/* * Copyright 2011-2012 Branimir Karadzic. All rights reserved. * License: http://www.opensource.org/licenses/BSD-2-Clause */ #include "bgfx_p.h" #if BX_PLATFORM_WINDOWS HWND g_bgfxHwnd = NULL; #endif // BX_PLATFORM_WINDOWS #if BGFX_CONFIG_USE_TINYSTL namespace tinystl { void* bgfx_allocator::static_allocate(size_t _bytes) { return bgfx::g_realloc(NULL, _bytes); } void bgfx_allocator::static_deallocate(void* _ptr, size_t /*_bytes*/) { bgfx::g_free(_ptr); } } // namespace tinystl #endif // BGFX_CONFIG_USE_TINYSTL namespace bgfx { #define BGFX_MAIN_THREAD_MAGIC 0x78666762 #if BGFX_CONFIG_MULTITHREADED # define BGFX_MAIN_THREAD() BX_CHECK(BGFX_MAIN_THREAD_MAGIC == s_threadIndex, "Must be called from main thread.") # define BGFX_RENDER_THREAD() BX_CHECK(BGFX_MAIN_THREAD_MAGIC != s_threadIndex, "Must be called from render thread.") #else # define BGFX_MAIN_THREAD() # define BGFX_RENDER_THREAD() #endif // BGFX_CONFIG_MULTITHREADED void fatalStub(Fatal::Enum _code, const char* _str) { BX_TRACE("0x%08x: %s", _code, _str); BX_UNUSED(_code); BX_UNUSED(_str); } void* reallocStub(void* _ptr, size_t _size) { void* ptr = ::realloc(_ptr, _size); BX_CHECK(NULL != ptr, "Out of memory!"); // BX_TRACE("alloc %d, %p", _size, ptr); return ptr; } void freeStub(void* _ptr) { // BX_TRACE("free %p", _ptr); ::free(_ptr); } void cacheStub(uint64_t /*_id*/, bool /*_store*/, void* /*_data*/, uint32_t& _length) { _length = 0; } FatalFn g_fatal = fatalStub; ReallocFn g_realloc = reallocStub; FreeFn g_free = freeStub; CacheFn g_cache = cacheStub; static BX_THREAD uint32_t s_threadIndex = 0; static Context s_ctx; void fatal(Fatal::Enum _code, const char* _format, ...) { char temp[8192]; va_list argList; va_start(argList, _format); vsnprintf(temp, sizeof(temp), _format, argList); va_end(argList); temp[sizeof(temp)-1] = '\0'; g_fatal(_code, temp); } inline void vec_mul_mtx(float* __restrict _result, const float* __restrict _vec, const float* __restrict _mat) { _result[0] = _vec[0] * _mat[ 0] + _vec[1] * _mat[4] + _vec[2] * _mat[ 8] + _vec[3] * _mat[12]; _result[1] = _vec[0] * _mat[ 1] + _vec[1] * _mat[5] + _vec[2] * _mat[ 9] + _vec[3] * _mat[13]; _result[2] = _vec[0] * _mat[ 2] + _vec[1] * _mat[6] + _vec[2] * _mat[10] + _vec[3] * _mat[14]; _result[3] = _vec[0] * _mat[ 3] + _vec[1] * _mat[7] + _vec[2] * _mat[11] + _vec[3] * _mat[15]; } void matrix_mul(float* __restrict _result, const float* __restrict _a, const float* __restrict _b) { vec_mul_mtx(&_result[ 0], &_a[ 0], _b); vec_mul_mtx(&_result[ 4], &_a[ 4], _b); vec_mul_mtx(&_result[ 8], &_a[ 8], _b); vec_mul_mtx(&_result[12], &_a[12], _b); } void matrix_ortho(float* _result, float _left, float _right, float _bottom, float _top, float _near, float _far) { const float aa = 2.0f/(_right - _left); const float bb = 2.0f/(_top - _bottom); const float cc = 1.0f/(_far - _near); const float dd = (_left + _right)/(_left - _right); const float ee = (_top + _bottom)/(_bottom - _top); const float ff = _near / (_near - _far); memset(_result, 0, sizeof(float)*16); _result[0] = aa; _result[5] = bb; _result[10] = cc; _result[12] = dd; _result[13] = ee; _result[14] = ff; _result[15] = 1.0f; } void saveTga(const char* _filePath, uint32_t _width, uint32_t _height, uint32_t _srcPitch, const void* _src, bool _grayscale, bool _yflip) { FILE* file = fopen(_filePath, "wb"); if ( NULL != file ) { uint8_t type = _grayscale ? 3 : 2; uint8_t bpp = _grayscale ? 