/* * Copyright 2011-2015 Branimir Karadzic. All rights reserved. * License: http://www.opensource.org/licenses/BSD-2-Clause */ #include "bgfx_p.h" #if (BGFX_CONFIG_RENDERER_OPENGLES || BGFX_CONFIG_RENDERER_OPENGL) # include "renderer_gl.h" # include # include namespace bgfx { namespace gl { static char s_viewName[BGFX_CONFIG_MAX_VIEWS][BGFX_CONFIG_MAX_VIEW_NAME]; struct PrimInfo { GLenum m_type; uint32_t m_min; uint32_t m_div; uint32_t m_sub; }; static const PrimInfo s_primInfo[] = { { GL_TRIANGLES, 3, 3, 0 }, { GL_TRIANGLE_STRIP, 3, 1, 2 }, { GL_LINES, 2, 2, 0 }, { GL_LINE_STRIP, 2, 1, 1 }, { GL_POINTS, 1, 1, 0 }, }; static const char* s_primName[] = { "TriList", "TriStrip", "Line", "LineStrip", "Point", }; static const char* s_attribName[] = { "a_position", "a_normal", "a_tangent", "a_bitangent", "a_color0", "a_color1", "a_indices", "a_weight", "a_texcoord0", "a_texcoord1", "a_texcoord2", "a_texcoord3", "a_texcoord4", "a_texcoord5", "a_texcoord6", "a_texcoord7", }; BX_STATIC_ASSERT(Attrib::Count == BX_COUNTOF(s_attribName) ); static const char* s_instanceDataName[] = { "i_data0", "i_data1", "i_data2", "i_data3", "i_data4", }; BX_STATIC_ASSERT(BGFX_CONFIG_MAX_INSTANCE_DATA_COUNT == BX_COUNTOF(s_instanceDataName) ); static const GLenum s_access[] = { GL_READ_ONLY, GL_WRITE_ONLY, GL_READ_WRITE, }; BX_STATIC_ASSERT(Access::Count == BX_COUNTOF(s_access) ); static const GLenum s_attribType[] = { GL_UNSIGNED_BYTE, GL_SHORT, GL_HALF_FLOAT, GL_FLOAT, }; BX_STATIC_ASSERT(AttribType::Count == BX_COUNTOF(s_attribType) ); struct Blend { GLenum m_src; GLenum m_dst; bool m_factor; }; static const Blend s_blendFactor[] = { { 0, 0, false }, // ignored { GL_ZERO, GL_ZERO, false }, // ZERO { GL_ONE, GL_ONE, false }, // ONE { GL_SRC_COLOR, GL_SRC_COLOR, false }, // SRC_COLOR { GL_ONE_MINUS_SRC_COLOR, GL_ONE_MINUS_SRC_COLOR, false }, // INV_SRC_COLOR { GL_SRC_ALPHA, GL_SRC_ALPHA, false }, // SRC_ALPHA { GL_ONE_MINUS_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, false }, // INV_SRC_ALPHA { GL_DST_ALPHA, GL_DST_ALPHA, false }, // DST_ALPHA { GL_ONE_MINUS_DST_ALPHA, GL_ONE_MINUS_DST_ALPHA, false }, // INV_DST_ALPHA { GL_DST_COLOR, GL_DST_COLOR, false }, // DST_COLOR { GL_ONE_MINUS_DST_COLOR, GL_ONE_MINUS_DST_COLOR, false }, // INV_DST_COLOR { GL_SRC_ALPHA_SATURATE, GL_ONE, false }, // SRC_ALPHA_SAT { GL_CONSTANT_COLOR, GL_CONSTANT_COLOR, true }, // FACTOR { GL_ONE_MINUS_CONSTANT_COLOR, GL_ONE_MINUS_CONSTANT_COLOR, true }, // INV_FACTOR }; static const GLenum s_blendEquation[] = { GL_FUNC_ADD, GL_FUNC_SUBTRACT, GL_FUNC_REVERSE_SUBTRACT, GL_MIN, GL_MAX, }; static const GLenum s_cmpFunc[] = { 0, // ignored GL_LESS, GL_LEQUAL, GL_EQUAL, GL_GEQUAL, GL_GREATER, GL_NOTEQUAL, GL_NEVER, GL_ALWAYS, }; static const GLenum s_stencilOp[] = { GL_ZERO, GL_KEEP, GL_REPLACE, GL_INCR_WRAP, GL_INCR, GL_DECR_WRAP, GL_DECR, GL_INVERT, }; static const GLenum s_stencilFace[] = { GL_FRONT_AND_BACK, GL_FRONT, GL_BACK, }; static const GLenum s_textureAddress[] = { GL_REPEAT, GL_MIRRORED_REPEAT, GL_CLAMP_TO_EDGE, }; static const GLenum s_textureFilterMag[] = { GL_LINEAR, GL_NEAREST, GL_LINEAR, }; static const GLenum s_textureFilterMin[][3] = { { GL_LINEAR, GL_LINEAR_MIPMAP_LINEAR, GL_NEAREST_MIPMAP_LINEAR }, { GL_NEAREST, GL_LINEAR_MIPMAP_NEAREST, GL_NEAREST_MIPMAP_NEAREST }, { GL_LINEAR, GL_LINEAR_MIPMAP_LINEAR, GL_NEAREST_MIPMAP_LINEAR }, }; struct TextureFormatInfo { GLenum m_internalFmt; GLenum m_internalFmtSrgb; GLenum m_fmt; GLenum m_type; bool m_supported; }; static TextureFormatInfo s_textureFormat[] = { { GL_COMPRESSED_RGBA_S3TC_DXT1_EXT, GL_COMPRESSED_SRGB_ALPHA_S3TC_DXT1_EXT, GL_COMPRESSED_RGBA_S3TC_DXT1_EXT, GL_ZERO, false }, // BC1 { GL_COMPRESSED_RGBA_S3TC_DXT3_EXT, GL_COMPRESSED_SRGB_ALPHA_S3TC_DXT3_EXT, GL_COMPRESSED_RGBA_S3TC_DXT3_EXT, GL_ZERO, false }, // BC2 { GL_COMPRESSED_RGBA_S3TC_DXT5_EXT, GL_COMPRESSED_SRGB_ALPHA_S3TC_DXT5_EXT, GL_COMPRESSED_RGBA_S3TC_DXT5_EXT, GL_ZERO, false }, // BC3 { GL_COMPRESSED_LUMINANCE_LATC1_EXT, GL_ZERO, GL_COMPRESSED_LUMINANCE_LATC1_EXT, GL_ZERO, false }, // BC4 { GL_COMPRESSED_LUMINANCE_ALPHA_LATC2_EXT, GL_ZERO, GL_COMPRESSED_LUMINANCE_ALPHA_LATC2_EXT, GL_ZERO, false }, // BC5 { GL_COMPRESSED_RGB_BPTC_SIGNED_FLOAT_ARB, GL_ZERO, GL_COMPRESSED_RGB_BPTC_SIGNED_FLOAT_ARB, GL_ZERO, false }, // BC6H { GL_COMPRESSED_RGBA_BPTC_UNORM_ARB, GL_ZERO, GL_COMPRESSED_RGBA_BPTC_UNORM_ARB, GL_ZERO, false }, // BC7 { GL_ETC1_RGB8_OES, GL_ZERO, GL_ETC1_RGB8_OES, GL_ZERO, false }, // ETC1 { GL_COMPRESSED_RGB8_ETC2, GL_ZERO, GL_COMPRESSED_RGB8_ETC2, GL_ZERO, false }, // ETC2 { GL_COMPRESSED_RGBA8_ETC2_EAC, GL_COMPRESSED_SRGB8_ETC2, GL_COMPRESSED_RGBA8_ETC2_EAC, GL_ZERO, false }, // ETC2A { GL_COMPRESSED_RGB8_PUNCHTHROUGH_ALPHA1_ETC2, GL_COMPRESSED_SRGB8_PUNCHTHROUGH_ALPHA1_ETC2, GL_COMPRESSED_RGB8_PUNCHTHROUGH_ALPHA1_ETC2, GL_ZERO, false }, // ETC2A1 { GL_COMPRESSED_RGB_PVRTC_2BPPV1_IMG, GL_COMPRESSED_SRGB_PVRTC_2BPPV1_EXT, GL_COMPRESSED_RGB_PVRTC_2BPPV1_IMG, GL_ZERO, false }, // PTC12 { GL_COMPRESSED_RGB_PVRTC_4BPPV1_IMG, GL_COMPRESSED_SRGB_PVRTC_4BPPV1_EXT, GL_COMPRESSED_RGB_PVRTC_4BPPV1_IMG, GL_ZERO, false }, // PTC14 { GL_COMPRESSED_RGBA_PVRTC_2BPPV1_IMG, GL_COMPRESSED_SRGB_ALPHA_PVRTC_2BPPV1_EXT, GL_COMPRESSED_RGBA_PVRTC_2BPPV1_IMG, GL_ZERO, false }, // PTC12A { GL_COMPRESSED_RGBA_PVRTC_4BPPV1_IMG, GL_COMPRESSED_SRGB_ALPHA_PVRTC_4BPPV1_EXT, GL_COMPRESSED_RGBA_PVRTC_4BPPV1_IMG, GL_ZERO, false }, // PTC14A { GL_COMPRESSED_RGBA_PVRTC_2BPPV2_IMG, GL_ZERO, GL_COMPRESSED_RGBA_PVRTC_2BPPV2_IMG, GL_ZERO, false }, // PTC22 { GL_COMPRESSED_RGBA_PVRTC_4BPPV2_IMG, GL_ZERO, GL_COMPRESSED_RGBA_PVRTC_4BPPV2_IMG, GL_ZERO, false }, // PTC24 { GL_ZERO, GL_ZERO, GL_ZERO, GL_ZERO, false }, // Unknown { GL_ZERO, GL_ZERO, GL_ZERO, GL_ZERO, false }, // R1 { GL_R8, GL_ZERO, GL_RED, GL_UNSIGNED_BYTE, false }, // R8 { GL_R16, GL_ZERO, GL_RED, GL_UNSIGNED_SHORT, false }, // R16 { GL_R16F, GL_ZERO, GL_RED, GL_HALF_FLOAT, false }, // R16F { GL_R32UI, GL_ZERO, GL_RED, GL_UNSIGNED_INT, false }, // R32 { GL_R32F, GL_ZERO, GL_RED, GL_FLOAT, false }, // R32F { GL_RG8, GL_ZERO, GL_RG, GL_UNSIGNED_BYTE, false }, // RG8 { GL_RG16, GL_ZERO, GL_RG, GL_UNSIGNED_SHORT, false }, // RG16 { GL_RG16F, GL_ZERO, GL_RG, GL_FLOAT, false }, // RG16F { GL_RG32UI, GL_ZERO, GL_RG, GL_UNSIGNED_INT, false }, // RG32 { GL_RG32F, GL_ZERO, GL_RG, GL_FLOAT, false }, // RG32F { GL_RGBA8, GL_SRGB8_ALPHA8, GL_BGRA, GL_UNSIGNED_BYTE, false }, // BGRA8 { GL_RGBA8, GL_SRGB8_ALPHA8, GL_RGBA, GL_UNSIGNED_BYTE, false }, // RGBA8 { GL_RGBA16, GL_ZERO, GL_RGBA, GL_UNSIGNED_BYTE, false }, // RGBA16 { GL_RGBA16F, GL_ZERO, GL_RGBA, GL_HALF_FLOAT, false }, // RGBA16F { GL_RGBA32UI, GL_ZERO, GL_RGBA, GL_UNSIGNED_INT, false }, // RGBA32 { GL_RGBA32F, GL_ZERO, GL_RGBA, GL_FLOAT, false }, // RGBA32F { GL_RGB565, GL_ZERO, GL_RGB, GL_UNSIGNED_SHORT_5_6_5, false }, // R5G6B5 { GL_RGBA4, GL_ZERO, GL_RGBA, GL_UNSIGNED_SHORT_4_4_4_4, false }, // RGBA4 { GL_RGB5_A1, GL_ZERO, GL_RGBA, GL_UNSIGNED_SHORT_5_5_5_1, false }, // RGB5A1 { GL_RGB10_A2, GL_ZERO, GL_RGBA, GL_UNSIGNED_INT_2_10_10_10_REV, false }, // RGB10A2 { GL_R11F_G11F_B10F, GL_ZERO, GL_RGB, GL_UNSIGNED_INT_10F_11F_11F_REV, false }, // R11G11B10F { GL_ZERO, GL_ZERO, GL_ZERO, GL_ZERO, false }, // UnknownDepth { GL_DEPTH_COMPONENT16, GL_ZERO, GL_DEPTH_COMPONENT, GL_UNSIGNED_SHORT, false }, // D16 { GL_DEPTH_COMPONENT24, GL_ZERO, GL_DEPTH_COMPONENT, GL_UNSIGNED_INT, false }, // D24 { GL_DEPTH24_STENCIL8, GL_ZERO, GL_DEPTH_STENCIL, GL_UNSIGNED_INT_24_8, false }, // D24S8 { GL_DEPTH_COMPONENT32, GL_ZERO, GL_DEPTH_COMPONENT, GL_UNSIGNED_INT, false }, // D32 { GL_DEPTH_COMPONENT32F, GL_ZERO, GL_DEPTH_COMPONENT, GL_FLOAT, false }, // D16F { GL_DEPTH_COMPONENT32F, GL_ZERO, GL_DEPTH_COMPONENT, GL_FLOAT, false }, // D24F { GL_DEPTH_COMPONENT32F, GL_ZERO, GL_DEPTH_COMPONENT, GL_FLOAT, false }, // D32F { GL_STENCIL_INDEX8, GL_ZERO, GL_STENCIL_INDEX, GL_UNSIGNED_BYTE, false }, // D0S8 }; BX_STATIC_ASSERT(TextureFormat::Count == BX_COUNTOF(s_textureFormat) ); static bool s_textureFilter[TextureFormat::Count+1]; static GLenum s_rboFormat[] = { GL_ZERO, // BC1 GL_ZERO, // BC2 GL_ZERO, // BC3 GL_ZERO, // BC4 GL_ZERO, // BC5 GL_ZERO, // BC6H GL_ZERO, // BC7 GL_ZERO, // ETC1 GL_ZERO, // ETC2 GL_ZERO, // ETC2A GL_ZERO, // ETC2A1 GL_ZERO, // PTC12 GL_ZERO, // PTC14 GL_ZERO, // PTC12A GL_ZERO, // PTC14A GL_ZERO, // PTC22 GL_ZERO, // PTC24 GL_ZERO, // Unknown GL_ZERO, // R1 GL_R8, // R8 GL_R16, // R16 GL_R16F, // R16F GL_R32UI, // R32 GL_R32F, // R32F GL_RG8, // RG8 GL_RG16, // RG16 GL_RG16F, // RG16F GL_RG32UI, // RG32 GL_RG32F, // RG32F GL_RGBA8, // BGRA8 GL_RGBA8, // RGBA8 GL_RGBA16, // RGBA16 GL_RGBA16F, // RGBA16F GL_RGBA32UI, // RGBA32 GL_RGBA32F, // RGBA32F GL_RGB565, // R5G6B5 GL_RGBA4, // RGBA4 GL_RGB5_A1, // RGB5A1 GL_RGB10_A2, // RGB10A2 GL_R11F_G11F_B10F, // R11G11B10F GL_ZERO, // UnknownDepth GL_DEPTH_COMPONENT16, // D16 GL_DEPTH_COMPONENT24, // D24 GL_DEPTH24_STENCIL8, // D24S8 GL_DEPTH_COMPONENT32, // D32 GL_DEPTH_COMPONENT32F, // D16F GL_DEPTH_COMPONENT32F, // D24F GL_DEPTH_COMPONENT32F, // D32F GL_STENCIL_INDEX8, // D0S8 }; BX_STATIC_ASSERT(TextureFormat::Count == BX_COUNTOF(s_rboFormat) ); static GLenum s_imageFormat[] = { GL_ZERO, // BC1 GL_ZERO, // BC2 GL_ZERO, // BC3 GL_ZERO, // BC4 GL_ZERO, // BC5 GL_ZERO, // BC6H GL_ZERO, // BC7 GL_ZERO, // ETC1 GL_ZERO, // ETC2 GL_ZERO, // ETC2A GL_ZERO, // ETC2A1 GL_ZERO, // PTC12 GL_ZERO, // PTC14 GL_ZERO, // PTC12A GL_ZERO, // PTC14A GL_ZERO, // PTC22 GL_ZERO, // PTC24 GL_ZERO, // Unknown GL_ZERO, // R1 GL_R8, // R8 GL_R16, // R16 GL_R16F, // R16F GL_R32UI, // R32 GL_R32F, // R32F GL_RG8, // RG8 GL_RG16, // RG16 GL_RG16F, // RG16F GL_RG32UI, // RG32 GL_RG32F, // RG32F GL_RGBA8, // BGRA8 GL_RGBA8, // RGBA8 GL_RGBA16, // RGBA16 GL_RGBA16F, // RGBA16F GL_RGBA32UI, // RGBA32 GL_RGBA32F, // RGBA32F GL_RGB565, // R5G6B5 GL_RGBA4, // RGBA4 GL_RGB5_A1, // RGB5A1 GL_RGB10_A2, // RGB10A2 GL_R11F_G11F_B10F, // R11G11B10F GL_ZERO, // UnknownDepth GL_ZERO, // D16 GL_ZERO, // D24 GL_ZERO, // D24S8 GL_ZERO, // D32 GL_ZERO, // D16F GL_ZERO, // D24F GL_ZERO, // D32F GL_ZERO, // D0S8 }; BX_STATIC_ASSERT(TextureFormat::Count == BX_COUNTOF(s_imageFormat) ); struct Extension { enum Enum { AMD_conservative_depth, AMD_multi_draw_indirect, ANGLE_depth_texture, ANGLE_framebuffer_blit, ANGLE_framebuffer_multisample, ANGLE_instanced_arrays, ANGLE_texture_compression_dxt1, ANGLE_texture_compression_dxt3, ANGLE_texture_compression_dxt5, ANGLE_timer_query, ANGLE_translated_shader_source, APPLE_texture_format_BGRA8888, APPLE_texture_max_level, ARB_compute_shader, ARB_conservative_depth, ARB_debug_label, ARB_debug_output, ARB_depth_buffer_float, ARB_depth_clamp, ARB_draw_buffers_blend, ARB_draw_indirect, ARB_draw_instanced, ARB_ES3_compatibility, ARB_framebuffer_object, ARB_framebuffer_sRGB, ARB_get_program_binary, ARB_half_float_pixel, ARB_half_float_vertex, ARB_instanced_arrays, ARB_invalidate_subdata, ARB_map_buffer_range, ARB_multi_draw_indirect, ARB_multisample, ARB_occlusion_query, ARB_occlusion_query2, ARB_program_interface_query, ARB_sampler_objects, ARB_seamless_cube_map, ARB_shader_bit_encoding, ARB_shader_image_load_store, ARB_shader_storage_buffer_object, ARB_shader_texture_lod, ARB_texture_compression_bptc, ARB_texture_compression_rgtc, ARB_texture_float, ARB_texture_multisample, ARB_texture_rg, ARB_texture_rgb10_a2ui, ARB_texture_stencil8, ARB_texture_storage, ARB_texture_swizzle, ARB_timer_query, ARB_uniform_buffer_object, ARB_vertex_array_object, ARB_vertex_type_2_10_10_10_rev, ATI_meminfo, CHROMIUM_color_buffer_float_rgb, CHROMIUM_color_buffer_float_rgba, CHROMIUM_depth_texture, CHROMIUM_framebuffer_multisample, CHROMIUM_texture_compression_dxt3, CHROMIUM_texture_compression_dxt5, EXT_bgra, EXT_blend_color, EXT_blend_minmax, EXT_blend_subtract, EXT_color_buffer_half_float, EXT_color_buffer_float, EXT_compressed_ETC1_RGB8_sub_texture, EXT_debug_label, EXT_debug_marker, EXT_debug_tool, EXT_discard_framebuffer, EXT_disjoint_timer_query, EXT_draw_buffers, EXT_frag_depth, EXT_framebuffer_blit, EXT_framebuffer_object, EXT_framebuffer_sRGB, EXT_multi_draw_indirect, EXT_occlusion_query_boolean, EXT_packed_float, EXT_read_format_bgra, EXT_shader_image_load_store, EXT_shader_texture_lod, EXT_shadow_samplers, EXT_texture_array, EXT_texture_compression_dxt1, EXT_texture_compression_latc, EXT_texture_compression_rgtc, EXT_texture_compression_s3tc, EXT_texture_filter_anisotropic, EXT_texture_format_BGRA8888, EXT_texture_rg, EXT_texture_sRGB, EXT_texture_storage, EXT_texture_swizzle, EXT_texture_type_2_10_10_10_REV, EXT_timer_query, EXT_unpack_subimage, GOOGLE_depth_texture, GREMEDY_string_marker, GREMEDY_frame_terminator, IMG_multisampled_render_to_texture, IMG_read_format, IMG_shader_binary, IMG_texture_compression_pvrtc, IMG_texture_compression_pvrtc2, IMG_texture_format_BGRA8888, INTEL_fragment_shader_ordering, KHR_debug, KHR_no_error, MOZ_WEBGL_compressed_texture_s3tc, MOZ_WEBGL_depth_texture, NV_draw_buffers, NVX_gpu_memory_info, OES_compressed_ETC1_RGB8_texture, OES_depth24, OES_depth32, OES_depth_texture, OES_element_index_uint, OES_fragment_precision_high, OES_get_program_binary, OES_required_internalformat, OES_packed_depth_stencil, OES_read_format, OES_rgb8_rgba8, OES_standard_derivatives, OES_texture_3D, OES_texture_float, OES_texture_float_linear, OES_texture_npot, OES_texture_half_float, OES_texture_half_float_linear, OES_texture_stencil8, OES_vertex_array_object, OES_vertex_half_float, OES_vertex_type_10_10_10_2, WEBGL_color_buffer_float, WEBGL_compressed_texture_etc1, WEBGL_compressed_texture_s3tc, WEBGL_compressed_texture_pvrtc, WEBGL_depth_texture, WEBGL_draw_buffers, WEBKIT_EXT_texture_filter_anisotropic, WEBKIT_WEBGL_compressed_texture_s3tc, WEBKIT_WEBGL_depth_texture, Count }; const char* m_name; bool m_supported; bool m_initialize; }; // Extension registry // // ANGLE: // https://github.com/google/angle/tree/master/extensions // // CHROMIUM: // https://chromium.googlesource.com/chromium/src.git/+/refs/heads/git-svn/gpu/GLES2/extensions/CHROMIUM // // EGL: // https://www.khronos.org/registry/egl/extensions/ // // GL: // https://www.opengl.org/registry/ // // GLES: // https://www.khronos.org/registry/gles/extensions/ // // WEBGL: // https://www.khronos.org/registry/webgl/extensions/ // static Extension s_extension[] = { { "AMD_conservative_depth", false, true }, { "AMD_multi_draw_indirect", false, true }, { "ANGLE_depth_texture", false, true }, { "ANGLE_framebuffer_blit", false, true }, { "ANGLE_framebuffer_multisample", false, false }, { "ANGLE_instanced_arrays", false, true }, { "ANGLE_texture_compression_dxt1", false, true }, { "ANGLE_texture_compression_dxt3", false, true }, { "ANGLE_texture_compression_dxt5", false, true }, { "ANGLE_timer_query", false, true }, { "ANGLE_translated_shader_source", false, true }, { "APPLE_texture_format_BGRA8888", false, true }, { "APPLE_texture_max_level", false, true }, { "ARB_compute_shader", BGFX_CONFIG_RENDERER_OPENGL >= 43, true }, { "ARB_conservative_depth", BGFX_CONFIG_RENDERER_OPENGL >= 42, true }, { "ARB_debug_label", false, true }, { "ARB_debug_output", BGFX_CONFIG_RENDERER_OPENGL >= 43, true }, { "ARB_depth_buffer_float", BGFX_CONFIG_RENDERER_OPENGL >= 33, true }, { "ARB_depth_clamp", BGFX_CONFIG_RENDERER_OPENGL >= 32, true }, { "ARB_draw_buffers_blend", BGFX_CONFIG_RENDERER_OPENGL >= 40, true }, { "ARB_draw_indirect", BGFX_CONFIG_RENDERER_OPENGL >= 40, true }, { "ARB_draw_instanced", BGFX_CONFIG_RENDERER_OPENGL >= 33, true }, { "ARB_ES3_compatibility", BGFX_CONFIG_RENDERER_OPENGL >= 43, true }, { "ARB_framebuffer_object", BGFX_CONFIG_RENDERER_OPENGL >= 30, true }, { "ARB_framebuffer_sRGB", BGFX_CONFIG_RENDERER_OPENGL >= 30, true }, { "ARB_get_program_binary", BGFX_CONFIG_RENDERER_OPENGL >= 41, true }, { "ARB_half_float_pixel", BGFX_CONFIG_RENDERER_OPENGL >= 30, true }, { "ARB_half_float_vertex", BGFX_CONFIG_RENDERER_OPENGL >= 30, true }, { "ARB_instanced_arrays", BGFX_CONFIG_RENDERER_OPENGL >= 33, true }, { "ARB_invalidate_subdata", BGFX_CONFIG_RENDERER_OPENGL >= 43, true }, { "ARB_map_buffer_range", BGFX_CONFIG_RENDERER_OPENGL >= 30, true }, { "ARB_multi_draw_indirect", BGFX_CONFIG_RENDERER_OPENGL >= 43, true }, { "ARB_multisample", false, true }, { "ARB_occlusion_query", BGFX_CONFIG_RENDERER_OPENGL >= 33, true }, { "ARB_occlusion_query2", BGFX_CONFIG_RENDERER_OPENGL >= 33, true }, { "ARB_program_interface_query", BGFX_CONFIG_RENDERER_OPENGL >= 43, true }, { "ARB_sampler_objects", BGFX_CONFIG_RENDERER_OPENGL >= 33, true }, { "ARB_seamless_cube_map", BGFX_CONFIG_RENDERER_OPENGL >= 32, true }, { "ARB_shader_bit_encoding", BGFX_CONFIG_RENDERER_OPENGL >= 33, true }, { "ARB_shader_image_load_store", BGFX_CONFIG_RENDERER_OPENGL >= 42, true }, { "ARB_shader_storage_buffer_object", BGFX_CONFIG_RENDERER_OPENGL >= 43, true }, { "ARB_shader_texture_lod", BGFX_CONFIG_RENDERER_OPENGL >= 30, true }, { "ARB_texture_compression_bptc", BGFX_CONFIG_RENDERER_OPENGL >= 44, true }, { "ARB_texture_compression_rgtc", BGFX_CONFIG_RENDERER_OPENGL >= 30, true }, { "ARB_texture_float", BGFX_CONFIG_RENDERER_OPENGL >= 30, true }, { "ARB_texture_multisample", BGFX_CONFIG_RENDERER_OPENGL >= 32, true }, { "ARB_texture_rg", BGFX_CONFIG_RENDERER_OPENGL >= 30, true }, { "ARB_texture_rgb10_a2ui", BGFX_CONFIG_RENDERER_OPENGL >= 33, true }, { "ARB_texture_stencil8", false, true }, { "ARB_texture_storage", BGFX_CONFIG_RENDERER_OPENGL >= 42, true }, { "ARB_texture_swizzle", BGFX_CONFIG_RENDERER_OPENGL >= 33, true }, { "ARB_timer_query", BGFX_CONFIG_RENDERER_OPENGL >= 33, true }, { "ARB_uniform_buffer_object", BGFX_CONFIG_RENDERER_OPENGL >= 31, true }, { "ARB_vertex_array_object", BGFX_CONFIG_RENDERER_OPENGL >= 30, true }, { "ARB_vertex_type_2_10_10_10_rev", false, true }, { "ATI_meminfo", false, true }, { "CHROMIUM_color_buffer_float_rgb", false, true }, { "CHROMIUM_color_buffer_float_rgba", false, true }, { "CHROMIUM_depth_texture", false, true }, { "CHROMIUM_framebuffer_multisample", false, true }, { "CHROMIUM_texture_compression_dxt3", false, true }, { "CHROMIUM_texture_compression_dxt5", false, true }, { "EXT_bgra", false, true }, { "EXT_blend_color", BGFX_CONFIG_RENDERER_OPENGL >= 31, true }, { "EXT_blend_minmax", BGFX_CONFIG_RENDERER_OPENGL >= 14, true }, { "EXT_blend_subtract", BGFX_CONFIG_RENDERER_OPENGL >= 14, true }, { "EXT_color_buffer_half_float", false, true }, // GLES2 extension. { "EXT_color_buffer_float", false, true }, // GLES2 extension. { "EXT_compressed_ETC1_RGB8_sub_texture", false, true }, // GLES2 extension. { "EXT_debug_label", false, true }, { "EXT_debug_marker", false, true }, { "EXT_debug_tool", false, true }, // RenderDoc extension. { "EXT_discard_framebuffer", false, true }, // GLES2 extension. { "EXT_disjoint_timer_query", false, true }, // GLES2 extension. { "EXT_draw_buffers", false, true }, // GLES2 extension. { "EXT_frag_depth", false, true }, // GLES2 extension. { "EXT_framebuffer_blit", BGFX_CONFIG_RENDERER_OPENGL >= 30, true }, { "EXT_framebuffer_object", BGFX_CONFIG_RENDERER_OPENGL >= 30, true }, { "EXT_framebuffer_sRGB", BGFX_CONFIG_RENDERER_OPENGL >= 30, true }, { "EXT_multi_draw_indirect", false, true }, // GLES3.1 extension. { "EXT_occlusion_query_boolean", false, true }, { "EXT_packed_float", BGFX_CONFIG_RENDERER_OPENGL >= 33, true }, { "EXT_read_format_bgra", false, true }, { "EXT_shader_image_load_store", false, true }, { "EXT_shader_texture_lod", false, true }, // GLES2 extension. { "EXT_shadow_samplers", false, true }, { "EXT_texture_array", BGFX_CONFIG_RENDERER_OPENGL >= 30, true }, { "EXT_texture_compression_dxt1", false, true }, { "EXT_texture_compression_latc", false, true }, { "EXT_texture_compression_rgtc", BGFX_CONFIG_RENDERER_OPENGL >= 30, true }, { "EXT_texture_compression_s3tc", false, true }, { "EXT_texture_filter_anisotropic", false, true }, { "EXT_texture_format_BGRA8888", false, true }, { "EXT_texture_rg", false, true }, // GLES2 extension. { "EXT_texture_sRGB", false, true }, { "EXT_texture_storage", false, true }, { "EXT_texture_swizzle", false, true }, { "EXT_texture_type_2_10_10_10_REV", false, true }, { "EXT_timer_query", BGFX_CONFIG_RENDERER_OPENGL >= 33, true }, { "EXT_unpack_subimage", false, true }, { "GOOGLE_depth_texture", false, true }, { "GREMEDY_string_marker", false, true }, { "GREMEDY_frame_terminator", false, true }, { "IMG_multisampled_render_to_texture", false, true }, { "IMG_read_format", false, true }, { "IMG_shader_binary", false, true }, { "IMG_texture_compression_pvrtc", false, true }, { "IMG_texture_compression_pvrtc2", false, true }, { "IMG_texture_format_BGRA8888", false, true }, { "INTEL_fragment_shader_ordering", false, true }, { "KHR_debug", BGFX_CONFIG_RENDERER_OPENGL >= 43, true }, { "KHR_no_error", false, true }, { "MOZ_WEBGL_compressed_texture_s3tc", false, true }, { "MOZ_WEBGL_depth_texture", false, true }, { "NV_draw_buffers", false, true }, // GLES2 extension. { "NVX_gpu_memory_info", false, true }, { "OES_compressed_ETC1_RGB8_texture", false, true }, { "OES_depth24", false, true }, { "OES_depth32", false, true }, { "OES_depth_texture", false, true }, { "OES_element_index_uint", false, true }, { "OES_fragment_precision_high", false, true }, { "OES_get_program_binary", false, true }, { "OES_required_internalformat", false, true }, { "OES_packed_depth_stencil", false, true }, { "OES_read_format", false, true }, { "OES_rgb8_rgba8", false, true }, { "OES_standard_derivatives", false, true }, { "OES_texture_3D", false, true }, { "OES_texture_float", false, true }, { "OES_texture_float_linear", false, true }, { "OES_texture_npot", false, true }, { "OES_texture_half_float", false, true }, { "OES_texture_half_float_linear", false, true }, { "OES_texture_stencil8", false, true }, { "OES_vertex_array_object", false, !BX_PLATFORM_IOS }, { "OES_vertex_half_float", false, true }, { "OES_vertex_type_10_10_10_2", false, true }, { "WEBGL_color_buffer_float", false, true }, { "WEBGL_compressed_texture_etc1", false, true }, { "WEBGL_compressed_texture_s3tc", false, true }, { "WEBGL_compressed_texture_pvrtc", false, true }, { "WEBGL_depth_texture", false, true }, { "WEBGL_draw_buffers", false, true }, { "WEBKIT_EXT_texture_filter_anisotropic", false, true }, { "WEBKIT_WEBGL_compressed_texture_s3tc", false, true }, { "WEBKIT_WEBGL_depth_texture", false, true }, }; BX_STATIC_ASSERT(Extension::Count == BX_COUNTOF(s_extension) ); static const char* s_ARB_shader_texture_lod[] = { "texture2DLod", "texture2DProjLod", "texture3DLod", "texture3DProjLod", "textureCubeLod", "shadow2DLod", "shadow2DProjLod", NULL // "texture1DLod", // "texture1DProjLod", // "shadow1DLod", // "shadow1DProjLod", }; static const char* s_EXT_shader_texture_lod[] = { "texture2DLod", "texture2DProjLod", "textureCubeLod", NULL // "texture2DGrad", // "texture2DProjGrad", // "textureCubeGrad", }; static const char* s_EXT_shadow_samplers[] = { "shadow2D", "shadow2DProj", NULL }; static const char* s_OES_standard_derivatives[] = { "dFdx", "dFdy", "fwidth", NULL }; static const char* s_OES_texture_3D[] = { "texture3D", "texture3DProj", "texture3DLod", "texture3DProjLod", NULL }; static const char* s_uisamplers[] = { "isampler2D", "usampler2D", "isampler3D", "usampler3D", "isamplerCube", "usamplerCube", NULL }; static void GL_APIENTRY stubVertexAttribDivisor(GLuint /*_index*/, GLuint /*_divisor*/) { } static void GL_APIENTRY stubDrawArraysInstanced(GLenum _mode, GLint _first, GLsizei _count, GLsizei /*_primcount*/) { GL_CHECK(glDrawArrays(_mode, _first, _count) ); } static void GL_APIENTRY stubDrawElementsInstanced(GLenum _mode, GLsizei _count, GLenum _type, const GLvoid* _indices, GLsizei /*_primcount*/) { GL_CHECK(glDrawElements(_mode, _count, _type, _indices) ); } static void GL_APIENTRY stubFrameTerminatorGREMEDY() { } static void GL_APIENTRY stubInsertEventMarker(GLsizei /*_length*/, const char* /*_marker*/) { } static void GL_APIENTRY stubInsertEventMarkerGREMEDY(GLsizei _length, const char* _marker) { // If is a null-terminated string then should not // include the terminator. // // If is 0 then is assumed to be null-terminated. uint32_t size = (0 == _length ? (uint32_t)strlen(_marker) : _length) + 1; size *= sizeof(wchar_t); wchar_t* name = (wchar_t*)alloca(size); mbstowcs(name, _marker, size-2); GL_CHECK(glStringMarkerGREMEDY(_length, _marker) ); } static void GL_APIENTRY stubObjectLabel(GLenum /*_identifier*/, GLuint /*_name*/, GLsizei /*_length*/, const char* /*_label*/) { } static void GL_APIENTRY stubInvalidateFramebuffer(GLenum /*_target*/, GLsizei /*_numAttachments*/, const GLenum* /*_attachments*/) { } static void GL_APIENTRY stubMultiDrawArraysIndirect(GLenum _mode, const void* _indirect, GLsizei _drawcount, GLsizei _stride) { const uint8_t* args = (const uint8_t*)_indirect; for (GLsizei ii = 0; ii < _drawcount; ++ii) { GL_CHECK(glDrawArraysIndirect(_mode, (void*)args) ); args += _stride; } } static void GL_APIENTRY stubMultiDrawElementsIndirect(GLenum _mode, GLenum _type, const void* _indirect, GLsizei _drawcount, GLsizei _stride) { const uint8_t* args = (const uint8_t*)_indirect; for (GLsizei ii = 0; ii < _drawcount; ++ii) { GL_CHECK(glDrawElementsIndirect(_mode, _type, (void*)args) ); args += _stride; } } typedef void (*PostSwapBuffersFn)(uint32_t _width, uint32_t _height); static const char* getGLString(GLenum _name) { const char* str = (const char*)glGetString(_name); glGetError(); // ignore error if glGetString returns NULL. if (NULL != str) { return str; } return ""; } static uint32_t getGLStringHash(GLenum _name) { const char* str = (const char*)glGetString(_name); glGetError(); // ignore error if glGetString returns NULL. if (NULL != str) { return bx::hashMurmur2A(str, (uint32_t)strlen(str) ); } return 0; } void dumpExtensions(const char* _extensions) { if (NULL != _extensions) { char name[1024]; const char* pos = _extensions; const char* end = _extensions + strlen(_extensions); while (pos < end) { uint32_t len; const char* space = strchr(pos, ' '); if (NULL != space) { len = bx::uint32_min(sizeof(name), (uint32_t)(space - pos) ); } else { len = bx::uint32_min(sizeof(name), (uint32_t)strlen(pos) ); } strncpy(name, pos, len); name[len] = '\0'; BX_TRACE("\t%s", name); pos += len+1; } } } const char* toString(GLenum _enum) { switch (_enum) { case GL_DEBUG_SOURCE_API: return "API"; case GL_DEBUG_SOURCE_WINDOW_SYSTEM: return "WinSys"; case GL_DEBUG_SOURCE_SHADER_COMPILER: return "Shader"; case GL_DEBUG_SOURCE_THIRD_PARTY: return "3rdparty"; case GL_DEBUG_SOURCE_APPLICATION: return "Application"; case GL_DEBUG_SOURCE_OTHER: return "Other"; case GL_DEBUG_TYPE_ERROR: return "Error"; case GL_DEBUG_TYPE_DEPRECATED_BEHAVIOR: return "Deprecated behavior"; case GL_DEBUG_TYPE_UNDEFINED_BEHAVIOR: return "Undefined behavior"; case GL_DEBUG_TYPE_PORTABILITY: return "Portability"; case GL_DEBUG_TYPE_PERFORMANCE: return "Performance"; case GL_DEBUG_TYPE_OTHER: return "Other"; case GL_DEBUG_SEVERITY_HIGH: return "High"; case GL_DEBUG_SEVERITY_MEDIUM: return "Medium"; case GL_DEBUG_SEVERITY_LOW: return "Low"; default: break; } return ""; } void GL_APIENTRY debugProcCb(GLenum _source, GLenum _type, GLuint _id, GLenum _severity, GLsizei /*_length*/, const GLchar* _message, const void* /*_userParam*/) { BX_TRACE("src %s, type %s, id %d, severity %s, '%s'" , toString(_source) , toString(_type) , _id , toString(_severity) , _message ); BX_UNUSED(_source, _type, _id, _severity, _message); } GLint glGet(GLenum _pname) { GLint result = 0; glGetIntegerv(_pname, &result); GLenum err = glGetError(); BX_WARN(0 == err, "glGetIntegerv(0x%04x, ...) failed with GL error: 0x%04x.", _pname, err); return 0 == err ? result : 0; } void setTextureFormat(TextureFormat::Enum _format, GLenum _internalFmt, GLenum _fmt, GLenum _type = GL_ZERO) { TextureFormatInfo& tfi = s_textureFormat[_format]; tfi.m_internalFmt = _internalFmt; tfi.m_fmt = _fmt; tfi.m_type = _type; } bool isTextureFormatValid(TextureFormat::Enum _format, bool srgb = false) { const TextureFormatInfo& tfi = s_textureFormat[_format]; GLenum internalFmt = srgb ? tfi.m_internalFmtSrgb : tfi.m_internalFmt ; if (GL_ZERO == internalFmt) { return false; } GLuint id; GL_CHECK(glGenTextures(1, &id) ); GL_CHECK(glBindTexture(GL_TEXTURE_2D, id) ); GLsizei size = (16*16*getBitsPerPixel(_format) )/8; void* data = alloca(size); if (isCompressed(_format) ) { glCompressedTexImage2D(GL_TEXTURE_2D, 0, internalFmt, 16, 16, 0, size, data); } else { glTexImage2D(GL_TEXTURE_2D, 0, internalFmt, 16, 16, 0, tfi.m_fmt, tfi.m_type, data); } GLenum err = glGetError(); BX_WARN(0 == err, "TextureFormat::%s is not supported (%x: %s).", getName(_format), err, glEnumName(err) ); GL_CHECK(glDeleteTextures(1, &id) ); return 0 == err; } static void getFilters(uint32_t _flags, bool _hasMips, GLenum& _magFilter, GLenum& _minFilter) { const uint32_t mag = (_flags&BGFX_TEXTURE_MAG_MASK)>>BGFX_TEXTURE_MAG_SHIFT; const uint32_t min = (_flags&BGFX_TEXTURE_MIN_MASK)>>BGFX_TEXTURE_MIN_SHIFT; const uint32_t mip = (_flags&BGFX_TEXTURE_MIP_MASK)>>BGFX_TEXTURE_MIP_SHIFT; _magFilter = s_textureFilterMag[mag]; _minFilter = s_textureFilterMin[min][_hasMips ? mip+1 : 0]; } struct RendererContextGL : public RendererContextI { RendererContextGL() : m_numWindows(1) , m_rtMsaa(false) , m_fbDiscard(BGFX_CLEAR_NONE) , m_capture(NULL) , m_captureSize(0) , m_maxAnisotropy(0.0f) , m_maxAnisotropyDefault(0.0f) , m_maxMsaa(0) , m_vao(0) , m_vaoSupport(false) , m_samplerObjectSupport(false) , m_shadowSamplersSupport(false) , m_programBinarySupport(false) , m_textureSwizzleSupport(false) , m_depthTextureSupport(false) , m_timerQuerySupport(false) , m_flip(false) , m_hash( (BX_PLATFORM_WINDOWS<<1) | BX_ARCH_64BIT) , m_backBufferFbo(0) , m_msaaBackBufferFbo(0) , m_ovrFbo(0) { memset(m_msaaBackBufferRbos, 0, sizeof(m_msaaBackBufferRbos) ); } ~RendererContextGL() { } void init() { m_renderdocdll = loadRenderDoc(); m_fbh.idx = invalidHandle; memset(m_uniforms, 0, sizeof(m_uniforms) ); memset(&m_resolution, 0, sizeof(m_resolution) ); setRenderContextSize(BGFX_DEFAULT_WIDTH, BGFX_DEFAULT_HEIGHT); // Must be after context is initialized?! m_ovr.init(); m_vendor = getGLString(GL_VENDOR); m_renderer = getGLString(GL_RENDERER); m_version = getGLString(GL_VERSION); m_glslVersion = getGLString(GL_SHADING_LANGUAGE_VERSION); GLint numCmpFormats = 0; GL_CHECK(glGetIntegerv(GL_NUM_COMPRESSED_TEXTURE_FORMATS, &numCmpFormats) ); BX_TRACE("GL_NUM_COMPRESSED_TEXTURE_FORMATS %d", numCmpFormats); GLint* cmpFormat = NULL; if (0 < numCmpFormats) { numCmpFormats = numCmpFormats > 256 ? 256 : numCmpFormats; cmpFormat = (GLint*)alloca(sizeof(GLint)*numCmpFormats); GL_CHECK(glGetIntegerv(GL_COMPRESSED_TEXTURE_FORMATS, cmpFormat) ); for (GLint ii = 0; ii < numCmpFormats; ++ii) { GLint internalFmt = cmpFormat[ii]; uint32_t fmt = uint32_t(TextureFormat::Unknown); for (uint32_t jj = 0; jj < fmt; ++jj) { if (s_textureFormat[jj].m_internalFmt == (GLenum)internalFmt) { s_textureFormat[jj].m_supported = true; fmt = jj; } } BX_TRACE(" %3d: %8x %s", ii, internalFmt, getName( (TextureFormat::Enum)fmt) ); } } if (BX_ENABLED(BGFX_CONFIG_DEBUG) ) { #define GL_GET(_pname, _min) BX_TRACE(" " #_pname " %d (min: %d)", glGet(_pname), _min) BX_TRACE("Defaults:"); #if BGFX_CONFIG_RENDERER_OPENGL >= 41 || BGFX_CONFIG_RENDERER_OPENGLES GL_GET(GL_MAX_FRAGMENT_UNIFORM_VECTORS, 16); GL_GET(GL_MAX_VERTEX_UNIFORM_VECTORS, 128); GL_GET(GL_MAX_VARYING_VECTORS, 8); #else GL_GET(GL_MAX_FRAGMENT_UNIFORM_COMPONENTS, 16 * 4); GL_GET(GL_MAX_VERTEX_UNIFORM_COMPONENTS, 128 * 4); GL_GET(GL_MAX_VARYING_FLOATS, 8 * 4); #endif // BGFX_CONFIG_RENDERER_OPENGL >= 41 || BGFX_CONFIG_RENDERER_OPENGLES GL_GET(GL_MAX_VERTEX_ATTRIBS, 8); GL_GET(GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS, 8); GL_GET(GL_MAX_CUBE_MAP_TEXTURE_SIZE, 16); GL_GET(GL_MAX_TEXTURE_IMAGE_UNITS, 8); GL_GET(GL_MAX_TEXTURE_SIZE, 64); GL_GET(GL_MAX_VERTEX_TEXTURE_IMAGE_UNITS, 0); GL_GET(GL_MAX_RENDERBUFFER_SIZE, 1); #undef GL_GET BX_TRACE(" Vendor: %s", m_vendor); BX_TRACE(" Renderer: %s", m_renderer); BX_TRACE(" Version: %s", m_version); BX_TRACE("GLSL version: %s", m_glslVersion); } // Initial binary shader hash depends on driver version. m_hash = ( (BX_PLATFORM_WINDOWS<<1) | BX_ARCH_64BIT) ^ (uint64_t(getGLStringHash(GL_VENDOR ) )<<32) ^ (uint64_t(getGLStringHash(GL_RENDERER) )<<0 ) ^ (uint64_t(getGLStringHash(GL_VERSION ) )<<16) ; if (BX_ENABLED(BGFX_CONFIG_RENDERER_USE_EXTENSIONS) ) { const char* extensions = (const char*)glGetString(GL_EXTENSIONS); glGetError(); // ignore error if glGetString returns NULL. if (NULL != extensions) { char name[1024]; const char* pos = extensions; const char* end = extensions + strlen(extensions); uint32_t index = 0; while (pos < end) { uint32_t len; const char* space = strchr(pos, ' '); if (NULL != space) { len = bx::uint32_min(sizeof(name), (uint32_t)(space - pos) ); } else { len = bx::uint32_min(sizeof(name), (uint32_t)strlen(pos) ); } strncpy(name, pos, len); name[len] = '\0'; bool supported = false; for (uint32_t ii = 0; ii < Extension::Count; ++ii) { Extension& extension = s_extension[ii]; if (!extension.m_supported && extension.m_initialize) { const char* ext = name; if (0 == strncmp(ext, "GL_", 3) ) // skip GL_ { ext += 3; } if (0 == strcmp(ext, extension.m_name) ) { extension.m_supported = true; supported = true; break; } } } BX_TRACE("GL_EXTENSION %3d%s: %s", index, supported ? " (supported)" : "", name); BX_UNUSED(supported); pos += len+1; ++index; } BX_TRACE("Supported extensions:"); for (uint32_t ii = 0; ii < Extension::Count; ++ii) { if (s_extension[ii].m_supported) { BX_TRACE("\t%2d: %s", ii, s_extension[ii].m_name); } } } } // Allow all texture filters. memset(s_textureFilter, true, BX_COUNTOF(s_textureFilter) ); bool bc123Supported = 0 || s_extension[Extension::EXT_texture_compression_s3tc ].m_supported || s_extension[Extension::MOZ_WEBGL_compressed_texture_s3tc ].m_supported || s_extension[Extension::WEBGL_compressed_texture_s3tc ].m_supported || s_extension[Extension::WEBKIT_WEBGL_compressed_texture_s3tc].m_supported ; s_textureFormat[TextureFormat::BC1].m_supported |= bc123Supported || s_extension[Extension::ANGLE_texture_compression_dxt1].m_supported || s_extension[Extension::EXT_texture_compression_dxt1 ].m_supported ; if (!s_textureFormat[TextureFormat::BC1].m_supported && ( s_textureFormat[TextureFormat::BC2].m_supported || s_textureFormat[TextureFormat::BC3].m_supported) ) { // If RGBA_S3TC_DXT1 is not supported, maybe RGB_S3TC_DXT1 is? for (GLint ii = 0; ii < numCmpFormats; ++ii) { if (GL_COMPRESSED_RGB_S3TC_DXT1_EXT == cmpFormat[ii]) { setTextureFormat(TextureFormat::BC1, GL_COMPRESSED_RGB_S3TC_DXT1_EXT, GL_COMPRESSED_RGB_S3TC_DXT1_EXT); s_textureFormat[TextureFormat::BC1].m_supported = true; break; } } } s_textureFormat[TextureFormat::BC2].m_supported |= bc123Supported || s_extension[Extension::ANGLE_texture_compression_dxt3 ].m_supported || s_extension[Extension::CHROMIUM_texture_compression_dxt3].m_supported ; s_textureFormat[TextureFormat::BC3].m_supported |= bc123Supported || s_extension[Extension::ANGLE_texture_compression_dxt5 ].m_supported || s_extension[Extension::CHROMIUM_texture_compression_dxt5].m_supported ; if (s_extension[Extension::EXT_texture_compression_latc].m_supported) { setTextureFormat(TextureFormat::BC4, GL_COMPRESSED_LUMINANCE_LATC1_EXT, GL_COMPRESSED_LUMINANCE_LATC1_EXT); setTextureFormat(TextureFormat::BC5, GL_COMPRESSED_LUMINANCE_ALPHA_LATC2_EXT, GL_COMPRESSED_LUMINANCE_ALPHA_LATC2_EXT); } if (s_extension[Extension::ARB_texture_compression_rgtc].m_supported || s_extension[Extension::EXT_texture_compression_rgtc].m_supported) { setTextureFormat(TextureFormat::BC4, GL_COMPRESSED_RED_RGTC1, GL_COMPRESSED_RED_RGTC1); setTextureFormat(TextureFormat::BC5, GL_COMPRESSED_RG_RGTC2, GL_COMPRESSED_RG_RGTC2); } bool etc1Supported = 0 || s_extension[Extension::OES_compressed_ETC1_RGB8_texture].m_supported || s_extension[Extension::WEBGL_compressed_texture_etc1 ].m_supported ; s_textureFormat[TextureFormat::ETC1].m_supported |= etc1Supported; bool etc2Supported = !!