
alpha[5] = (1*alpha[0] + 4*alpha[1]) / 5;
alpha[6] = 0;
alpha[7] = 255;
}
uint32_t idx0 = _src[2];
uint32_t idx1 = _src[5];
idx0 |= uint32_t(_src[3])<<8;
idx1 |= uint32_t(_src[6])<<8;
idx0 |= uint32_t(_src[4])<<16;
idx1 |= uint32_t(_src[7])<<16;
for (uint32_t ii = 0; ii < 8*4; ii += 4)
{
_dst[ii] = alpha[idx0&7];
_dst[ii+32] = alpha[idx1&7];
idx0 >>= 3;
idx1 >>= 3;
}
}
static const int32_t s_etc1Mod[8][4] =
{
{ 2, 8, -2, -8},
{ 5, 17, -5, -17},
{ 9, 29, -9, -29},
{ 13, 42, -13, -42},
{ 18, 60, -18, -60},
{ 24, 80, -24, -80},
{ 33, 106, -33, -106},
{ 47, 183, -47, -183},
};
static const uint8_t s_etc2Mod[8] = { 3, 6, 11, 16, 23, 32, 41, 64 };
uint8_t uint8_sat(int32_t _a)
{
using namespace bx;
const uint32_t min = uint32_imin(_a, 255);
const uint32_t result = uint32_imax(min, 0);
return (uint8_t)result;
}
uint8_t uint8_satadd(int32_t _a, int32_t _b)
{
const int32_t add = _a + _b;
return uint8_sat(add);
}
void decodeBlockEtc2ModeT(uint8_t _dst[16*4], const uint8_t _src[8])
{
uint8_t rgb[16];
// 0 1 2 3 4 5 6 7
// 7654321076543210765432107654321076543210765432107654321076543210
// ...rr.rrggggbbbbrrrrggggbbbbDDD.mmmmmmmmmmmmmmmmllllllllllllllll
// ^ ^ ^ ^ ^
// +-- c0 +-- c1 | +-- msb +-- lsb
// +-- dist
rgb[ 0] = ( (_src[0] >> 1) & 0xc)
| (_src[0] & 0x3)
;
rgb[ 1] = _src[1] >> 4;
rgb[ 2] = _src[1] & 0xf;
rgb[ 8] = _src[2] >> 4;
rgb[ 9] = _src[2] & 0xf;
rgb[10] = _src[3] >> 4;
rgb[ 0] = bitRangeConvert(rgb[ 0], 4, 8);
rgb[ 1] = bitRangeConvert(rgb[ 1], 4, 8);
rgb[ 2] = bitRangeConvert(rgb[ 2], 4, 8);
rgb[ 8] = bitRangeConvert(rgb[ 8], 4, 8);
rgb[ 9] = bitRangeConvert(rgb[ 9], 4, 8);
rgb[10] = bitRangeConvert(rgb[10], 4, 8);
uint8_t dist = (_src[3] >> 1) & 0x7;
int32_t mod = s_etc2Mod[dist];
rgb[ 4] = uint8_satadd(rgb[ 8], mod);
rgb[ 5] = uint8_satadd(rgb[ 9], mod);
rgb[ 6] = uint8_satadd(rgb[10], mod);
rgb[12] = uint8_satadd(rgb[ 8], -mod);
rgb[13] = uint8_satadd(rgb[ 9], -mod);
rgb[14] = uint8_satadd(rgb[10], -mod);
uint32_t indexMsb = (_src[4]<<8) | _src[5];
uint32_t indexLsb = (_src[6]<<8) | _src[7];
for (uint32_t ii = 0; ii < 16; ++ii)
{
const uint32_t idx = (ii&0xc) | ( (ii & 0x3)<<4);
const uint32_t lsbi = indexLsb & 1;
const uint32_t msbi = (indexMsb & 1)<<1;
const uint32_t pal = (lsbi | msbi)<<2;
_dst[idx + 0] = rgb[pal+2];
_dst[idx + 1] = rgb[pal+1];
_dst[idx + 2] = rgb[pal+0];
_dst[idx + 3] = 255;
indexLsb >>= 1;
indexMsb >>= 1;
}
}
void decodeBlockEtc2ModeH(uint8_t _dst[16*4], const uint8_t _src[8])
{
uint8_t rgb[16];
// 0 1 2 3 4 5 6 7
// 7654321076543210765432107654321076543210765432107654321076543210
// .rrrrggg...gb.bbbrrrrggggbbbbDD.mmmmmmmmmmmmmmmmllllllllllllllll
// ^ ^ ^ ^ ^
// +-- c0 +-- c1 | +-- msb +-- lsb
// +-- dist
rgb[ 0] = (_src[0] >> 3) & 0xf;
rgb[ 1] = ( (_src[0] << 1) & 0xe)
| ( (_src[1] >> 4) & 0x1)
;
rgb[ 2] = (_src[1] & 0x8)
| ( (_src[1] << 1) & 0x6)
| (_src[2] >> 7)
;
rgb[ 8] = (_src[2] >> 3) & 0xf;
rgb[ 9] = ( (_src[2] << 1) & 0xe)
| (_src[3] >> 7)
;
rgb[10] = (_src[2] >> 3) & 0xf;
rgb[ 0] = bitRangeConvert(rgb[ 0], 4, 8);
rgb[ 1] = bitRangeConvert(rgb[ 1], 4, 8);
rgb[ 2] = bitRangeConvert(rgb[ 2], 4, 8);
rgb[ 8] = bitRangeConvert(rgb[ 8], 4, 8);
rgb[ 9] = bitRangeConvert(rgb[ 9], 4, 8);
rgb[10] = bitRangeConvert(rgb[10], 4, 8);
uint32_t col0 = uint32_t(rgb[0]<<16) | uint32_t(rgb[1]<<8) | uint32_t(rgb[ 2]);
uint32_t col1 = uint32_t(rgb[8]<<16) | uint32_t(rgb[9]<<8) | uint32_t(rgb[10]);
uint8_t dist = (_src[3] & 0x6) | (col0 >= col1);
int32_t mod = s_etc2Mod[dist];
rgb[ 4] = uint8_satadd(rgb[ 0], -mod);
rgb[ 5] = uint8_satadd(rgb[ 1], -mod);
rgb[ 6] = uint8_satadd(rgb[ 2], -mod);
rgb[ 0] = uint8_satadd(rgb[ 0], mod);
rgb[ 1] = uint8_satadd(rgb[ 1], mod);
rgb[ 2] = uint8_satadd(rgb[ 2], mod);
rgb[12] = uint8_satadd(rgb[ 8], -mod);
rgb[13] = uint8_satadd(rgb[ 9], -mod);
rgb[14] = uint8_satadd(rgb[10], -mod);
rgb[ 8] = uint8_satadd(rgb[ 8], mod);
rgb[ 9] = uint8_satadd(rgb[ 9], mod);
rgb[10] = uint8_satadd(rgb[10], mod);
uint32_t indexMsb = (_src[4]<<8) | _src[5];
uint32_t indexLsb = (_src[6]<<8) | _src[7];
for (uint32_t ii = 0; ii < 16; ++ii)
{
const uint32_t idx = (ii&0xc) | ( (ii & 0x3)<<4);
const uint32_t lsbi = indexLsb & 1;
const uint32_t msbi = (indexMsb & 1)<<1;
const uint32_t pal = (lsbi | msbi)<<2;
_dst[idx + 0] = rgb[pal+2];
_dst[idx + 1] = rgb[pal+1];
_dst[idx + 2] = rgb[pal+0];
_dst[idx + 3] = 255;
indexLsb >>= 1;
indexMsb >>= 1;
}
}
void decodeBlockEtc2ModePlanar(uint8_t _dst[16*4], const uint8_t _src[8])
{
// 0 1 2 3 4 5 6 7
// 7654321076543210765432107654321076543210765432107654321076543210
// .rrrrrrg.ggggggb...bb.bbbrrrrr.rgggggggbbbbbbrrrrrrgggggggbbbbbb
// ^ ^ ^
// +-- c0 +-- cH +-- cV
uint8_t c0[3];
uint8_t cH[3];
uint8_t cV[3];
c0[0] = (_src[0] >> 1) & 0x3f;
c0[1] = ( (_src[0] & 1) << 6)
| ( (_src[1] >> 1) & 0x3f)
;
c0[2] = ( (_src[1] & 1) << 5)
| ( (_src[2] & 0x18) )
| ( (_src[2] << 1) & 6)
| ( (_src[3] >> 7) )
;
cH[0] = ( (_src[3] >> 1) & 0x3e)
| (_src[3] & 1)
;
cH[1] = _src[4] >> 1;
cH[2] = ( (_src[4] & 1) << 5)
| (_src[5] >> 3)
;
cV[0] = ( (_src[5] & 0x7) << 3)
| (_src[6] >> 5)
;
cV[1] = ( (_src[6] & 0x1f) << 2)
| (_src[7] >> 5)
;
cV[2] = _src[7] & 0x3f;
c0[0] = bitRangeConvert(c0[0], 6, 8);
c0[1] = bitRangeConvert(c0[1], 7, 8);
c0[2] = bitRangeConvert(c0[2], 6, 8);
cH[0] = bitRangeConvert(cH[0], 6, 8);
cH[1] = bitRangeConvert(cH[1], 7, 8);
cH[2] = bitRangeConvert(cH[2], 6, 8);
cV[0] = bitRangeConvert(cV[0], 6, 8);
cV[1] = bitRangeConvert(cV[1], 7, 8);
cV[2] = bitRangeConvert(cV[2], 6, 8);
int16_t dy[3];
dy[0] = cV[0] - c0[0];
dy[1] = cV[1] - c0[1];
dy[2] = cV[2] - c0[2];
int16_t sx[3];
sx[0] = int16_t(c0[0])<<2;
sx[1] = int16_t(c0[1])<<2;
sx[2] = int16_t(c0[2])<<2;
