/* * Copyright 2011-2016 Branimir Karadzic. All rights reserved. * License: https://github.com/bkaradzic/bgfx#license-bsd-2-clause */ #include "shaderc.h" #if SHADERC_CONFIG_HLSL #define INITGUID #include #include #include #ifndef D3D_SVF_USED # define D3D_SVF_USED 2 #endif // D3D_SVF_USED namespace bgfx { typedef HRESULT(WINAPI* PFN_D3D_COMPILE)(_In_reads_bytes_(SrcDataSize) LPCVOID pSrcData , _In_ SIZE_T SrcDataSize , _In_opt_ LPCSTR pSourceName , _In_reads_opt_(_Inexpressible_(pDefines->Name != NULL)) CONST D3D_SHADER_MACRO* pDefines , _In_opt_ ID3DInclude* pInclude , _In_opt_ LPCSTR pEntrypoint , _In_ LPCSTR pTarget , _In_ UINT Flags1 , _In_ UINT Flags2 , _Out_ ID3DBlob** ppCode , _Always_(_Outptr_opt_result_maybenull_) ID3DBlob** ppErrorMsgs ); typedef HRESULT(WINAPI* PFN_D3D_DISASSEMBLE)(_In_reads_bytes_(SrcDataSize) LPCVOID pSrcData , _In_ SIZE_T SrcDataSize , _In_ UINT Flags , _In_opt_ LPCSTR szComments , _Out_ ID3DBlob** ppDisassembly ); typedef HRESULT(WINAPI* PFN_D3D_REFLECT)(_In_reads_bytes_(SrcDataSize) LPCVOID pSrcData , _In_ SIZE_T SrcDataSize , _In_ REFIID pInterface , _Out_ void** ppReflector ); typedef HRESULT(WINAPI* PFN_D3D_STRIP_SHADER)(_In_reads_bytes_(BytecodeLength) LPCVOID pShaderBytecode , _In_ SIZE_T BytecodeLength , _In_ UINT uStripFlags , _Out_ ID3DBlob** ppStrippedBlob ); PFN_D3D_COMPILE D3DCompile; PFN_D3D_DISASSEMBLE D3DDisassemble; PFN_D3D_REFLECT D3DReflect; PFN_D3D_STRIP_SHADER D3DStripShader; struct CTHeader { uint32_t Size; uint32_t Creator; uint32_t Version; uint32_t Constants; uint32_t ConstantInfo; uint32_t Flags; uint32_t Target; }; struct CTInfo { uint32_t Name; uint16_t RegisterSet; uint16_t RegisterIndex; uint16_t RegisterCount; uint16_t Reserved; uint32_t TypeInfo; uint32_t DefaultValue; }; struct CTType { uint16_t Class; uint16_t Type; uint16_t Rows; uint16_t Columns; uint16_t Elements; uint16_t StructMembers; uint32_t StructMemberInfo; }; struct RemapInputSemantic { bgfx::Attrib::Enum m_attr; const char* m_name; uint8_t m_index; }; static const RemapInputSemantic s_remapInputSemantic[bgfx::Attrib::Count + 1] = { { bgfx::Attrib::Position, "POSITION", 0 }, { bgfx::Attrib::Normal, "NORMAL", 0 }, { bgfx::Attrib::Tangent, "TANGENT", 0 }, { bgfx::Attrib::Bitangent, "BITANGENT", 0 }, { bgfx::Attrib::Color0, "COLOR", 0 }, { bgfx::Attrib::Color1, "COLOR", 1 }, { bgfx::Attrib::Indices, "BLENDINDICES", 0 }, { bgfx::Attrib::Weight, "BLENDWEIGHT", 0 }, { bgfx::Attrib::TexCoord0, "TEXCOORD", 0 }, { bgfx::Attrib::TexCoord1, "TEXCOORD", 1 }, { bgfx::Attrib::TexCoord2, "TEXCOORD", 2 }, { bgfx::Attrib::TexCoord3, "TEXCOORD", 3 }, { bgfx::Attrib::TexCoord4, "TEXCOORD", 4 }, { bgfx::Attrib::TexCoord5, "TEXCOORD", 5 }, { bgfx::Attrib::TexCoord6, "TEXCOORD", 6 }, { bgfx::Attrib::TexCoord7, "TEXCOORD", 7 }, { bgfx::Attrib::Count, "", 0 }, }; const RemapInputSemantic& findInputSemantic(const char* _name, uint8_t _index) { for (uint32_t ii = 0; ii < bgfx::Attrib::Count; ++ii) { const RemapInputSemantic& ris = s_remapInputSemantic[ii]; if (0 == strcmp(ris.m_name, _name) && ris.m_index == _index) { return ris; } } return s_remapInputSemantic[bgfx::Attrib::Count]; } struct UniformRemap { UniformType::Enum id; D3D_SHADER_VARIABLE_CLASS paramClass; D3D_SHADER_VARIABLE_TYPE paramType; uint8_t columns; uint8_t rows; }; static const UniformRemap s_uniformRemap[] = { { UniformType::Int1, D3D_SVC_SCALAR, D3D_SVT_INT, 0, 0 }, { UniformType::Vec4, D3D_SVC_VECTOR, D3D_SVT_FLOAT, 0, 0 }, { UniformType::Mat3, D3D_SVC_MATRIX_COLUMNS, D3D_SVT_FLOAT, 3, 3 }, { UniformType::Mat4, D3D_SVC_MATRIX_COLUMNS, D3D_SVT_FLOAT, 4, 4 }, { UniformType::Int1, D3D_SVC_OBJECT, D3D_SVT_SAMPLER, 0, 0 }, { UniformType::Int1, D3D_SVC_OBJECT, D3D_SVT_SAMPLER2D, 0, 0 }, { UniformType::Int1, D3D_SVC_OBJECT, D3D_SVT_SAMPLER3D, 0, 0 }, { UniformType::Int1, D3D_SVC_OBJECT, D3D_SVT_SAMPLERCUBE, 0, 0 }, }; UniformType::Enum findUniformType(const D3D11_SHADER_TYPE_DESC& constDesc) { for (uint32_t ii = 0; ii < BX_COUNTOF(s_uniformRemap); ++ii) { const UniformRemap& remap = s_uniformRemap[ii]; if (remap.paramClass == constDesc.Class && remap.paramType == constDesc.Type) { if (D3D_SVC_MATRIX_COLUMNS != constDesc.Class) { return remap.id; } if (remap.columns == constDesc.Columns && remap.rows == constDesc.Rows) { return remap.id; } } } return UniformType::Count; } static uint32_t s_optimizationLevelD3D11[4] = { D3DCOMPILE_OPTIMIZATION_LEVEL0, D3DCOMPILE_OPTIMIZATION_LEVEL1, D3DCOMPILE_OPTIMIZATION_LEVEL2, D3DCOMPILE_OPTIMIZATION_LEVEL3, }; typedef std::vector UniformNameList; static bool isSampler(D3D_SHADER_VARIABLE_TYPE _svt) { switch (_svt) { case D3D_SVT_SAMPLER: case D3D_SVT_SAMPLER1D: case D3D_SVT_SAMPLER2D: case D3D_SVT_SAMPLER3D: case D3D_SVT_SAMPLERCUBE: return true; default: break; } return false; } bool getReflectionDataD3D9(ID3DBlob* _code, UniformArray& _uniforms) { // see reference for magic values: https://msdn.microsoft.com/en-us/library/ff552891(VS.85).aspx const uint32_t D3DSIO_COMMENT = 0x0000FFFE; const uint32_t D3DSIO_END = 0x0000FFFF; const uint32_t D3DSI_OPCODE_MASK = 0x0000FFFF; const uint32_t D3DSI_COMMENTSIZE_MASK = 0x7FFF0000; const uint32_t CTAB_CONSTANT = MAKEFOURCC('C', 'T', 'A', 'B'); // parse the shader blob for the constant table const size_t codeSize = _code->GetBufferSize(); const uint32_t* ptr = (const uint32_t*)_code->GetBufferPointer(); const uint32_t* end = (const uint32_t*)((const uint8_t*)ptr + codeSize); const CTHeader* header = NULL; ptr++; // first byte is shader type / version; skip it since we already know while (ptr < end && *ptr != D3DSIO_END) { uint32_t cur = *ptr++; if ((cur & D3DSI_OPCODE_MASK) != D3DSIO_COMMENT) { continue; } // try to find CTAB comment block uint32_t commentSize = (cur & D3DSI_COMMENTSIZE_MASK) >> 16; uint32_t fourcc = *ptr; if (fourcc == CTAB_CONSTANT) { // found the constant table data header = (const CTHeader*)(ptr + 1); uint32_t tableSize = (commentSize - 1) * 4; if (tableSize < sizeof(CTHeader) || header->Size != sizeof(CTHeader)) { fprintf(stderr, "Error: Invalid constant table data\n"); return false; } break; } // this is a different kind of comment section, so skip over it ptr += commentSize - 1; } if (!header) { fprintf(stderr, "Error: Could not find constant table data\n"); return false; } const uint8_t* headerBytePtr = (const uint8_t*)header; const char* creator = (const char*)(headerBytePtr + header->Creator); BX_TRACE("Creator: %s 0x%08x", creator, header->Version); BX_TRACE("Num constants: %d", header->Constants); BX_TRACE("# cl ty RxC S By Name"); const CTInfo* ctInfoArray = (const CTInfo*)(headerBytePtr + header->ConstantInfo); for (uint32_t ii = 0; ii < header->Constants; ++ii) { const CTInfo& ctInfo = ctInfoArray[ii]; const CTType& ctType = *(const CTType*)(headerBytePtr + ctInfo.TypeInfo); const char* name = (const char*)(headerBytePtr + ctInfo.Name); BX_TRACE("%3d %2d %2d [%dx%d] %d %s[%d] c%d (%d)" , ii , ctType.Class , ctType.Type , ctType.Rows , ctType.Columns , ctType.StructMembers , name , ctType.Elements , ctInfo.RegisterIndex , ctInfo.RegisterCount ); D3D11_SHADER_TYPE_DESC desc; desc.Class = (D3D_SHADER_VARIABLE_CLASS)ctType.Class; desc.Type = (D3D_SHADER_VARIABLE_TYPE)ctType.Type; desc.Rows = ctType.Rows; desc.Columns = ctType.Columns; UniformType::Enum type = findUniformType(desc); if (UniformType::Count != type) { Uniform un; un.name = '$' == name[0] ? name + 1 : name; un.type = isSampler(desc.Type) ? UniformType::Enum(BGFX_UNIFORM_SAMPLERBIT | type) : type ; un.num = (uint8_t)ctType.Elements; un.regIndex = ctInfo.RegisterIndex; un.regCount = ctInfo.RegisterCount; _uniforms.push_back(un); } } return true; } bool getReflectionDataD3D11(ID3DBlob* _code, bool _vshader, UniformArray& _uniforms, uint8_t& _numAttrs, uint16_t* _attrs, uint16_t& _size, UniformNameList& unusedUniforms) { ID3D11ShaderReflection* reflect = NULL; HRESULT hr = D3DReflect(_code->GetBufferPointer() , _code->GetBufferSize() , IID_ID3D11ShaderReflection , (void**)&reflect ); if (FAILED(hr)) { fprintf(stderr, "Error: D3DReflect failed 0x%08x\n", (uint32_t)hr); return false; } D3D11_SHADER_DESC desc; hr = reflect->GetDesc(&desc); if (FAILED(hr)) { fprintf(stderr, "Error: ID3D11ShaderReflection::GetDesc failed 0x%08x\n", (uint32_t)hr); return false; } BX_TRACE("Creator: %s 0x%08x", desc.Creator, desc.Version); BX_TRACE("Num constant buffers: %d", desc.ConstantBuffers); BX_TRACE("Input:"); if (_vshader) // Only care about input semantic on vertex shaders { for (uint32_t ii = 0; ii < desc.InputParameters; ++ii) { D3D11_SIGNATURE_PARAMETER_DESC spd; reflect->GetInputParameterDesc(ii, &spd); BX_TRACE("\t%2d: %s%d, vt %d, ct %d, mask %x, reg %d" , ii , spd.SemanticName , spd.SemanticIndex , spd.SystemValueType , spd.ComponentType , spd.Mask , spd.Register ); const RemapInputSemantic& ris = findInputSemantic(spd.SemanticName, spd.SemanticIndex); if (ris.m_attr != bgfx::Attrib::Count) { _attrs[_numAttrs] = bgfx::attribToId(ris.m_attr); ++_numAttrs; } } } BX_TRACE("Output:"); for (uint32_t ii = 0; ii < desc.OutputParameters; ++ii) { D3D11_SIGNATURE_PARAMETER_DESC spd; reflect->GetOutputParameterDesc(ii, &spd); BX_TRACE("\t%2d: %s%d, %d, %d", ii, spd.SemanticName, spd.SemanticIndex, spd.SystemValueType, spd.ComponentType); } for (uint32_t ii = 0, num = bx::uint32_min(1, desc.ConstantBuffers); ii < num; ++ii) { ID3D11ShaderReflectionConstantBuffer* cbuffer = reflect->GetConstantBufferByIndex(ii); D3D11_SHADER_BUFFER_DESC bufferDesc; hr = cbuffer->GetDesc(&bufferDesc); _size = (uint16_t)bufferDesc.Size; if (SUCCEEDED(hr)) { BX_TRACE("%s, %d, vars %d, size %d" , bufferDesc.Name , bufferDesc.Type , bufferDesc.Variables , bufferDesc.Size ); for (uint32_t jj = 0; jj < bufferDesc.Variables; ++jj) { ID3D11ShaderReflectionVariable* var = cbuffer->GetVariableByIndex(jj); ID3D11ShaderReflectionType* type = var->GetType(); D3D11_SHADER_VARIABLE_DESC varDesc; hr = var->GetDesc(&varDesc); if (SUCCEEDED(hr)) { D3D11_SHADER_TYPE_DESC constDesc; hr = type->GetDesc(&constDesc); if (SUCCEEDED(hr)) { UniformType::Enum uniformType = findUniformType(constDesc); if (UniformType::Count != uniformType && 0 != (varDesc.uFlags & D3D_SVF_USED)) { Uniform un; un.name = varDesc.Name; un.type = uniformType; un.num = constDesc.Elements; un.regIndex = varDesc.StartOffset; un.regCount = BX_ALIGN_16(varDesc.Size) / 16; _uniforms.push_back(un); BX_TRACE("\t%s, %d, size %d, flags 0x%08x, %d (used)" , varDesc.Name , varDesc.StartOffset , varDesc.Size , varDesc.uFlags , uniformType ); } else { if (0 == (varDesc.uFlags & D3D_SVF_USED)) { unusedUniforms.push_back(varDesc.Name); } BX_TRACE("\t%s, unknown type", varDesc.Name); } } } } } } BX_TRACE("Bound:"); for (uint32_t ii = 0; ii < desc.BoundResources; ++ii) { D3D11_SHADER_INPUT_BIND_DESC bindDesc; hr = reflect->GetResourceBindingDesc(ii, &bindDesc); if (SUCCEEDED(hr)) { if (D3D_SIT_SAMPLER == bindDesc.Type) { BX_TRACE("\t%s, %d, %d, %d" , bindDesc.Name , bindDesc.Type , bindDesc.BindPoint , bindDesc.BindCount ); const char * end = strstr(bindDesc.Name, "Sampler"); if (NULL != end) { Uniform un; un.name.assign(bindDesc.Name, (end - bindDesc.Name)); un.type = UniformType::Enum(BGFX_UNIFORM_SAMPLERBIT | UniformType::Int1); un.num = 1; un.regIndex = bindDesc.BindPoint; un.regCount = bindDesc.BindCount; _uniforms.push_back(un); } } } } if (NULL != reflect) { reflect->Release(); } return true; } bool compileHLSLShader(bx::CommandLine& _cmdLine, uint32_t _d3d, const std::string& _code, bx::WriterI* _writer, bool _firstPass) { const char* profile = _cmdLine.findOption('p', "profile"); if (NULL == profile) { fprintf(stderr, "Error: Shader profile must be specified.\n"); return false; } void* d3dcompilerdll = bx::dlopen("D3DCompiler_47.dll"); if (NULL == d3dcompilerdll) { fprintf(stderr, "Error: Unable to open D3DCompiler_47.dll shader compiler.