(BGFX_CONFIG_RENDERER_OPENGLES >= 30) || s_extension[Extension::ARB_ES3_compatibility].m_supported ; s_textureFormat[TextureFormat::ETC2 ].m_supported |= etc2Supported; s_textureFormat[TextureFormat::ETC2A ].m_supported |= etc2Supported; s_textureFormat[TextureFormat::ETC2A1].m_supported |= etc2Supported; if (!s_textureFormat[TextureFormat::ETC1].m_supported && s_textureFormat[TextureFormat::ETC2].m_supported) { // When ETC2 is supported override ETC1 texture format settings. s_textureFormat[TextureFormat::ETC1].m_internalFmt = GL_COMPRESSED_RGB8_ETC2; s_textureFormat[TextureFormat::ETC1].m_fmt = GL_COMPRESSED_RGB8_ETC2; s_textureFormat[TextureFormat::ETC1].m_supported = true; } bool ptc1Supported = 0 || s_extension[Extension::IMG_texture_compression_pvrtc ].m_supported || s_extension[Extension::WEBGL_compressed_texture_pvrtc].m_supported ; s_textureFormat[TextureFormat::PTC12 ].m_supported |= ptc1Supported; s_textureFormat[TextureFormat::PTC14 ].m_supported |= ptc1Supported; s_textureFormat[TextureFormat::PTC12A].m_supported |= ptc1Supported; s_textureFormat[TextureFormat::PTC14A].m_supported |= ptc1Supported; bool ptc2Supported = s_extension[Extension::IMG_texture_compression_pvrtc2].m_supported; s_textureFormat[TextureFormat::PTC22].m_supported |= ptc2Supported; s_textureFormat[TextureFormat::PTC24].m_supported |= ptc2Supported; if (BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGLES) ) { setTextureFormat(TextureFormat::D32, GL_DEPTH_COMPONENT, GL_DEPTH_COMPONENT, GL_UNSIGNED_INT); if (BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGLES < 30) ) { setTextureFormat(TextureFormat::RGBA16F, GL_RGBA, GL_RGBA, GL_HALF_FLOAT); // internalFormat and format must match: // https://www.khronos.org/opengles/sdk/docs/man/xhtml/glTexImage2D.xml setTextureFormat(TextureFormat::RGBA8, GL_RGBA, GL_RGBA, GL_UNSIGNED_BYTE); setTextureFormat(TextureFormat::R5G6B5, GL_RGB, GL_RGB, GL_UNSIGNED_SHORT_5_6_5); setTextureFormat(TextureFormat::RGBA4, GL_RGBA, GL_RGBA, GL_UNSIGNED_SHORT_4_4_4_4); setTextureFormat(TextureFormat::RGB5A1, GL_RGBA, GL_RGBA, GL_UNSIGNED_SHORT_5_5_5_1); if (s_extension[Extension::OES_texture_half_float].m_supported || s_extension[Extension::OES_texture_float ].m_supported) { // https://www.khronos.org/registry/gles/extensions/OES/OES_texture_float.txt // When half/float is available via extensions texture will be marked as // incomplete if it uses anything other than nearest filter. const bool linear16F = s_extension[Extension::OES_texture_half_float_linear].m_supported; const bool linear32F = s_extension[Extension::OES_texture_float_linear ].m_supported; s_textureFilter[TextureFormat::R16F] = linear16F; s_textureFilter[TextureFormat::RG16F] = linear16F; s_textureFilter[TextureFormat::RGBA16F] = linear16F; s_textureFilter[TextureFormat::R32F] = linear32F; s_textureFilter[TextureFormat::RG32F] = linear32F; s_textureFilter[TextureFormat::RGBA32F] = linear32F; } if (BX_ENABLED(BX_PLATFORM_IOS) ) { setTextureFormat(TextureFormat::D16, GL_DEPTH_COMPONENT, GL_DEPTH_COMPONENT, GL_UNSIGNED_SHORT); setTextureFormat(TextureFormat::D24S8, GL_DEPTH_STENCIL, GL_DEPTH_STENCIL, GL_UNSIGNED_INT_24_8); } } } if (BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGL) || BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGLES >= 30) ) { setTextureFormat(TextureFormat::R16, GL_R16UI, GL_RED_INTEGER, GL_UNSIGNED_SHORT); setTextureFormat(TextureFormat::RG16, GL_RG16UI, GL_RG_INTEGER, GL_UNSIGNED_SHORT); setTextureFormat(TextureFormat::RGBA16, GL_RGBA16UI, GL_RGBA_INTEGER, GL_UNSIGNED_SHORT); setTextureFormat(TextureFormat::R32, GL_R32UI, GL_RED_INTEGER, GL_UNSIGNED_INT); setTextureFormat(TextureFormat::RG32, GL_RG32UI, GL_RG_INTEGER, GL_UNSIGNED_INT); setTextureFormat(TextureFormat::RGBA32, GL_RGBA32UI, GL_RGBA_INTEGER, GL_UNSIGNED_INT); } if (s_extension[Extension::EXT_texture_format_BGRA8888 ].m_supported || s_extension[Extension::EXT_bgra ].m_supported || s_extension[Extension::IMG_texture_format_BGRA8888 ].m_supported || s_extension[Extension::APPLE_texture_format_BGRA8888].m_supported) { if (BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGL) ) { m_readPixelsFmt = GL_BGRA; } // Mixing GLES and GL extensions here. OpenGL EXT_bgra and // APPLE_texture_format_BGRA8888 wants // format to be BGRA but internal format to stay RGBA, but // EXT_texture_format_BGRA8888 wants both format and internal // format to be BGRA. // // Reference: // https://www.khronos.org/registry/gles/extensions/EXT/EXT_texture_format_BGRA8888.txt // https://www.opengl.org/registry/specs/EXT/bgra.txt // https://www.khronos.org/registry/gles/extensions/APPLE/APPLE_texture_format_BGRA8888.txt if (!s_extension[Extension::EXT_bgra ].m_supported && !s_extension[Extension::APPLE_texture_format_BGRA8888].m_supported) { s_textureFormat[TextureFormat::BGRA8].m_internalFmt = GL_BGRA; } if (!isTextureFormatValid(TextureFormat::BGRA8) ) { // Revert back to RGBA if texture can't be created. setTextureFormat(TextureFormat::BGRA8, GL_RGBA, GL_BGRA, GL_UNSIGNED_BYTE); } } if (BX_ENABLED(BX_PLATFORM_EMSCRIPTEN) || !isTextureFormatValid(TextureFormat::R8) ) { // GL core has to use GL_R8 Issue#208, GLES2 has to use GL_LUMINANCE issue#226 s_textureFormat[TextureFormat::R8].m_internalFmt = GL_LUMINANCE; s_textureFormat[TextureFormat::R8].m_fmt = GL_LUMINANCE; } for (uint32_t ii = 0; ii < TextureFormat::Count; ++ii) { if (TextureFormat::Unknown != ii && TextureFormat::UnknownDepth != ii) { s_textureFormat[ii].m_supported = isTextureFormatValid(TextureFormat::Enum(ii) ); } } if (BX_ENABLED(0) ) { // Disable all compressed texture formats. For testing only. for (uint32_t ii = 0; ii < TextureFormat::Unknown; ++ii) { s_textureFormat[ii].m_supported = false; } } const bool computeSupport = false || !!(BGFX_CONFIG_RENDERER_OPENGLES >= 31) || s_extension[Extension::ARB_compute_shader].m_supported ; for (uint32_t ii = 0; ii < TextureFormat::Count; ++ii) { uint8_t supported = 0; supported |= s_textureFormat[ii].m_supported ? BGFX_CAPS_FORMAT_TEXTURE_COLOR : BGFX_CAPS_FORMAT_TEXTURE_NONE ; supported |= isTextureFormatValid(TextureFormat::Enum(ii), true) ? BGFX_CAPS_FORMAT_TEXTURE_COLOR_SRGB : BGFX_CAPS_FORMAT_TEXTURE_NONE ; supported |= computeSupport && GL_ZERO != s_imageFormat[ii] ? BGFX_CAPS_FORMAT_TEXTURE_IMAGE : BGFX_CAPS_FORMAT_TEXTURE_NONE ; g_caps.formats[ii] = supported; } g_caps.supported |= !!(BGFX_CONFIG_RENDERER_OPENGL || BGFX_CONFIG_RENDERER_OPENGLES >= 30) || s_extension[Extension::OES_texture_3D].m_supported ? BGFX_CAPS_TEXTURE_3D : 0 ; g_caps.supported |= !!(BGFX_CONFIG_RENDERER_OPENGL || BGFX_CONFIG_RENDERER_OPENGLES >= 30) || s_extension[Extension::EXT_shadow_samplers].m_supported ? BGFX_CAPS_TEXTURE_COMPARE_ALL : 0 ; g_caps.supported |= !!(BGFX_CONFIG_RENDERER_OPENGL || BGFX_CONFIG_RENDERER_OPENGLES >= 30) || s_extension[Extension::OES_vertex_half_float].m_supported ? BGFX_CAPS_VERTEX_ATTRIB_HALF : 0 ; g_caps.supported |= !!(BGFX_CONFIG_RENDERER_OPENGL || BGFX_CONFIG_RENDERER_OPENGLES >= 30) || s_extension[Extension::EXT_frag_depth].m_supported ? BGFX_CAPS_FRAGMENT_DEPTH : 0 ; g_caps.supported |= s_extension[Extension::ARB_draw_buffers_blend].m_supported ? BGFX_CAPS_BLEND_INDEPENDENT : 0 ; g_caps.supported |= s_extension[Extension::INTEL_fragment_shader_ordering].m_supported ? BGFX_CAPS_FRAGMENT_ORDERING : 0 ; g_caps.supported |= !!(BGFX_CONFIG_RENDERER_OPENGL || BGFX_CONFIG_RENDERER_OPENGLES >= 30) || s_extension[Extension::OES_element_index_uint].m_supported ? BGFX_CAPS_INDEX32 : 0 ; const bool drawIndirectSupported = false || s_extension[Extension::AMD_multi_draw_indirect].m_supported || s_extension[Extension::ARB_draw_indirect ].m_supported || s_extension[Extension::ARB_multi_draw_indirect].m_supported || s_extension[Extension::EXT_multi_draw_indirect].m_supported ; if (drawIndirectSupported) { if (NULL == glMultiDrawArraysIndirect || NULL == glMultiDrawElementsIndirect) { glMultiDrawArraysIndirect = stubMultiDrawArraysIndirect; glMultiDrawElementsIndirect = stubMultiDrawElementsIndirect; } } g_caps.supported |= drawIndirectSupported ? BGFX_CAPS_DRAW_INDIRECT : 0 ; g_caps.maxTextureSize = uint16_t(glGet(GL_MAX_TEXTURE_SIZE) ); if (BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGL) || BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGLES >= 30) || s_extension[Extension::EXT_draw_buffers ].m_supported || s_extension[Extension::WEBGL_draw_buffers].m_supported) { g_caps.maxFBAttachments = uint8_t(bx::uint32_min(glGet(GL_MAX_COLOR_ATTACHMENTS), BGFX_CONFIG_MAX_FRAME_BUFFER_ATTACHMENTS) ); } m_vaoSupport = !!(BGFX_CONFIG_RENDERER_OPENGLES >= 30) || s_extension[Extension::ARB_vertex_array_object].m_supported || s_extension[Extension::OES_vertex_array_object].m_supported ; if (BX_ENABLED(BX_PLATFORM_NACL) ) { m_vaoSupport &= true && NULL != glGenVertexArrays && NULL != glDeleteVertexArrays && NULL != glBindVertexArray ; } if (m_vaoSupport) { GL_CHECK(glGenVertexArrays(1, &m_vao) ); } m_samplerObjectSupport = !!(BGFX_CONFIG_RENDERER_OPENGLES >= 30) || s_extension[Extension::ARB_sampler_objects].m_supported ; m_shadowSamplersSupport = !!(BGFX_CONFIG_RENDERER_OPENGL || BGFX_CONFIG_RENDERER_OPENGLES >= 30) || s_extension[Extension::EXT_shadow_samplers].m_supported ; m_programBinarySupport = !!(BGFX_CONFIG_RENDERER_OPENGLES >= 30) || s_extension[Extension::ARB_get_program_binary].m_supported || s_extension[Extension::OES_get_program_binary].m_supported || s_extension[Extension::IMG_shader_binary ].m_supported ; m_textureSwizzleSupport = false || s_extension[Extension::ARB_texture_swizzle].m_supported || s_extension[Extension::EXT_texture_swizzle].m_supported ; m_depthTextureSupport = !!(BGFX_CONFIG_RENDERER_OPENGL || BGFX_CONFIG_RENDERER_OPENGLES >= 30) || s_extension[Extension::ANGLE_depth_texture ].m_supported || s_extension[Extension::CHROMIUM_depth_texture ].m_supported || s_extension[Extension::GOOGLE_depth_texture ].m_supported || s_extension[Extension::OES_depth_texture ].m_supported || s_extension[Extension::MOZ_WEBGL_depth_texture ].m_supported || s_extension[Extension::WEBGL_depth_texture ].m_supported || s_extension[Extension::WEBKIT_WEBGL_depth_texture].m_supported ; m_timerQuerySupport = 0 || s_extension[Extension::ANGLE_timer_query ].m_supported || s_extension[Extension::ARB_timer_query ].m_supported || s_extension[Extension::EXT_disjoint_timer_query].m_supported || s_extension[Extension::EXT_timer_query ].m_supported ; m_timerQuerySupport &= NULL != glGetQueryObjectui64v; g_caps.supported |= m_depthTextureSupport ? BGFX_CAPS_TEXTURE_COMPARE_LEQUAL : 0 ; g_caps.supported |= computeSupport ? BGFX_CAPS_COMPUTE : 0 ; g_caps.supported |= GlContext::isSwapChainSupported() ? BGFX_CAPS_SWAP_CHAIN : 0 ; if (s_extension[Extension::EXT_texture_filter_anisotropic].m_supported) { GL_CHECK(glGetFloatv(GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT, &m_maxAnisotropyDefault) ); } if (s_extension[Extension::ARB_texture_multisample].m_supported || s_extension[Extension::ANGLE_framebuffer_multisample].m_supported) { GL_CHECK(glGetIntegerv(GL_MAX_SAMPLES, &m_maxMsaa) ); } if (s_extension[Extension::OES_read_format].m_supported && (s_extension[Extension::IMG_read_format].m_supported || s_extension[Extension::EXT_read_format_bgra].m_supported) ) { m_readPixelsFmt = GL_BGRA; } else { m_readPixelsFmt = GL_RGBA; } if (BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGLES >= 30) ) { g_caps.supported |= BGFX_CAPS_INSTANCING; } else { if (!BX_ENABLED(BX_PLATFORM_IOS) ) { if (s_extension[Extension::ARB_instanced_arrays].m_supported || s_extension[Extension::ANGLE_instanced_arrays].m_supported) { if (NULL != glVertexAttribDivisor && NULL != glDrawArraysInstanced && NULL != glDrawElementsInstanced) { g_caps.supported |= BGFX_CAPS_INSTANCING; } } } if (0 == (g_caps.supported & BGFX_CAPS_INSTANCING) ) { glVertexAttribDivisor = stubVertexAttribDivisor; glDrawArraysInstanced = stubDrawArraysInstanced; glDrawElementsInstanced = stubDrawElementsInstanced; } } if (s_extension[Extension::ARB_debug_output].m_supported || s_extension[Extension::KHR_debug].m_supported) { if (NULL != glDebugMessageControl && NULL != glDebugMessageInsert && NULL != glDebugMessageCallback && NULL != glGetDebugMessageLog) { GL_CHECK(glDebugMessageCallback(debugProcCb, NULL) ); GL_CHECK(glDebugMessageControl(GL_DONT_CARE , GL_DONT_CARE , GL_DEBUG_SEVERITY_MEDIUM , 0 , NULL , GL_TRUE ) ); } } if (s_extension[Extension::ARB_seamless_cube_map].m_supported) { GL_CHECK(glEnable(GL_TEXTURE_CUBE_MAP_SEAMLESS) ); } if (s_extension[Extension::ARB_depth_clamp].m_supported) { GL_CHECK(glEnable(GL_DEPTH_CLAMP) ); } if (NULL == glFrameTerminatorGREMEDY || !s_extension[Extension::GREMEDY_frame_terminator].m_supported) { glFrameTerminatorGREMEDY = stubFrameTerminatorGREMEDY; } if (NULL == glInsertEventMarker || !s_extension[Extension::EXT_debug_marker].m_supported) { glInsertEventMarker = (NULL != glStringMarkerGREMEDY && s_extension[Extension::GREMEDY_string_marker].m_supported) ? stubInsertEventMarkerGREMEDY : stubInsertEventMarker ; } setGraphicsDebuggerPresent(s_extension[Extension::EXT_debug_tool].m_supported); if (NULL == glObjectLabel) { glObjectLabel = stubObjectLabel; } if (NULL == glInvalidateFramebuffer) { glInvalidateFramebuffer = stubInvalidateFramebuffer; } if (BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGL) && m_timerQuerySupport) { m_queries.create(); } // Init reserved part of view name. for (uint32_t ii = 0; ii < BGFX_CONFIG_MAX_VIEWS; ++ii) { bx::snprintf(s_viewName[ii], BGFX_CONFIG_MAX_VIEW_NAME_RESERVED+1, "%3d ", ii); } ovrPostReset(); } void shutdown() { ovrPreReset(); m_ovr.shutdown(); if (m_vaoSupport) { GL_CHECK(glBindVertexArray(0) ); GL_CHECK(glDeleteVertexArrays(1, &m_vao) ); m_vao = 0; } captureFinish(); invalidateCache(); if (BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGL) && m_timerQuerySupport) { m_queries.destroy(); } destroyMsaaFbo(); m_glctx.destroy(); m_flip = false; unloadRenderDoc(m_renderdocdll); } RendererType::Enum getRendererType() const BX_OVERRIDE { if (BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGL) ) { return RendererType::OpenGL; } return RendererType::OpenGLES; } const char* getRendererName() const BX_OVERRIDE { return BGFX_RENDERER_OPENGL_NAME; } void flip(HMD& _hmd) { if (m_flip) { for (uint32_t ii = 1, num = m_numWindows; ii < num; ++ii) { m_glctx.swap(m_frameBuffers[m_windows[ii].idx].m_swapChain); } if (!m_ovr.swap(_hmd) ) { m_glctx.swap(); } } } void createIndexBuffer(IndexBufferHandle _handle, Memory* _mem, uint16_t _flags) BX_OVERRIDE { m_indexBuffers[_handle.idx].create(_mem->size, _mem->data, _flags); } void destroyIndexBuffer(IndexBufferHandle _handle) BX_OVERRIDE { m_indexBuffers[_handle.idx].destroy(); } void createVertexDecl(VertexDeclHandle _handle, const VertexDecl& _decl) BX_OVERRIDE { VertexDecl& decl = m_vertexDecls[_handle.idx]; memcpy(&decl, &_decl, sizeof(VertexDecl) ); dump(decl); } void destroyVertexDecl(VertexDeclHandle /*_handle*/) BX_OVERRIDE { } void createVertexBuffer(VertexBufferHandle _handle, Memory* _mem, VertexDeclHandle _declHandle, uint16_t _flags) BX_OVERRIDE { m_vertexBuffers[_handle.idx].create(_mem->size, _mem->data, _declHandle, _flags); } void destroyVertexBuffer(VertexBufferHandle _handle) BX_OVERRIDE { m_vertexBuffers[_handle.idx].destroy(); } void createDynamicIndexBuffer(IndexBufferHandle _handle, uint32_t _size, uint16_t _flags) BX_OVERRIDE { m_indexBuffers[_handle.idx].create(_size, NULL, _flags); } void updateDynamicIndexBuffer(IndexBufferHandle _handle, uint32_t _offset, uint32_t _size, Memory* _mem) BX_OVERRIDE { m_indexBuffers[_handle.idx].update(_offset, bx::uint32_min(_size, _mem->size), _mem->data); } void destroyDynamicIndexBuffer(IndexBufferHandle _handle) BX_OVERRIDE { m_indexBuffers[_handle.idx].destroy(); } void createDynamicVertexBuffer(VertexBufferHandle _handle, uint32_t _size, uint16_t _flags) BX_OVERRIDE { VertexDeclHandle decl = BGFX_INVALID_HANDLE; m_vertexBuffers[_handle.idx].create(_size, NULL, decl, _flags); } void updateDynamicVertexBuffer(VertexBufferHandle _handle, uint32_t _offset, uint32_t _size, Memory* _mem) BX_OVERRIDE { m_vertexBuffers[_handle.idx].update(_offset, bx::uint32_min(_size, _mem->size), _mem->data); } void destroyDynamicVertexBuffer(VertexBufferHandle _handle) BX_OVERRIDE { m_vertexBuffers[_handle.idx].destroy(); } void createShader(ShaderHandle _handle, Memory* _mem) BX_OVERRIDE { m_shaders[_handle.idx].create(_mem); } void destroyShader(ShaderHandle _handle) BX_OVERRIDE { m_shaders[_handle.idx].destroy(); } void createProgram(ProgramHandle _handle, ShaderHandle _vsh, ShaderHandle _fsh) BX_OVERRIDE { ShaderGL dummyFragmentShader; m_program[_handle.idx].create(m_shaders[_vsh.idx], isValid(_fsh) ? m_shaders[_fsh.idx] : dummyFragmentShader); } void destroyProgram(ProgramHandle _handle) BX_OVERRIDE { m_program[_handle.idx].destroy(); } void createTexture(TextureHandle _handle, Memory* _mem, uint32_t _flags, uint8_t _skip) BX_OVERRIDE { m_textures[_handle.idx].create(_mem, _flags, _skip); } void updateTextureBegin(TextureHandle /*_handle*/, uint8_t /*_side*/, uint8_t /*_mip*/) BX_OVERRIDE { } void updateTexture(TextureHandle _handle, uint8_t _side, uint8_t _mip, const Rect& _rect, uint16_t _z, uint16_t _depth, uint16_t _pitch, const Memory* _mem) BX_OVERRIDE { m_textures[_handle.idx].update(_side, _mip, _rect, _z, _depth, _pitch, _mem); } void updateTextureEnd() BX_OVERRIDE { } void resizeTexture(TextureHandle _handle, uint16_t _width, uint16_t _height) BX_OVERRIDE { TextureGL& texture = m_textures[_handle.idx]; uint32_t size = sizeof(uint32_t) + sizeof(TextureCreate); const Memory* mem = alloc(size); bx::StaticMemoryBlockWriter writer(mem->data, mem->size); uint32_t magic = BGFX_CHUNK_MAGIC_TEX; bx::write(&writer, magic); TextureCreate tc; tc.m_flags = texture.m_flags; tc.m_width = _width; tc.m_height = _height; tc.m_sides = 0; tc.m_depth = 0; tc.m_numMips = 1; tc.m_format = texture.m_requestedFormat; tc.m_cubeMap = false; tc.m_mem = NULL; bx::write(&writer, tc); texture.destroy(); texture.create(mem, tc.m_flags, 0); release(mem); } void destroyTexture(TextureHandle _handle) BX_OVERRIDE { m_textures[_handle.idx].destroy(); } void createFrameBuffer(FrameBufferHandle _handle, uint8_t _num, const TextureHandle* _textureHandles) BX_OVERRIDE { m_frameBuffers[_handle.idx].create(_num, _textureHandles); } void createFrameBuffer(FrameBufferHandle _handle, void* _nwh, uint32_t _width, uint32_t _height, TextureFormat::Enum _depthFormat) BX_OVERRIDE { uint16_t denseIdx = m_numWindows++; m_windows[denseIdx] = _handle; m_frameBuffers[_handle.idx].create(denseIdx, _nwh, _width, _height, _depthFormat); } void destroyFrameBuffer(FrameBufferHandle _handle) BX_OVERRIDE { uint16_t denseIdx = m_frameBuffers[_handle.idx].destroy(); if (UINT16_MAX != denseIdx) { --m_numWindows; if (m_numWindows > 1) { FrameBufferHandle handle = m_windows[m_numWindows]; m_windows[denseIdx] = handle; m_frameBuffers[handle.idx].m_denseIdx = denseIdx; } } } void createUniform(UniformHandle _handle, UniformType::Enum _type, uint16_t _num, const char* _name) BX_OVERRIDE { if (NULL != m_uniforms[_handle.idx]) { BX_FREE(g_allocator, m_uniforms[_handle.idx]); } uint32_t