int16_t ex[3];
ex[0] = int16_t(cH[0])<<2;
ex[1] = int16_t(cH[1])<<2;
ex[2] = int16_t(cH[2])<<2;
for (int32_t vv = 0; vv < 4; ++vv)
{
int16_t dx[3];
dx[0] = (ex[0] - sx[0])>>2;
dx[1] = (ex[1] - sx[1])>>2;
dx[2] = (ex[2] - sx[2])>>2;
for (int32_t hh = 0; hh < 4; ++hh)
{
const uint32_t idx = (vv<<4) + (hh<<2);
_dst[idx + 0] = uint8_sat( (sx[2] + dx[2]*hh)>>2);
_dst[idx + 1] = uint8_sat( (sx[1] + dx[1]*hh)>>2);
_dst[idx + 2] = uint8_sat( (sx[0] + dx[0]*hh)>>2);
_dst[idx + 3] = 255;
}
sx[0] += dy[0];
sx[1] += dy[1];
sx[2] += dy[2];
ex[0] += dy[0];
ex[1] += dy[1];
ex[2] += dy[2];
}
}
void decodeBlockEtc12(uint8_t _dst[16*4], const uint8_t _src[8])
{
bool flipBit = 0 != (_src[3] & 0x1);
bool diffBit = 0 != (_src[3] & 0x2);
uint8_t rgb[8];
if (diffBit)
{
rgb[0] = _src[0] >> 3;
rgb[1] = _src[1] >> 3;
rgb[2] = _src[2] >> 3;
int8_t diff[3];
diff[0] = int8_t( (_src[0] & 0x7)<<5)>>5;
diff[1] = int8_t( (_src[1] & 0x7)<<5)>>5;
diff[2] = int8_t( (_src[2] & 0x7)<<5)>>5;
int8_t rr = rgb[0] + diff[0];
int8_t gg = rgb[1] + diff[1];
int8_t bb = rgb[2] + diff[2];
// Etc2 3-modes
if (rr < 0 || rr > 31)
{
decodeBlockEtc2ModeT(_dst, _src);
return;
}
if (gg < 0 || gg > 31)
{
decodeBlockEtc2ModeH(_dst, _src);
return;
}
if (bb < 0 || bb > 31)
{
decodeBlockEtc2ModePlanar(_dst, _src);
return;
}
// Etc1
rgb[0] = bitRangeConvert(rgb[0], 5, 8);
rgb[1] = bitRangeConvert(rgb[1], 5, 8);
rgb[2] = bitRangeConvert(rgb[2], 5, 8);
rgb[4] = bitRangeConvert(rr, 5, 8);
rgb[5] = bitRangeConvert(gg, 5, 8);
rgb[6] = bitRangeConvert(bb, 5, 8);
}
else
{
rgb[0] = _src[0] >> 4;
rgb[1] = _src[1] >> 4;
rgb[2] = _src[2] >> 4;
rgb[4] = _src[0] & 0xf;
rgb[5] = _src[1] & 0xf;
rgb[6] = _src[2] & 0xf;
rgb[0] = bitRangeConvert(rgb[0], 4, 8);
rgb[1] = bitRangeConvert(rgb[1], 4, 8);
rgb[2] = bitRangeConvert(rgb[2], 4, 8);
rgb[4] = bitRangeConvert(rgb[4], 4, 8);
rgb[5] = bitRangeConvert(rgb[5], 4, 8);
rgb[6] = bitRangeConvert(rgb[6], 4, 8);
}
uint32_t table[2];
table[0] = (_src[3] >> 5) & 0x7;
table[1] = (_src[3] >> 2) & 0x7;
uint32_t indexMsb = (_src[4]<<8) | _src[5];
uint32_t indexLsb = (_src[6]<<8) | _src[7];
if (flipBit)
{
for (uint32_t ii = 0; ii < 16; ++ii)
{
const uint32_t block = (ii>>1)&1;
const uint32_t color = block<<2;
const uint32_t idx = (ii&0xc) | ( (ii & 0x3)<<4);
const uint32_t lsbi = indexLsb & 1;
const uint32_t msbi = (indexMsb & 1)<<1;
const int32_t mod = s_etc1Mod[table[block] ][lsbi | msbi];
_dst[idx + 0] = uint8_satadd(rgb[color+2], mod);
_dst[idx + 1] = uint8_satadd(rgb[color+1], mod);
_dst[idx + 2] = uint8_satadd(rgb[color+0], mod);
_dst[idx + 3] = 255;
indexLsb >>= 1;
indexMsb >>= 1;
}
}
else
{
for (uint32_t ii = 0; ii < 16; ++ii)
{
const uint32_t block = ii>>3;
const uint32_t color = block<<2;
const uint32_t idx = (ii&0xc) | ( (ii & 0x3)<<4);
const uint32_t lsbi = indexLsb & 1;
const uint32_t msbi = (indexMsb & 1)<<1;
const int32_t mod = s_etc1Mod[table[block] ][lsbi | msbi];
_dst[idx + 0] = uint8_satadd(rgb[color+2], mod);
_dst[idx + 1] = uint8_satadd(rgb[color+1], mod);
_dst[idx + 2] = uint8_satadd(rgb[color+0], mod);
_dst[idx + 3] = 255;
indexLsb >>= 1;
indexMsb >>= 1;
}
}
}
static const uint8_t s_pvrtcFactors[16][4] =
{
{ 4, 4, 4, 4 },
{ 2, 6, 2, 6 },
{ 8, 0, 8, 0 },
{ 6, 2, 6, 2 },
{ 2, 2, 6, 6 },
{ 1, 3, 3, 9 },
{ 4, 0, 12, 0 },
{ 3, 1, 9, 3 },
{ 8, 8, 0, 0 },
{ 4, 12, 0, 0 },
{ 16, 0, 0, 0 },
{ 12, 4, 0, 0 },
{ 6, 6, 2, 2 },
{ 3, 9, 1, 3 },
{ 12, 0, 4, 0 },
{ 9, 3, 3, 1 },
};
static const uint8_t s_pvrtcWeights[8][4] =
{
{ 8, 0, 8, 0 },
{ 5, 3, 5, 3 },
{ 3, 5, 3, 5 },
{ 0, 8, 0, 8 },
{ 8, 0, 8, 0 },
{ 4, 4, 4, 4 },
{ 4, 4, 0, 0 },
{ 0, 8, 0, 8 },
};
uint32_t morton2d(uint32_t _x, uint32_t _y)
{
using namespace bx;
const uint32_t tmpx = uint32_part1by1(_x);
const uint32_t xbits = uint32_sll(tmpx, 1);
const uint32_t ybits = uint32_part1by1(_y);
const uint32_t result = uint32_or(xbits, ybits);
return result;
}
uint32_t getColor(const uint8_t _src[8])
{
return 0
| _src[7]<<24
| _src[6]<<16
| _src[5]<<8
| _src[4]
;
}
void decodeBlockPtc14RgbAddA(uint32_t _block, uint32_t* _r, uint32_t* _g, uint32_t* _b, uint8_t _factor)
{
if (0 != (_block & (1<<15) ) )
{
*_r += bitRangeConvert( (_block >> 10) & 0x1f, 5, 8) * _factor;
*_g += bitRangeConvert( (_block >> 5) & 0x1f, 5, 8) * _factor;
*_b += bitRangeConvert( (_block >> 1) & 0x0f, 4, 8) * _factor;
}
else
{
*_r += bitRangeConvert( (_block >> 8) & 0xf, 4, 8) * _factor;
*_g += bitRangeConvert( (_block >> 4) & 0xf, 4, 8) * _factor;
*_b += bitRangeConvert( (_block >> 1) & 0x7, 3, 8) * _factor;
}
}
void decodeBlockPtc14RgbAddB(uint32_t _block, uint32_t* _r, uint32_t* _g, uint32_t* _b, uint8_t _factor)
{
if (0 != (_block & (1<<31) ) )
{
*_r += bitRangeConvert( (_block >> 26) & 0x1f, 5, 8) * _factor;
*_g += bitRangeConvert( (_block >> 21) & 0x1f, 5, 8) * _factor;
*_b += bitRangeConvert( (_block >> 16) & 0x1f, 5, 8) * _factor;
}
else
{
*_r += bitRangeConvert( (_block >> 24) & 0xf, 4, 8) * _factor;
*_g += bitRangeConvert( (_block >> 20) & 0xf, 4, 8) * _factor;
*_b += bitRangeConvert( (_block >> 16) & 0xf, 4, 8) * _factor;
}
}
void decodeBlockPtc14(uint8_t _dst[16*4], const uint8_t* _src, uint32_t _x, uint32_t _y, uint32_t _width, uint32_t _height)
{
// 0 1 2 3 4 5 6 7
// 7654321076543210765432107654321076543210765432107654321076543210
// mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmyrrrrrgggggbbbbbxrrrrrgggggbbbbp
// ^ ^^ ^^ ^
// +-- modulation data |+- B color |+- A color |
// +-- B opaque +-- A opaque |
// alpha punchthrough --+
const uint8_t* bc = &_src[morton2d(_x, _y) * 8];
uint32_t mod = 0
| bc[3]<<24
| bc[2]<<16
| bc[1]<<8
| bc[0]
;
const bool punchthrough = !!(bc[7] & 1);