8 : 32; putc(0, file); putc(0, file); putc(type, file); putc(0, file); putc(0, file); putc(0, file); putc(0, file); putc(0, file); putc(0, file); putc(0, file); putc(0, file); putc(0, file); putc(_width&0xff, file); putc( (_width>>8)&0xff, file); putc(_height&0xff, file); putc( (_height>>8)&0xff, file); putc(bpp, file); putc(32, file); uint32_t dstPitch = _width*bpp/8; if (_yflip) { uint8_t* data = (uint8_t*)_src + dstPitch*_height - _srcPitch; for (uint32_t yy = 0; yy < _height; ++yy) { fwrite(data, dstPitch, 1, file); data -= _srcPitch; } } else { uint8_t* data = (uint8_t*)_src; for (uint32_t yy = 0; yy < _height; ++yy) { fwrite(data, dstPitch, 1, file); data += _srcPitch; } } fclose(file); } } #include "charset.h" void charsetFillTexture(const uint8_t* _charset, uint8_t* _rgba, uint32_t _height, uint32_t _pitch, uint32_t _bpp) { for (uint32_t ii = 0; ii < 256; ++ii) { uint8_t* pix = &_rgba[ii*8*_bpp]; for (uint32_t yy = 0; yy < _height; ++yy) { for (uint32_t xx = 0; xx < 8; ++xx) { uint8_t bit = 1<<(7-xx); memset(&pix[xx*_bpp], _charset[ii*_height+yy]&bit ? 255 : 0, _bpp); } pix += _pitch; } } } static const uint32_t numCharsPerBatch = 1024; static const uint32_t numBatchVertices = numCharsPerBatch*4; static const uint32_t numBatchIndices = numCharsPerBatch*6; void TextVideoMemBlitter::init() { m_decl.begin(); m_decl.add(Attrib::Position, 3, AttribType::Float); m_decl.add(Attrib::Color0, 4, AttribType::Uint8, true); m_decl.add(Attrib::Color1, 4, AttribType::Uint8, true); m_decl.add(Attrib::TexCoord0, 2, AttribType::Float); m_decl.end(); uint16_t width = 2048; uint16_t height = 24; uint8_t bpp = 1; uint32_t pitch = width*bpp; const Memory* mem; mem = alloc(pitch*height); uint8_t* rgba = mem->data; charsetFillTexture(vga8x8, rgba, 8, pitch, bpp); charsetFillTexture(vga8x16, &rgba[8*pitch], 16, pitch, bpp); m_texture = createTexture2D(2048, 24, 1, TextureFormat::L8, BGFX_TEXTURE_MIN_POINT|BGFX_TEXTURE_MAG_POINT|BGFX_TEXTURE_MIP_POINT, mem); #if BGFX_CONFIG_RENDERER_DIRECT3D9 mem = makeRef(vs_debugfont_dx9, sizeof(vs_debugfont_dx9) ); #elif BGFX_CONFIG_RENDERER_DIRECT3D11 mem = makeRef(vs_debugfont_dx11, sizeof(vs_debugfont_dx11) ); #else mem = makeRef(vs_debugfont_glsl, sizeof(vs_debugfont_glsl) ); #endif // BGFX_CONFIG_RENDERER_ VertexShaderHandle vsh = createVertexShader(mem); #if BGFX_CONFIG_RENDERER_DIRECT3D9 mem = makeRef(fs_debugfont_dx9, sizeof(fs_debugfont_dx9) ); #elif BGFX_CONFIG_RENDERER_DIRECT3D11 mem = makeRef(fs_debugfont_dx11, sizeof(fs_debugfont_dx11) ); #else mem = makeRef(fs_debugfont_glsl, sizeof(fs_debugfont_glsl) ); #endif // BGFX_CONFIG_RENDERER_ FragmentShaderHandle fsh = createFragmentShader(mem); m_program = createProgram(vsh, fsh); m_vb = s_ctx.createTransientVertexBuffer(numBatchVertices*m_decl.m_stride, &m_decl); m_ib = s_ctx.createTransientIndexBuffer(numBatchIndices*2); } void TextVideoMemBlitter::blit(const TextVideoMem& _mem) { struct Vertex { float m_x; float m_y; float m_z; uint32_t m_fg; uint32_t m_bg; float m_u; float m_v; }; static uint32_t palette[16] = { 0x0, 0xff0000cc, 0xff069a4e, 0xff00a0c4, 0xffa46534, 0xff7b5075, 0xff9a9806, 0xffcfd7d3, 0xff535755, 0xff2929ef, 0xff34e28a, 0xff4fe9fc, 0xffcf9f72, 0xffa87fad, 0xffe2e234, 0xffeceeee, }; uint32_t yy = 0; uint32_t xx = 0; const float texelWidth = 1.0f/2048.0f; const float texelWidthHalf = texelWidth*0.5f; const float texelHeight = 1.0f/24.0f; #if BGFX_CONFIG_RENDERER_DIRECT3D9 const float texelHeightHalf = texelHeight*0.5f; #else const float texelHeightHalf = 0.0f; #endif // BGFX_CONFIG_RENDERER_ const float utop = (_mem.m_small ? 0.0f : 8.0f)*texelHeight + texelHeightHalf; const float ubottom = (_mem.m_small ? 