size = g_uniformTypeSize[_type]*_num; void* data = BX_ALLOC(g_allocator, size); memset(data, 0, size); m_uniforms[_handle.idx] = data; m_uniformReg.add(_handle, _name, m_uniforms[_handle.idx]); } void destroyUniform(UniformHandle _handle) BX_OVERRIDE { BX_FREE(g_allocator, m_uniforms[_handle.idx]); m_uniforms[_handle.idx] = NULL; } void saveScreenShot(const char* _filePath) BX_OVERRIDE { uint32_t length = m_resolution.m_width*m_resolution.m_height*4; uint8_t* data = (uint8_t*)BX_ALLOC(g_allocator, length); uint32_t width = m_resolution.m_width; uint32_t height = m_resolution.m_height; GL_CHECK(glReadPixels(0 , 0 , width , height , m_readPixelsFmt , GL_UNSIGNED_BYTE , data ) ); if (GL_RGBA == m_readPixelsFmt) { imageSwizzleBgra8(width, height, width*4, data, data); } g_callback->screenShot(_filePath , width , height , width*4 , data , length , true ); BX_FREE(g_allocator, data); } void updateViewName(uint8_t _id, const char* _name) BX_OVERRIDE { if (BX_ENABLED(BGFX_CONFIG_DEBUG_PIX) ) { bx::strlcpy(&s_viewName[_id][BGFX_CONFIG_MAX_VIEW_NAME_RESERVED] , _name , BX_COUNTOF(s_viewName[0])-BGFX_CONFIG_MAX_VIEW_NAME_RESERVED ); } } void updateUniform(uint16_t _loc, const void* _data, uint32_t _size) BX_OVERRIDE { memcpy(m_uniforms[_loc], _data, _size); } void setMarker(const char* _marker, uint32_t _size) BX_OVERRIDE { GL_CHECK(glInsertEventMarker(_size, _marker) ); } void submit(Frame* _render, ClearQuad& _clearQuad, TextVideoMemBlitter& _textVideoMemBlitter) BX_OVERRIDE; void blitSetup(TextVideoMemBlitter& _blitter) BX_OVERRIDE { if (0 != m_vao) { GL_CHECK(glBindVertexArray(m_vao) ); } uint32_t width = m_resolution.m_width; uint32_t height = m_resolution.m_height; if (m_ovr.isEnabled() ) { m_ovr.getSize(width, height); } GL_CHECK(glBindFramebuffer(GL_FRAMEBUFFER, m_backBufferFbo) ); GL_CHECK(glViewport(0, 0, width, height) ); GL_CHECK(glDisable(GL_SCISSOR_TEST) ); GL_CHECK(glDisable(GL_STENCIL_TEST) ); GL_CHECK(glDisable(GL_DEPTH_TEST) ); GL_CHECK(glDepthFunc(GL_ALWAYS) ); GL_CHECK(glDisable(GL_CULL_FACE) ); GL_CHECK(glDisable(GL_BLEND) ); GL_CHECK(glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE) ); ProgramGL& program = m_program[_blitter.m_program.idx]; GL_CHECK(glUseProgram(program.m_id) ); GL_CHECK(glUniform1i(program.m_sampler[0], 0) ); float proj[16]; bx::mtxOrtho(proj, 0.0f, (float)width, (float)height, 0.0f, 0.0f, 1000.0f); GL_CHECK(glUniformMatrix4fv(program.m_predefined[0].m_loc , 1 , GL_FALSE , proj ) ); GL_CHECK(glActiveTexture(GL_TEXTURE0) ); GL_CHECK(glBindTexture(GL_TEXTURE_2D, m_textures[_blitter.m_texture.idx].m_id) ); } void blitRender(TextVideoMemBlitter& _blitter, uint32_t _numIndices) BX_OVERRIDE { const uint32_t numVertices = _numIndices*4/6; if (0 < numVertices) { m_indexBuffers[_blitter.m_ib->handle.idx].update(0, _numIndices*2, _blitter.m_ib->data); m_vertexBuffers[_blitter.m_vb->handle.idx].update(0, numVertices*_blitter.m_decl.m_stride, _blitter.m_vb->data); VertexBufferGL& vb = m_vertexBuffers[_blitter.m_vb->handle.idx]; GL_CHECK(glBindBuffer(GL_ARRAY_BUFFER, vb.m_id) ); IndexBufferGL& ib = m_indexBuffers[_blitter.m_ib->handle.idx]; GL_CHECK(glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ib.m_id) ); ProgramGL& program = m_program[_blitter.m_program.idx]; program.bindAttributes(_blitter.m_decl, 0); GL_CHECK(glDrawElements(GL_TRIANGLES , _numIndices , GL_UNSIGNED_SHORT , (void*)0 ) ); } } void updateResolution(const Resolution& _resolution) { bool recenter = !!(_resolution.m_flags & BGFX_RESET_HMD_RECENTER); m_maxAnisotropy = !!(_resolution.m_flags & BGFX_RESET_MAXANISOTROPY) ? m_maxAnisotropyDefault : 0.0f ; uint32_t flags = _resolution.m_flags & ~(BGFX_RESET_HMD_RECENTER | BGFX_RESET_MAXANISOTROPY); if (m_resolution.m_width != _resolution.m_width || m_resolution.m_height != _resolution.m_height || m_resolution.m_flags != flags) { m_textVideoMem.resize(false, _resolution.m_width, _resolution.m_height); m_textVideoMem.clear(); m_resolution = _resolution; m_resolution.m_flags = flags; setRenderContextSize(m_resolution.m_width , m_resolution.m_height , m_resolution.m_flags ); updateCapture(); for (uint32_t ii = 0; ii < BX_COUNTOF(m_frameBuffers); ++ii) { m_frameBuffers[ii].postReset(); } ovrPreReset(); ovrPostReset(); } if (recenter) { m_ovr.recenter(); } } void setShaderUniform4f(uint8_t /*_flags*/, uint32_t _regIndex, const void* _val, uint32_t _numRegs) { GL_CHECK(glUniform4fv(_regIndex , _numRegs , (const GLfloat*)_val ) ); } void setShaderUniform4x4f(uint8_t /*_flags*/, uint32_t _regIndex, const void* _val, uint32_t _numRegs) { GL_CHECK(glUniformMatrix4fv(_regIndex , _numRegs , GL_FALSE , (const GLfloat*)_val ) ); } uint32_t setFrameBuffer(FrameBufferHandle _fbh, uint32_t _height, uint16_t _discard = BGFX_CLEAR_NONE, bool _msaa = true) { if (isValid(m_fbh) && m_fbh.idx != _fbh.idx && (BGFX_CLEAR_NONE != m_fbDiscard || m_rtMsaa) ) { FrameBufferGL& frameBuffer = m_frameBuffers[m_fbh.idx]; if (m_rtMsaa) { frameBuffer.resolve(); } if (BGFX_CLEAR_NONE != m_fbDiscard) { frameBuffer.discard(m_fbDiscard); } m_fbDiscard = BGFX_CLEAR_NONE; } m_glctx.makeCurrent(NULL); if (!isValid(_fbh) ) { GL_CHECK(glBindFramebuffer(GL_FRAMEBUFFER, m_msaaBackBufferFbo) ); } else { FrameBufferGL& frameBuffer = m_frameBuffers[_fbh.idx]; _height = frameBuffer.m_height; if (UINT16_MAX != frameBuffer.m_denseIdx) { m_glctx.makeCurrent(frameBuffer.m_swapChain); GL_CHECK(glBindFramebuffer(GL_FRAMEBUFFER, 0) ); } else { m_glctx.makeCurrent(NULL); GL_CHECK(glBindFramebuffer(GL_FRAMEBUFFER, frameBuffer.m_fbo[0]) ); } } m_fbh = _fbh; m_fbDiscard = _discard; m_rtMsaa = _msaa; return _height; } uint32_t getNumRt() const { if (isValid(m_fbh) ) { const FrameBufferGL& frameBuffer = m_frameBuffers[m_fbh.idx]; return frameBuffer.m_num; } return 1; } void createMsaaFbo(uint32_t _width, uint32_t _height, uint32_t _msaa) { if (0 == m_msaaBackBufferFbo // iOS && 1 < _msaa) { GL_CHECK(glGenFramebuffers(1, &m_msaaBackBufferFbo) ); GL_CHECK(glBindFramebuffer(GL_FRAMEBUFFER, m_msaaBackBufferFbo) ); GL_CHECK(glGenRenderbuffers(BX_COUNTOF(m_msaaBackBufferRbos), m_msaaBackBufferRbos) ); GL_CHECK(glBindRenderbuffer(GL_RENDERBUFFER, m_msaaBackBufferRbos[0]) ); GL_CHECK(glRenderbufferStorageMultisample(GL_RENDERBUFFER, _msaa, GL_RGBA8, _width, _height) ); GL_CHECK(glBindRenderbuffer(GL_RENDERBUFFER, m_msaaBackBufferRbos[1]) ); GL_CHECK(glRenderbufferStorageMultisample(GL_RENDERBUFFER, _msaa, GL_DEPTH24_STENCIL8, _width, _height) ); GL_CHECK(glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_RENDERBUFFER, m_msaaBackBufferRbos[0]) ); GLenum attachment = BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGL) || BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGLES >= 30) ? GL_DEPTH_STENCIL_ATTACHMENT : GL_DEPTH_ATTACHMENT ; GL_CHECK(glFramebufferRenderbuffer(GL_FRAMEBUFFER, attachment, GL_RENDERBUFFER, m_msaaBackBufferRbos[1]) ); BX_CHECK(GL_FRAMEBUFFER_COMPLETE == glCheckFramebufferStatus(GL_FRAMEBUFFER) , "glCheckFramebufferStatus failed 0x%08x" , glCheckFramebufferStatus(GL_FRAMEBUFFER) ); GL_CHECK(glBindFramebuffer(GL_FRAMEBUFFER, m_msaaBackBufferFbo) ); } } void destroyMsaaFbo() { if (m_backBufferFbo != m_msaaBackBufferFbo // iOS && 0 != m_msaaBackBufferFbo) { GL_CHECK(glDeleteFramebuffers(1, &m_msaaBackBufferFbo) ); m_msaaBackBufferFbo = 0; if (0 != m_msaaBackBufferRbos[0]) { GL_CHECK(glDeleteRenderbuffers(BX_COUNTOF(m_msaaBackBufferRbos), m_msaaBackBufferRbos) ); m_msaaBackBufferRbos[0] = 0; m_msaaBackBufferRbos[1] = 0; } } } void blitMsaaFbo() { if (m_backBufferFbo != m_msaaBackBufferFbo // iOS && 0 != m_msaaBackBufferFbo) { GL_CHECK(glDisable(GL_SCISSOR_TEST) ); GL_CHECK(glBindFramebuffer(GL_FRAMEBUFFER, m_backBufferFbo) ); GL_CHECK(glBindFramebuffer(GL_READ_FRAMEBUFFER, m_msaaBackBufferFbo) ); GL_CHECK(glBindFramebuffer(GL_DRAW_FRAMEBUFFER, 0) ); uint32_t width = m_resolution.m_width; uint32_t height = m_resolution.m_height; GLenum filter = BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGL) || BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGLES < 30) ? GL_NEAREST : GL_LINEAR ; GL_CHECK(glBlitFramebuffer(0 , 0 , width , height , 0 , 0 , width , height , GL_COLOR_BUFFER_BIT , filter ) ); GL_CHECK(glBindFramebuffer(GL_FRAMEBUFFER, m_backBufferFbo) ); } } void setRenderContextSize(uint32_t _width, uint32_t _height, uint32_t _flags = 0) { if (_width != 0 || _height != 0) { if (!m_glctx.isValid() ) { m_glctx.create(_width, _height); #if BX_PLATFORM_IOS // iOS: need to figure out how to deal with FBO created by context. m_backBufferFbo = m_msaaBackBufferFbo = m_glctx.getFbo(); #endif // BX_PLATFORM_IOS } else { destroyMsaaFbo(); m_glctx.resize(_width, _height, _flags); uint32_t msaa = (_flags&BGFX_RESET_MSAA_MASK)>>BGFX_RESET_MSAA_SHIFT; msaa = bx::uint32_min(m_maxMsaa, msaa == 0 ? 0 : 1<= 30) ) && m_samplerObjectSupport) { m_samplerStateCache.invalidate(); } } void setSamplerState(uint32_t _stage, uint32_t _numMips, uint32_t _flags) { if (BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGL) || BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGLES >= 30) ) { if (0 == (BGFX_SAMPLER_DEFAULT_FLAGS & _flags) ) { _flags &= ~BGFX_TEXTURE_RESERVED_MASK; _flags &= BGFX_TEXTURE_SAMPLER_BITS_MASK; _flags |= _numMips<>BGFX_TEXTURE_U_SHIFT] ) ); GL_CHECK(glSamplerParameteri(sampler , GL_TEXTURE_WRAP_T , s_textureAddress[(_flags&BGFX_TEXTURE_V_MASK)>>BGFX_TEXTURE_V_SHIFT] ) ); GL_CHECK(glSamplerParameteri(sampler , GL_TEXTURE_WRAP_R , s_textureAddress[(_flags&BGFX_TEXTURE_W_MASK)>>BGFX_TEXTURE_W_SHIFT] ) ); GLenum minFilter; GLenum magFilter; getFilters(_flags, 1 < _numMips, magFilter, minFilter); GL_CHECK(glSamplerParameteri(sampler, GL_TEXTURE_MAG_FILTER, magFilter) ); GL_CHECK(glSamplerParameteri(sampler, GL_TEXTURE_MIN_FILTER, minFilter) ); if (0 != (_flags & (BGFX_TEXTURE_MIN_ANISOTROPIC|BGFX_TEXTURE_MAG_ANISOTROPIC) ) && 0.0f < m_maxAnisotropy) { GL_CHECK(glSamplerParameterf(sampler, GL_TEXTURE_MAX_ANISOTROPY_EXT, m_maxAnisotropy) ); } if (BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGLES >= 30) || m_shadowSamplersSupport) { const uint32_t cmpFunc = (_flags&BGFX_TEXTURE_COMPARE_MASK)>>BGFX_TEXTURE_COMPARE_SHIFT; if (0 == cmpFunc) { GL_CHECK(glSamplerParameteri(sampler, GL_TEXTURE_COMPARE_MODE, GL_NONE) ); } else { GL_CHECK(glSamplerParameteri(sampler, GL_TEXTURE_COMPARE_MODE, GL_COMPARE_REF_TO_TEXTURE) ); GL_CHECK(glSamplerParameteri(sampler, GL_TEXTURE_COMPARE_FUNC, s_cmpFunc[cmpFunc]) ); } } } GL_CHECK(glBindSampler(_stage, sampler) ); } else { GL_CHECK(glBindSampler(_stage, 0) ); } } } void ovrPostReset() { #if BGFX_CONFIG_USE_OVR if (m_resolution.m_flags & (BGFX_RESET_HMD|BGFX_RESET_HMD_DEBUG) ) { ovrGLConfig config; config.OGL.Header.API = ovrRenderAPI_OpenGL; # if OVR_VERSION > OVR_VERSION_043 config.OGL.Header.BackBufferSize.w = m_resolution.m_width; config.OGL.Header.BackBufferSize.h = m_resolution.m_height; # else config.OGL.Header.RTSize.w = m_resolution.m_width; config.OGL.Header.RTSize.h = m_resolution.m_height; # endif // OVR_VERSION > OVR_VERSION_043 config.OGL.Header.Multisample = 0; config.OGL.Window = (HWND)g_platformData.nwh; config.OGL.DC = GetDC(config.OGL.Window); if (m_ovr.postReset(g_platformData.nwh, &config.Config, !!(m_resolution.m_flags & BGFX_RESET_HMD_DEBUG) ) ) { uint32_t size = sizeof(uint32_t) + sizeof(TextureCreate); const Memory* mem = alloc(size); bx::StaticMemoryBlockWriter writer(mem->data, mem->size); uint32_t magic = BGFX_CHUNK_MAGIC_TEX; bx::write(&writer, magic); TextureCreate tc; tc.m_flags = BGFX_TEXTURE_RT; tc.m_width = m_ovr.m_rtSize.w; tc.m_height = m_ovr.m_rtSize.h; tc.m_sides = 0; tc.m_depth = 0; tc.m_numMips = 1; tc.m_format = uint8_t(bgfx::TextureFormat::BGRA8); tc.m_cubeMap = false; tc.m_mem = NULL; bx::write(&writer, tc); m_ovrRT.create(mem, tc.m_flags, 0); release(mem); m_ovrFbo = m_msaaBackBufferFbo; GL_CHECK(glGenFramebuffers(1, &m_msaaBackBufferFbo) ); GL_CHECK(glBindFramebuffer(GL_FRAMEBUFFER, m_msaaBackBufferFbo) ); GL_CHECK(glFramebufferTexture2D(GL_FRAMEBUFFER , GL_COLOR_ATTACHMENT0 , GL_TEXTURE_2D , m_ovrRT.m_id , 0 ) ); GL_CHECK(glBindFramebuffer(GL_FRAMEBUFFER, m_ovrFbo) ); ovrGLTexture texture; texture.OGL.Header.API = ovrRenderAPI_OpenGL; texture.OGL.Header.TextureSize = m_ovr.m_rtSize; texture.OGL.TexId = m_ovrRT.m_id; m_ovr.postReset(texture.Texture); } } #endif // BGFX_CONFIG_USE_OVR } void ovrPreReset() { #if BGFX_CONFIG_USE_OVR m_ovr.preReset(); if (m_ovr.isEnabled() ) { GL_CHECK(glBindFramebuffer(GL_FRAMEBUFFER, 0) ); GL_CHECK(glDeleteFramebuffers(1, &m_msaaBackBufferFbo) ); m_msaaBackBufferFbo = m_ovrFbo; m_ovrFbo = 0; m_ovrRT.destroy(); } #endif // BGFX_CONFIG_USE_OVR } void updateCapture() { if (m_resolution.m_flags&BGFX_RESET_CAPTURE) { m_captureSize = m_resolution.m_width*m_resolution.m_height*4; m_capture = BX_REALLOC(g_allocator, m_capture, m_captureSize); g_callback->captureBegin(m_resolution.m_width, m_resolution.m_height, m_resolution.m_width*4, TextureFormat::BGRA8, true); } else { captureFinish(); } } void capture() { if (NULL != m_capture) { GL_CHECK(glReadPixels(0 , 0 , m_resolution.m_width , m_resolution.m_height , m_readPixelsFmt , GL_UNSIGNED_BYTE , m_capture ) ); g_callback->captureFrame(m_capture, m_captureSize); } } void captureFinish() { if (NULL != m_capture) { g_callback->captureEnd(); BX_FREE(g_allocator, m_capture); m_capture = NULL; m_captureSize = 0; } } bool programFetchFromCache(GLuint programId, uint64_t _id) { _id ^= m_hash; bool cached = false; if (m_programBinarySupport) { uint32_t length = g_callback->cacheReadSize(_id); cached = length > 0; if (cached) { void* data = BX_ALLOC(g_allocator, length); if (g_callback->cacheRead(_id, data, length) ) { bx::MemoryReader reader(data, length); GLenum format; bx::read(&reader, format); GL_CHECK(glProgramBinary(programId, format, reader.getDataPtr(), (GLsizei)reader.remaining() ) ); } BX_FREE(g_allocator, data); } #if BGFX_CONFIG_RENDERER_OPENGL GL_CHECK(glProgramParameteri(programId, GL_PROGRAM_BINARY_RETRIEVABLE_HINT, GL_TRUE) ); #endif // BGFX_CONFIG_RENDERER_OPENGL } return cached; } void programCache(GLuint programId, uint64_t _id) { _id ^= m_hash; if (m_programBinarySupport) { GLint programLength; GLenum format; GL_CHECK(glGetProgramiv(programId, GL_PROGRAM_BINARY_LENGTH, &programLength) ); if (0 < programLength) { uint32_t length = programLength + 4; uint8_t* data = (uint8_t*)BX_ALLOC(g_allocator, length); GL_CHECK(glGetProgramBinary(programId, programLength, NULL, &format, &data[4]) ); *(uint32_t*)data = format; g_callback->cacheWrite(_id, data, length); BX_FREE(g_allocator, data); } } } void commit(ConstantBuffer& _constantBuffer) { _constantBuffer.reset(); for (;;) { uint32_t opcode = _constantBuffer.read(); if (UniformType::End == opcode) { break; } UniformType::Enum type; uint16_t ignore; uint16_t num; uint16_t copy; ConstantBuffer::decodeOpcode(opcode, type, ignore, num, copy); const char* data; if (copy) { data = _constantBuffer.read(g_uniformTypeSize[type]*num); } else { UniformHandle handle; memcpy(&handle, _constantBuffer.read(sizeof(UniformHandle) ), sizeof(UniformHandle) ); data = (const char*)m_uniforms[handle.idx]; } uint32_t loc = _constantBuffer.read(); #define CASE_IMPLEMENT_UNIFORM(_uniform, _glsuffix, _dxsuffix, _type) \ case UniformType::_uniform: \ { \ _type* value = (_type*)data; \ GL_CHECK(glUniform##_glsuffix(loc, num, value) ); \ } \ break; #define CASE_IMPLEMENT_UNIFORM_T(_uniform, _glsuffix, _dxsuffix, _type) \ case UniformType::_uniform: \ { \ _type* value = (_type*)data; \ GL_CHECK(glUniform##_glsuffix(loc, num, GL_FALSE, value) ); \ } \ break; switch (type) { // case ConstantType::Uniform1iv: // { // int* value = (int*)data; // BX_TRACE("Uniform1iv sampler %d, loc %d (num %d, copy %d)", *value, loc, num, copy); // GL_CHECK(glUniform1iv(loc, num, value) ); // } // break; CASE_IMPLEMENT_UNIFORM(Uniform1i, 1iv, I, int); CASE_IMPLEMENT_UNIFORM(Uniform1f, 1fv, F, float); CASE_IMPLEMENT_UNIFORM(Uniform1iv, 1iv, I, int); CASE_IMPLEMENT_UNIFORM(Uniform1fv, 1fv, F, float); CASE_IMPLEMENT_UNIFORM(Uniform2fv, 2fv, F, float); CASE_IMPLEMENT_UNIFORM(Uniform3fv, 3fv, F, float); CASE_IMPLEMENT_UNIFORM(Uniform4fv, 4fv, F, float); CASE_IMPLEMENT_UNIFORM_T(Uniform3x3fv, Matrix3fv, F, float); CASE_IMPLEMENT_UNIFORM_T(Uniform4x4fv, Matrix4fv, F, float); case UniformType::End: break; default: BX_TRACE("%4d: INVALID 0x%08x, t %d, l %d, n %d, c %d", _constantBuffer.getPos(), opcode, type, loc, num, copy); break; } #undef CASE_IMPLEMENT_UNIFORM #undef CASE_IMPLEMENT_UNIFORM_T } } void clearQuad(ClearQuad& _clearQuad, const Rect& _rect, const Clear& _clear, uint32_t _height, const float _palette[][4]) { uint32_t numMrt = 1; FrameBufferHandle fbh = m_fbh; if (isValid(fbh) ) { const FrameBufferGL& fb = m_frameBuffers[fbh.idx]; numMrt = bx::uint32_max(1, fb.m_num); } if (1 == numMrt) { GLuint flags = 0; if (BGFX_CLEAR_COLOR & _clear.m_flags) { if (BGFX_CLEAR_COLOR_USE_PALETTE & _clear.m_flags) { uint8_t index = (uint8_t)bx::uint32_min(BGFX_CONFIG_MAX_CLEAR_COLOR_PALETTE-1, _clear.m_index[0]); const float* rgba = _palette[index]; const float rr = rgba[0]; const float gg = rgba[1]; const float bb = rgba[2]; const float aa = rgba[3]; GL_CHECK(glClearColor(rr, gg, bb, aa) ); } else { float rr = _clear.m_index[0]*1.0f/255.0f; float gg = _clear.m_index[1]*1.0f/255.0f; float bb = _clear.m_index[2]*1.0f/255.0f; float aa = _clear.m_index[3]*1.0f/255.0f; GL_CHECK(glClearColor(rr, gg, bb, aa) ); } flags |= GL_COLOR_BUFFER_BIT; GL_CHECK(glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE) ); } if (BGFX_CLEAR_DEPTH & _clear.m_flags) { flags |= GL_DEPTH_BUFFER_BIT; GL_CHECK(glClearDepth(_clear.m_depth) ); GL_CHECK(glDepthMask(GL_TRUE) ); } if (BGFX_CLEAR_STENCIL & _clear.m_flags) { flags |= GL_STENCIL_BUFFER_BIT; GL_CHECK(glClearStencil(_clear.m_stencil) ); } if (0 != flags) { GL_CHECK(glEnable(GL_SCISSOR_TEST) ); GL_CHECK(glScissor(_rect.m_x, _height-_rect.m_height-_rect.m_y, _rect.m_width, _rect.m_height) ); GL_CHECK(glClear(flags) ); GL_CHECK(glDisable(GL_SCISSOR_TEST) ); } } else { const GLuint defaultVao = m_vao; if (0 != defaultVao) { GL_CHECK(glBindVertexArray(defaultVao) ); } GL_CHECK(glDisable(GL_SCISSOR_TEST) ); GL_CHECK(glDisable(GL_CULL_FACE) ); GL_CHECK(glDisable(GL_BLEND) ); GLboolean colorMask = !!