const uint8_t* weightTable = s_pvrtcWeights[4 * punchthrough];
const uint8_t* factorTable = s_pvrtcFactors[0];
for (int yy = 0; yy < 4; ++yy)
{
const uint32_t yOffset = (yy < 2) ? -1 : 0;
const uint32_t y0 = (_y + yOffset) % _height;
const uint32_t y1 = (y0 + 1) % _height;
for (int xx = 0; xx < 4; ++xx)
{
const uint32_t xOffset = (xx < 2) ? -1 : 0;
const uint32_t x0 = (_x + xOffset) % _width;
const uint32_t x1 = (x0 + 1) % _width;
const uint32_t bc0 = getColor(&_src[morton2d(x0, y0) * 8]);
const uint32_t bc1 = getColor(&_src[morton2d(x1, y0) * 8]);
const uint32_t bc2 = getColor(&_src[morton2d(x0, y1) * 8]);
const uint32_t bc3 = getColor(&_src[morton2d(x1, y1) * 8]);
const uint8_t f0 = factorTable[0];
const uint8_t f1 = factorTable[1];
const uint8_t f2 = factorTable[2];
const uint8_t f3 = factorTable[3];
uint32_t ar = 0, ag = 0, ab = 0;
decodeBlockPtc14RgbAddA(bc0, &ar, &ag, &ab, f0);
decodeBlockPtc14RgbAddA(bc1, &ar, &ag, &ab, f1);
decodeBlockPtc14RgbAddA(bc2, &ar, &ag, &ab, f2);
decodeBlockPtc14RgbAddA(bc3, &ar, &ag, &ab, f3);
uint32_t br = 0, bg = 0, bb = 0;
decodeBlockPtc14RgbAddB(bc0, &br, &bg, &bb, f0);
decodeBlockPtc14RgbAddB(bc1, &br, &bg, &bb, f1);
decodeBlockPtc14RgbAddB(bc2, &br, &bg, &bb, f2);
decodeBlockPtc14RgbAddB(bc3, &br, &bg, &bb, f3);
const uint8_t* weight = &weightTable[(mod & 3)*4];
const uint8_t wa = weight[0];
const uint8_t wb = weight[1];
_dst[(yy*4 + xx)*4+0] = uint8_t( (ab * wa + bb * wb) >> 7);
_dst[(yy*4 + xx)*4+1] = uint8_t( (ag * wa + bg * wb) >> 7);
_dst[(yy*4 + xx)*4+2] = uint8_t( (ar * wa + br * wb) >> 7);
_dst[(yy*4 + xx)*4+3] = 255;
mod >>= 2;
factorTable += 4;
}
}
}
void decodeBlockPtc14ARgbaAddA(uint32_t _block, uint32_t* _r, uint32_t* _g, uint32_t* _b, uint32_t* _a, uint8_t _factor)
{
if (0 != (_block & (1<<15) ) )
{
*_r += bitRangeConvert( (_block >> 10) & 0x1f, 5, 8) * _factor;
*_g += bitRangeConvert( (_block >> 5) & 0x1f, 5, 8) * _factor;
*_b += bitRangeConvert( (_block >> 1) & 0x0f, 4, 8) * _factor;
*_a += 255;
}
else
{
*_r += bitRangeConvert( (_block >> 8) & 0xf, 4, 8) * _factor;
*_g += bitRangeConvert( (_block >> 4) & 0xf, 4, 8) * _factor;
*_b += bitRangeConvert( (_block >> 1) & 0x7, 3, 8) * _factor;
*_a += bitRangeConvert( (_block >> 12) & 0x7, 3, 8) * _factor;
}
}
void decodeBlockPtc14ARgbaAddB(uint32_t _block, uint32_t* _r, uint32_t* _g, uint32_t* _b, uint32_t* _a, uint8_t _factor)
{
if (0 != (_block & (1<<31) ) )
{
*_r += bitRangeConvert( (_block >> 26) & 0x1f, 5, 8) * _factor;
*_g += bitRangeConvert( (_block >> 21) & 0x1f, 5, 8) * _factor;
*_b += bitRangeConvert( (_block >> 16) & 0x1f, 5, 8) * _factor;
*_a += 255;
}
else
{
*_r += bitRangeConvert( (_block >> 24) & 0xf, 4, 8) * _factor;
*_g += bitRangeConvert( (_block >> 20) & 0xf, 4, 8) * _factor;
*_b += bitRangeConvert( (_block >> 16) & 0xf, 4, 8) * _factor;
*_a += bitRangeConvert( (_block >> 28) & 0x7, 3, 8) * _factor;
}
}
void decodeBlockPtc14A(uint8_t _dst[16*4], const uint8_t* _src, uint32_t _x, uint32_t _y, uint32_t _width, uint32_t _height)
{
// 0 1 2 3 4 5 6 7
// 7654321076543210765432107654321076543210765432107654321076543210
// mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmyrrrrrgggggbbbbbxrrrrrgggggbbbbp
// ^ ^^ ^^ ^
// +-- modulation data |+- B color |+- A color |
// +-- B opaque +-- A opaque |
// alpha punchthrough --+
const uint8_t* bc = &_src[morton2d(_x, _y) * 8];
uint32_t mod = 0
| bc[3]<<24
| bc[2]<<16
| bc[1]<<8
| bc[0]
;
const bool punchthrough = !!(bc[7] & 1);
const uint8_t* weightTable = s_pvrtcWeights[4 * punchthrough];
const uint8_t* factorTable = s_pvrtcFactors[0];
for (int yy = 0; yy < 4; ++yy)
{
const uint32_t yOffset = (yy < 2) ? -1 : 0;
const uint32_t y0 = (_y + yOffset) % _height;
const uint32_t y1 = (y0 + 1) % _height;
for (int xx = 0; xx < 4; ++xx)
{
const uint32_t xOffset = (xx < 2) ? -1 : 0;
const uint32_t x0 = (_x + xOffset) % _width;
const uint32_t x1 = (x0 + 1) % _width;
const uint32_t bc0 = getColor(&_src[morton2d(x0, y0) * 8]);
const uint32_t bc1 = getColor(&_src[morton2d(x1, y0) * 8]);
const uint32_t bc2 = getColor(&_src[morton2d(x0, y1) * 8]);
const uint32_t bc3 = getColor(&_src[morton2d(x1, y1) * 8]);
const uint8_t f0 = factorTable[0];
const uint8_t f1 = factorTable[1];
const uint8_t f2 = factorTable[2];
const uint8_t f3 = factorTable[3];
uint32_t ar = 0, ag = 0, ab = 0, aa = 0;
decodeBlockPtc14ARgbaAddA(bc0, &ar, &ag, &ab, &aa, f0);
decodeBlockPtc14ARgbaAddA(bc1, &ar, &ag, &ab, &aa, f1);
decodeBlockPtc14ARgbaAddA(bc2, &ar, &ag, &ab, &aa, f2);
decodeBlockPtc14ARgbaAddA(bc3, &ar, &ag, &ab, &aa, f3);
uint32_t br = 0, bg = 0, bb = 0, ba = 0;
decodeBlockPtc14ARgbaAddB(bc0, &br, &bg, &bb, &ba, f0);
decodeBlockPtc14ARgbaAddB(bc1, &br, &bg, &bb, &ba, f1);
decodeBlockPtc14ARgbaAddB(bc2, &br, &bg, &bb, &ba, f2);
decodeBlockPtc14ARgbaAddB(bc3, &br, &bg, &bb, &ba, f3);
const uint8_t* weight = &weightTable[(mod & 3)*4];
const uint8_t wa = weight[0];
const uint8_t wb = weight[1];
const uint8_t wc = weight[2];
const uint8_t wd = weight[3];
_dst[(yy*4 + xx)*4+0] = uint8_t( (ab * wa + bb * wb) >> 7);
_dst[(yy*4 + xx)*4+1] = uint8_t( (ag * wa + bg * wb) >> 7);
_dst[(yy*4 + xx)*4+2] = uint8_t( (ar * wa + br * wb) >> 7);
_dst[(yy*4 + xx)*4+3] = uint8_t( (aa * wc + ba * wd) >> 7);
mod >>= 2;
factorTable += 4;
}
}
}
// DDS
#define DDS_MAGIC BX_MAKEFOURCC('D', 'D', 'S', ' ')
#define DDS_HEADER_SIZE 124
#define DDS_DXT1 BX_MAKEFOURCC('D', 'X', 'T', '1')
#define DDS_DXT2 BX_MAKEFOURCC('D', 'X', 'T', '2')
#define DDS_DXT3 BX_MAKEFOURCC('D', 'X', 'T', '3')
#define DDS_DXT4 BX_MAKEFOURCC('D', 'X', 'T', '4')
#define DDS_DXT5 BX_MAKEFOURCC('D', 'X', 'T', '5')
#define DDS_ATI1 BX_MAKEFOURCC('A', 'T', 'I', '1')
