/* * Copyright 2011-2015 Branimir Karadzic. All rights reserved. * License: http://www.opensource.org/licenses/BSD-2-Clause */ #include "bgfx_p.h" #if BGFX_CONFIG_RENDERER_DIRECT3D11 # include "renderer_d3d11.h" namespace bgfx { namespace d3d11 { static wchar_t s_viewNameW[BGFX_CONFIG_MAX_VIEWS][BGFX_CONFIG_MAX_VIEW_NAME]; struct PrimInfo { D3D11_PRIMITIVE_TOPOLOGY m_type; uint32_t m_min; uint32_t m_div; uint32_t m_sub; }; static const PrimInfo s_primInfo[] = { { D3D11_PRIMITIVE_TOPOLOGY_TRIANGLELIST, 3, 3, 0 }, { D3D11_PRIMITIVE_TOPOLOGY_TRIANGLESTRIP, 3, 1, 2 }, { D3D11_PRIMITIVE_TOPOLOGY_LINELIST, 2, 2, 0 }, { D3D11_PRIMITIVE_TOPOLOGY_LINESTRIP, 2, 1, 1 }, { D3D11_PRIMITIVE_TOPOLOGY_POINTLIST, 1, 1, 0 }, { D3D11_PRIMITIVE_TOPOLOGY_UNDEFINED, 0, 0, 0 }, }; static const char* s_primName[] = { "TriList", "TriStrip", "Line", "LineStrip", "Point", }; BX_STATIC_ASSERT(BX_COUNTOF(s_primInfo) == BX_COUNTOF(s_primName)+1); union Zero { ID3D11Buffer* m_buffer[D3D11_IA_VERTEX_INPUT_RESOURCE_SLOT_COUNT]; ID3D11UnorderedAccessView* m_uav[D3D11_PS_CS_UAV_REGISTER_COUNT]; ID3D11ShaderResourceView* m_srv[D3D11_COMMONSHADER_INPUT_RESOURCE_SLOT_COUNT]; ID3D11SamplerState* m_sampler[D3D11_COMMONSHADER_SAMPLER_SLOT_COUNT]; uint32_t m_zero[D3D11_IA_VERTEX_INPUT_RESOURCE_SLOT_COUNT]; }; static Zero s_zero; static const uint32_t s_checkMsaa[] = { 0, 2, 4, 8, 16, }; static DXGI_SAMPLE_DESC s_msaa[] = { { 1, 0 }, { 2, 0 }, { 4, 0 }, { 8, 0 }, { 16, 0 }, }; static const D3D11_BLEND s_blendFactor[][2] = { { (D3D11_BLEND)0, (D3D11_BLEND)0 }, // ignored { D3D11_BLEND_ZERO, D3D11_BLEND_ZERO }, // ZERO { D3D11_BLEND_ONE, D3D11_BLEND_ONE }, // ONE { D3D11_BLEND_SRC_COLOR, D3D11_BLEND_SRC_ALPHA }, // SRC_COLOR { D3D11_BLEND_INV_SRC_COLOR, D3D11_BLEND_INV_SRC_ALPHA }, // INV_SRC_COLOR { D3D11_BLEND_SRC_ALPHA, D3D11_BLEND_SRC_ALPHA }, // SRC_ALPHA { D3D11_BLEND_INV_SRC_ALPHA, D3D11_BLEND_INV_SRC_ALPHA }, // INV_SRC_ALPHA { D3D11_BLEND_DEST_ALPHA, D3D11_BLEND_DEST_ALPHA }, // DST_ALPHA { D3D11_BLEND_INV_DEST_ALPHA, D3D11_BLEND_INV_DEST_ALPHA }, // INV_DST_ALPHA { D3D11_BLEND_DEST_COLOR, D3D11_BLEND_DEST_ALPHA }, // DST_COLOR { D3D11_BLEND_INV_DEST_COLOR, D3D11_BLEND_INV_DEST_ALPHA }, // INV_DST_COLOR { D3D11_BLEND_SRC_ALPHA_SAT, D3D11_BLEND_ONE }, // SRC_ALPHA_SAT { D3D11_BLEND_BLEND_FACTOR, D3D11_BLEND_BLEND_FACTOR }, // FACTOR { D3D11_BLEND_INV_BLEND_FACTOR, D3D11_BLEND_INV_BLEND_FACTOR }, // INV_FACTOR }; static const D3D11_BLEND_OP s_blendEquation[] = { D3D11_BLEND_OP_ADD, D3D11_BLEND_OP_SUBTRACT, D3D11_BLEND_OP_REV_SUBTRACT, D3D11_BLEND_OP_MIN, D3D11_BLEND_OP_MAX, }; static const D3D11_COMPARISON_FUNC s_cmpFunc[] = { D3D11_COMPARISON_FUNC(0), // ignored