8.0f : 24.0f)*texelHeight + texelHeightHalf; const float fontHeight = (_mem.m_small ? 8.0f : 16.0f); setup(); for (;yy < _mem.m_height;) { Vertex* vertex = (Vertex*)m_vb->data; uint16_t* indices = (uint16_t*)m_ib->data; uint32_t startVertex = 0; uint32_t numIndices = 0; for (; yy < _mem.m_height && numIndices < numBatchIndices; ++yy) { xx = xx < _mem.m_width ? xx : 0; const uint8_t* line = &_mem.m_mem[(yy*_mem.m_width+xx)*2]; for (; xx < _mem.m_width && numIndices < numBatchIndices; ++xx) { uint8_t ch = line[0]; uint8_t attr = line[1]; if (0 != (ch|attr) && (' ' != ch || 0 != (attr&0xf0) ) ) { uint32_t fg = palette[attr&0xf]; uint32_t bg = palette[(attr>>4)&0xf]; Vertex vert[4] = { { (xx )*8.0f, (yy )*fontHeight, 0.0f, fg, bg, (ch )*8.0f*texelWidth - texelWidthHalf, utop }, { (xx+1)*8.0f, (yy )*fontHeight, 0.0f, fg, bg, (ch+1)*8.0f*texelWidth - texelWidthHalf, utop }, { (xx+1)*8.0f, (yy+1)*fontHeight, 0.0f, fg, bg, (ch+1)*8.0f*texelWidth - texelWidthHalf, ubottom }, { (xx )*8.0f, (yy+1)*fontHeight, 0.0f, fg, bg, (ch )*8.0f*texelWidth - texelWidthHalf, ubottom }, }; memcpy(vertex, vert, sizeof(vert) ); vertex += 4; indices[0] = startVertex+0; indices[1] = startVertex+1; indices[2] = startVertex+2; indices[3] = startVertex+2; indices[4] = startVertex+3; indices[5] = startVertex+0; startVertex += 4; indices += 6; numIndices += 6; } line += 2; } if (numIndices >= numBatchIndices) { break; } } render(numIndices); } } void ClearQuad::init() { #if BGFX_CONFIG_RENDERER_DIRECT3D11 m_decl.begin(); m_decl.add(Attrib::Position, 3, AttribType::Float); m_decl.add(Attrib::Color0, 4, AttribType::Uint8, true); m_decl.end(); const Memory* mem; mem = alloc(sizeof(vs_clear_dx11)+1); memcpy(mem->data, vs_clear_dx11, mem->size-1); VertexShaderHandle vsh = createVertexShader(mem); mem = alloc(sizeof(fs_clear_dx11)+1); memcpy(mem->data, fs_clear_dx11, mem->size-1); FragmentShaderHandle fsh = createFragmentShader(mem); m_program = createProgram(vsh, fsh); m_vb = s_ctx.createTransientVertexBuffer(4*m_decl.m_stride, &m_decl); mem = alloc(6*sizeof(uint16_t) ); uint16_t* indices = (uint16_t*)mem->data; indices[0] = 0; indices[1] = 1; indices[2] = 2; indices[3] = 2; indices[4] = 3; indices[5] = 0; m_ib = s_ctx.createIndexBuffer(mem); #endif // BGFX_CONFIG_RENDERER_DIRECT3D11 } static const char* s_predefinedName[PredefinedUniform::Count] = { "u_viewRect", "u_viewTexel", "u_view", "u_viewProj", "u_viewProjX", "u_model", "u_modelViewProj", "u_modelViewProjX", "u_alphaRef", }; const char* getPredefinedUniformName(PredefinedUniform::Enum _enum) { return s_predefinedName[_enum]; } PredefinedUniform::Enum nameToPredefinedUniformEnum(const char* _name) { for (uint32_t ii = 0; ii < PredefinedUniform::Count; ++ii) { if (0 == strcmp(_name, s_predefinedName[ii]) ) { return PredefinedUniform::Enum(ii); } } return PredefinedUniform::Count; } void Frame::submit(uint8_t _id) { if (m_discard) { m_discard = false; return; } if (BGFX_CONFIG_MAX_DRAW_CALLS-1 <= m_num || (0 == m_state.m_numVertices && 0 == m_state.m_numIndices) ) { ++m_numDropped; return; } m_key.m_view = _id; m_key.m_seq = s_ctx.m_seq[_id] & s_ctx.m_seqMask[_id]; s_ctx.m_seq[_id]++; uint64_t key = m_key.encode(); m_sortKeys[m_num] = key; m_sortValues[m_num] = m_numRenderStates; ++m_num; m_state.m_constEnd = m_constantBuffer->getPos(); m_state.m_flags |= m_flags; m_renderState[m_numRenderStates] = m_state; ++m_numRenderStates; m_state.clear(); m_flags = BGFX_STATE_NONE; } void Frame::submitMask(uint32_t _viewMask) { if (m_discard) { m_discard = false; return; } if (BGFX_CONFIG_MAX_DRAW_CALLS-1 <= m_num || (0 == m_state.m_numVertices && 0 == m_state.m_numIndices) ) { m_numDropped += uint32_cntbits(_viewMask); return; } for (uint32_t id = 0, viewMask = _viewMask, ntz = uint32_cnttz(_viewMask); 0 != viewMask; viewMask >>= 1, id += 1, ntz = uint32_cnttz(viewMask) ) { viewMask >>= ntz; id += ntz; m_key.m_view = id; m_key.m_seq = s_ctx.m_seq[id] & s_ctx.m_seqMask[id]; s_ctx.m_seq[id]++; uint64_t key = m_key.encode(); m_sortKeys[m_num] = key; m_sortValues[m_num] = m_numRenderStates; ++m_num; } m_state.m_constEnd = m_constantBuffer->getPos(); m_state.m_flags |= m_flags; m_renderState[m_numRenderStates] = m_state; ++m_numRenderStates; m_state.clear(); m_flags = BGFX_STATE_NONE; } void Frame::sort() { bx::radixSort64(m_sortKeys, s_ctx.m_tempKeys, m_sortValues, s_ctx.m_tempValues, m_num); } RendererType::Enum getRendererType() { #if BGFX_CONFIG_RENDERER_DIRECT3D9 return RendererType::Direct3D9; #elif BGFX_CONFIG_RENDERER_DIRECT3D11 return RendererType::Direct3D11; #elif BGFX_CONFIG_RENDERER_OPENGL return RendererType::OpenGL; #elif BGFX_CONFIG_RENDERER_OPENGLES2 return RendererType::OpenGLES2; #else return RendererType::Null; #endif // BGFX_CONFIG_RENDERER_ } void init(bool _createRenderThread, FatalFn _fatal, ReallocFn _realloc, FreeFn _free, CacheFn _cache) { if (NULL != _fatal) { g_fatal = _fatal; } if (NULL != _realloc && NULL != _free) { g_realloc = _realloc; g_free = _free; } if (NULL != _cache) { g_cache = _cache; } s_threadIndex = BGFX_MAIN_THREAD_MAGIC; s_ctx.init(_createRenderThread); } void shutdown() { BGFX_MAIN_THREAD(); s_ctx.shutdown(); } void reset(uint32_t _width, uint32_t _height, uint32_t _flags) { BGFX_MAIN_THREAD(); s_ctx.reset(_width, _height, _flags); } void frame() { BGFX_MAIN_THREAD(); s_ctx.frame(); } bool renderFrame() { BGFX_RENDER_THREAD(); return s_ctx.renderFrame(); } static const uint32_t s_attribTypeSize[AttribType::Count] = { 1, 2, 4, }; void VertexDecl::begin() { m_hash = 0; m_stride = 0; memset(m_attributes, 0xff, sizeof(m_attributes) ); memset(m_offset, 0, sizeof(m_offset) ); } void VertexDecl::end() { m_hash = hash(m_attributes, sizeof(m_attributes) ); } void VertexDecl::add(Attrib::Enum _attrib, uint8_t _num, AttribType::Enum _type, bool _normalized) { const uint8_t encoded_norm = (_normalized&1)<<6; const uint8_t encoded_type = (_type&3)<<3; const uint8_t encoded_num = (_num-1)&3; m_attributes[_attrib] = encoded_norm|encoded_type|encoded_num; m_offset[_attrib] = m_stride; m_stride += s_attribTypeSize[_type]*_num; } void VertexDecl::decode(Attrib::Enum _attrib, uint8_t& _num, AttribType::Enum& _type, bool& _normalized) const { uint8_t val = m_attributes[_attrib]; _num = (val&3)+1; _type = AttribType::Enum((val>>3)&3); _normalized = !!(val&(1<<6) ); } const char* getAttribName(Attrib::Enum _attr) { static const char* attrName[Attrib::Count] = { "Attrib::Position", "Attrib::Normal", "Attrib::Color0", "Attrib::Color1", "Attrib::Indices", "Attrib::Weights", "Attrib::TexCoord0", "Attrib::TexCoord1", "Attrib::TexCoord2", "Attrib::TexCoord3", "Attrib::TexCoord4", "Attrib::TexCoord5", "Attrib::TexCoord6", "Attrib::TexCoord7", }; return attrName[_attr]; } void dump(const VertexDecl& _decl) { #if BGFX_CONFIG_DEBUG BX_TRACE("vertexdecl %08x (%08x), stride %d" , _decl.m_hash , hash(_decl.m_attributes, sizeof(_decl.m_attributes) ) , _decl.m_stride ); for (uint32_t attr = 0; attr < Attrib::Count; ++attr) { if (0xff != _decl.m_attributes[attr]) { uint8_t num; AttribType::Enum type; bool normalized; _decl.decode(Attrib::Enum(attr), num, type, normalized); BX_TRACE("\tattr %d - %s, num %d, type %d, norm %d, offset %d" , attr , getAttribName(Attrib::Enum(attr) ) , num , type , normalized , _decl.m_offset[attr] ); } } #else BX_UNUSED(_decl); #endif // BGFX_CONFIG_DEBUG } const uint32_t g_constantTypeSize[ConstantType::Count] = { sizeof(int32_t), sizeof(float), 0, 1*sizeof(int32_t), 1*sizeof(float), 2*sizeof(float), 3*sizeof(float), 4*sizeof(float), 3*3*sizeof(float), 4*4*sizeof(float), }; void ConstantBuffer::writeUniform(ConstantType::Enum _type, uint16_t _loc, const void* _value, uint16_t _num) { uint32_t opcode = encodeOpcode(_type, _loc, _num, true); write(opcode); write(_value, g_constantTypeSize[_type]*_num); } void ConstantBuffer::writeUniformRef(ConstantType::Enum _type, uint16_t _loc, const void* _value, uint16_t _num) { uint32_t opcode = encodeOpcode(_type, _loc, _num, false); write(opcode); write(&_value, sizeof(void*) ); } #if BX_PLATFORM_WINDOWS LRESULT CALLBACK Context::Window::wndProc(HWND _hwnd, UINT _id, WPARAM _wparam, LPARAM _lparam) { return s_ctx.m_window.process(_hwnd, _id, _wparam, _lparam); } #endif // BX_PLATFORM_WINDOWS void Context::init(bool _createRenderThread) { BX_TRACE("init"); m_submit->create(); m_render->create(); #if BX_PLATFORM_WINDOWS m_window.init(); #endif // BX_PLATFORM_ #if BGFX_CONFIG_MULTITHREADED m_renderThread = 0; if (_createRenderThread) { # if BX_PLATFORM_WINDOWS|BX_PLATFORM_XBOX360 m_renderThread = CreateThread(NULL, 16<<10, renderThread, NULL, 0, NULL); # elif BX_PLATFORM_LINUX pthread_create(&m_renderThread, NULL, renderThread, NULL); # endif // BX_PLATFORM_ } #else BX_UNUSED(_createRenderThread); #endif // BGFX_CONFIG_MULTITHREADED memset(m_rt, 0xff, sizeof(m_rt) ); memset(m_clear, 0, sizeof(m_clear) ); memset(m_rect, 0, sizeof(m_rect) ); memset(m_seq, 0, sizeof(m_seq) ); memset(m_seqMask, 0, sizeof(m_seqMask) ); for (uint32_t ii = 0; ii < countof(m_rect); ++ii) { m_rect[ii].m_width = 1; m_rect[ii].m_height = 1; } gameSemPost(); getCommandBuffer(CommandBuffer::RendererInit); m_textVideoMemBlitter.init(); m_clearQuad.init(); m_submit->m_transientVb = createTransientVertexBuffer(BGFX_CONFIG_TRANSIENT_VERTEX_BUFFER_SIZE); m_submit->m_transientIb = createTransientIndexBuffer(BGFX_CONFIG_TRANSIENT_INDEX_BUFFER_SIZE); frame(); m_submit->m_transientVb = createTransientVertexBuffer(BGFX_CONFIG_TRANSIENT_VERTEX_BUFFER_SIZE); m_submit->m_transientIb = createTransientIndexBuffer(BGFX_CONFIG_TRANSIENT_INDEX_BUFFER_SIZE); frame(); } void Context::shutdown() { BX_TRACE("shutdown"); getCommandBuffer(CommandBuffer::RendererShutdown); frame(); #if BGFX_CONFIG_MULTITHREADED if (0 != m_renderThread) { # if BX_PLATFORM_WINDOWS|BX_PLATFORM_XBOX360 WaitForSingleObject(m_renderThread, INFINITE); m_renderThread = NULL; # elif BX_PLATFORM_LINUX pthread_join(m_renderThread, NULL); m_renderThread = 0; # endif // BX_PLATFORM_* } #endif // BGFX_CONFIG_MULTITHREADED m_submit->destroy(); m_render->destroy(); } #if BX_PLATFORM_WINDOWS|BX_PLATFORM_XBOX360 DWORD WINAPI renderThread(LPVOID) #else void* renderThread(void*) #endif // BX_PLATFORM_WINDOWS { while (!renderFrame() ); return EXIT_SUCCESS; } const Memory* alloc(uint32_t _size) { Memory* mem = (Memory*)g_realloc(NULL, sizeof(Memory) + _size); mem->size = _size; mem->data = (uint8_t*)mem + sizeof(Memory); return mem; } const Memory* makeRef(const void* _data, uint32_t _size) { Memory* mem = (Memory*)g_realloc(NULL, sizeof(Memory) ); mem->size = _size; mem->data = (uint8_t*)_data; return mem; } void release(const Memory* _mem) { g_free(const_cast(_mem) ); } void