#define DDS_BC4U BX_MAKEFOURCC('B', 'C', '4', 'U')
#define DDS_ATI2 BX_MAKEFOURCC('A', 'T', 'I', '2')
#define DDS_BC5U BX_MAKEFOURCC('B', 'C', '5', 'U')
#define DDS_DX10 BX_MAKEFOURCC('D', 'X', '1', '0')
#define DDS_A8R8G8B8 21
#define DDS_R5G6B5 23
#define DDS_A1R5G5B5 25
#define DDS_A4R4G4B4 26
#define DDS_A2B10G10R10 31
#define DDS_G16R16 34
#define DDS_A2R10G10B10 35
#define DDS_A16B16G16R16 36
#define DDS_A8L8 51
#define DDS_R16F 111
#define DDS_G16R16F 112
#define DDS_A16B16G16R16F 113
#define DDS_R32F 114
#define DDS_G32R32F 115
#define DDS_A32B32G32R32F 116
#define DDS_FORMAT_R32G32B32A32_FLOAT 2
#define DDS_FORMAT_R32G32B32A32_UINT 3
#define DDS_FORMAT_R16G16B16A16_FLOAT 10
#define DDS_FORMAT_R16G16B16A16_UNORM 11
#define DDS_FORMAT_R16G16B16A16_UINT 12
#define DDS_FORMAT_R32G32_FLOAT 16
#define DDS_FORMAT_R32G32_UINT 17
#define DDS_FORMAT_R10G10B10A2_UNORM 24
#define DDS_FORMAT_R16G16_FLOAT 34
#define DDS_FORMAT_R16G16_UNORM 35
#define DDS_FORMAT_R32_FLOAT 41
#define DDS_FORMAT_R32_UINT 42
#define DDS_FORMAT_R8G8_UNORM 49
#define DDS_FORMAT_R16_FLOAT 54
#define DDS_FORMAT_R16_UNORM 56
#define DDS_FORMAT_R8_UNORM 61
#define DDS_FORMAT_BC1_UNORM 71
#define DDS_FORMAT_BC2_UNORM 74
#define DDS_FORMAT_BC3_UNORM 77
#define DDS_FORMAT_BC4_UNORM 80
#define DDS_FORMAT_BC5_UNORM 83
#define DDS_FORMAT_B5G6R5_UNORM 85
#define DDS_FORMAT_B5G5R5A1_UNORM 86
#define DDS_FORMAT_B8G8R8A8_UNORM 87
#define DDS_FORMAT_BC6H_SF16 96
#define DDS_FORMAT_BC7_UNORM 98
#define DDS_FORMAT_B4G4R4A4_UNORM 115
#define DDSD_CAPS 0x00000001
#define DDSD_HEIGHT 0x00000002
#define DDSD_WIDTH 0x00000004
#define DDSD_PITCH 0x00000008
#define DDSD_PIXELFORMAT 0x00001000
#define DDSD_MIPMAPCOUNT 0x00020000
#define DDSD_LINEARSIZE 0x00080000
#define DDSD_DEPTH 0x00800000
#define DDPF_ALPHAPIXELS 0x00000001
#define DDPF_ALPHA 0x00000002
#define DDPF_FOURCC 0x00000004
#define DDPF_INDEXED 0x00000020
#define DDPF_RGB 0x00000040
#define DDPF_YUV 0x00000200
#define DDPF_LUMINANCE 0x00020000
#define DDSCAPS_COMPLEX 0x00000008
#define DDSCAPS_TEXTURE 0x00001000
#define DDSCAPS_MIPMAP 0x00400000
#define DDSCAPS2_CUBEMAP 0x00000200
#define DDSCAPS2_CUBEMAP_POSITIVEX 0x00000400
#define DDSCAPS2_CUBEMAP_NEGATIVEX 0x00000800
#define DDSCAPS2_CUBEMAP_POSITIVEY 0x00001000
#define DDSCAPS2_CUBEMAP_NEGATIVEY 0x00002000
#define DDSCAPS2_CUBEMAP_POSITIVEZ 0x00004000
#define DDSCAPS2_CUBEMAP_NEGATIVEZ 0x00008000
#define DDS_CUBEMAP_ALLFACES (DDSCAPS2_CUBEMAP_POSITIVEX|DDSCAPS2_CUBEMAP_NEGATIVEX \
|DDSCAPS2_CUBEMAP_POSITIVEY|DDSCAPS2_CUBEMAP_NEGATIVEY \
|DDSCAPS2_CUBEMAP_POSITIVEZ|DDSCAPS2_CUBEMAP_NEGATIVEZ)
#define DDSCAPS2_VOLUME 0x00200000
struct TranslateDdsFormat
{
uint32_t m_format;
TextureFormat::Enum m_textureFormat;
};
static TranslateDdsFormat s_translateDdsFourccFormat[] =
{
{ DDS_DXT1, TextureFormat::BC1 },
{ DDS_DXT2, TextureFormat::BC2 },
{ DDS_DXT3, TextureFormat::BC2 },
{ DDS_DXT4, TextureFormat::BC3 },
{ DDS_DXT5, TextureFormat::BC3 },
{ DDS_ATI1, TextureFormat::BC4 },
{ DDS_BC4U, TextureFormat::BC4 },
{ DDS_ATI2, TextureFormat::BC5 },
{ DDS_BC5U, TextureFormat::BC5 },
{ DDS_A16B16G16R16, TextureFormat::RGBA16 },
{ DDS_A16B16G16R16F, TextureFormat::RGBA16F },
{ DDPF_RGB|DDPF_ALPHAPIXELS, TextureFormat::BGRA8 },
{ DDPF_INDEXED, TextureFormat::R8 },
{ DDPF_LUMINANCE, TextureFormat::R8 },
{ DDPF_ALPHA, TextureFormat::R8 },
{ DDS_R16F, TextureFormat::R16F },
{ DDS_R32F, TextureFormat::R32F },
{ DDS_A8L8, TextureFormat::RG8 },
{ DDS_G16R16, TextureFormat::RG16 },
{ DDS_G16R16F, TextureFormat::RG16F },
{ DDS_G32R32F, TextureFormat::RG32F },
{ DDS_A8R8G8B8, TextureFormat::BGRA8 },
{ DDS_A16B16G16R16, TextureFormat::RGBA16 },
{ DDS_A16B16G16R16F, TextureFormat::RGBA16F },
{ DDS_A32B32G32R32F, TextureFormat::RGBA32F },
{ DDS_R5G6B5, TextureFormat::R5G6B5 },
{ DDS_A4R4G4B4, TextureFormat::RGBA4 },
{ DDS_A1R5G5B5, TextureFormat::RGB5A1 },
{ DDS_A2B10G10R10, TextureFormat::RGB10A2 },
};
static TranslateDdsFormat s_translateDxgiFormat[] =
{
{ DDS_FORMAT_BC1_UNORM, TextureFormat::BC1 },
{ DDS_FORMAT_BC2_UNORM, TextureFormat::BC2 },
{ DDS_FORMAT_BC3_UNORM, TextureFormat::BC3 },
{ DDS_FORMAT_BC4_UNORM, TextureFormat::BC4 },
{ DDS_FORMAT_BC5_UNORM, TextureFormat::BC5 },
{ DDS_FORMAT_BC6H_SF16, TextureFormat::BC6H },
{ DDS_FORMAT_BC7_UNORM, TextureFormat::BC7 },
{ DDS_FORMAT_R8_UNORM, TextureFormat::R8 },
{ DDS_FORMAT_R16_UNORM, TextureFormat::R16 },
{ DDS_FORMAT_R16_FLOAT, TextureFormat::R16F },
{ DDS_FORMAT_R32_UINT, TextureFormat::R32 },
{ DDS_FORMAT_R32_FLOAT, TextureFormat::R32F },
{ DDS_FORMAT_R8G8_UNORM, TextureFormat::RG8 },
{ DDS_FORMAT_R16G16_UNORM, TextureFormat::RG16 },
{ DDS_FORMAT_R16G16_FLOAT, TextureFormat::RG16F },
{ DDS_FORMAT_R32G32_UINT, TextureFormat::RG32 },
{ DDS_FORMAT_R32G32_FLOAT, TextureFormat::RG32F },
{ DDS_FORMAT_B8G8R8A8_UNORM, TextureFormat::BGRA8 },
{ DDS_FORMAT_R16G16B16A16_UNORM, TextureFormat::RGBA16 },
{ DDS_FORMAT_R16G16B16A16_FLOAT, TextureFormat::RGBA16F },
{ DDS_FORMAT_R32G32B32A32_UINT, TextureFormat::RGBA32 },
{ DDS_FORMAT_R32G32B32A32_FLOAT, TextureFormat::RGBA32F },
{ DDS_FORMAT_B5G6R5_UNORM, TextureFormat::R5G6B5 },
{ DDS_FORMAT_B4G4R4A4_UNORM, TextureFormat::RGBA4 },
{ DDS_FORMAT_B5G5R5A1_UNORM, TextureFormat::RGB5A1 },
{ DDS_FORMAT_R10G10B10A2_UNORM, TextureFormat::RGB10A2 },
};
struct TranslateDdsPixelFormat
{
uint32_t m_bitCount;
uint32_t m_bitmask[4];
TextureFormat::Enum m_textureFormat;
};
static TranslateDdsPixelFormat s_translateDdsPixelFormat[] =
{
{ 8, { 0x000000ff, 0x00000000, 0x00000000, 0x00000000 }, TextureFormat::R8 },
{ 16, { 0x0000ffff, 0x00000000, 0x00000000, 0x00000000 }, TextureFormat::R16 },