(BGFX_CLEAR_COLOR & _clear.m_flags); GL_CHECK(glColorMask(colorMask, colorMask, colorMask, colorMask) ); if (BGFX_CLEAR_DEPTH & _clear.m_flags) { GL_CHECK(glEnable(GL_DEPTH_TEST) ); GL_CHECK(glDepthFunc(GL_ALWAYS) ); GL_CHECK(glDepthMask(GL_TRUE) ); } else { GL_CHECK(glDisable(GL_DEPTH_TEST) ); } if (BGFX_CLEAR_STENCIL & _clear.m_flags) { GL_CHECK(glEnable(GL_STENCIL_TEST) ); GL_CHECK(glStencilFuncSeparate(GL_FRONT_AND_BACK, GL_ALWAYS, _clear.m_stencil, 0xff) ); GL_CHECK(glStencilOpSeparate(GL_FRONT_AND_BACK, GL_REPLACE, GL_REPLACE, GL_REPLACE) ); } else { GL_CHECK(glDisable(GL_STENCIL_TEST) ); } VertexBufferGL& vb = m_vertexBuffers[_clearQuad.m_vb->handle.idx]; VertexDecl& vertexDecl = m_vertexDecls[_clearQuad.m_vb->decl.idx]; { struct Vertex { float m_x; float m_y; float m_z; }; Vertex* vertex = (Vertex*)_clearQuad.m_vb->data; BX_CHECK(vertexDecl.m_stride == sizeof(Vertex), "Stride/Vertex mismatch (stride %d, sizeof(Vertex) %d)", vertexDecl.m_stride, sizeof(Vertex) ); const float depth = _clear.m_depth; vertex->m_x = -1.0f; vertex->m_y = -1.0f; vertex->m_z = depth; vertex++; vertex->m_x = 1.0f; vertex->m_y = -1.0f; vertex->m_z = depth; vertex++; vertex->m_x = -1.0f; vertex->m_y = 1.0f; vertex->m_z = depth; vertex++; vertex->m_x = 1.0f; vertex->m_y = 1.0f; vertex->m_z = depth; } vb.update(0, 4*_clearQuad.m_decl.m_stride, _clearQuad.m_vb->data); GL_CHECK(glBindBuffer(GL_ARRAY_BUFFER, vb.m_id) ); ProgramGL& program = m_program[_clearQuad.m_program[numMrt-1].idx]; GL_CHECK(glUseProgram(program.m_id) ); program.bindAttributes(vertexDecl, 0); if (BGFX_CLEAR_COLOR_USE_PALETTE & _clear.m_flags) { float mrtClear[BGFX_CONFIG_MAX_FRAME_BUFFER_ATTACHMENTS][4]; for (uint32_t ii = 0; ii < numMrt; ++ii) { uint8_t index = (uint8_t)bx::uint32_min(BGFX_CONFIG_MAX_CLEAR_COLOR_PALETTE-1, _clear.m_index[ii]); memcpy(mrtClear[ii], _palette[index], 16); } GL_CHECK(glUniform4fv(0, numMrt, mrtClear[0]) ); } else { float rgba[4] = { _clear.m_index[0]*1.0f/255.0f, _clear.m_index[1]*1.0f/255.0f, _clear.m_index[2]*1.0f/255.0f, _clear.m_index[3]*1.0f/255.0f, }; GL_CHECK(glUniform4fv(0, 1, rgba) ); } GL_CHECK(glDrawArrays(GL_TRIANGLE_STRIP , 0 , 4 ) ); } } void* m_renderdocdll; uint16_t m_numWindows; FrameBufferHandle m_windows[BGFX_CONFIG_MAX_FRAME_BUFFERS]; IndexBufferGL m_indexBuffers[BGFX_CONFIG_MAX_INDEX_BUFFERS]; VertexBufferGL m_vertexBuffers[BGFX_CONFIG_MAX_VERTEX_BUFFERS]; ShaderGL m_shaders[BGFX_CONFIG_MAX_SHADERS]; ProgramGL m_program[BGFX_CONFIG_MAX_PROGRAMS]; TextureGL m_textures[BGFX_CONFIG_MAX_TEXTURES]; VertexDecl m_vertexDecls[BGFX_CONFIG_MAX_VERTEX_DECLS]; FrameBufferGL m_frameBuffers[BGFX_CONFIG_MAX_FRAME_BUFFERS]; UniformRegistry m_uniformReg; void* m_uniforms[BGFX_CONFIG_MAX_UNIFORMS]; QueriesGL m_queries; VaoStateCache m_vaoStateCache; SamplerStateCache m_samplerStateCache; TextVideoMem m_textVideoMem; bool m_rtMsaa; FrameBufferHandle m_fbh; uint16_t m_fbDiscard; Resolution m_resolution; void* m_capture; uint32_t m_captureSize; float m_maxAnisotropy; float m_maxAnisotropyDefault; int32_t m_maxMsaa; GLuint m_vao; bool m_vaoSupport; bool m_samplerObjectSupport; bool m_shadowSamplersSupport; bool m_programBinarySupport; bool m_textureSwizzleSupport; bool m_depthTextureSupport; bool m_timerQuerySupport; bool m_flip; uint64_t m_hash; GLenum m_readPixelsFmt; GLuint m_backBufferFbo; GLuint m_msaaBackBufferFbo; GLuint m_msaaBackBufferRbos[2]; GlContext m_glctx; const char* m_vendor; const char* m_renderer; const char* m_version; const char* m_glslVersion; OVR m_ovr; TextureGL m_ovrRT; GLint m_ovrFbo; }; RendererContextGL* s_renderGL; RendererContextI* rendererCreate() { s_renderGL = BX_NEW(g_allocator, RendererContextGL); s_renderGL->init(); return s_renderGL; } void rendererDestroy() { s_renderGL->shutdown(); BX_DELETE(g_allocator, s_renderGL); s_renderGL = NULL; } const char* glslTypeName(GLuint _type) { #define GLSL_TYPE(_ty) case _ty: return #_ty switch (_type) { GLSL_TYPE(GL_INT); GLSL_TYPE(GL_INT_VEC2); GLSL_TYPE(GL_INT_VEC3); GLSL_TYPE(GL_INT_VEC4); GLSL_TYPE(GL_UNSIGNED_INT); GLSL_TYPE(GL_UNSIGNED_INT_VEC2); GLSL_TYPE(GL_UNSIGNED_INT_VEC3); GLSL_TYPE(GL_UNSIGNED_INT_VEC4); GLSL_TYPE(GL_FLOAT); GLSL_TYPE(GL_FLOAT_VEC2); GLSL_TYPE(GL_FLOAT_VEC3); GLSL_TYPE(GL_FLOAT_VEC4); GLSL_TYPE(GL_FLOAT_MAT2); GLSL_TYPE(GL_FLOAT_MAT3); GLSL_TYPE(GL_FLOAT_MAT4); GLSL_TYPE(GL_SAMPLER_2D); GLSL_TYPE(GL_INT_SAMPLER_2D); GLSL_TYPE(GL_UNSIGNED_INT_SAMPLER_2D); GLSL_TYPE(GL_SAMPLER_3D); GLSL_TYPE(GL_INT_SAMPLER_3D); GLSL_TYPE(GL_UNSIGNED_INT_SAMPLER_3D); GLSL_TYPE(GL_SAMPLER_CUBE); GLSL_TYPE(GL_INT_SAMPLER_CUBE); GLSL_TYPE(GL_UNSIGNED_INT_SAMPLER_CUBE); GLSL_TYPE(GL_SAMPLER_2D_SHADOW); GLSL_TYPE(GL_IMAGE_1D); GLSL_TYPE(GL_INT_IMAGE_1D); GLSL_TYPE(GL_UNSIGNED_INT_IMAGE_1D); GLSL_TYPE(GL_IMAGE_2D); GLSL_TYPE(GL_INT_IMAGE_2D); GLSL_TYPE(GL_UNSIGNED_INT_IMAGE_2D); GLSL_TYPE(GL_IMAGE_3D); GLSL_TYPE(GL_INT_IMAGE_3D); GLSL_TYPE(GL_UNSIGNED_INT_IMAGE_3D); GLSL_TYPE(GL_IMAGE_CUBE); GLSL_TYPE(GL_INT_IMAGE_CUBE); GLSL_TYPE(GL_UNSIGNED_INT_IMAGE_CUBE); } #undef GLSL_TYPE BX_CHECK(false, "Unknown GLSL type? %x", _type); return "UNKNOWN GLSL TYPE!"; } const char* glEnumName(GLenum _enum) { #define GLENUM(_ty) case _ty: return #_ty switch (_enum) { GLENUM(GL_TEXTURE); GLENUM(GL_RENDERBUFFER); GLENUM(GL_INVALID_ENUM); GLENUM(GL_INVALID_FRAMEBUFFER_OPERATION); GLENUM(GL_INVALID_VALUE); GLENUM(GL_INVALID_OPERATION); GLENUM(GL_OUT_OF_MEMORY); GLENUM(GL_FRAMEBUFFER_INCOMPLETE_ATTACHMENT); GLENUM(GL_FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT); // GLENUM(GL_FRAMEBUFFER_INCOMPLETE_DRAW_BUFFER); // GLENUM(GL_FRAMEBUFFER_INCOMPLETE_READ_BUFFER); GLENUM(GL_FRAMEBUFFER_UNSUPPORTED); } #undef GLENUM BX_WARN(false, "Unknown enum? %x", _enum); return ""; } UniformType::Enum convertGlType(GLenum _type) { switch (_type) { case GL_INT: case GL_UNSIGNED_INT: return UniformType::Uniform1iv; case GL_FLOAT: return UniformType::Uniform1fv; case GL_FLOAT_VEC2: return UniformType::Uniform2fv; case GL_FLOAT_VEC3: return UniformType::Uniform3fv; case GL_FLOAT_VEC4: return UniformType::Uniform4fv; case GL_FLOAT_MAT2: break; case GL_FLOAT_MAT3: return UniformType::Uniform3x3fv; case GL_FLOAT_MAT4: return UniformType::Uniform4x4fv; case GL_SAMPLER_2D: case GL_INT_SAMPLER_2D: case GL_UNSIGNED_INT_SAMPLER_2D: case GL_SAMPLER_3D: case GL_INT_SAMPLER_3D: case GL_UNSIGNED_INT_SAMPLER_3D: case GL_SAMPLER_CUBE: case GL_INT_SAMPLER_CUBE: case GL_UNSIGNED_INT_SAMPLER_CUBE: case GL_SAMPLER_2D_SHADOW: case GL_IMAGE_1D: case GL_INT_IMAGE_1D: case GL_UNSIGNED_INT_IMAGE_1D: case GL_IMAGE_2D: case GL_INT_IMAGE_2D: case GL_UNSIGNED_INT_IMAGE_2D: case GL_IMAGE_3D: case GL_INT_IMAGE_3D: case GL_UNSIGNED_INT_IMAGE_3D: case GL_IMAGE_CUBE: case GL_INT_IMAGE_CUBE: case GL_UNSIGNED_INT_IMAGE_CUBE: return UniformType::Uniform1iv; }; BX_CHECK(false, "Unrecognized GL type 0x%04x.", _type); return UniformType::End; } void ProgramGL::create(const ShaderGL& _vsh, const ShaderGL& _fsh) { m_id = glCreateProgram(); BX_TRACE("Program create: GL%d: GL%d, GL%d", m_id, _vsh.m_id, _fsh.m_id); const uint64_t id = (uint64_t(_vsh.m_hash)<<32) | _fsh.m_hash; const bool cached = s_renderGL->programFetchFromCache(m_id, id); if (!cached) { GLint linked = 0; if (0 != _vsh.m_id) { GL_CHECK(glAttachShader(m_id, _vsh.m_id) ); if (0 != _fsh.m_id) { GL_CHECK(glAttachShader(m_id, _fsh.m_id) ); } GL_CHECK(glLinkProgram(m_id) ); GL_CHECK(glGetProgramiv(m_id, GL_LINK_STATUS, &linked) ); if (0 == linked) { char log[1024]; GL_CHECK(glGetProgramInfoLog(m_id, sizeof(log), NULL, log) ); BX_TRACE("%d: %s", linked, log); } } if (0 == linked) { BX_WARN(0 != _vsh.m_id, "Invalid vertex/compute shader."); GL_CHECK(glDeleteProgram(m_id) ); m_used[0] = Attrib::Count; m_id = 0; return; } s_renderGL->programCache(m_id, id); } init(); if (!cached) { // Must be after init, otherwise init might fail to lookup shader // info (NVIDIA Tegra 3 OpenGL ES 2.0 14.01003). GL_CHECK(glDetachShader(m_id, _vsh.m_id) ); if (0 != _fsh.m_id) { GL_CHECK(glDetachShader(m_id, _fsh.m_id) ); } } } void ProgramGL::destroy() { if (NULL != m_constantBuffer) { ConstantBuffer::destroy(m_constantBuffer); m_constantBuffer = NULL; } m_numPredefined = 0; if (0 != m_id) { GL_CHECK(glUseProgram(0) ); GL_CHECK(glDeleteProgram(m_id) ); m_id = 0; } m_vcref.invalidate(s_renderGL->m_vaoStateCache); } void ProgramGL::init() { GLint activeAttribs = 0; GLint activeUniforms = 0; GLint activeBuffers = 0; #if BGFX_CONFIG_RENDERER_OPENGL >= 31 GL_CHECK(glBindFragDataLocation(m_id, 0, "bgfx_FragColor") ); #endif // BGFX_CONFIG_RENDERER_OPENGL >= 31 if (s_extension[Extension::ARB_program_interface_query].m_supported || BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGLES >= 31) ) { GL_CHECK(glGetProgramInterfaceiv(m_id, GL_PROGRAM_INPUT, GL_ACTIVE_RESOURCES, &activeAttribs ) ); GL_CHECK(glGetProgramInterfaceiv(m_id, GL_UNIFORM, GL_ACTIVE_RESOURCES, &activeUniforms) ); GL_CHECK(glGetProgramInterfaceiv(m_id, GL_BUFFER_VARIABLE, GL_ACTIVE_RESOURCES, &activeBuffers ) ); } else { GL_CHECK(glGetProgramiv(m_id, GL_ACTIVE_ATTRIBUTES, &activeAttribs ) ); GL_CHECK(glGetProgramiv(m_id, GL_ACTIVE_UNIFORMS, &activeUniforms) ); } GLint max0, max1; GL_CHECK(glGetProgramiv(m_id, GL_ACTIVE_ATTRIBUTE_MAX_LENGTH, &max0) ); GL_CHECK(glGetProgramiv(m_id, GL_ACTIVE_UNIFORM_MAX_LENGTH, &max1) ); uint32_t maxLength = bx::uint32_max(max0, max1); char* name = (char*)alloca(maxLength + 1); BX_TRACE("Program %d", m_id); BX_TRACE("Attributes (%d):", activeAttribs); for (int32_t ii = 0; ii < activeAttribs; ++ii) { GLint size; GLenum type; GL_CHECK(glGetActiveAttrib(m_id, ii, maxLength + 1, NULL, &size, &type, name) ); BX_TRACE("\t%s %s is at location %d" , glslTypeName(type) , name , glGetAttribLocation(m_id, name) ); } m_numPredefined = 0; m_numSamplers = 0; const bool piqSupported = s_extension[Extension::ARB_program_interface_query].m_supported; BX_TRACE("Uniforms (%d):", activeUniforms); for (int32_t ii = 0; ii < activeUniforms; ++ii) { struct VariableInfo { GLenum type; GLint loc; GLint num; }; VariableInfo vi; GLenum props[] ={ GL_TYPE, GL_LOCATION, GL_ARRAY_SIZE }; GLenum gltype; GLint num; GLint loc; if (BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGLES >= 31) || piqSupported) { GL_CHECK(glGetProgramResourceiv(m_id , GL_UNIFORM , ii , BX_COUNTOF(props) , props , BX_COUNTOF(props) , NULL , (GLint*)&vi ) ); GL_CHECK(glGetProgramResourceName(m_id , GL_UNIFORM , ii , maxLength + 1 , NULL , name ) ); gltype = vi.type; loc = vi.loc; num = vi.num; } else { GL_CHECK(glGetActiveUniform(m_id, ii, maxLength + 1, NULL, &num, &gltype, name) ); loc = glGetUniformLocation(m_id, name); } num = bx::uint32_max(num, 1); int offset = 0; char* array = strchr(name, '['); if (NULL != array) { BX_TRACE("--- %s", name); *array = '\0'; array++; char* end = strchr(array, ']'); *end = '\0'; offset = atoi(array); } switch (gltype) { case GL_SAMPLER_2D: case GL_INT_SAMPLER_2D: case GL_UNSIGNED_INT_SAMPLER_2D: case GL_SAMPLER_3D: case GL_INT_SAMPLER_3D: case GL_UNSIGNED_INT_SAMPLER_3D: case GL_SAMPLER_CUBE: case GL_INT_SAMPLER_CUBE: case GL_UNSIGNED_INT_SAMPLER_CUBE: case GL_SAMPLER_2D_SHADOW: case GL_IMAGE_1D: case GL_INT_IMAGE_1D: case GL_UNSIGNED_INT_IMAGE_1D: case GL_IMAGE_2D: case GL_INT_IMAGE_2D: case GL_UNSIGNED_INT_IMAGE_2D: case GL_IMAGE_3D: case GL_INT_IMAGE_3D: case GL_UNSIGNED_INT_IMAGE_3D: case GL_IMAGE_CUBE: case GL_INT_IMAGE_CUBE: case GL_UNSIGNED_INT_IMAGE_CUBE: BX_TRACE("Sampler #%d at location %d.", m_numSamplers, loc); m_sampler[m_numSamplers] = loc; m_numSamplers++; break; default: break; } PredefinedUniform::Enum predefined = nameToPredefinedUniformEnum(name); if (PredefinedUniform::Count != predefined) { m_predefined[m_numPredefined].m_loc = loc; m_predefined[m_numPredefined].m_count = uint16_t(num); m_predefined[m_numPredefined].m_type = uint8_t(predefined); m_numPredefined++; } else { const UniformInfo* info = s_renderGL->m_uniformReg.find(name); if (NULL != info) { if (NULL == m_constantBuffer) { m_constantBuffer = ConstantBuffer::create(1024); } UniformType::Enum type = convertGlType(gltype); m_constantBuffer->writeUniformHandle(type, 0, info->m_handle, uint16_t(num) ); m_constantBuffer->write(loc); BX_TRACE("store %s %d", name, info->m_handle); } } BX_TRACE("\tuniform %s %s%s is at location %d, size %d, offset %d" , glslTypeName(gltype) , name , PredefinedUniform::Count != predefined ? "*" : "" , loc , num , offset ); BX_UNUSED(offset); } if (NULL != m_constantBuffer) { m_constantBuffer->finish(); } if (s_extension[Extension::ARB_program_interface_query].m_supported || BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGLES >= 31) ) { struct VariableInfo { GLenum type; }; VariableInfo vi; GLenum props[] = { GL_TYPE }; BX_TRACE("Buffers (%d):", activeBuffers); for (int32_t ii = 0; ii < activeBuffers; ++ii) { GL_CHECK(glGetProgramResourceiv(m_id , GL_BUFFER_VARIABLE , ii , BX_COUNTOF(props) , props , BX_COUNTOF(props) , NULL , (GLint*)&vi ) ); GL_CHECK(glGetProgramResourceName(m_id , GL_BUFFER_VARIABLE , ii , maxLength + 1 , NULL , name ) ); BX_TRACE("\t%s %s at %d" , glslTypeName(vi.type) , name , 0 //vi.loc ); } } memset(m_attributes, 0xff, sizeof(m_attributes) ); uint32_t used = 0; for (uint8_t ii = 0; ii < Attrib::Count; ++ii) { GLint loc = glGetAttribLocation(m_id, s_attribName[ii]); if (-1 != loc) { BX_TRACE("attr %s: %d", s_attribName[ii], loc); m_attributes[ii] = loc; m_used[used++] = ii; } } m_used[used] = Attrib::Count; used = 0; for (uint32_t ii = 0; ii < BX_COUNTOF(s_instanceDataName); ++ii) { GLuint loc = glGetAttribLocation(m_id, s_instanceDataName[ii]); if (GLuint(-1) != loc ) { BX_TRACE("instance data %s: %d", s_instanceDataName[ii], loc); m_instanceData[used++] = loc; } } m_instanceData[used] = 0xffff; } void ProgramGL::bindAttributes(const VertexDecl& _vertexDecl, uint32_t _baseVertex) const { for (uint32_t ii = 0; Attrib::Count != m_used[ii]; ++ii) { Attrib::Enum attr = Attrib::Enum(m_used[ii]); GLint loc = m_attributes[attr]; uint8_t num; AttribType::Enum type; bool normalized; bool asInt; _vertexDecl.decode(attr, num, type, normalized, asInt); if (-1 != loc) { if (0xff != _vertexDecl.m_attributes[attr]) { GL_CHECK(glEnableVertexAttribArray(loc) ); GL_CHECK(glVertexAttribDivisor(loc, 0) ); uint32_t baseVertex = _baseVertex*_vertexDecl.m_stride + _vertexDecl.m_offset[attr]; GL_CHECK(glVertexAttribPointer(loc, num, s_attribType[type], normalized, _vertexDecl.m_stride, (void*)(uintptr_t)baseVertex) ); } else { GL_CHECK(glDisableVertexAttribArray(loc) ); } } } } void ProgramGL::bindInstanceData(uint32_t _stride, uint32_t _baseVertex) const { uint32_t baseVertex = _baseVertex; for (uint32_t ii = 0; 0xffff != m_instanceData[ii]; ++ii) { GLint loc = m_instanceData[ii]; GL_CHECK(glEnableVertexAttribArray(loc) ); GL_CHECK(glVertexAttribPointer(loc, 4, GL_FLOAT, GL_FALSE, _stride, (void*)(uintptr_t)baseVertex) ); GL_CHECK(glVertexAttribDivisor(loc, 1) ); baseVertex += 16; } } void IndexBufferGL::destroy() { GL_CHECK(glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0) ); GL_CHECK(glDeleteBuffers(1, &m_id) ); m_vcref.invalidate(s_renderGL->m_vaoStateCache); } void VertexBufferGL::destroy() { GL_CHECK(glBindBuffer(GL_ARRAY_BUFFER, 0) ); GL_CHECK(glDeleteBuffers(1, &m_id) ); m_vcref.invalidate(s_renderGL->m_vaoStateCache); } static void texImage(GLenum _target, GLint _level, GLint _internalFormat, GLsizei _width, GLsizei _height, GLsizei _depth, GLint _border, GLenum _format, GLenum _type, const GLvoid* _data) { if (_target == GL_TEXTURE_3D) { GL_CHECK(glTexImage3D(_target, _level, _internalFormat, _width, _height, _depth, _border, _format, _type, _data) ); } else { BX_UNUSED(_depth); GL_CHECK(glTexImage2D(_target, _level, _internalFormat, _width, _height, _border, _format, _type, _data) ); } } static void texSubImage(GLenum _target, GLint _level, GLint _xoffset, GLint _yoffset, GLint _zoffset, GLsizei _width, GLsizei _height, GLsizei _depth, GLenum _format, GLenum _type, const GLvoid* _data) { if (_target == GL_TEXTURE_3D) { GL_CHECK(glTexSubImage3D(_target, _level, _xoffset, _yoffset, _zoffset, _width, _height, _depth, _format, _type, _data) ); } else { BX_UNUSED(_zoffset, _depth); GL_CHECK(glTexSubImage2D(_target, _level, _xoffset, _yoffset, _width, _height, _format, _type, _data) ); } } static void compressedTexImage(GLenum _target, GLint _level, GLenum _internalformat, GLsizei _width, GLsizei _height, GLsizei _depth, GLint _border, GLsizei _imageSize, const GLvoid* _data) { if (_target == GL_TEXTURE_3D) { GL_CHECK(glCompressedTexImage3D(_target, _level, _internalformat, _width, _height, _depth, _border, _imageSize, _data) ); } else { BX_UNUSED(_depth); GL_CHECK(glCompressedTexImage2D(_target, _level, _internalformat, _width, _height, _border, _imageSize, _data) ); } } static void compressedTexSubImage(GLenum _target, GLint _level, GLint _xoffset, GLint _yoffset, GLint _zoffset, GLsizei _width, GLsizei _height, GLsizei _depth, GLenum _format, GLsizei _imageSize, const GLvoid* _data) { if (_target == GL_TEXTURE_3D) { GL_CHECK(glCompressedTexSubImage3D(_target, _level, _xoffset, _yoffset, _zoffset, _width, _height, _depth, _format, _imageSize, _data) ); } else { BX_UNUSED(_zoffset, _depth); GL_CHECK(glCompressedTexSubImage2D(_target, _level, _xoffset, _yoffset, _width, _height, _format, _imageSize, _data) ); } } bool TextureGL::init(GLenum _target, uint32_t _width, uint32_t _height, uint8_t _format, uint8_t _numMips, uint32_t _flags) { m_target = _target; m_numMips = _numMips; m_flags = _flags; m_currentFlags = UINT32_MAX; m_width = _width; m_height = _height; m_requestedFormat = _format; m_textureFormat = _format; const bool bufferOnly = 0 != (m_flags&BGFX_TEXTURE_RT_BUFFER_ONLY); const bool computeWrite = 0 != (m_flags&BGFX_TEXTURE_COMPUTE_WRITE ); if (!bufferOnly) { GL_CHECK(glGenTextures(1, &m_id) ); BX_CHECK(0 != m_id, "Failed to generate texture id."); GL_CHECK(glBindTexture(_target, m_id) ); const TextureFormatInfo& tfi = s_textureFormat[_format]; m_fmt = tfi.m_fmt; m_type = tfi.m_type; const bool swizzle = true && TextureFormat::BGRA8 == m_requestedFormat && !s_textureFormat[m_requestedFormat].m_supported && !s_renderGL->m_textureSwizzleSupport ; const bool compressed = isCompressed(TextureFormat::Enum(m_requestedFormat) ); const bool convert = false || (compressed && m_textureFormat != m_requestedFormat) || swizzle || !s_textureFormat[m_requestedFormat].m_supported ; if (convert) { m_textureFormat = (uint8_t)TextureFormat::RGBA8; const TextureFormatInfo& tfiRgba8 = s_textureFormat[TextureFormat::RGBA8]; m_fmt = tfiRgba8.m_fmt; m_type = tfiRgba8.m_type; } if (computeWrite) { GL_CHECK(glTexStorage2D(_target, _numMips, s_textureFormat[m_textureFormat].m_internalFmt, m_width, m_height)); } setSamplerState(_flags); if (BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGL) && TextureFormat::BGRA8 == m_requestedFormat && !s_textureFormat[m_requestedFormat].m_supported && s_renderGL->m_textureSwizzleSupport) { GLint swizzleMask[] = { GL_BLUE, GL_GREEN, GL_RED, GL_ALPHA }; GL_CHECK(glTexParameteriv(GL_TEXTURE_2D, GL_TEXTURE_SWIZZLE_RGBA, swizzleMask) ); } } const bool renderTarget = 0 != (m_flags&BGFX_TEXTURE_RT_MASK); if (renderTarget) { uint32_t msaaQuality = ( (m_flags&BGFX_TEXTURE_RT_MSAA_MASK)>>BGFX_TEXTURE_RT_MSAA_SHIFT); msaaQuality = bx::uint32_satsub(msaaQuality, 1); msaaQuality = bx::uint32_min(s_renderGL->m_maxMsaa, msaaQuality == 0 ? 