setDebug(uint32_t _debug) { s_ctx.m_debug = _debug; } void dbgTextClear(uint8_t _attr, bool _small) { s_ctx.dbgTextClear(_attr, _small); } void dbgTextPrintf(uint16_t _x, uint16_t _y, uint8_t _attr, const char* _format, ...) { va_list argList; va_start(argList, _format); s_ctx.dbgTextPrintfVargs(_x, _y, _attr, _format, argList); va_end(argList); } IndexBufferHandle createIndexBuffer(const Memory* _mem) { return s_ctx.createIndexBuffer(_mem); } void destroyIndexBuffer(IndexBufferHandle _handle) { s_ctx.destroyIndexBuffer(_handle); } VertexBufferHandle createVertexBuffer(const Memory* _mem, const VertexDecl& _decl) { return s_ctx.createVertexBuffer(_mem, _decl); } void destroyVertexBuffer(VertexBufferHandle _handle) { s_ctx.destroyVertexBuffer(_handle); } DynamicIndexBufferHandle createDynamicIndexBuffer(uint16_t _num) { return s_ctx.createDynamicIndexBuffer(_num); } DynamicIndexBufferHandle createDynamicIndexBuffer(const Memory* _mem) { return s_ctx.createDynamicIndexBuffer(_mem); } void updateDynamicIndexBuffer(DynamicIndexBufferHandle _handle, const Memory* _mem) { s_ctx.updateDynamicIndexBuffer(_handle, _mem); } void destroyDynamicIndexBuffer(DynamicIndexBufferHandle _handle) { s_ctx.destroyDynamicIndexBuffer(_handle); } DynamicVertexBufferHandle createDynamicVertexBuffer(uint16_t _num, const VertexDecl& _decl) { return s_ctx.createDynamicVertexBuffer(_num, _decl); } DynamicVertexBufferHandle createDynamicVertexBuffer(const Memory* _mem, const VertexDecl& _decl) { return s_ctx.createDynamicVertexBuffer(_mem, _decl); } void updateDynamicVertexBuffer(DynamicVertexBufferHandle _handle, const Memory* _mem) { s_ctx.updateDynamicVertexBuffer(_handle, _mem); } void destroyDynamicVertexBuffer(DynamicVertexBufferHandle _handle) { s_ctx.destroyDynamicVertexBuffer(_handle); } bool checkAvailTransientIndexBuffer(uint16_t _num) { return s_ctx.m_submit->checkAvailTransientIndexBuffer(_num); } const TransientIndexBuffer* allocTransientIndexBuffer(uint16_t _num) { return s_ctx.allocTransientIndexBuffer(_num); } bool checkAvailTransientVertexBuffer(uint16_t _num, const VertexDecl& _decl) { return s_ctx.m_submit->checkAvailTransientVertexBuffer(_num, _decl.m_stride); } const TransientVertexBuffer* allocTransientVertexBuffer(uint16_t _num, const VertexDecl& _decl) { return s_ctx.allocTransientVertexBuffer(_num, _decl); } const InstanceDataBuffer* allocInstanceDataBuffer(uint16_t _num, uint16_t _stride) { return s_ctx.allocInstanceDataBuffer(_num, _stride); } VertexShaderHandle createVertexShader(const Memory* _mem) { return s_ctx.createVertexShader(_mem); } void destroyVertexShader(VertexShaderHandle _handle) { s_ctx.destroyVertexShader(_handle); } FragmentShaderHandle createFragmentShader(const Memory* _mem) { return s_ctx.createFragmentShader(_mem); } void destroyFragmentShader(FragmentShaderHandle _handle) { s_ctx.destroyFragmentShader(_handle); } ProgramHandle createProgram(VertexShaderHandle _vsh, FragmentShaderHandle _fsh) { return s_ctx.createProgram(_vsh, _fsh); } void destroyProgram(ProgramHandle _handle) { s_ctx.destroyProgram(_handle); } TextureHandle createTexture(const Memory* _mem, uint32_t _flags, uint16_t* _width, uint16_t* _height) { return s_ctx.createTexture(_mem, _flags, _width, _height); } TextureHandle createTexture2D(uint16_t _width, uint16_t _height, uint8_t _numMips, TextureFormat::Enum _format, uint32_t _flags, const Memory* _mem) { uint32_t size = sizeof(uint32_t)+sizeof(TextureInfo); const bgfx::Memory* mem = alloc(size); StreamWrite