{ 16, { 0x00000f00, 0x000000f0, 0x0000000f, 0x0000f000 }, TextureFormat::RGBA4 },
{ 16, { 0x0000f800, 0x000007e0, 0x0000001f, 0x00000000 }, TextureFormat::R5G6B5 },
{ 16, { 0x00007c00, 0x000003e0, 0x0000001f, 0x00008000 }, TextureFormat::RGB5A1 },
{ 32, { 0x00ff0000, 0x0000ff00, 0x000000ff, 0xff000000 }, TextureFormat::BGRA8 },
{ 32, { 0x00ff0000, 0x0000ff00, 0x000000ff, 0x00000000 }, TextureFormat::BGRA8 },
{ 32, { 0x000003ff, 0x000ffc00, 0x3ff00000, 0xc0000000 }, TextureFormat::RGB10A2 },
{ 32, { 0x0000ffff, 0xffff0000, 0x00000000, 0x00000000 }, TextureFormat::RG16 },
{ 32, { 0xffffffff, 0x00000000, 0x00000000, 0x00000000 }, TextureFormat::R32 },
};
bool imageParseDds(ImageContainer& _imageContainer, bx::ReaderSeekerI* _reader)
{
uint32_t headerSize;
bx::read(_reader, headerSize);
if (headerSize < DDS_HEADER_SIZE)
{
return false;
}
uint32_t flags;
bx::read(_reader, flags);
if ( (flags & (DDSD_CAPS|DDSD_HEIGHT|DDSD_WIDTH|DDSD_PIXELFORMAT) ) != (DDSD_CAPS|DDSD_HEIGHT|DDSD_WIDTH|DDSD_PIXELFORMAT) )
{
return false;
}
uint32_t height;
bx::read(_reader, height);
uint32_t width;
bx::read(_reader, width);
uint32_t pitch;
bx::read(_reader, pitch);
uint32_t depth;
bx::read(_reader, depth);
uint32_t mips;
bx::read(_reader, mips);
bx::skip(_reader, 44); // reserved
uint32_t pixelFormatSize;
bx::read(_reader, pixelFormatSize);
uint32_t pixelFlags;
bx::read(_reader, pixelFlags);
uint32_t fourcc;
bx::read(_reader, fourcc);
uint32_t bitCount;
bx::read(_reader, bitCount);
uint32_t bitmask[4];
bx::read(_reader, bitmask, sizeof(bitmask) );
uint32_t caps[4];
bx::read(_reader, caps);
bx::skip(_reader, 4); // reserved
uint32_t dxgiFormat = 0;
if (DDPF_FOURCC == pixelFlags
&& DDS_DX10 == fourcc)
{
bx::read(_reader, dxgiFormat);
uint32_t dims;
bx::read(_reader, dims);
uint32_t miscFlags;
bx::read(_reader, miscFlags);
uint32_t arraySize;
bx::read(_reader, arraySize);
uint32_t miscFlags2;
bx::read(_reader, miscFlags2);
}
if ( (caps[0] & DDSCAPS_TEXTURE) == 0)
{
return false;
}
bool cubeMap = 0 != (caps[1] & DDSCAPS2_CUBEMAP);
if (cubeMap)
{
if ( (caps[1] & DDS_CUBEMAP_ALLFACES) != DDS_CUBEMAP_ALLFACES)
{
// parital cube map is not supported.
return false;
}
}
TextureFormat::Enum format = TextureFormat::Unknown;
bool hasAlpha = pixelFlags & DDPF_ALPHAPIXELS;
if (dxgiFormat == 0)
{
if (DDPF_FOURCC == (pixelFlags & DDPF_FOURCC) )
{
for (uint32_t ii = 0; ii < BX_COUNTOF(s_translateDdsFourccFormat); ++ii)
{
if (s_translateDdsFourccFormat[ii].m_format == fourcc)
{
format = s_translateDdsFourccFormat[ii].m_textureFormat;
break;
}
}
}
else
{
for (uint32_t ii = 0; ii < BX_COUNTOF(s_translateDdsPixelFormat); ++ii)
{
const TranslateDdsPixelFormat& pf = s_translateDdsPixelFormat[ii];
if (pf.m_bitCount == bitCount
&& pf.m_bitmask[0] == bitmask[0]
&& pf.m_bitmask[1] == bitmask[1]
&& pf.m_bitmask[2] == bitmask[2]
&& pf.m_bitmask[3] == bitmask[3])
{
format = pf.m_textureFormat;
break;
}
}
}
}
else
{
for (uint32_t ii = 0; ii < BX_COUNTOF(s_translateDxgiFormat); ++ii)
{
if (s_translateDxgiFormat[ii].m_format == dxgiFormat)
{
format = s_translateDxgiFormat[ii].m_textureFormat;
break;
}
}
}
_imageContainer.m_data = NULL;
_imageContainer.m_size = 0;
_imageContainer.m_offset = (uint32_t)bx::seek(_reader);
_imageContainer.m_width = width;
_imageContainer.m_height = height;
_imageContainer.m_depth = depth;
_imageContainer.m_format = uint8_t(format);
_imageContainer.m_numMips = uint8_t( (caps[0] & DDSCAPS_MIPMAP) ? mips : 1);
_imageContainer.m_hasAlpha = hasAlpha;
_imageContainer.m_cubeMap = cubeMap;
_imageContainer.m_ktx = false;
return TextureFormat::Unknown != format;
}
// KTX
#define KTX_MAGIC BX_MAKEFOURCC(0xAB, 'K', 'T', 'X')
#define KTX_HEADER_SIZE 64
#define KTX_ETC1_RGB8_OES 0x8D64
#define KTX_COMPRESSED_R11_EAC 0x9270
#define KTX_COMPRESSED_SIGNED_R11_EAC 0x9271
#define KTX_COMPRESSED_RG11_EAC 0x9272
#define KTX_COMPRESSED_SIGNED_RG11_EAC 0x9273
#define KTX_COMPRESSED_RGB8_ETC2 0x9274
#define KTX_COMPRESSED_SRGB8_ETC2 0x9275
#define KTX_COMPRESSED_RGB8_PUNCHTHROUGH_ALPHA1_ETC2 0x9276
#define KTX_COMPRESSED_SRGB8_PUNCHTHROUGH_ALPHA1_ETC2 0x9277
#define KTX_COMPRESSED_RGBA8_ETC2_EAC 0x9278
#define KTX_COMPRESSED_SRGB8_ALPHA8_ETC2_EAC 0x9279
#define KTX_COMPRESSED_RGB_PVRTC_4BPPV1_IMG 0x8C00
#define KTX_COMPRESSED_RGB_PVRTC_2BPPV1_IMG 0x8C01
#define KTX_COMPRESSED_RGBA_PVRTC_4BPPV1_IMG 0x8C02
#define KTX_COMPRESSED_RGBA_PVRTC_2BPPV1_IMG 0x8C03
#define KTX_COMPRESSED_RGBA_PVRTC_2BPPV2_IMG 0x9137
#define KTX_COMPRESSED_RGBA_PVRTC_4BPPV2_IMG 0x9138
#define KTX_COMPRESSED_RGBA_S3TC_DXT1_EXT 0x83F1
#define KTX_COMPRESSED_RGBA_S3TC_DXT3_EXT 0x83F2
#define KTX_COMPRESSED_RGBA_S3TC_DXT5_EXT 0x83F3
#define KTX_COMPRESSED_LUMINANCE_LATC1_EXT 0x8C70
#define KTX_COMPRESSED_LUMINANCE_ALPHA_LATC2_EXT 0x8C72
#define KTX_COMPRESSED_RGBA_BPTC_UNORM_ARB 0x8E8C
#define KTX_COMPRESSED_SRGB_ALPHA_BPTC_UNORM_ARB 0x8E8D
#define KTX_COMPRESSED_RGB_BPTC_SIGNED_FLOAT_ARB 0x8E8E
#define KTX_COMPRESSED_RGB_BPTC_UNSIGNED_FLOAT_ARB 0x8E8F
#define KTX_R8 0x8229
#define KTX_R16 0x822A
#define KTX_RG8 0x822B
#define KTX_RG16 0x822C
#define KTX_R16F 0x822D
#define KTX_R32F 0x822E
#define KTX_RG16F 0x822F
#define KTX_RG32F 0x8230
#define KTX_RGBA16 0x805B
#define KTX_RGBA16F 0x881A
#define KTX_R32UI 0x8236
#define KTX_RG32UI 0x823C
#define KTX_RGBA32UI 0x8D70
#define KTX_BGRA 0x80E1
#define KTX_RGBA32F 0x8814
#define KTX_RGB565 0x8D62
#define KTX_RGBA4 0x8056
#define KTX_RGB5_A1 0x8057
#define KTX_RGB10_A2 0x8059
static struct TranslateKtxFormat
{
uint32_t m_format;
TextureFormat::Enum m_textureFormat;
} s_translateKtxFormat[] =
{
{ KTX_COMPRESSED_RGBA_S3TC_DXT1_EXT, TextureFormat::BC1 },