0 : 1<= 30) ) { GL_CHECK(glRenderbufferStorageMultisample(GL_RENDERBUFFER , msaaQuality , s_rboFormat[m_textureFormat] , _width , _height ) ); } GL_CHECK(glBindRenderbuffer(GL_RENDERBUFFER, 0) ); if (bufferOnly) { // This is render buffer, there is no sampling, no need // to create texture. return false; } } } return true; } void TextureGL::create(const Memory* _mem, uint32_t _flags, uint8_t _skip) { ImageContainer imageContainer; if (imageParse(imageContainer, _mem->data, _mem->size) ) { uint8_t numMips = imageContainer.m_numMips; const uint8_t startLod = uint8_t(bx::uint32_min(_skip, numMips-1) ); numMips -= startLod; uint32_t textureWidth; uint32_t textureHeight; { const ImageBlockInfo& ibi = getBlockInfo(TextureFormat::Enum(imageContainer.m_format) ); textureWidth = bx::uint32_max(ibi.blockWidth, imageContainer.m_width >>startLod); textureHeight = bx::uint32_max(ibi.blockHeight, imageContainer.m_height>>startLod); } GLenum target = GL_TEXTURE_2D; if (imageContainer.m_cubeMap) { target = GL_TEXTURE_CUBE_MAP; } else if (imageContainer.m_depth > 1) { target = GL_TEXTURE_3D; } if (!init(target , textureWidth , textureHeight , imageContainer.m_format , numMips , _flags ) ) { return; } const bool computeWrite = 0 != (m_flags&BGFX_TEXTURE_COMPUTE_WRITE); const bool srgb = 0 != (m_flags&BGFX_TEXTURE_SRGB); target = GL_TEXTURE_CUBE_MAP == m_target ? GL_TEXTURE_CUBE_MAP_POSITIVE_X : m_target; const GLenum internalFmt = srgb ? s_textureFormat[m_textureFormat].m_internalFmtSrgb : s_textureFormat[m_textureFormat].m_internalFmt ; const bool swizzle = true && TextureFormat::BGRA8 == m_requestedFormat && !s_textureFormat[m_requestedFormat].m_supported && !s_renderGL->m_textureSwizzleSupport ; const bool compressed = isCompressed(TextureFormat::Enum(m_requestedFormat) ); const bool convert = false || m_textureFormat != m_requestedFormat || swizzle ; BX_TRACE("Texture%-4s %3d: %s (requested: %s), %dx%dx%d%s." , imageContainer.m_cubeMap ? "Cube" : (1 < imageContainer.m_depth ? "3D" : "2D") , this - s_renderGL->m_textures , getName( (TextureFormat::Enum)m_textureFormat) , getName( (TextureFormat::Enum)m_requestedFormat) , textureWidth , textureHeight , imageContainer.m_cubeMap ? 6 : (1 < imageContainer.m_depth ? imageContainer.m_depth : 0) , 0 != (m_flags&BGFX_TEXTURE_RT_MASK) ? " (render target)" : "" ); BX_WARN(!convert, "Texture %s%s%s from %s to %s." , swizzle ? "swizzle" : "" , swizzle&&convert ? " and " : "" , convert ? "convert" : "" , getName( (TextureFormat::Enum)m_requestedFormat) , getName( (TextureFormat::Enum)m_textureFormat) ); uint8_t* temp = NULL; if (convert) { temp = (uint8_t*)BX_ALLOC(g_allocator, textureWidth*textureHeight*4); } for (uint8_t side = 0, numSides = imageContainer.m_cubeMap ? 6 : 1; side < numSides; ++side) { uint32_t width = textureWidth; uint32_t height = textureHeight; uint32_t depth = imageContainer.m_depth; for (uint8_t lod = 0, num = numMips; lod < num; ++lod) { width = bx::uint32_max(1, width); height = bx::uint32_max(1, height); depth = bx::uint32_max(1, depth); ImageMip mip; if (imageGetRawData(imageContainer, side, lod+startLod, _mem->data, _mem->size, mip) ) { if (compressed && !convert) { compressedTexImage(target+side , lod , internalFmt , width , height , depth , 0 , mip.m_size , mip.m_data ); } else { const uint8_t* data = mip.m_data; if (convert) { imageDecodeToRgba8(temp , mip.m_data , mip.m_width , mip.m_height , mip.m_width*4 , mip.m_format ); data = temp; } texImage(target+side , lod , internalFmt , width , height , depth , 0 , m_fmt , m_type , data ); } } else if (!computeWrite) { if (compressed) { uint32_t size = bx::uint32_max(1, (width + 3)>>2) * bx::uint32_max(1, (height + 3)>>2) * 4*4*getBitsPerPixel(TextureFormat::Enum(m_textureFormat) )/8 ; compressedTexImage(target+side , lod , internalFmt , width , height , depth , 0 , size , NULL ); } else { texImage(target+side , lod , internalFmt , width , height , depth , 0 , m_fmt , m_type , NULL ); } } width >>= 1; height >>= 1; depth >>= 1; } } if (NULL != temp) { BX_FREE(g_allocator, temp); } } GL_CHECK(glBindTexture(m_target, 0) ); } void TextureGL::destroy() { if (0 != m_id) { GL_CHECK(glBindTexture(m_target, 0) ); GL_CHECK(glDeleteTextures(1, &m_id) ); m_id = 0; } if (0 != m_rbo) { GL_CHECK(glDeleteRenderbuffers(1, &m_rbo) ); m_rbo = 0; } } void TextureGL::update(uint8_t _side, uint8_t _mip, const Rect& _rect, uint16_t _z, uint16_t _depth, uint16_t _pitch, const Memory* _mem) { BX_UNUSED(_z, _depth); const uint32_t bpp = getBitsPerPixel(TextureFormat::Enum(m_textureFormat) ); const uint32_t rectpitch = _rect.m_width*bpp/8; uint32_t srcpitch = UINT16_MAX == _pitch ? rectpitch : _pitch; GL_CHECK(glBindTexture(m_target, m_id) ); GL_CHECK(glPixelStorei(GL_UNPACK_ALIGNMENT, 1) ); GLenum target = GL_TEXTURE_CUBE_MAP == m_target ? GL_TEXTURE_CUBE_MAP_POSITIVE_X : m_target; const bool swizzle = true && TextureFormat::BGRA8 == m_requestedFormat && !s_textureFormat[m_requestedFormat].m_supported && !s_renderGL->m_textureSwizzleSupport ; const bool unpackRowLength = BX_IGNORE_C4127(!!BGFX_CONFIG_RENDERER_OPENGL || s_extension[Extension::EXT_unpack_subimage].m_supported); const bool compressed = isCompressed(TextureFormat::Enum(m_requestedFormat) ); const bool convert = false || (compressed && m_textureFormat != m_requestedFormat) || swizzle ; const uint32_t width = _rect.m_width; const uint32_t height = _rect.m_height; uint8_t* temp = NULL; if (convert || !unpackRowLength) { temp = (uint8_t*)BX_ALLOC(g_allocator, rectpitch*height); } else if (unpackRowLength) { GL_CHECK(glPixelStorei(GL_UNPACK_ROW_LENGTH, srcpitch*8/bpp) ); } if (compressed) { const uint8_t* data = _mem->data; if (!unpackRowLength) { imageCopy(width, height, bpp, srcpitch, data, temp); data = temp; } GL_CHECK(compressedTexSubImage(target+_side , _mip , _rect.m_x , _rect.m_y , _z , _rect.m_width , _rect.m_height , _depth , m_fmt , _mem->size , data ) ); } else { const uint8_t* data = _mem->data; if (convert) { imageDecodeToRgba8(temp, data, width, height, srcpitch, m_requestedFormat); data = temp; srcpitch = rectpitch; } if (!unpackRowLength && !convert) { imageCopy(width, height, bpp, srcpitch, data, temp); data = temp; } GL_CHECK(texSubImage(target+_side , _mip , _rect.m_x , _rect.m_y , _z , _rect.m_width , _rect.m_height , _depth , m_fmt , m_type , data ) ); } if (!convert && unpackRowLength) { GL_CHECK(glPixelStorei(GL_UNPACK_ROW_LENGTH, 0) ); } if (NULL != temp) { BX_FREE(g_allocator, temp); } } void TextureGL::setSamplerState(uint32_t _flags) { if (BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGLES < 30) && !s_textureFilter[m_textureFormat]) { // Force point sampling when texture format doesn't support linear sampling. _flags &= 0 | BGFX_TEXTURE_MIN_MASK | BGFX_TEXTURE_MAG_MASK | BGFX_TEXTURE_MIP_MASK ; _flags |= 0 | BGFX_TEXTURE_MIN_POINT | BGFX_TEXTURE_MAG_POINT | BGFX_TEXTURE_MIP_POINT ; } const uint32_t flags = (0 != (BGFX_SAMPLER_DEFAULT_FLAGS & _flags) ? m_flags : _flags) & BGFX_TEXTURE_SAMPLER_BITS_MASK; if (flags != m_currentFlags) { const GLenum target = m_target; const uint8_t numMips = m_numMips; GL_CHECK(glTexParameteri(target, GL_TEXTURE_WRAP_S, s_textureAddress[(flags&BGFX_TEXTURE_U_MASK)>>BGFX_TEXTURE_U_SHIFT]) ); GL_CHECK(glTexParameteri(target, GL_TEXTURE_WRAP_T, s_textureAddress[(flags&BGFX_TEXTURE_V_MASK)>>BGFX_TEXTURE_V_SHIFT]) ); if (BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGL || BGFX_CONFIG_RENDERER_OPENGLES >= 30) || s_extension[Extension::APPLE_texture_max_level].m_supported) { GL_CHECK(glTexParameteri(target, GL_TEXTURE_MAX_LEVEL, numMips-1) ); } if (target == GL_TEXTURE_3D) { GL_CHECK(glTexParameteri(target, GL_TEXTURE_WRAP_R, s_textureAddress[(flags&BGFX_TEXTURE_W_MASK)>>BGFX_TEXTURE_W_SHIFT]) ); } GLenum magFilter; GLenum minFilter; getFilters(flags, 1 < numMips, magFilter, minFilter); GL_CHECK(glTexParameteri(target, GL_TEXTURE_MAG_FILTER, magFilter) ); GL_CHECK(glTexParameteri(target, GL_TEXTURE_MIN_FILTER, minFilter) ); if (0 != (flags & (BGFX_TEXTURE_MIN_ANISOTROPIC|BGFX_TEXTURE_MAG_ANISOTROPIC) ) && 0.0f < s_renderGL->m_maxAnisotropy) { GL_CHECK(glTexParameterf(target, GL_TEXTURE_MAX_ANISOTROPY_EXT, s_renderGL->m_maxAnisotropy) ); } if (BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGLES >= 30) || s_renderGL->m_shadowSamplersSupport) { const uint32_t cmpFunc = (flags&BGFX_TEXTURE_COMPARE_MASK)>>BGFX_TEXTURE_COMPARE_SHIFT; if (0 == cmpFunc) { GL_CHECK(glTexParameteri(m_target, GL_TEXTURE_COMPARE_MODE, GL_NONE) ); } else { GL_CHECK(glTexParameteri(m_target, GL_TEXTURE_COMPARE_MODE, GL_COMPARE_REF_TO_TEXTURE) ); GL_CHECK(glTexParameteri(m_target, GL_TEXTURE_COMPARE_FUNC, s_cmpFunc[cmpFunc]) ); } } m_currentFlags = flags; } } void TextureGL::commit(uint32_t _stage, uint32_t _flags) { GL_CHECK(glActiveTexture(GL_TEXTURE0+_stage) ); GL_CHECK(glBindTexture(m_target, m_id) ); if (BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGLES) && BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGLES < 30) ) { // GLES2 doesn't have support for sampler object. setSamplerState(_flags); } else if (BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGL) && BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGL < 31) ) { // In case that GL 2.1 sampler object is supported via extension. if (s_renderGL->m_samplerObjectSupport) { s_renderGL->setSamplerState(_stage, m_numMips, _flags); } else { setSamplerState(_flags); } } else { // Everything else has sampler object. s_renderGL->setSamplerState(_stage, m_numMips, _flags); } } void writeString(bx::WriterI* _writer, const char* _str) { bx::write(_writer, _str, (int32_t)strlen(_str) ); } void writeStringf(bx::WriterI* _writer, const char* _format, ...) { char temp[512]; va_list argList; va_start(argList, _format); int len = bx::vsnprintf(temp, BX_COUNTOF(temp), _format, argList); va_end(argList); bx::write(_writer, temp, len); } void strins(char* _str, const char* _insert) { size_t len = strlen(_insert); memmove(&_str[len], _str, strlen(_str)+1); memcpy(_str, _insert, len); } void ShaderGL::create(Memory* _mem) { bx::MemoryReader reader(_mem->data, _mem->size); m_hash = bx::hashMurmur2A(_mem->data, _mem->size); uint32_t magic; bx::read(&reader, magic); switch (magic) { case BGFX_CHUNK_MAGIC_CSH: m_type = GL_COMPUTE_SHADER; break; case BGFX_CHUNK_MAGIC_FSH: m_type = GL_FRAGMENT_SHADER; break; case BGFX_CHUNK_MAGIC_VSH: m_type = GL_VERTEX_SHADER; break; default: BGFX_FATAL(false, Fatal::InvalidShader, "Unknown shader format %x.", magic); break; } uint32_t iohash; bx::read(&reader, iohash); uint16_t count; bx::read(&reader, count); BX_TRACE("%s Shader consts %d" , BGFX_CHUNK_MAGIC_FSH == magic ? "Fragment" : BGFX_CHUNK_MAGIC_VSH == magic ? "Vertex" : "Compute" , count ); for (uint32_t ii = 0; ii < count; ++ii) { uint8_t nameSize; bx::read(&reader, nameSize); char name[256]; bx::read(&reader, &name, nameSize); name[nameSize] = '\0'; uint8_t type; bx::read(&reader, type); uint8_t num; bx::read(&reader, num); uint16_t regIndex; bx::read(&reader, regIndex); uint16_t regCount; bx::read(&reader, regCount); } uint32_t shaderSize; bx::read(&reader, shaderSize); m_id = glCreateShader(m_type); BX_WARN(0 != m_id, "Failed to create %s shader." , BGFX_CHUNK_MAGIC_FSH == magic ? "fragment" : BGFX_CHUNK_MAGIC_VSH == magic ? "vertex" : "compute" ); const char* code = (const char*)reader.getDataPtr(); if (0 != m_id) { if (GL_COMPUTE_SHADER != m_type) { int32_t codeLen = (int32_t)strlen(code); int32_t tempLen = codeLen + (4<<10); char* temp = (char*)alloca(tempLen); bx::StaticMemoryBlockWriter writer(temp, tempLen); if (BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGLES) && BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGLES < 30) ) { writeString(&writer , "#define flat\n" "#define smooth\n" "#define noperspective\n" ); bool usesDerivatives = s_extension[Extension::OES_standard_derivatives].m_supported && bx::findIdentifierMatch(code, s_OES_standard_derivatives) ; bool usesFragData = !!bx::findIdentifierMatch(code, "gl_FragData"); bool usesFragDepth = !!bx::findIdentifierMatch(code, "gl_FragDepth"); bool usesShadowSamplers = !!bx::findIdentifierMatch(code, s_EXT_shadow_samplers); bool usesTexture3D = s_extension[Extension::OES_texture_3D].m_supported && bx::findIdentifierMatch(code, s_OES_texture_3D) ; bool usesTextureLod = !!bx::findIdentifierMatch(code, s_EXT_shader_texture_lod); bool usesFragmentOrdering = !!bx::findIdentifierMatch(code, "beginFragmentShaderOrdering"); if (usesDerivatives) { writeString(&writer, "#extension GL_OES_standard_derivatives : enable\n"); } if (usesFragData) { BX_WARN(s_extension[Extension::EXT_draw_buffers ].m_supported || s_extension[Extension::WEBGL_draw_buffers].m_supported , "EXT_draw_buffers is used but not supported by GLES2 driver." ); writeString(&writer , "#extension GL_EXT_draw_buffers : enable\n" ); } bool insertFragDepth = false; if (usesFragDepth) { BX_WARN(s_extension[Extension::EXT_frag_depth].m_supported, "EXT_frag_depth is used but not supported by GLES2 driver."); if (s_extension[Extension::EXT_frag_depth].m_supported) { writeString(&writer , "#extension GL_EXT_frag_depth : enable\n" "#define bgfx_FragDepth gl_FragDepthEXT\n" ); char str[128]; bx::snprintf(str, BX_COUNTOF(str), "%s float gl_FragDepthEXT;\n" , s_extension[Extension::OES_fragment_precision_high].m_supported ? "highp" : "mediump" ); writeString(&writer, str); } else { insertFragDepth = true; } } if (usesShadowSamplers) { if (s_renderGL->m_shadowSamplersSupport) { writeString(&writer , "#extension GL_EXT_shadow_samplers : enable\n" "#define shadow2D shadow2DEXT\n" "#define shadow2DProj shadow2DProjEXT\n" ); } else { writeString(&writer , "#define sampler2DShadow sampler2D\n" "#define shadow2D(_sampler, _coord) step(_coord.z, texture2D(_sampler, _coord.xy).x)\n" "#define shadow2DProj(_sampler, _coord) step(_coord.z/_coord.w, texture2DProj(_sampler, _coord).x)\n" ); } } if (usesTexture3D) { writeString(&writer, "#extension GL_OES_texture_3D : enable\n"); } if (usesTextureLod) { BX_WARN(s_extension[Extension::EXT_shader_texture_lod].m_supported, "EXT_shader_texture_lod is used but not supported by GLES2 driver."); if (s_extension[Extension::EXT_shader_texture_lod].m_supported) { writeString(&writer , "#extension GL_EXT_shader_texture_lod : enable\n" "#define texture2DLod texture2DLodEXT\n" "#define texture2DProjLod texture2DProjLodEXT\n" "#define textureCubeLod textureCubeLodEXT\n" ); } else { writeString(&writer , "#define texture2DLod(_sampler, _coord, _level) texture2D(_sampler, _coord)\n" "#define texture2DProjLod(_sampler, _coord, _level) texture2DProj(_sampler, _coord)\n" "#define textureCubeLod(_sampler, _coord, _level) textureCube(_sampler, _coord)\n" ); } } if (usesFragmentOrdering) { if (s_extension[Extension::INTEL_fragment_shader_ordering].m_supported) { writeString(&writer, "#extension GL_INTEL_fragment_shader_ordering : enable\n"); } else { writeString(&writer, "#define beginFragmentShaderOrdering()\n"); } } writeStringf(&writer, "precision %s float;\n" , m_type == GL_FRAGMENT_SHADER ? "mediump" : "highp" ); bx::write(&writer, code, codeLen); bx::write(&writer, '\0'); if (insertFragDepth) { char* entry = strstr(temp, "void main ()"); if (NULL != entry) { char* brace = strstr(entry, "{"); if (NULL != brace) { const char* end = bx::strmb(brace, '{', '}'); if (NULL != end) { strins(brace+1, "\n float bgfx_FragDepth = 0.0;\n"); } } } } // Replace all instances of gl_FragDepth with bgfx_FragDepth. for (const char* fragDepth = bx::findIdentifierMatch(temp, "gl_FragDepth"); NULL != fragDepth; fragDepth = bx::findIdentifierMatch(fragDepth, "gl_FragDepth") ) { char* insert = const_cast(fragDepth); strins(insert, "bg"); memcpy(insert + 2, "fx", 2); } } else if (BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGL) && BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGL <= 21) ) { bool usesTextureLod = true && s_extension[Extension::ARB_shader_texture_lod].m_supported && bx::findIdentifierMatch(code, s_ARB_shader_texture_lod) ; bool usesIUsamplers = !!bx::findIdentifierMatch(code, s_uisamplers); uint32_t version = usesIUsamplers ? 130 : (usesTextureLod ? 120 : 0); if (0 != version) { writeStringf(&writer, "#version %d\n", version); } if (usesTextureLod) { if (m_type == GL_FRAGMENT_SHADER) { writeString(&writer, "#extension GL_ARB_shader_texture_lod : enable\n"); } } writeString(&writer , "#define lowp\n" "#define mediump\n" "#define highp\n" "#define flat\n" "#define smooth\n" "#define noperspective\n" ); bx::write(&writer, code, codeLen); bx::write(&writer, '\0'); } else if (BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGL >= 31) || BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGLES >= 30) ) { if (BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGLES >= 30) ) { writeString(&writer , "#version 300 es\n" "precision mediump float;\n" ); } else { writeString(&writer, "#version 140\n"); } writeString(&writer, "#define texture2DLod textureLod\n"); writeString(&writer, "#define texture3DLod textureLod\n"); writeString(&writer, "#define textureCubeLod textureLod\n"); if (m_type == GL_FRAGMENT_SHADER) { writeString(&writer, "#define varying in\n"); writeString(&writer, "#define texture2D texture\n"); writeString(&writer, "#define texture2DProj textureProj\n"); if (BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGL) ) { writeString(&writer, "#define shadow2D(_sampler, _coord) vec2(textureProj(_sampler, vec4(_coord, 1.0) ) )\n"); writeString(&writer, "#define shadow2DProj(_sampler, _coord) vec2(textureProj(_sampler, _coord) ) )\n"); } else { writeString(&writer, "#define shadow2D(_sampler, _coord) (textureProj(_sampler, vec4(_coord, 1.0) ) )\n"); writeString(&writer, "#define shadow2DProj(_sampler, _coord) (textureProj(_sampler, _coord) ) )\n"); } writeString(&writer, "#define texture3D texture\n"); writeString(&writer, "#define textureCube texture\n"); uint32_t fragData = 0; if (!!bx::findIdentifierMatch(code, "gl_FragData") ) { for (uint32_t ii = 0, num = g_caps.maxFBAttachments; ii < num; ++ii) { char tmpFragData[16]; bx::snprintf(tmpFragData, BX_COUNTOF(tmpFragData), "gl_FragData[%d]", ii); fragData = bx::uint32_max(fragData, NULL == strstr(code, tmpFragData) ? 