\n"); return false; } D3DCompile = (PFN_D3D_COMPILE )bx::dlsym(d3dcompilerdll, "D3DCompile"); D3DDisassemble = (PFN_D3D_DISASSEMBLE )bx::dlsym(d3dcompilerdll, "D3DDisassemble"); D3DReflect = (PFN_D3D_REFLECT )bx::dlsym(d3dcompilerdll, "D3DReflect"); D3DStripShader = (PFN_D3D_STRIP_SHADER)bx::dlsym(d3dcompilerdll, "D3DStripShader"); if (NULL == D3DCompile || NULL == D3DDisassemble || NULL == D3DReflect || NULL == D3DStripShader) { bx::dlclose(d3dcompilerdll); return false; } bool result = false; bool debug = _cmdLine.hasArg('\0', "debug"); uint32_t flags = D3DCOMPILE_ENABLE_BACKWARDS_COMPATIBILITY; flags |= debug ? D3DCOMPILE_DEBUG : 0; flags |= _cmdLine.hasArg('\0', "avoid-flow-control") ? D3DCOMPILE_AVOID_FLOW_CONTROL : 0; flags |= _cmdLine.hasArg('\0', "no-preshader") ? D3DCOMPILE_NO_PRESHADER : 0; flags |= _cmdLine.hasArg('\0', "partial-precision") ? D3DCOMPILE_PARTIAL_PRECISION : 0; flags |= _cmdLine.hasArg('\0', "prefer-flow-control") ? D3DCOMPILE_PREFER_FLOW_CONTROL : 0; flags |= _cmdLine.hasArg('\0', "backwards-compatibility") ? D3DCOMPILE_ENABLE_BACKWARDS_COMPATIBILITY : 0; bool werror = _cmdLine.hasArg('\0', "Werror"); if (werror) { flags |= D3DCOMPILE_WARNINGS_ARE_ERRORS; } uint32_t optimization = 3; if (_cmdLine.hasArg(optimization, 'O')) { optimization = bx::uint32_min(optimization, BX_COUNTOF(s_optimizationLevelD3D11) - 1); flags |= s_optimizationLevelD3D11[optimization]; } else { flags |= D3DCOMPILE_SKIP_OPTIMIZATION; } BX_TRACE("Profile: %s", profile); BX_TRACE("Flags: 0x%08x", flags); ID3DBlob* code; ID3DBlob* errorMsg; // Output preprocessed shader so that HLSL can be debugged via GPA // or PIX. Compiling through memory won't embed preprocessed shader // file path. std::string hlslfp; if (debug) { hlslfp = _cmdLine.findOption('o'); hlslfp += ".hlsl"; writeFile(hlslfp.c_str(), _code.c_str(), (int32_t)_code.size()); } HRESULT hr = D3DCompile(_code.c_str() , _code.size() , hlslfp.c_str() , NULL , NULL , "main" , profile , flags , 0 , &code , &errorMsg ); if (FAILED(hr) || (werror && NULL != errorMsg)) { const char* log = (char*)errorMsg->GetBufferPointer(); int32_t line = 0; int32_t column = 0; int32_t start = 0; int32_t end = INT32_MAX; if (2 == sscanf(log, "(%u,%u):", &line, &column) && 0 != line) { start = bx::uint32_imax(1, line - 10); end = start + 20; } printCode(_code.c_str(), line, start, end); fprintf(stderr, "Error: D3DCompile failed 0x%08x %s\n", (uint32_t)hr, log); errorMsg->Release(); return false; } UniformArray uniforms; uint8_t numAttrs = 0; uint16_t attrs[bgfx::Attrib::Count]; uint16_t size = 0; if (_d3d == 9) { if (!getReflectionDataD3D9(code, uniforms)) { fprintf(stderr, "Error: Unable to get D3D9 reflection data.\n"); goto error; } } else { UniformNameList unusedUniforms; if (!getReflectionDataD3D11(code, profile[0] == 'v', uniforms, numAttrs, attrs, size, unusedUniforms) ) { fprintf(stderr, "Unable to get D3D11 reflection data.