{ KTX_COMPRESSED_RGBA_S3TC_DXT3_EXT, TextureFormat::BC2 },
{ KTX_COMPRESSED_RGBA_S3TC_DXT5_EXT, TextureFormat::BC3 },
{ KTX_COMPRESSED_LUMINANCE_LATC1_EXT, TextureFormat::BC4 },
{ KTX_COMPRESSED_LUMINANCE_ALPHA_LATC2_EXT, TextureFormat::BC5 },
{ KTX_COMPRESSED_RGB_BPTC_SIGNED_FLOAT_ARB, TextureFormat::BC6H },
{ KTX_COMPRESSED_RGBA_BPTC_UNORM_ARB, TextureFormat::BC7 },
{ KTX_ETC1_RGB8_OES, TextureFormat::ETC1 },
{ KTX_COMPRESSED_RGB8_ETC2, TextureFormat::ETC2 },
{ KTX_COMPRESSED_RGBA8_ETC2_EAC, TextureFormat::ETC2A },
{ KTX_COMPRESSED_RGB8_PUNCHTHROUGH_ALPHA1_ETC2, TextureFormat::ETC2A1 },
{ KTX_COMPRESSED_RGB_PVRTC_2BPPV1_IMG, TextureFormat::PTC12 },
{ KTX_COMPRESSED_RGBA_PVRTC_2BPPV1_IMG, TextureFormat::PTC12A },
{ KTX_COMPRESSED_RGB_PVRTC_4BPPV1_IMG, TextureFormat::PTC14 },
{ KTX_COMPRESSED_RGBA_PVRTC_4BPPV1_IMG, TextureFormat::PTC14A },
{ KTX_COMPRESSED_RGBA_PVRTC_2BPPV2_IMG, TextureFormat::PTC22 },
{ KTX_COMPRESSED_RGBA_PVRTC_4BPPV2_IMG, TextureFormat::PTC24 },
{ KTX_R8, TextureFormat::R8 },
{ KTX_RGBA16, TextureFormat::RGBA16 },
{ KTX_RGBA16F, TextureFormat::RGBA16F },
{ KTX_R32UI, TextureFormat::R32 },
{ KTX_R32F, TextureFormat::R32F },
{ KTX_RG8, TextureFormat::RG8 },
{ KTX_RG16, TextureFormat::RG16 },
{ KTX_RG16F, TextureFormat::RG16F },
{ KTX_RG32UI, TextureFormat::RG32 },
{ KTX_RG32F, TextureFormat::RG32F },
{ KTX_BGRA, TextureFormat::BGRA8 },
{ KTX_RGBA16, TextureFormat::RGBA16 },
{ KTX_RGBA16F, TextureFormat::RGBA16F },
{ KTX_RGBA32UI, TextureFormat::RGBA32 },
{ KTX_RGBA32F, TextureFormat::RGBA32F },
{ KTX_RGB565, TextureFormat::R5G6B5 },
{ KTX_RGBA4, TextureFormat::RGBA4 },
{ KTX_RGB5_A1, TextureFormat::RGB5A1 },
{ KTX_RGB10_A2, TextureFormat::RGB10A2 },
};
bool imageParseKtx(ImageContainer& _imageContainer, bx::ReaderSeekerI* _reader)
{
uint8_t identifier[8];
bx::read(_reader, identifier);
if (identifier[1] != '1'
&& identifier[2] != '1')
{
return false;
}
uint32_t endianness;
bx::read(_reader, endianness);
bool fromLittleEndian = 0x04030201 == endianness;
uint32_t glType;
bx::readHE(_reader, glType, fromLittleEndian);
uint32_t glTypeSize;
bx::readHE(_reader, glTypeSize, fromLittleEndian);
uint32_t glFormat;
bx::readHE(_reader, glFormat, fromLittleEndian);
uint32_t glInternalFormat;
bx::readHE(_reader, glInternalFormat, fromLittleEndian);
uint32_t glBaseInternalFormat;
bx::readHE(_reader, glBaseInternalFormat, fromLittleEndian);
uint32_t width;
bx::readHE(_reader, width, fromLittleEndian);
uint32_t height;
bx::readHE(_reader, height, fromLittleEndian);
uint32_t depth;
bx::readHE(_reader, depth, fromLittleEndian);
uint32_t numberOfArrayElements;
bx::readHE(_reader, numberOfArrayElements, fromLittleEndian);
uint32_t numFaces;
bx::readHE(_reader, numFaces, fromLittleEndian);
uint32_t numMips;
bx::readHE(_reader, numMips, fromLittleEndian);
uint32_t metaDataSize;
bx::readHE(_reader, metaDataSize, fromLittleEndian);
// skip meta garbage...
int64_t offset = bx::skip(_reader, metaDataSize);
TextureFormat::Enum format = TextureFormat::Unknown;
bool hasAlpha = false;
for (uint32_t ii = 0; ii < BX_COUNTOF(s_translateKtxFormat); ++ii)
{
if (s_translateKtxFormat[ii].m_format == glInternalFormat)
{
format = s_translateKtxFormat[ii].m_textureFormat;
break;
}
}
_imageContainer.m_data = NULL;
_imageContainer.m_size = 0;
_imageContainer.m_offset = (uint32_t)offset;
_imageContainer.m_width = width;
_imageContainer.m_height = height;
_imageContainer.m_depth = depth;
_imageContainer.m_format = uint8_t(format);
_imageContainer.m_numMips = uint8_t(numMips);
_imageContainer.m_hasAlpha = hasAlpha;
_imageContainer.m_cubeMap = numFaces > 1;
_imageContainer.m_ktx = true;
return TextureFormat::Unknown != format;
}
// PVR3
#define PVR3_MAKE8CC(_a, _b, _c, _d, _e, _f, _g, _h) (uint64_t(BX_MAKEFOURCC(_a, _b, _c, _d) ) | (uint64_t(BX_MAKEFOURCC(_e, _f, _g, _h) )<<32) )
#define PVR3_MAGIC BX_MAKEFOURCC('P', 'V', 'R', 3)
#define PVR3_HEADER_SIZE 52
#define PVR3_PVRTC1_2BPP_RGB 0
#define PVR3_PVRTC1_2BPP_RGBA 1
#define PVR3_PVRTC1_4BPP_RGB 2
#define PVR3_PVRTC1_4BPP_RGBA 3
#define PVR3_PVRTC2_2BPP_RGBA 4
#define PVR3_PVRTC2_4BPP_RGBA 5
#define PVR3_ETC1 6
#define PVR3_DXT1 7
#define PVR3_DXT2 8
#define PVR3_DXT3 9
#define PVR3_DXT4 10
#define PVR3_DXT5 11
#define PVR3_BC4 12
#define PVR3_BC5 13
#define PVR3_R8 PVR3_MAKE8CC('r', 0, 0, 0, 8, 0, 0, 0)
#define PVR3_R16 PVR3_MAKE8CC('r', 0, 0, 0, 16, 0, 0, 0)
#define PVR3_R32 PVR3_MAKE8CC('r', 0, 0, 0, 32, 0, 0, 0)
#define PVR3_RG8 PVR3_MAKE8CC('r', 'g', 0, 0, 8, 8, 0, 0)
#define PVR3_RG16 PVR3_MAKE8CC('r', 'g', 0, 0, 16, 16, 0, 0)
#define PVR3_RG32 PVR3_MAKE8CC('r', 'g', 0, 0, 32, 32, 0, 0)
#define PVR3_BGRA8 PVR3_MAKE8CC('b', 'g', 'r', 'a', 8, 8, 8, 8)
#define PVR3_RGBA16 PVR3_MAKE8CC('r', 'g', 'b', 'a', 16, 16, 16, 16)
#define PVR3_RGBA32 PVR3_MAKE8CC('r', 'g', 'b', 'a', 32, 32, 32, 32)
#define PVR3_RGB565 PVR3_MAKE8CC('r', 'g', 'b', 0, 5, 6, 5, 0)
#define PVR3_RGBA4 PVR3_MAKE8CC('r', 'g', 'b', 'a', 4, 4, 4, 4)
#define PVR3_RGBA51 PVR3_MAKE8CC('r', 'g', 'b', 'a', 5, 5, 5, 1)
#define PVR3_RGB10A2 PVR3_MAKE8CC('r', 'g', 'b', 'a', 10, 10, 10, 2)
#define PVR3_CHANNEL_TYPE_ANY UINT32_MAX
#define PVR3_CHANNEL_TYPE_FLOAT UINT32_C(12)
static struct TranslatePvr3Format
{
uint64_t m_format;
uint32_t m_channelTypeMask;
TextureFormat::Enum m_textureFormat;
} s_translatePvr3Format[] =
{
{ PVR3_PVRTC1_2BPP_RGB, PVR3_CHANNEL_TYPE_ANY, TextureFormat::PTC12 },
{ PVR3_PVRTC1_2BPP_RGBA, PVR3_CHANNEL_TYPE_ANY, TextureFormat::PTC12A },
{ PVR3_PVRTC1_4BPP_RGB, PVR3_CHANNEL_TYPE_ANY, TextureFormat::PTC14 },
{ PVR3_PVRTC1_4BPP_RGBA, PVR3_CHANNEL_TYPE_ANY, TextureFormat::PTC14A },