0 : ii+1); } BGFX_FATAL(0 != fragData, Fatal::InvalidShader, "Unable to find and patch gl_FragData!"); } if (!!bx::findIdentifierMatch(code, "beginFragmentShaderOrdering") ) { if (s_extension[Extension::INTEL_fragment_shader_ordering].m_supported) { writeString(&writer, "#extension GL_INTEL_fragment_shader_ordering : enable\n"); } else { writeString(&writer, "#define beginFragmentShaderOrdering()\n"); } } if (0 != fragData) { writeStringf(&writer, "out vec4 bgfx_FragData[%d];\n", fragData); writeString(&writer, "#define gl_FragData bgfx_FragData\n"); } else { writeString(&writer, "out vec4 bgfx_FragColor;\n"); writeString(&writer, "#define gl_FragColor bgfx_FragColor\n"); } } else { writeString(&writer, "#define attribute in\n"); writeString(&writer, "#define varying out\n"); } if (!BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGLES >= 30) ) { writeString(&writer , "#define lowp\n" "#define mediump\n" "#define highp\n" ); } bx::write(&writer, code, codeLen); bx::write(&writer, '\0'); } code = temp; } GL_CHECK(glShaderSource(m_id, 1, (const GLchar**)&code, NULL) ); GL_CHECK(glCompileShader(m_id) ); GLint compiled = 0; GL_CHECK(glGetShaderiv(m_id, GL_COMPILE_STATUS, &compiled) ); if (0 == compiled) { BX_TRACE("\n####\n%s\n####", code); GLsizei len; char log[1024]; GL_CHECK(glGetShaderInfoLog(m_id, sizeof(log), &len, log) ); BX_TRACE("Failed to compile shader. %d: %s", compiled, log); GL_CHECK(glDeleteShader(m_id) ); m_id = 0; BGFX_FATAL(false, bgfx::Fatal::InvalidShader, "Failed to compile shader."); } else if (BX_ENABLED(BGFX_CONFIG_DEBUG) && s_extension[Extension::ANGLE_translated_shader_source].m_supported && NULL != glGetTranslatedShaderSourceANGLE) { GLsizei len; GL_CHECK(glGetShaderiv(m_id, GL_TRANSLATED_SHADER_SOURCE_LENGTH_ANGLE, &len) ); char* source = (char*)alloca(len); GL_CHECK(glGetTranslatedShaderSourceANGLE(m_id, len, &len, source) ); BX_TRACE("ANGLE source (len: %d):\n%s\n####", len, source); } } } void ShaderGL::destroy() { if (0 != m_id) { GL_CHECK(glDeleteShader(m_id) ); m_id = 0; } } static void frameBufferValidate() { GLenum complete = glCheckFramebufferStatus(GL_FRAMEBUFFER); BX_CHECK(GL_FRAMEBUFFER_COMPLETE == complete , "glCheckFramebufferStatus failed 0x%08x: %s" , complete , glEnumName(complete) ); BX_UNUSED(complete); } void FrameBufferGL::create(uint8_t _num, const TextureHandle* _handles) { GL_CHECK(glGenFramebuffers(1, &m_fbo[0]) ); m_numTh = _num; memcpy(m_th, _handles, _num*sizeof(TextureHandle) ); postReset(); } void FrameBufferGL::postReset() { if (0 != m_fbo[0]) { GL_CHECK(glBindFramebuffer(GL_FRAMEBUFFER, m_fbo[0]) ); bool needResolve = false; GLenum buffers[BGFX_CONFIG_MAX_FRAME_BUFFER_ATTACHMENTS]; uint32_t colorIdx = 0; for (uint32_t ii = 0; ii < m_numTh; ++ii) { TextureHandle handle = m_th[ii]; if (isValid(handle) ) { const TextureGL& texture = s_renderGL->m_textures[handle.idx]; if (0 == colorIdx) { m_width = texture.m_width; m_height = texture.m_height; } GLenum attachment = GL_COLOR_ATTACHMENT0 + colorIdx; TextureFormat::Enum format = (TextureFormat::Enum)texture.m_textureFormat; if (isDepth(format) ) { const ImageBlockInfo& info = getBlockInfo(format); if (0 < info.stencilBits) { attachment = GL_DEPTH_STENCIL_ATTACHMENT; } else if (0 == info.depthBits) { attachment = GL_STENCIL_ATTACHMENT; } else { attachment = GL_DEPTH_ATTACHMENT; } } else { buffers[colorIdx] = attachment; ++colorIdx; } if (0 != texture.m_rbo) { GL_CHECK(glFramebufferRenderbuffer(GL_FRAMEBUFFER , attachment , GL_RENDERBUFFER , texture.m_rbo ) ); } else { GL_CHECK(glFramebufferTexture2D(GL_FRAMEBUFFER , attachment , texture.m_target , texture.m_id , 0 ) ); } needResolve |= (0 != texture.m_rbo) && (0 != texture.m_id); } } m_num = uint8_t(colorIdx); if (BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGL) ) { if (0 == colorIdx) { // When only depth is attached disable draw buffer to avoid // GL_FRAMEBUFFER_INCOMPLETE_DRAW_BUFFER. GL_CHECK(glDrawBuffer(GL_NONE) ); } else { GL_CHECK(glDrawBuffers(colorIdx, buffers) ); } // Disable read buffer to avoid GL_FRAMEBUFFER_INCOMPLETE_READ_BUFFER. GL_CHECK(glReadBuffer(GL_NONE) ); } frameBufferValidate(); if (needResolve) { GL_CHECK(glGenFramebuffers(1, &m_fbo[1]) ); GL_CHECK(glBindFramebuffer(GL_FRAMEBUFFER, m_fbo[1]) ); colorIdx = 0; for (uint32_t ii = 0; ii < m_numTh; ++ii) { TextureHandle handle = m_th[ii]; if (isValid(handle) ) { const TextureGL& texture = s_renderGL->m_textures[handle.idx]; if (0 != texture.m_id) { GLenum attachment = GL_COLOR_ATTACHMENT0 + colorIdx; if (!isDepth( (TextureFormat::Enum)texture.m_textureFormat) ) { ++colorIdx; GL_CHECK(glFramebufferTexture2D(GL_FRAMEBUFFER , attachment , texture.m_target , texture.m_id , 0 ) ); } } } } frameBufferValidate(); } GL_CHECK(glBindFramebuffer(GL_FRAMEBUFFER, s_renderGL->m_msaaBackBufferFbo) ); } } void FrameBufferGL::create(uint16_t _denseIdx, void* _nwh, uint32_t _width, uint32_t _height, TextureFormat::Enum _depthFormat) { BX_UNUSED(_depthFormat); m_swapChain = s_renderGL->m_glctx.createSwapChain(_nwh); m_width = _width; m_height = _height; m_denseIdx = _denseIdx; } uint16_t FrameBufferGL::destroy() { if (0 != m_num) { GL_CHECK(glDeleteFramebuffers(0 == m_fbo[1] ? 1 : 2, m_fbo) ); m_num = 0; } if (NULL != m_swapChain) { s_renderGL->m_glctx.destroySwapChain(m_swapChain); m_swapChain = NULL; } memset(m_fbo, 0, sizeof(m_fbo) ); uint16_t denseIdx = m_denseIdx; m_denseIdx = UINT16_MAX; return denseIdx; } void FrameBufferGL::resolve() { if (0 != m_fbo[1]) { GL_CHECK(glBindFramebuffer(GL_READ_FRAMEBUFFER, m_fbo[0]) ); GL_CHECK(glReadBuffer(GL_COLOR_ATTACHMENT0) ); GL_CHECK(glBindFramebuffer(GL_DRAW_FRAMEBUFFER, m_fbo[1]) ); GL_CHECK(glBlitFramebuffer(0 , 0 , m_width , m_height , 0 , 0 , m_width , m_height , GL_COLOR_BUFFER_BIT , GL_LINEAR ) ); GL_CHECK(glBindFramebuffer(GL_READ_FRAMEBUFFER, m_fbo[0]) ); GL_CHECK(glReadBuffer(GL_NONE) ); GL_CHECK(glBindFramebuffer(GL_FRAMEBUFFER, s_renderGL->m_msaaBackBufferFbo) ); } } void FrameBufferGL::discard(uint16_t _flags) { GLenum buffers[BGFX_CONFIG_MAX_FRAME_BUFFER_ATTACHMENTS+2]; uint32_t idx = 0; if (BGFX_CLEAR_NONE != (_flags & BGFX_CLEAR_DISCARD_COLOR_MASK) ) { for (uint32_t ii = 0, num = m_num; ii < num; ++ii) { if (BGFX_CLEAR_NONE != (_flags & (BGFX_CLEAR_DISCARD_COLOR_0<m_resolution); int64_t elapsed = -bx::getHPCounter(); int64_t captureElapsed = 0; if (BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGL) && (_render->m_debug & (BGFX_DEBUG_IFH|BGFX_DEBUG_STATS) ) && m_timerQuerySupport) { m_queries.begin(0, GL_TIME_ELAPSED); } if (0 < _render->m_iboffset) { TransientIndexBuffer* ib = _render->m_transientIb; m_indexBuffers[ib->handle.idx].update(0, _render->m_iboffset, ib->data); } if (0 < _render->m_vboffset) { TransientVertexBuffer* vb = _render->m_transientVb; m_vertexBuffers[vb->handle.idx].update(0, _render->m_vboffset, vb->data); } _render->sort(); RenderDraw currentState; currentState.clear(); currentState.m_flags = BGFX_STATE_NONE; currentState.m_stencil = packStencil(BGFX_STENCIL_NONE, BGFX_STENCIL_NONE); const bool hmdEnabled = m_ovr.isEnabled() || m_ovr.isDebug(); _render->m_hmdEnabled = hmdEnabled; ViewState viewState(_render, hmdEnabled); uint16_t programIdx = invalidHandle; SortKey key; uint8_t view = 0xff; FrameBufferHandle fbh = BGFX_INVALID_HANDLE; int32_t height = hmdEnabled ? _render->m_hmd.height : _render->m_resolution.m_height ; uint32_t blendFactor = 0; uint8_t primIndex; { const uint64_t pt = _render->m_debug&BGFX_DEBUG_WIREFRAME ? BGFX_STATE_PT_LINES : 0; primIndex = uint8_t(pt>>BGFX_STATE_PT_SHIFT); } PrimInfo prim = s_primInfo[primIndex]; uint32_t baseVertex = 0; GLuint currentVao = 0; bool wasCompute = false; bool viewHasScissor = false; Rect viewScissorRect; viewScissorRect.clear(); uint16_t discardFlags = BGFX_CLEAR_NONE; const bool blendIndependentSupported = s_extension[Extension::ARB_draw_buffers_blend].m_supported; const bool computeSupported = (BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGL) && s_extension[Extension::ARB_compute_shader].m_supported) || BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGLES >= 31) ; uint32_t statsNumPrimsSubmitted[BX_COUNTOF(s_primInfo)] = {}; uint32_t statsNumPrimsRendered[BX_COUNTOF(s_primInfo)] = {}; uint32_t statsNumInstances[BX_COUNTOF(s_primInfo)] = {}; uint32_t statsNumIndices = 0; uint32_t statsKeyType[2] = {}; if (0 == (_render->m_debug&BGFX_DEBUG_IFH) ) { GL_CHECK(glBindFramebuffer(GL_FRAMEBUFFER, m_msaaBackBufferFbo) ); bool viewRestart = false; uint8_t eye = 0; uint8_t restartState = 0; viewState.m_rect = _render->m_rect[0]; int32_t numItems = _render->m_num; for (int32_t item = 0, restartItem = numItems; item < numItems || restartItem < numItems;) { const bool isCompute = key.decode(_render->m_sortKeys[item], _render->m_viewRemap); statsKeyType[isCompute]++; const bool viewChanged = 0 || key.m_view != view || item == numItems ; const RenderItem& renderItem = _render->m_renderItem[_render->m_sortValues[item] ]; ++item; if (viewChanged) { if (1 == restartState) { restartState = 2; item = restartItem; restartItem = numItems; view = 0xff; continue; } view = key.m_view; programIdx = invalidHandle; if (_render->m_fb[view].idx != fbh.idx) { fbh = _render->m_fb[view]; height = hmdEnabled ? _render->m_hmd.height : _render->m_resolution.m_height ; height = setFrameBuffer(fbh, height, discardFlags); } viewRestart = ( (BGFX_VIEW_STEREO == (_render->m_viewFlags[view] & BGFX_VIEW_STEREO) ) ); viewRestart &= hmdEnabled; if (viewRestart) { if (0 == restartState) { restartState = 1; restartItem = item - 1; } eye = (restartState - 1) & 1; restartState &= 1; } else { eye = 0; } viewState.m_rect = _render->m_rect[view]; if (viewRestart) { if (BX_ENABLED(BGFX_CONFIG_DEBUG_PIX) ) { char* viewName = s_viewName[view]; viewName[3] = ' '; viewName[4] = eye ? 'R' : 'L'; GL_CHECK(glInsertEventMarker(0, viewName) ); } viewState.m_rect.m_x = eye * (viewState.m_rect.m_width+1)/2; viewState.m_rect.m_width /= 2; } else { if (BX_ENABLED(BGFX_CONFIG_DEBUG_PIX) ) { char* viewName = s_viewName[view]; viewName[3] = ' '; viewName[4] = ' '; GL_CHECK(glInsertEventMarker(0, viewName) ); } } const Rect& scissorRect = _render->m_scissor[view]; viewHasScissor = !scissorRect.isZero(); viewScissorRect = viewHasScissor ? scissorRect : viewState.m_rect; GL_CHECK(glViewport(viewState.m_rect.m_x , height-viewState.m_rect.m_height-viewState.m_rect.m_y , viewState.m_rect.m_width , viewState.m_rect.m_height ) ); Clear& clear = _render->m_clear[view]; discardFlags = clear.m_flags & BGFX_CLEAR_DISCARD_MASK; if (BGFX_CLEAR_NONE != (clear.m_flags & BGFX_CLEAR_MASK) ) { clearQuad(_clearQuad, viewState.m_rect, clear, height, _render->m_clearColor); } GL_CHECK(glDisable(GL_STENCIL_TEST) ); GL_CHECK(glEnable(GL_DEPTH_TEST) ); GL_CHECK(glDepthFunc(GL_LESS) ); GL_CHECK(glEnable(GL_CULL_FACE) ); GL_CHECK(glDisable(GL_BLEND) ); } if (isCompute) { if (!wasCompute) { wasCompute = true; if (BX_ENABLED(BGFX_CONFIG_DEBUG_PIX) ) { char* viewName = s_viewName[view]; viewName[3] = 'C'; GL_CHECK(glInsertEventMarker(0, viewName) ); } } if (computeSupported) { const RenderCompute& compute = renderItem.compute; ProgramGL& program = m_program[key.m_program]; GL_CHECK(glUseProgram(program.m_id) ); GLbitfield barrier = 0; for (uint32_t ii = 0; ii < BGFX_MAX_COMPUTE_BINDINGS; ++ii) { const Binding& bind = compute.m_bind[ii]; if (invalidHandle != bind.m_idx) { switch (bind.m_type) { case Binding::Image: { const TextureGL& texture = m_textures[bind.m_idx]; GL_CHECK(glBindImageTexture(ii , texture.m_id , bind.m_un.m_compute.m_mip , GL_FALSE , 0 , s_access[bind.m_un.m_compute.m_access] , s_imageFormat[bind.m_un.m_compute.m_format]) ); barrier |= GL_SHADER_IMAGE_ACCESS_BARRIER_BIT; } break; case Binding::IndexBuffer: { const IndexBufferGL& buffer = m_indexBuffers[bind.m_idx]; GL_CHECK(glBindBufferBase(GL_SHADER_STORAGE_BUFFER, ii, buffer.m_id)); barrier |= GL_SHADER_STORAGE_BARRIER_BIT; } break; case Binding::VertexBuffer: { const VertexBufferGL& buffer = m_vertexBuffers[bind.m_idx]; GL_CHECK(glBindBufferBase(GL_SHADER_STORAGE_BUFFER, ii, buffer.m_id)); barrier |= GL_SHADER_STORAGE_BARRIER_BIT; } break; } } } if (0 != barrier) { bool constantsChanged = compute.m_constBegin < compute.m_constEnd; rendererUpdateUniforms(this, _render->m_constantBuffer, compute.m_constBegin, compute.m_constEnd); if (constantsChanged && NULL != program.m_constantBuffer) { commit(*program.m_constantBuffer); } viewState.setPredefined<1>(this, view, eye, program, _render, compute); if (isValid(compute.m_indirectBuffer) ) { const VertexBufferGL& vb = m_vertexBuffers[compute.m_indirectBuffer.idx]; if (currentState.m_indirectBuffer.idx != compute.m_indirectBuffer.idx) { currentState.m_indirectBuffer = compute.m_indirectBuffer; GL_CHECK(glBindBuffer(GL_DISPATCH_INDIRECT_BUFFER, vb.m_id) ); } uint32_t numDrawIndirect = UINT16_MAX == compute.m_numIndirect ? vb.m_size/BGFX_CONFIG_DRAW_INDIRECT_STRIDE : compute.m_numIndirect ; uintptr_t args = compute.m_startIndirect * BGFX_CONFIG_DRAW_INDIRECT_STRIDE; for (uint32_t ii = 0; ii < numDrawIndirect; ++ii) { GL_CHECK(glDispatchComputeIndirect(args) ); args += BGFX_CONFIG_DRAW_INDIRECT_STRIDE; } } else { if (isValid(currentState.m_indirectBuffer) ) { currentState.m_indirectBuffer.idx = invalidHandle; GL_CHECK(glBindBuffer(GL_DISPATCH_INDIRECT_BUFFER, 0) ); } GL_CHECK(glDispatchCompute(compute.m_numX, compute.m_numY, compute.m_numZ) ); } GL_CHECK(glMemoryBarrier(barrier) ); } } continue; } bool resetState = viewChanged || wasCompute; if (wasCompute) { wasCompute = false; if (BX_ENABLED(BGFX_CONFIG_DEBUG_PIX) ) { char* viewName = s_viewName[view]; viewName[3] = ' '; GL_CHECK(glInsertEventMarker(0, viewName) ); } } const RenderDraw& draw = renderItem.draw; const uint64_t newFlags = draw.m_flags; uint64_t changedFlags = currentState.m_flags ^ draw.m_flags; currentState.m_flags = newFlags; const uint64_t newStencil = draw.m_stencil; uint64_t changedStencil = currentState.m_stencil ^ draw.m_stencil; currentState.m_stencil = newStencil; if (resetState) { currentState.clear(); currentState.m_scissor = !draw.m_scissor; changedFlags = BGFX_STATE_MASK; changedStencil = packStencil(BGFX_STENCIL_MASK, BGFX_STENCIL_MASK); currentState.m_flags = newFlags; currentState.m_stencil = newStencil; } uint16_t scissor = draw.m_scissor; if (currentState.m_scissor != scissor) { currentState.m_scissor = scissor; if (UINT16_MAX == scissor) { if (viewHasScissor) { GL_CHECK(glEnable(GL_SCISSOR_TEST) ); GL_CHECK(glScissor(viewScissorRect.m_x , height-viewScissorRect.m_height-viewScissorRect.m_y , viewScissorRect.m_width , viewScissorRect.m_height ) ); } else { GL_CHECK(glDisable(GL_SCISSOR_TEST) ); } } else { Rect scissorRect; scissorRect.intersect(viewScissorRect, _render->m_rectCache.m_cache[scissor]); GL_CHECK(glEnable(GL_SCISSOR_TEST) ); GL_CHECK(glScissor(scissorRect.m_x , height-scissorRect.m_height-scissorRect.m_y , scissorRect.m_width , scissorRect.m_height ) ); } } if (0 != changedStencil) { if (0 != newStencil) { GL_CHECK(glEnable(GL_STENCIL_TEST) ); uint32_t bstencil = unpackStencil(1, newStencil); uint8_t frontAndBack = bstencil != BGFX_STENCIL_NONE && bstencil != unpackStencil(0, newStencil); // uint32_t bchanged = unpackStencil(1, changedStencil); // if (BGFX_STENCIL_FUNC_RMASK_MASK & bchanged) // { // uint32_t wmask = (bstencil&BGFX_STENCIL_FUNC_RMASK_MASK)>>BGFX_STENCIL_FUNC_RMASK_SHIFT; // GL_CHECK(glStencilMask(wmask) ); // } for (uint8_t ii = 0, num = frontAndBack+1; ii < num; ++ii) { uint32_t stencil = unpackStencil(ii, newStencil); uint32_t changed = unpackStencil(ii, changedStencil); GLenum face = s_stencilFace[frontAndBack+ii]; if ( (BGFX_STENCIL_TEST_MASK|BGFX_STENCIL_FUNC_REF_MASK|BGFX_STENCIL_FUNC_RMASK_MASK) & changed) { GLint ref = (stencil&BGFX_STENCIL_FUNC_REF_MASK)>>BGFX_STENCIL_FUNC_REF_SHIFT; GLint mask = (stencil&BGFX_STENCIL_FUNC_RMASK_MASK)>>BGFX_STENCIL_FUNC_RMASK_SHIFT; uint32_t func = (stencil&BGFX_STENCIL_TEST_MASK)>>BGFX_STENCIL_TEST_SHIFT; GL_CHECK(glStencilFuncSeparate(face, s_cmpFunc[func], ref, mask)); } if ( (BGFX_STENCIL_OP_FAIL_S_MASK|BGFX_STENCIL_OP_FAIL_Z_MASK|BGFX_STENCIL_OP_PASS_Z_MASK) & changed) { uint32_t sfail = (stencil&BGFX_STENCIL_OP_FAIL_S_MASK)>>BGFX_STENCIL_OP_FAIL_S_SHIFT; uint32_t zfail = (stencil&BGFX_STENCIL_OP_FAIL_Z_MASK)>>BGFX_STENCIL_OP_FAIL_Z_SHIFT; uint32_t zpass = (stencil&BGFX_STENCIL_OP_PASS_Z_MASK)>>BGFX_STENCIL_OP_PASS_Z_SHIFT; GL_CHECK(glStencilOpSeparate(face, s_stencilOp[sfail], s_stencilOp[zfail], s_stencilOp[zpass]) ); } } } else { GL_CHECK(glDisable(GL_STENCIL_TEST) ); } } if ( (0 | BGFX_STATE_CULL_MASK | BGFX_STATE_DEPTH_WRITE | BGFX_STATE_DEPTH_TEST_MASK | BGFX_STATE_RGB_WRITE | BGFX_STATE_ALPHA_WRITE | BGFX_STATE_BLEND_MASK | BGFX_STATE_BLEND_EQUATION_MASK | BGFX_STATE_ALPHA_REF_MASK | BGFX_STATE_PT_MASK | BGFX_STATE_POINT_SIZE_MASK | BGFX_STATE_MSAA ) & changedFlags) { if (BGFX_STATE_CULL_MASK & changedFlags) { if (BGFX_STATE_CULL_CW & newFlags) { GL_CHECK(glEnable(GL_CULL_FACE) ); GL_CHECK(glCullFace(GL_BACK) ); } else if (BGFX_STATE_CULL_CCW & newFlags) { GL_CHECK(glEnable(GL_CULL_FACE) ); GL_CHECK(glCullFace(GL_FRONT) ); } else { GL_CHECK(glDisable(GL_CULL_FACE) ); } } if (BGFX_STATE_DEPTH_WRITE & changedFlags) { GL_CHECK(glDepthMask(!!