stream(mem->data, mem->size); uint32_t magic = BGFX_MAGIC; stream.write(magic); TextureInfo ti; ti.m_flags = _flags; ti.m_width = _width; ti.m_height = _height; ti.m_depth = 0; ti.m_numMips = _numMips; ti.m_type = uint8_t(_format); ti.m_cubeMap = false; ti.m_mem = _mem; stream.write(ti); return s_ctx.createTexture(mem, _flags, NULL, NULL); } TextureHandle createTexture3D(uint16_t _width, uint16_t _height, uint16_t _depth, uint8_t _numMips, TextureFormat::Enum _format, uint32_t _flags, const Memory* _mem) { uint32_t size = sizeof(uint32_t)+sizeof(TextureInfo); const bgfx::Memory* mem = alloc(size); StreamWrite stream(mem->data, mem->size); uint32_t magic = BGFX_MAGIC; stream.write(magic); TextureInfo ti; ti.m_flags = _flags; ti.m_width = _width; ti.m_height = _height; ti.m_depth = _depth; ti.m_numMips = _numMips; ti.m_type = uint8_t(_format); ti.m_cubeMap = false; ti.m_mem = _mem; stream.write(ti); return s_ctx.createTexture(mem, _flags, NULL, NULL); } TextureHandle createTextureCube(uint16_t _sides, uint16_t _width, uint8_t _numMips, TextureFormat::Enum _format, uint32_t _flags, const Memory* _mem) { uint32_t size = sizeof(uint32_t)+sizeof(TextureInfo); const bgfx::Memory* mem = alloc(size); StreamWrite stream(mem->data, mem->size); uint32_t magic = BGFX_MAGIC; stream.write(magic); TextureInfo ti; ti.m_flags = _flags; ti.m_width = _width; ti.m_sides = _sides; ti.m_depth = 0; ti.m_numMips = _numMips; ti.m_type = uint8_t(_format); ti.m_cubeMap = true; ti.m_mem = _mem; stream.write(ti); return s_ctx.createTexture(mem, _flags, NULL, NULL); } void destroyTexture(TextureHandle _handle) { s_ctx.destroyTexture(_handle); } void updateTexture2D(TextureHandle _handle, uint8_t _mip, uint16_t _x, uint16_t _y, uint16_t _width, uint16_t _height, const Memory* _mem) { if (_width == 0 || _height == 0) { release(_mem); } else { s_ctx.updateTexture(_handle, 0, _mip, _x, _y, 0, _width, _height, 1, _mem); } } void updateTexture3D(TextureHandle _handle, uint8_t _mip, uint16_t _x, uint16_t _y, uint16_t _z, uint16_t _width, uint16_t _height, uint16_t _depth, const Memory* _mem) { if (_width == 0 || _height == 0 || _depth == 0) { release(_mem); } else { s_ctx.updateTexture(_handle, 0, _mip, _x, _y, _z, _width, _height, _depth, _mem); } } void updateTextureCube(TextureHandle _handle, uint8_t _side, uint8_t _mip, uint16_t _x, uint16_t _y, uint16_t _width, uint16_t _height, const Memory* _mem) { if (_width == 0 || _height == 0) { release(_mem); } else { s_ctx.updateTexture(_handle, _side, _mip, _x, _y, 0, _width, _height, 1, _mem); } } RenderTargetHandle createRenderTarget(uint16_t _width, uint16_t _height, uint32_t _flags, uint32_t _textureFlags) { return s_ctx.createRenderTarget(_width, _height, _flags, _textureFlags); } void destroyRenderTarget(RenderTargetHandle _handle) { s_ctx.destroyRenderTarget(_handle); } UniformHandle createUniform(const char* _name, ConstantType::Enum _type, uint16_t _num) { return s_ctx.createUniform(_name, _type, _num); } void destroyUniform(UniformHandle _handle) { s_ctx.destroyUniform(_handle); } void setViewRect(uint8_t _id, uint16_t _x, uint16_t _y, uint16_t _width, uint16_t _height) { s_ctx.setViewRect(_id, _x, _y, _width, _height); } void setViewRectMask(uint32_t _viewMask, uint16_t _x, uint16_t _y, uint16_t _width, uint16_t _height) { s_ctx.setViewRectMask(_viewMask, _x, _y, _width, _height); } void setViewClear(uint8_t _id, uint8_t _flags, uint32_t _rgba, float _depth, uint8_t _stencil) { s_ctx.setViewClear(_id, _flags, _rgba, _depth, _stencil); } void setViewClearMask(uint32_t _viewMask, uint8_t _flags, uint32_t _rgba, float _depth, uint8_t _stencil) { s_ctx.setViewClearMask(_viewMask, _flags, _rgba, _depth, _stencil); } void setViewSeq(uint8_t _id, bool _enabled) { s_ctx.setViewSeq(_id, _enabled); } void setViewSeqMask(uint32_t _viewMask, bool _enabled) { s_ctx.setViewSeqMask(_viewMask, _enabled); } void setViewRenderTarget(uint8_t _id, RenderTargetHandle _handle) { s_ctx.setViewRenderTarget(_id, _handle); } void setViewRenderTargetMask(uint32_t _mask, RenderTargetHandle _handle) { s_ctx.setViewRenderTargetMask(_mask, _handle); } void setViewTransform(uint8_t _id, const void* _view, const void* _proj, uint8_t _other) { s_ctx.m_submit->setViewTransform(_id, _view, _proj, _other); } void setViewTransformMask(uint32_t _viewMask, const void* _view, const void* _proj, uint8_t _other) { s_ctx.m_submit->setViewTransformMask(_viewMask, _view, _proj, _other); } void setState(uint64_t _state) { s_ctx.m_submit->setState(_state); } uint32_t setTransform(const void* _mtx, uint16_t _num) { return s_ctx.m_submit->setTransform(_mtx, _num); } void setTransform(uint32_t _cache, uint16_t _num) { s_ctx.m_submit->setTransform(_cache, _num); } void setUniform(UniformHandle _handle, const void* _value, uint16_t _num) { s_ctx.setUniform(_handle, _value, _num); } void setUniform(ProgramHandle _program, UniformHandle _handle, const void* _value) { s_ctx.setUniform(_program, _handle, _value); } void setIndexBuffer(IndexBufferHandle _handle, uint32_t _firstIndex, uint32_t _numIndices) { s_ctx.m_submit->setIndexBuffer(_handle, _firstIndex, _numIndices); } void setIndexBuffer(IndexBufferHandle _handle) { s_ctx.m_submit->setIndexBuffer(_handle, BGFX_DRAW_WHOLE_INDEX_BUFFER, 0); } void setIndexBuffer(DynamicIndexBufferHandle _handle, uint32_t _firstIndex, uint32_t _numIndices) { s_ctx.m_submit->setIndexBuffer(s_ctx.m_dynamicIndexBuffers[_handle.idx].m_handle, _firstIndex, _numIndices); } void setIndexBuffer(DynamicIndexBufferHandle _handle) { s_ctx.m_submit->setIndexBuffer(s_ctx.m_dynamicIndexBuffers[_handle.idx].m_handle, BGFX_DRAW_WHOLE_INDEX_BUFFER, 0); } void setIndexBuffer(const TransientIndexBuffer* _ib, uint32_t _numIndices) { uint32_t numIndices = uint32_min(_numIndices, _ib->size/2); s_ctx.m_submit->setIndexBuffer(_ib, numIndices); } void setVertexBuffer(VertexBufferHandle _handle, uint32_t _numVertices) { s_ctx.m_submit->setVertexBuffer(_handle, _numVertices); } void setVertexBuffer(DynamicVertexBufferHandle _handle, uint32_t _numVertices) { s_ctx.m_submit->setVertexBuffer(s_ctx.m_dynamicVertexBuffers[_handle.idx], _numVertices); } void setVertexBuffer(const TransientVertexBuffer* _vb, uint32_t _numVertices) { s_ctx.m_submit->setVertexBuffer(_vb, _numVertices); } void setInstanceDataBuffer(const InstanceDataBuffer* _idb) { s_ctx.m_submit->setInstanceDataBuffer(_idb); } void setProgram(ProgramHandle _handle) { s_ctx.m_submit->setProgram(_handle); } void setTexture(uint8_t _stage, UniformHandle _sampler, TextureHandle _handle) { s_ctx.m_submit->setTexture(_stage, _sampler, _handle); } void setTexture(uint8_t _stage, UniformHandle _sampler, RenderTargetHandle _handle, bool _depth) { s_ctx.m_submit->setTexture(_stage, _sampler, _handle, _depth); } void submit(uint8_t _id) { s_ctx.m_submit->submit(_id); } void submitMask(uint32_t _viewMask) { s_ctx.m_submit->submitMask(_viewMask); } void saveScreenShot(const char* _filePath) { uint32_t len = (uint32_t)strlen(_filePath)+1; const Memory* mem = alloc(len); memcpy(mem->data, _filePath, mem->size); return s_ctx.saveScreenShot(mem); } }