{ PVR3_PVRTC2_2BPP_RGBA, PVR3_CHANNEL_TYPE_ANY, TextureFormat::PTC22 },
{ PVR3_PVRTC2_4BPP_RGBA, PVR3_CHANNEL_TYPE_ANY, TextureFormat::PTC24 },
{ PVR3_ETC1, PVR3_CHANNEL_TYPE_ANY, TextureFormat::ETC1 },
{ PVR3_DXT1, PVR3_CHANNEL_TYPE_ANY, TextureFormat::BC1 },
{ PVR3_DXT2, PVR3_CHANNEL_TYPE_ANY, TextureFormat::BC2 },
{ PVR3_DXT3, PVR3_CHANNEL_TYPE_ANY, TextureFormat::BC2 },
{ PVR3_DXT4, PVR3_CHANNEL_TYPE_ANY, TextureFormat::BC3 },
{ PVR3_DXT5, PVR3_CHANNEL_TYPE_ANY, TextureFormat::BC3 },
{ PVR3_BC4, PVR3_CHANNEL_TYPE_ANY, TextureFormat::BC4 },
{ PVR3_BC5, PVR3_CHANNEL_TYPE_ANY, TextureFormat::BC5 },
{ PVR3_R8, PVR3_CHANNEL_TYPE_ANY, TextureFormat::R8 },
{ PVR3_R16, PVR3_CHANNEL_TYPE_ANY, TextureFormat::R16 },
{ PVR3_R16, PVR3_CHANNEL_TYPE_FLOAT, TextureFormat::R16F },
{ PVR3_R32, PVR3_CHANNEL_TYPE_ANY, TextureFormat::R32 },
{ PVR3_R32, PVR3_CHANNEL_TYPE_FLOAT, TextureFormat::R32F },
{ PVR3_RG8, PVR3_CHANNEL_TYPE_ANY, TextureFormat::RG8 },
{ PVR3_RG16, PVR3_CHANNEL_TYPE_ANY, TextureFormat::RG16 },
{ PVR3_RG16, PVR3_CHANNEL_TYPE_FLOAT, TextureFormat::RG16F },
{ PVR3_RG32, PVR3_CHANNEL_TYPE_ANY, TextureFormat::RG16 },
{ PVR3_RG32, PVR3_CHANNEL_TYPE_FLOAT, TextureFormat::RG32F },
{ PVR3_BGRA8, PVR3_CHANNEL_TYPE_ANY, TextureFormat::BGRA8 },
{ PVR3_RGBA16, PVR3_CHANNEL_TYPE_ANY, TextureFormat::RGBA16 },
{ PVR3_RGBA16, PVR3_CHANNEL_TYPE_FLOAT, TextureFormat::RGBA16F },
{ PVR3_RGBA32, PVR3_CHANNEL_TYPE_ANY, TextureFormat::RGBA32 },
{ PVR3_RGBA32, PVR3_CHANNEL_TYPE_FLOAT, TextureFormat::RGBA32F },
{ PVR3_RGB565, PVR3_CHANNEL_TYPE_ANY, TextureFormat::R5G6B5 },
{ PVR3_RGBA4, PVR3_CHANNEL_TYPE_ANY, TextureFormat::RGBA4 },
{ PVR3_RGBA51, PVR3_CHANNEL_TYPE_ANY, TextureFormat::RGB5A1 },
{ PVR3_RGB10A2, PVR3_CHANNEL_TYPE_ANY, TextureFormat::RGB10A2 },
};
bool imageParsePvr3(ImageContainer& _imageContainer, bx::ReaderSeekerI* _reader)
{
uint32_t flags;
bx::read(_reader, flags);
uint64_t pixelFormat;
bx::read(_reader, pixelFormat);
uint32_t colorSpace;
bx::read(_reader, colorSpace); // 0 - linearRGB, 1 - sRGB
uint32_t channelType;
bx::read(_reader, channelType);
uint32_t height;
bx::read(_reader, height);
uint32_t width;
bx::read(_reader, width);
uint32_t depth;
bx::read(_reader, depth);
uint32_t numSurfaces;
bx::read(_reader, numSurfaces);
uint32_t numFaces;
bx::read(_reader, numFaces);
uint32_t numMips;
bx::read(_reader, numMips);
uint32_t metaDataSize;
bx::read(_reader, metaDataSize);
// skip meta garbage...
int64_t offset = bx::skip(_reader, metaDataSize);
TextureFormat::Enum format = TextureFormat::Unknown;
bool hasAlpha = false;
for (uint32_t ii = 0; ii < BX_COUNTOF(s_translatePvr3Format); ++ii)
{
if (s_translatePvr3Format[ii].m_format == pixelFormat
&& channelType == (s_translatePvr3Format[ii].m_channelTypeMask & channelType) )
{
format = s_translatePvr3Format[ii].m_textureFormat;
break;
}
}
_imageContainer.m_data = NULL;
_imageContainer.m_size = 0;
_imageContainer.m_offset = (uint32_t)offset;
_imageContainer.m_width = width;
_imageContainer.m_height = height;
_imageContainer.m_depth = depth;
_imageContainer.m_format = uint8_t(format);
_imageContainer.m_numMips = uint8_t(numMips);
_imageContainer.m_hasAlpha = hasAlpha;
_imageContainer.m_cubeMap = numFaces > 1;
_imageContainer.m_ktx = false;
return TextureFormat::Unknown != format;
}
bool imageParse(ImageContainer& _imageContainer, bx::ReaderSeekerI* _reader)
{
uint32_t magic;
bx::read(_reader, magic);
if (DDS_MAGIC == magic)
{
return imageParseDds(_imageContainer, _reader);
}
else if (KTX_MAGIC == magic)
{
return imageParseKtx(_imageContainer, _reader);
}
else if (PVR3_MAGIC == magic)
{
return imageParsePvr3(_imageContainer, _reader);
}
else if (BGFX_CHUNK_MAGIC_TEX == magic)
{
TextureCreate tc;
bx::read(_reader, tc);
_imageContainer.m_format = tc.m_format;
_imageContainer.m_offset = UINT32_MAX;
if (NULL == tc.m_mem)
{
_imageContainer.m_data = NULL;
_imageContainer.m_size = 0;
}
else
{
_imageContainer.m_data = tc.m_mem->data;
_imageContainer.m_size = tc.m_mem->size;
}
_imageContainer.m_width = tc.m_width;
_imageContainer.m_height = tc.m_height;
_imageContainer.m_depth = tc.m_depth;
_imageContainer.m_numMips = tc.m_numMips;
_imageContainer.m_hasAlpha = false;
_imageContainer.m_cubeMap = tc.m_cubeMap;
_imageContainer.m_ktx = false;
return true;
}
return false;
}
bool imageParse(ImageContainer& _imageContainer, const void* _data, uint32_t _size)
{
bx::MemoryReader reader(_data, _size);
return imageParse(_imageContainer, &reader);
}
void imageDecodeToBgra8(uint8_t* _dst, const uint8_t* _src, uint32_t _width, uint32_t _height, uint32_t _pitch, uint8_t _type)
{
const uint8_t* src = _src;
uint32_t width = _width/4;
uint32_t height = _height/4;
uint8_t temp[16*4];
switch (_type)
{
case TextureFormat::BC1:
for (uint32_t yy = 0; yy < height; ++yy)
{
for (uint32_t xx = 0; xx < width; ++xx)
{
decodeBlockDxt1(temp, src);
src += 8;
uint8_t* dst = &_dst[(yy*_pitch+xx*4)*4];
memcpy(&dst[0*_pitch], &temp[ 0], 16);
memcpy(&dst[1*_pitch], &temp[16], 16);
memcpy(&dst[2*_pitch], &temp[32], 16);
memcpy(&dst[3*_pitch], &temp[48], 16);
}
}
break;
case TextureFormat::BC2:
for (uint32_t yy = 0; yy < height; ++yy)
{
for (uint32_t xx = 0; xx < width; ++xx)
{
decodeBlockDxt23A(temp+3, src);
src += 8;
decodeBlockDxt(temp, src);
src += 8;
uint8_t* dst = &_dst[(yy*_pitch+xx*4)*4];
memcpy(&dst[0*_pitch], &temp[ 0], 16);
memcpy(&dst[1*_pitch], &temp[16], 16);
memcpy(&dst[2*_pitch], &temp[32], 16);
memcpy(&dst[3*_pitch], &temp[48], 16);
}
}
break;
case TextureFormat::BC3:
for (uint32_t yy = 0; yy < height; ++yy)
{
for (uint32_t xx = 0; xx < width; ++xx)
{
decodeBlockDxt45A(temp+3, src);
src += 8;