(BGFX_STATE_DEPTH_WRITE & newFlags) ) ); } if (BGFX_STATE_DEPTH_TEST_MASK & changedFlags) { uint32_t func = (newFlags&BGFX_STATE_DEPTH_TEST_MASK)>>BGFX_STATE_DEPTH_TEST_SHIFT; if (0 != func) { GL_CHECK(glEnable(GL_DEPTH_TEST) ); GL_CHECK(glDepthFunc(s_cmpFunc[func]) ); } else { GL_CHECK(glDisable(GL_DEPTH_TEST) ); } } if (BGFX_STATE_ALPHA_REF_MASK & changedFlags) { uint32_t ref = (newFlags&BGFX_STATE_ALPHA_REF_MASK)>>BGFX_STATE_ALPHA_REF_SHIFT; viewState.m_alphaRef = ref/255.0f; } #if BGFX_CONFIG_RENDERER_OPENGL if ( (BGFX_STATE_PT_POINTS|BGFX_STATE_POINT_SIZE_MASK) & changedFlags) { float pointSize = (float)(bx::uint32_max(1, (newFlags&BGFX_STATE_POINT_SIZE_MASK)>>BGFX_STATE_POINT_SIZE_SHIFT) ); GL_CHECK(glPointSize(pointSize) ); } if (BGFX_STATE_MSAA & changedFlags) { if (BGFX_STATE_MSAA & newFlags) { GL_CHECK(glEnable(GL_MULTISAMPLE) ); } else { GL_CHECK(glDisable(GL_MULTISAMPLE) ); } } #endif // BGFX_CONFIG_RENDERER_OPENGL if ( (BGFX_STATE_ALPHA_WRITE|BGFX_STATE_RGB_WRITE) & changedFlags) { GLboolean alpha = !!(newFlags&BGFX_STATE_ALPHA_WRITE); GLboolean rgb = !!(newFlags&BGFX_STATE_RGB_WRITE); GL_CHECK(glColorMask(rgb, rgb, rgb, alpha) ); } if ( (BGFX_STATE_BLEND_MASK|BGFX_STATE_BLEND_EQUATION_MASK|BGFX_STATE_BLEND_INDEPENDENT) & changedFlags || blendFactor != draw.m_rgba) { if ( (BGFX_STATE_BLEND_MASK|BGFX_STATE_BLEND_EQUATION_MASK|BGFX_STATE_BLEND_INDEPENDENT) & newFlags || blendFactor != draw.m_rgba) { const bool enabled = !!(BGFX_STATE_BLEND_MASK & newFlags); const bool independent = !!(BGFX_STATE_BLEND_INDEPENDENT & newFlags) && blendIndependentSupported ; const uint32_t blend = uint32_t( (newFlags&BGFX_STATE_BLEND_MASK)>>BGFX_STATE_BLEND_SHIFT); const uint32_t srcRGB = (blend )&0xf; const uint32_t dstRGB = (blend>> 4)&0xf; const uint32_t srcA = (blend>> 8)&0xf; const uint32_t dstA = (blend>>12)&0xf; const uint32_t equ = uint32_t((newFlags&BGFX_STATE_BLEND_EQUATION_MASK)>>BGFX_STATE_BLEND_EQUATION_SHIFT); const uint32_t equRGB = (equ )&0x7; const uint32_t equA = (equ>>3)&0x7; const uint32_t numRt = getNumRt(); if (!BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGL) || 1 >= numRt || !independent) { if (enabled) { GL_CHECK(glEnable(GL_BLEND) ); GL_CHECK(glBlendFuncSeparate(s_blendFactor[srcRGB].m_src , s_blendFactor[dstRGB].m_dst , s_blendFactor[srcA].m_src , s_blendFactor[dstA].m_dst ) ); GL_CHECK(glBlendEquationSeparate(s_blendEquation[equRGB], s_blendEquation[equA]) ); if ( (s_blendFactor[srcRGB].m_factor || s_blendFactor[dstRGB].m_factor) && blendFactor != draw.m_rgba) { const uint32_t rgba = draw.m_rgba; GLclampf rr = ( (rgba>>24) )/255.0f; GLclampf gg = ( (rgba>>16)&0xff)/255.0f; GLclampf bb = ( (rgba>> 8)&0xff)/255.0f; GLclampf aa = ( (rgba )&0xff)/255.0f; GL_CHECK(glBlendColor(rr, gg, bb, aa) ); } } else { GL_CHECK(glDisable(GL_BLEND) ); } } else { if (enabled) { GL_CHECK(glEnablei(GL_BLEND, 0) ); GL_CHECK(glBlendFuncSeparatei(0 , s_blendFactor[srcRGB].m_src , s_blendFactor[dstRGB].m_dst , s_blendFactor[srcA].m_src , s_blendFactor[dstA].m_dst ) ); GL_CHECK(glBlendEquationSeparatei(0 , s_blendEquation[equRGB] , s_blendEquation[equA] ) ); } else { GL_CHECK(glDisablei(GL_BLEND, 0) ); } for (uint32_t ii = 1, rgba = draw.m_rgba; ii < numRt; ++ii, rgba >>= 11) { if (0 != (rgba&0x7ff) ) { const uint32_t src = (rgba )&0xf; const uint32_t dst = (rgba>>4)&0xf; const uint32_t equation = (rgba>>8)&0x7; GL_CHECK(glEnablei(GL_BLEND, ii) ); GL_CHECK(glBlendFunci(ii, s_blendFactor[src].m_src, s_blendFactor[dst].m_dst) ); GL_CHECK(glBlendEquationi(ii, s_blendEquation[equation]) ); } else { GL_CHECK(glDisablei(GL_BLEND, ii) ); } } } } else { GL_CHECK(glDisable(GL_BLEND) ); } blendFactor = draw.m_rgba; } const uint64_t pt = _render->m_debug&BGFX_DEBUG_WIREFRAME ? BGFX_STATE_PT_LINES : newFlags&BGFX_STATE_PT_MASK; primIndex = uint8_t(pt>>BGFX_STATE_PT_SHIFT); prim = s_primInfo[primIndex]; } bool programChanged = false; bool constantsChanged = draw.m_constBegin < draw.m_constEnd; bool bindAttribs = false; rendererUpdateUniforms(this, _render->m_constantBuffer, draw.m_constBegin, draw.m_constEnd); if (key.m_program != programIdx) { programIdx = key.m_program; GLuint id = invalidHandle == programIdx ? 0 : m_program[programIdx].m_id; // Skip rendering if program index is valid, but program is invalid. programIdx = 0 == id ? invalidHandle : programIdx; GL_CHECK(glUseProgram(id) ); programChanged = constantsChanged = bindAttribs = true; } if (invalidHandle != programIdx) { ProgramGL& program = m_program[programIdx]; if (constantsChanged && NULL != program.m_constantBuffer) { commit(*program.m_constantBuffer); } viewState.setPredefined<1>(this, view, eye, program, _render, draw); { for (uint32_t stage = 0; stage < BGFX_CONFIG_MAX_TEXTURE_SAMPLERS; ++stage) { const Binding& sampler = draw.m_bind[stage]; Binding& current = currentState.m_bind[stage]; if (current.m_idx != sampler.m_idx || current.m_un.m_draw.m_flags != sampler.m_un.m_draw.m_flags || programChanged) { if (invalidHandle != sampler.m_idx) { TextureGL& texture = m_textures[sampler.m_idx]; texture.commit(stage, sampler.m_un.m_draw.m_flags); } } current = sampler; } } if (0 != defaultVao && 0 == draw.m_startVertex && 0 == draw.m_instanceDataOffset) { if (programChanged || baseVertex != draw.m_startVertex || currentState.m_vertexBuffer.idx != draw.m_vertexBuffer.idx || currentState.m_indexBuffer.idx != draw.m_indexBuffer.idx || currentState.m_instanceDataOffset != draw.m_instanceDataOffset || currentState.m_instanceDataStride != draw.m_instanceDataStride || currentState.m_instanceDataBuffer.idx != draw.m_instanceDataBuffer.idx) { bx::HashMurmur2A murmur; murmur.begin(); murmur.add(draw.m_vertexBuffer.idx); if (isValid(draw.m_vertexBuffer) ) { const VertexBufferGL& vb = m_vertexBuffers[draw.m_vertexBuffer.idx]; uint16_t decl = !isValid(vb.m_decl) ? draw.m_vertexDecl.idx : vb.m_decl.idx; murmur.add(decl); } murmur.add(draw.m_indexBuffer.idx); murmur.add(draw.m_instanceDataBuffer.idx); murmur.add(draw.m_instanceDataOffset); murmur.add(draw.m_instanceDataStride); murmur.add(programIdx); uint32_t hash = murmur.end(); currentState.m_vertexBuffer = draw.m_vertexBuffer; currentState.m_indexBuffer = draw.m_indexBuffer; currentState.m_instanceDataOffset = draw.m_instanceDataOffset; currentState.m_instanceDataStride = draw.m_instanceDataStride; baseVertex = draw.m_startVertex; GLuint id = m_vaoStateCache.find(hash); if (UINT32_MAX != id) { currentVao = id; GL_CHECK(glBindVertexArray(id) ); } else { id = m_vaoStateCache.add(hash); currentVao = id; GL_CHECK(glBindVertexArray(id) ); program.add(hash); if (isValid(draw.m_vertexBuffer) ) { VertexBufferGL& vb = m_vertexBuffers[draw.m_vertexBuffer.idx]; vb.add(hash); GL_CHECK(glBindBuffer(GL_ARRAY_BUFFER, vb.m_id) ); uint16_t decl = !isValid(vb.m_decl) ? draw.m_vertexDecl.idx : vb.m_decl.idx; program.bindAttributes(m_vertexDecls[decl], draw.m_startVertex); if (isValid(draw.m_instanceDataBuffer) ) { VertexBufferGL& instanceVb = m_vertexBuffers[draw.m_instanceDataBuffer.idx]; instanceVb.add(hash); GL_CHECK(glBindBuffer(GL_ARRAY_BUFFER, instanceVb.m_id) ); program.bindInstanceData(draw.m_instanceDataStride, draw.m_instanceDataOffset); } } else { GL_CHECK(glBindBuffer(GL_ARRAY_BUFFER, 0) ); } if (isValid(draw.m_indexBuffer) ) { IndexBufferGL& ib = m_indexBuffers[draw.m_indexBuffer.idx]; ib.add(hash); GL_CHECK(glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ib.m_id) ); } else { GL_CHECK(glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0) ); } } } } else { if (0 != defaultVao && 0 != currentVao) { GL_CHECK(glBindVertexArray(defaultVao) ); currentState.m_vertexBuffer.idx = invalidHandle; currentState.m_indexBuffer.idx = invalidHandle; bindAttribs = true; currentVao = 0; } if (programChanged || currentState.m_vertexBuffer.idx != draw.m_vertexBuffer.idx || currentState.m_instanceDataBuffer.idx != draw.m_instanceDataBuffer.idx || currentState.m_instanceDataOffset != draw.m_instanceDataOffset || currentState.m_instanceDataStride != draw.m_instanceDataStride) { currentState.m_vertexBuffer = draw.m_vertexBuffer; currentState.m_instanceDataBuffer.idx = draw.m_instanceDataBuffer.idx; currentState.m_instanceDataOffset = draw.m_instanceDataOffset; currentState.m_instanceDataStride = draw.m_instanceDataStride; uint16_t handle = draw.m_vertexBuffer.idx; if (invalidHandle != handle) { VertexBufferGL& vb = m_vertexBuffers[handle]; GL_CHECK(glBindBuffer(GL_ARRAY_BUFFER, vb.m_id) ); bindAttribs = true; } else { GL_CHECK(glBindBuffer(GL_ARRAY_BUFFER, 0) ); } } if (currentState.m_indexBuffer.idx != draw.m_indexBuffer.idx) { currentState.m_indexBuffer = draw.m_indexBuffer; uint16_t handle = draw.m_indexBuffer.idx; if (invalidHandle != handle) { IndexBufferGL& ib = m_indexBuffers[handle]; GL_CHECK(glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ib.m_id) ); } else { GL_CHECK(glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0) ); } } if (isValid(currentState.m_vertexBuffer) ) { if (baseVertex != draw.m_startVertex || bindAttribs) { baseVertex = draw.m_startVertex; const VertexBufferGL& vb = m_vertexBuffers[draw.m_vertexBuffer.idx]; uint16_t decl = !isValid(vb.m_decl) ? draw.m_vertexDecl.idx : vb.m_decl.idx; program.bindAttributes(m_vertexDecls[decl], draw.m_startVertex); if (isValid(draw.m_instanceDataBuffer) ) { GL_CHECK(glBindBuffer(GL_ARRAY_BUFFER, m_vertexBuffers[draw.m_instanceDataBuffer.idx].m_id) ); program.bindInstanceData(draw.m_instanceDataStride, draw.m_instanceDataOffset); } } } } if (isValid(currentState.m_vertexBuffer) ) { uint32_t numVertices = draw.m_numVertices; if (UINT32_MAX == numVertices) { const VertexBufferGL& vb = m_vertexBuffers[currentState.m_vertexBuffer.idx]; uint16_t decl = !isValid(vb.m_decl) ? draw.m_vertexDecl.idx : vb.m_decl.idx; const VertexDecl& vertexDecl = m_vertexDecls[decl]; numVertices = vb.m_size/vertexDecl.m_stride; } uint32_t numIndices = 0; uint32_t numPrimsSubmitted = 0; uint32_t numInstances = 0; uint32_t numPrimsRendered = 0; uint32_t numDrawIndirect = 0; if (isValid(draw.m_indirectBuffer) ) { const VertexBufferGL& vb = m_vertexBuffers[draw.m_indirectBuffer.idx]; if (currentState.m_indirectBuffer.idx != draw.m_indirectBuffer.idx) { currentState.m_indirectBuffer = draw.m_indirectBuffer; GL_CHECK(glBindBuffer(GL_DRAW_INDIRECT_BUFFER, vb.m_id) ); } if (isValid(draw.m_indexBuffer) ) { const IndexBufferGL& ib = m_indexBuffers[draw.m_indexBuffer.idx]; const bool hasIndex16 = 0 == (ib.m_flags & BGFX_BUFFER_INDEX32); const GLenum indexFormat = hasIndex16 ? GL_UNSIGNED_SHORT : GL_UNSIGNED_INT ; numDrawIndirect = UINT16_MAX == draw.m_numIndirect ? vb.m_size/BGFX_CONFIG_DRAW_INDIRECT_STRIDE : draw.m_numIndirect ; uintptr_t args = draw.m_startIndirect * BGFX_CONFIG_DRAW_INDIRECT_STRIDE; GL_CHECK(glMultiDrawElementsIndirect(prim.m_type, indexFormat , (void*)args , numDrawIndirect , BGFX_CONFIG_DRAW_INDIRECT_STRIDE ) ); } else { numDrawIndirect = UINT16_MAX == draw.m_numIndirect ? vb.m_size/BGFX_CONFIG_DRAW_INDIRECT_STRIDE : draw.m_numIndirect ; uintptr_t args = draw.m_startIndirect * BGFX_CONFIG_DRAW_INDIRECT_STRIDE; GL_CHECK(glMultiDrawArraysIndirect(prim.m_type , (void*)args , numDrawIndirect , BGFX_CONFIG_DRAW_INDIRECT_STRIDE ) ); } } else { if (isValid(currentState.m_indirectBuffer) ) { currentState.m_indirectBuffer.idx = invalidHandle; GL_CHECK(glBindBuffer(GL_DRAW_INDIRECT_BUFFER, 0) ); } if (isValid(draw.m_indexBuffer) ) { const IndexBufferGL& ib = m_indexBuffers[draw.m_indexBuffer.idx]; const bool hasIndex16 = 0 == (ib.m_flags & BGFX_BUFFER_INDEX32); const GLenum indexFormat = hasIndex16 ? GL_UNSIGNED_SHORT : GL_UNSIGNED_INT ; if (UINT32_MAX == draw.m_numIndices) { const uint32_t indexSize = hasIndex16 ? 2 : 4; numIndices = ib.m_size/indexSize; numPrimsSubmitted = numIndices/prim.m_div - prim.m_sub; numInstances = draw.m_numInstances; numPrimsRendered = numPrimsSubmitted*draw.m_numInstances; GL_CHECK(glDrawElementsInstanced(prim.m_type , numIndices , indexFormat , (void*)0 , draw.m_numInstances ) ); } else if (prim.m_min <= draw.m_numIndices) { numIndices = draw.m_numIndices; numPrimsSubmitted = numIndices/prim.m_div - prim.m_sub; numInstances = draw.m_numInstances; numPrimsRendered = numPrimsSubmitted*draw.m_numInstances; GL_CHECK(glDrawElementsInstanced(prim.m_type , numIndices , indexFormat , (void*)(uintptr_t)(draw.m_startIndex*2) , draw.m_numInstances ) ); } } else { numPrimsSubmitted = numVertices/prim.m_div - prim.m_sub; numInstances = draw.m_numInstances; numPrimsRendered = numPrimsSubmitted*draw.m_numInstances; GL_CHECK(glDrawArraysInstanced(prim.m_type , 0 , numVertices , draw.m_numInstances ) ); } } statsNumPrimsSubmitted[primIndex] += numPrimsSubmitted; statsNumPrimsRendered[primIndex] += numPrimsRendered; statsNumInstances[primIndex] += numInstances; statsNumIndices += numIndices; } } } blitMsaaFbo(); if (0 < _render->m_num) { captureElapsed = -bx::getHPCounter(); capture(); captureElapsed += bx::getHPCounter(); } } m_glctx.makeCurrent(NULL); int64_t now = bx::getHPCounter(); elapsed += now; static int64_t last = now; int64_t frameTime = now - last; last = now; static int64_t min = frameTime; static int64_t max = frameTime; min = min > frameTime ? frameTime : min; max = max < frameTime ? frameTime : max; if (_render->m_debug & (BGFX_DEBUG_IFH|BGFX_DEBUG_STATS) ) { double elapsedGpuMs = 0.0; uint64_t elapsedGl = 0; if (BX_ENABLED(BGFX_CONFIG_RENDERER_OPENGL) && m_timerQuerySupport) { m_queries.end(GL_TIME_ELAPSED); elapsedGl = m_queries.getResult(0); elapsedGpuMs = double(elapsedGl)/1e6; } TextVideoMem& tvm = m_textVideoMem; static int64_t next = now; if (now >= next) { next = now + bx::getHPFrequency(); double freq = double(bx::getHPFrequency() ); double toMs = 1000.0/freq; tvm.clear(); uint16_t pos = 0; tvm.printf(0, pos++, BGFX_CONFIG_DEBUG ? 0x89 : 0x8f, " %s / " BX_COMPILER_NAME " / " BX_CPU_NAME " / " BX_ARCH_NAME " / " BX_PLATFORM_NAME " " , getRendererName() ); tvm.printf(0, pos++, 0x0f, " Vendor: %s", m_vendor); tvm.printf(0, pos++, 0x0f, " Renderer: %s", m_renderer); tvm.printf(0, pos++, 0x0f, " Version: %s", m_version); tvm.printf(0, pos++, 0x0f, "GLSL version: %s", m_glslVersion); pos = 10; tvm.printf(10, pos++, 0x8e, " Frame CPU: %7.3f, % 7.3f \x1f, % 7.3f \x1e [ms] / % 6.2f FPS " , double(frameTime)*toMs , double(min)*toMs , double(max)*toMs , freq/frameTime ); char hmd[16]; bx::snprintf(hmd, BX_COUNTOF(hmd), ", [%c] HMD ", hmdEnabled ? '\xfe' : ' '); const uint32_t msaa = (m_resolution.m_flags&BGFX_RESET_MSAA_MASK)>>BGFX_RESET_MSAA_SHIFT; tvm.printf(10, pos++, 0x8e, " Reset flags: [%c] vsync, [%c] MSAAx%d%s, [%c] MaxAnisotropy " , !!(m_resolution.m_flags&BGFX_RESET_VSYNC) ? '\xfe' : ' ' , 0 != msaa ? '\xfe' : ' ' , 1<m_num , statsKeyType[0] , statsKeyType[1] , elapsedCpuMs , elapsedCpuMs > elapsedGpuMs ? '>' : '<' , elapsedGpuMs ); for (uint32_t ii = 0; ii < BX_COUNTOF(s_primInfo); ++ii) { tvm.printf(10, pos++, 0x8e, " %9s: %7d (#inst: %5d), submitted: %7d" , s_primName[ii] , statsNumPrimsRendered[ii] , statsNumInstances[ii] , statsNumPrimsSubmitted[ii] ); } if (NULL != m_renderdocdll) { tvm.printf(tvm.m_width-27, 0, 0x1f, " [F11 - RenderDoc capture] "); } tvm.printf(10, pos++, 0x8e, " Indices: %7d", statsNumIndices); tvm.printf(10, pos++, 0x8e, " DVB size: %7d", _render->m_vboffset); tvm.printf(10, pos++, 0x8e, " DIB size: %7d", _render->m_iboffset); pos++; tvm.printf(10, pos++, 0x8e, " State cache: "); tvm.printf(10, pos++, 0x8e, " VAO | Sampler "); tvm.printf(10, pos++, 0x8e, " %6d | %6d " , m_vaoStateCache.getCount() , m_samplerStateCache.getCount() ); pos++; double captureMs = double(captureElapsed)*toMs; tvm.printf(10, pos++, 0x8e, " Capture: %3.4f [ms]", captureMs); #if BGFX_CONFIG_RENDERER_OPENGL if (s_extension[Extension::ATI_meminfo].m_supported) { GLint vboFree[4]; GL_CHECK(glGetIntegerv(GL_VBO_FREE_MEMORY_ATI, vboFree) ); GLint texFree[4]; GL_CHECK(glGetIntegerv(GL_TEXTURE_FREE_MEMORY_ATI, texFree) ); GLint rbfFree[4]; GL_CHECK(glGetIntegerv(GL_RENDERBUFFER_FREE_MEMORY_ATI, rbfFree) ); pos++; tvm.printf(10, pos++, 0x8c, " -------------| free| free b| aux| aux fb"); char tmp0[16]; char tmp1[16]; char tmp2[16]; char tmp3[16]; bx::prettify(tmp0, BX_COUNTOF(tmp0), vboFree[0]); bx::prettify(tmp1, BX_COUNTOF(tmp1), vboFree[1]); bx::prettify(tmp2, BX_COUNTOF(tmp2), vboFree[2]); bx::prettify(tmp3, BX_COUNTOF(tmp3), vboFree[3]); tvm.printf(10, pos++, 0x8e, " VBO: %10s, %10s, %10s, %10s", tmp0, tmp1, tmp2, tmp3); bx::prettify(tmp0, BX_COUNTOF(tmp0), texFree[0]); bx::prettify(tmp1, BX_COUNTOF(tmp1), texFree[1]); bx::prettify(tmp2, BX_COUNTOF(tmp2), texFree[2]); bx::prettify(tmp3, BX_COUNTOF(tmp3), texFree[3]); tvm.printf(10, pos++, 0x8e, " Texture: %10s, %10s, %10s, %10s", tmp0, tmp1, tmp2, tmp3); bx::prettify(tmp0, BX_COUNTOF(tmp0), rbfFree[0]); bx::prettify(tmp1, BX_COUNTOF(tmp1), rbfFree[1]); bx::prettify(tmp2, BX_COUNTOF(tmp2), rbfFree[2]); bx::prettify(tmp3, BX_COUNTOF(tmp3), rbfFree[3]); tvm.printf(10, pos++, 0x8e, " Render Buffer: %10s, %10s, %10s, %10s", tmp0, tmp1, tmp2, tmp3); } else if (s_extension[Extension::NVX_gpu_memory_info].m_supported) { GLint dedicated; GL_CHECK(glGetIntegerv(GL_GPU_MEMORY_INFO_DEDICATED_VIDMEM_NVX, &dedicated) ); GLint totalAvail; GL_CHECK(glGetIntegerv(GL_GPU_MEMORY_INFO_TOTAL_AVAILABLE_MEMORY_NVX, &totalAvail) ); GLint currAvail; GL_CHECK(glGetIntegerv(GL_GPU_MEMORY_INFO_CURRENT_AVAILABLE_VIDMEM_NVX, &currAvail) ); GLint evictedCount; GL_CHECK(glGetIntegerv(GL_GPU_MEMORY_INFO_EVICTION_COUNT_NVX, &evictedCount) ); GLint evictedMemory; GL_CHECK(glGetIntegerv(GL_GPU_MEMORY_INFO_EVICTED_MEMORY_NVX, &evictedMemory) ); pos += 2; char tmp0[16]; char tmp1[16]; bx::prettify(tmp0, BX_COUNTOF(tmp0), dedicated); tvm.printf(10, pos++, 0x8e, " Dedicated: %10s", tmp0); bx::prettify(tmp0, BX_COUNTOF(tmp0), currAvail); bx::prettify(tmp1, BX_COUNTOF(tmp1), totalAvail); tvm.printf(10, pos++, 0x8e, " Available: %10s / %10s", tmp0, tmp1); bx::prettify(tmp0, BX_COUNTOF(tmp0), evictedCount); bx::prettify(tmp1, BX_COUNTOF(tmp1), evictedMemory); tvm.printf(10, pos++, 0x8e, " Eviction: %10s / %10s", tmp0, tmp1); } #endif // BGFX_CONFIG_RENDERER_OPENGL uint8_t attr[2] = { 0x89, 0x8a }; uint8_t attrIndex = _render->m_waitSubmit < _render->m_waitRender; pos++; tvm.printf(10, pos++, attr[attrIndex&1], "Submit wait: %3.4f [ms]", double(_render->m_waitSubmit)*toMs); tvm.printf(10, pos++, attr[(attrIndex+1)&1], "Render wait: %3.4f [ms]", double(_render->m_waitRender)*toMs); min = frameTime; max = frameTime; } blit(this, _textVideoMemBlitter, tvm); } else if (_render->m_debug & BGFX_DEBUG_TEXT) { blit(this, _textVideoMemBlitter, _render->m_textVideoMem); } GL_CHECK(glFrameTerminatorGREMEDY() ); } } } // namespace bgfx #else namespace bgfx { namespace gl { RendererContextI* rendererCreate() { return NULL; } void rendererDestroy() { } } /* namespace gl */ } // namespace bgfx #endif // (BGFX_CONFIG_RENDERER_OPENGLES || BGFX_CONFIG_RENDERER_OPENGL)