\n"); goto error; } if (_firstPass && unusedUniforms.size() > 0) { const size_t strLength = strlen("uniform"); // first time through, we just find unused uniforms and get rid of them std::string output; LineReader reader(_code.c_str()); while (!reader.isEof()) { std::string line = reader.getLine(); for (UniformNameList::iterator it = unusedUniforms.begin(), itEnd = unusedUniforms.end(); it != itEnd; ++it) { size_t index = line.find("uniform "); if (index == std::string::npos) { continue; } // matching lines like: uniform u_name; // we want to replace "uniform" with "static" so that it's no longer // included in the uniform blob that the application must upload // we can't just remove them, because unused functions might still reference // them and cause a compile error when they're gone if (!!bx::findIdentifierMatch(line.c_str(), it->c_str())) { line = line.replace(index, strLength, "static"); unusedUniforms.erase(it); break; } } output += line; } // recompile with the unused uniforms converted to statics return compileHLSLShader(_cmdLine, _d3d, output.c_str(), _writer, false); } } { uint16_t count = (uint16_t)uniforms.size(); bx::write(_writer, count); uint32_t fragmentBit = profile[0] == 'p' ? BGFX_UNIFORM_FRAGMENTBIT : 0; for (UniformArray::const_iterator it = uniforms.begin(); it != uniforms.end(); ++it) { const Uniform& un = *it; uint8_t nameSize = (uint8_t)un.name.size(); bx::write(_writer, nameSize); bx::write(_writer, un.name.c_str(), nameSize); uint8_t type = un.type | fragmentBit; bx::write(_writer, type); bx::write(_writer, un.num); bx::write(_writer, un.regIndex); bx::write(_writer, un.regCount); BX_TRACE("%s, %s, %d, %d, %d" , un.name.c_str() , getUniformTypeName(un.type) , un.num , un.regIndex , un.regCount ); } } { ID3DBlob* stripped; hr = D3DStripShader(code->GetBufferPointer() , code->GetBufferSize() , D3DCOMPILER_STRIP_REFLECTION_DATA | D3DCOMPILER_STRIP_TEST_BLOBS , &stripped ); if (SUCCEEDED(hr)) { code->Release(); code = stripped; } } { uint16_t shaderSize = (uint16_t)code->GetBufferSize(); bx::write(_writer, shaderSize); bx::write(_writer, code->GetBufferPointer(), shaderSize); uint8_t nul = 0; bx::write(_writer, nul); } if (_d3d > 9) { bx::write(_writer, numAttrs); bx::write(_writer, attrs, numAttrs*sizeof(uint16_t)); bx::write(_writer, size); } if (_cmdLine.hasArg('\0', "disasm")) { ID3DBlob* disasm; D3DDisassemble(code->GetBufferPointer() , code->GetBufferSize() , 0 , NULL , &disasm ); if (NULL != disasm) { std::string disasmfp = _cmdLine.findOption('o'); disasmfp += ".disasm"; writeFile(disasmfp.c_str(), disasm->GetBufferPointer(), (uint32_t)disasm->GetBufferSize()); disasm->Release(); } } if (NULL != errorMsg) { errorMsg->Release(); } result = true; error: code->Release(); bx::dlclose(d3dcompilerdll); return result; } } // namespace bgfx #else namespace bgfx { bool compileHLSLShader(bx::CommandLine& _cmdLine, uint32_t _d3d, const std::string& _code, bx::WriterI* _writer, bool _firstPass) { BX_UNUSED(_cmdLine, _d3d, _code, _writer, _firstPass); fprintf(stderr, "HLSL compiler is not supported on this platform.\n"); return false; } } // namespace bgfx #endif // SHADERC_CONFIG_HLSL