decodeBlockDxt(temp, src);
src += 8;
uint8_t* dst = &_dst[(yy*_pitch+xx*4)*4];
memcpy(&dst[0*_pitch], &temp[ 0], 16);
memcpy(&dst[1*_pitch], &temp[16], 16);
memcpy(&dst[2*_pitch], &temp[32], 16);
memcpy(&dst[3*_pitch], &temp[48], 16);
}
}
break;
case TextureFormat::BC4:
for (uint32_t yy = 0; yy < height; ++yy)
{
for (uint32_t xx = 0; xx < width; ++xx)
{
decodeBlockDxt45A(temp, src);
src += 8;
uint8_t* dst = &_dst[(yy*_pitch+xx*4)*4];
memcpy(&dst[0*_pitch], &temp[ 0], 16);
memcpy(&dst[1*_pitch], &temp[16], 16);
memcpy(&dst[2*_pitch], &temp[32], 16);
memcpy(&dst[3*_pitch], &temp[48], 16);
}
}
break;
case TextureFormat::BC5:
for (uint32_t yy = 0; yy < height; ++yy)
{
for (uint32_t xx = 0; xx < width; ++xx)
{
decodeBlockDxt45A(temp+1, src);
src += 8;
decodeBlockDxt45A(temp+2, src);
src += 8;
for (uint32_t ii = 0; ii < 16; ++ii)
{
float nx = temp[ii*4+2]*2.0f/255.0f - 1.0f;
float ny = temp[ii*4+1]*2.0f/255.0f - 1.0f;
float nz = sqrtf(1.0f - nx*nx - ny*ny);
temp[ii*4+0] = uint8_t( (nz + 1.0f)*255.0f/2.0f);
temp[ii*4+3] = 0;
}
uint8_t* dst = &_dst[(yy*_pitch+xx*4)*4];
memcpy(&dst[0*_pitch], &temp[ 0], 16);
memcpy(&dst[1*_pitch], &temp[16], 16);
memcpy(&dst[2*_pitch], &temp[32], 16);
memcpy(&dst[3*_pitch], &temp[48], 16);
}
}
break;
case TextureFormat::ETC1:
case TextureFormat::ETC2:
for (uint32_t yy = 0; yy < height; ++yy)
{
for (uint32_t xx = 0; xx < width; ++xx)
{
decodeBlockEtc12(temp, src);
src += 8;
uint8_t* dst = &_dst[(yy*_pitch+xx*4)*4];
memcpy(&dst[0*_pitch], &temp[ 0], 16);
memcpy(&dst[1*_pitch], &temp[16], 16);
memcpy(&dst[2*_pitch], &temp[32], 16);
memcpy(&dst[3*_pitch], &temp[48], 16);
}
}
break;
case TextureFormat::ETC2A:
BX_WARN(false, "ETC2A decoder is not implemented.");
imageCheckerboard(_width, _height, 16, UINT32_C(0xff000000), UINT32_C(0xff00ff00), _dst);
break;
case TextureFormat::ETC2A1:
BX_WARN(false, "ETC2A1 decoder is not implemented.");
imageCheckerboard(_width, _height, 16, UINT32_C(0xff000000), UINT32_C(0xffff0000), _dst);
break;
case TextureFormat::PTC12:
BX_WARN(false, "PTC12 decoder is not implemented.");
imageCheckerboard(_width, _height, 16, UINT32_C(0xff000000), UINT32_C(0xffff00ff), _dst);
break;
case TextureFormat::PTC12A:
BX_WARN(false, "PTC12A decoder is not implemented.");
imageCheckerboard(_width, _height, 16, UINT32_C(0xff000000), UINT32_C(0xffffff00), _dst);
break;
case TextureFormat::PTC14:
for (uint32_t yy = 0; yy < height; ++yy)
{
for (uint32_t xx = 0; xx < width; ++xx)
{
decodeBlockPtc14(temp, src, xx, yy, width, height);
uint8_t* dst = &_dst[(yy*_pitch+xx*4)*4];
memcpy(&dst[0*_pitch], &temp[ 0], 16);
memcpy(&dst[1*_pitch], &temp[16], 16);
memcpy(&dst[2*_pitch], &temp[32], 16);
memcpy(&dst[3*_pitch], &temp[48], 16);
}
}
break;
case TextureFormat::PTC14A:
for (uint32_t yy = 0; yy < height; ++yy)
{
for (uint32_t xx = 0; xx < width; ++xx)
{
decodeBlockPtc14A(temp, src, xx, yy, width, height);
uint8_t* dst = &_dst[(yy*_pitch+xx*4)*4];
memcpy(&dst[0*_pitch], &temp[ 0], 16);
memcpy(&dst[1*_pitch], &temp[16], 16);
memcpy(&dst[2*_pitch], &temp[32], 16);
memcpy(&dst[3*_pitch], &temp[48], 16);
}
}
break;
case TextureFormat::PTC22:
BX_WARN(false, "PTC22 decoder is not implemented.");
imageCheckerboard(_width, _height, 16, UINT32_C(0xff00ff00), UINT32_C(0xff0000ff), _dst);
break;
case TextureFormat::PTC24:
BX_WARN(false, "PTC24 decoder is not implemented.");
imageCheckerboard(_width, _height, 16, UINT32_C(0xff000000), UINT32_C(0xffffffff), _dst);
break;
default:
// Decompression not implemented... Make ugly red-yellow checkerboard texture.
imageCheckerboard(_width, _height, 16, UINT32_C(0xffff0000), UINT32_C(0xffffff00), _dst);
break;
}
}
bool imageGetRawData(const ImageContainer& _imageContainer, uint8_t _side, uint8_t _lod, const void* _data, uint32_t _size, ImageMip& _mip)
{
uint32_t offset = _imageContainer.m_offset;
TextureFormat::Enum type = TextureFormat::Enum(_imageContainer.m_format);
bool hasAlpha = _imageContainer.m_hasAlpha;
const ImageBlockInfo& blockInfo = s_imageBlockInfo[type];
const uint8_t bpp = blockInfo.bitsPerPixel;
const uint32_t blockSize = blockInfo.blockSize;
const uint32_t blockWidth = blockInfo.blockWidth;
const uint32_t blockHeight = blockInfo.blockHeight;
const uint32_t minBlockX = blockInfo.minBlockX;
const uint32_t minBlockY = blockInfo.minBlockY;
if (UINT32_MAX == _imageContainer.m_offset)
{
if (NULL == _imageContainer.m_data)
{
return false;
}
offset = 0;
_data = _imageContainer.m_data;
_size = _imageContainer.m_size;
}
for (uint8_t side = 0, numSides = _imageContainer.m_cubeMap ? 6 : 1; side < numSides; ++side)
{
uint32_t width = _imageContainer.m_width;
uint32_t height = _imageContainer.m_height;
uint32_t depth = _imageContainer.m_depth;
for (uint8_t lod = 0, num = _imageContainer.m_numMips; lod < num; ++lod)
{
// skip imageSize in KTX format.
offset += _imageContainer.m_ktx ? sizeof(uint32_t) : 0;
width = bx::uint32_max(blockWidth * minBlockX, ( (width + blockWidth - 1) / blockWidth )*blockWidth);
height = bx::uint32_max(blockHeight * minBlockY, ( (height + blockHeight - 1) / blockHeight)*blockHeight);
depth = bx::uint32_max(1, depth);
uint32_t size = width*height*depth*bpp/8;
if (side == _side
&& lod == _lod)
{
_mip.m_width = width;
_mip.m_height = height;
_mip.m_blockSize = blockSize;
_mip.m_size = size;
_mip.m_data = (const uint8_t*)_data + offset;
_mip.m_bpp = bpp;
_mip.m_format = uint8_t(type);
_mip.m_hasAlpha = hasAlpha;
return true;
}
offset += size;
BX_CHECK(offset <= _size, "Reading past size of data buffer! (offset %d, size %d)", offset, _size);
BX_UNUSED(_size);
width >>= 1;
height >>= 1;
depth >>= 1;
}
}
return false;
}
} // namespace bgfx