D3D11_COMPARISON_LESS, D3D11_COMPARISON_LESS_EQUAL, D3D11_COMPARISON_EQUAL, D3D11_COMPARISON_GREATER_EQUAL, D3D11_COMPARISON_GREATER, D3D11_COMPARISON_NOT_EQUAL, D3D11_COMPARISON_NEVER, D3D11_COMPARISON_ALWAYS, }; static const D3D11_STENCIL_OP s_stencilOp[] = { D3D11_STENCIL_OP_ZERO, D3D11_STENCIL_OP_KEEP, D3D11_STENCIL_OP_REPLACE, D3D11_STENCIL_OP_INCR, D3D11_STENCIL_OP_INCR_SAT, D3D11_STENCIL_OP_DECR, D3D11_STENCIL_OP_DECR_SAT, D3D11_STENCIL_OP_INVERT, }; static const D3D11_CULL_MODE s_cullMode[] = { D3D11_CULL_NONE, D3D11_CULL_FRONT, D3D11_CULL_BACK, }; static const D3D11_TEXTURE_ADDRESS_MODE s_textureAddress[] = { D3D11_TEXTURE_ADDRESS_WRAP, D3D11_TEXTURE_ADDRESS_MIRROR, D3D11_TEXTURE_ADDRESS_CLAMP, }; /* * D3D11_FILTER_MIN_MAG_MIP_POINT = 0x00, * D3D11_FILTER_MIN_MAG_POINT_MIP_LINEAR = 0x01, * D3D11_FILTER_MIN_POINT_MAG_LINEAR_MIP_POINT = 0x04, * D3D11_FILTER_MIN_POINT_MAG_MIP_LINEAR = 0x05, * D3D11_FILTER_MIN_LINEAR_MAG_MIP_POINT = 0x10, * D3D11_FILTER_MIN_LINEAR_MAG_POINT_MIP_LINEAR = 0x11, * D3D11_FILTER_MIN_MAG_LINEAR_MIP_POINT = 0x14, * D3D11_FILTER_MIN_MAG_MIP_LINEAR = 0x15, * D3D11_FILTER_ANISOTROPIC = 0x55, * * D3D11_COMPARISON_FILTERING_BIT = 0x80, * D3D11_ANISOTROPIC_FILTERING_BIT = 0x40, * * According to D3D11_FILTER enum bits for mip, mag and mip are: * 0x10 // MIN_LINEAR * 0x04 // MAG_LINEAR * 0x01 // MIP_LINEAR */ static const uint8_t s_textureFilter[3][3] = { { 0x10, // min linear 0x00, // min point 0x55, // anisotropic }, { 0x04, // mag linear 0x00, // mag point 0x55, // anisotropic }, { 0x01, // mip linear 0x00, // mip point 0x55, // anisotropic }, }; struct TextureFormatInfo { DXGI_FORMAT m_fmt; DXGI_FORMAT m_fmtSrv; DXGI_FORMAT m_fmtDsv; }; static const TextureFormatInfo s_textureFormat[] = { { DXGI_FORMAT_BC1_UNORM, DXGI_FORMAT_BC1_UNORM, DXGI_FORMAT_UNKNOWN }, // BC1 { DXGI_FORMAT_BC2_UNORM, DXGI_FORMAT_BC2_UNORM, DXGI_FORMAT_UNKNOWN }, // BC2 { DXGI_FORMAT_BC3_UNORM, DXGI_FORMAT_BC3_UNORM, DXGI_FORMAT_UNKNOWN }, // BC3 { DXGI_FORMAT_BC4_UNORM, DXGI_FORMAT_BC4_UNORM, DXGI_FORMAT_UNKNOWN }, // BC4 { DXGI_FORMAT_BC5_UNORM, DXGI_FORMAT_BC5_UNORM, DXGI_FORMAT_UNKNOWN }, // BC5 { DXGI_FORMAT_BC6H_SF16, DXGI_FORMAT_BC6H_SF16, DXGI_FORMAT_UNKNOWN }, // BC6H { DXGI_FORMAT_BC7_UNORM, DXGI_FORMAT_BC7_UNORM, DXGI_FORMAT_UNKNOWN }, // BC7 { DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // ETC1 { DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // ETC2 { DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // ETC2A { DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // ETC2A1 { DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // PTC12 { DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // PTC14 { DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // PTC12A { DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // PTC14A { DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // PTC22 { DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // PTC24 { DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // Unknown { DXGI_FORMAT_R1_UNORM, DXGI_FORMAT_R1_UNORM, DXGI_FORMAT_UNKNOWN }, // R1 { DXGI_FORMAT_R8_UNORM, DXGI_FORMAT_R8_UNORM, DXGI_FORMAT_UNKNOWN }, // R8 { DXGI_FORMAT_R16_UINT, DXGI_FORMAT_R16_UINT, DXGI_FORMAT_UNKNOWN }, // R16 { DXGI_FORMAT_R16_FLOAT, DXGI_FORMAT_R16_FLOAT, DXGI_FORMAT_UNKNOWN }, // R16F { DXGI_FORMAT_R32_UINT, DXGI_FORMAT_R32_UINT, DXGI_FORMAT_UNKNOWN }, // R32 { DXGI_FORMAT_R32_FLOAT, DXGI_FORMAT_R32_FLOAT, DXGI_FORMAT_UNKNOWN }, // R32F { DXGI_FORMAT_R8G8_UNORM, DXGI_FORMAT_R8G8_UNORM, DXGI_FORMAT_UNKNOWN }, // RG8 { DXGI_FORMAT_R16G16_UNORM, DXGI_FORMAT_R16G16_UNORM, DXGI_FORMAT_UNKNOWN }, // RG16 { DXGI_FORMAT_R16G16_FLOAT, DXGI_FORMAT_R16G16_FLOAT, DXGI_FORMAT_UNKNOWN }, // RG16F { DXGI_FORMAT_R32G32_UINT, DXGI_FORMAT_R32G32_UINT, DXGI_FORMAT_UNKNOWN }, // RG32 { DXGI_FORMAT_R32G32_FLOAT, DXGI_FORMAT_R32G32_FLOAT, DXGI_FORMAT_UNKNOWN }, // RG32F { DXGI_FORMAT_B8G8R8A8_UNORM, DXGI_FORMAT_B8G8R8A8_UNORM, DXGI_FORMAT_UNKNOWN }, // BGRA8 { DXGI_FORMAT_R8G8B8A8_UNORM, DXGI_FORMAT_R8G8B8A8_UNORM, DXGI_FORMAT_UNKNOWN }, // RGBA8 { DXGI_FORMAT_R16G16B16A16_UNORM, DXGI_FORMAT_R16G16B16A16_UNORM, DXGI_FORMAT_UNKNOWN }, // RGBA16 { DXGI_FORMAT_R16G16B16A16_FLOAT, DXGI_FORMAT_R16G16B16A16_FLOAT, DXGI_FORMAT_UNKNOWN }, // RGBA16F { DXGI_FORMAT_R32G32B32A32_UINT, DXGI_FORMAT_R32G32B32A32_UINT, DXGI_FORMAT_UNKNOWN }, // RGBA32 { DXGI_FORMAT_R32G32B32A32_FLOAT, DXGI_FORMAT_R32G32B32A32_FLOAT, DXGI_FORMAT_UNKNOWN }, // RGBA32F { DXGI_FORMAT_B5G6R5_UNORM, DXGI_FORMAT_B5G6R5_UNORM, DXGI_FORMAT_UNKNOWN }, // R5G6B5 { DXGI_FORMAT_B4G4R4A4_UNORM, DXGI_FORMAT_B4G4R4A4_UNORM, DXGI_FORMAT_UNKNOWN }, // RGBA4 { DXGI_FORMAT_B5G5R5A1_UNORM, DXGI_FORMAT_B5G5R5A1_UNORM, DXGI_FORMAT_UNKNOWN }, // RGB5A1 { DXGI_FORMAT_R10G10B10A2_UNORM, DXGI_FORMAT_R10G10B10A2_UNORM, DXGI_FORMAT_UNKNOWN }, // RGB10A2 { DXGI_FORMAT_R11G11B10_FLOAT, DXGI_FORMAT_R11G11B10_FLOAT, DXGI_FORMAT_UNKNOWN }, // R11G11B10F { DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // UnknownDepth { DXGI_FORMAT_R16_TYPELESS, DXGI_FORMAT_R16_UNORM, DXGI_FORMAT_D16_UNORM }, // D16 { DXGI_FORMAT_R24G8_TYPELESS, DXGI_FORMAT_R24_UNORM_X8_TYPELESS, DXGI_FORMAT_D24_UNORM_S8_UINT }, // D24 { DXGI_FORMAT_R24G8_TYPELESS, DXGI_FORMAT_R24_UNORM_X8_TYPELESS, DXGI_FORMAT_D24_UNORM_S8_UINT }, // D24S8 { DXGI_FORMAT_R24G8_TYPELESS, DXGI_FORMAT_R24_UNORM_X8_TYPELESS, DXGI_FORMAT_D24_UNORM_S8_UINT }, // D32 { DXGI_FORMAT_R32_TYPELESS, DXGI_FORMAT_R32_FLOAT, DXGI_FORMAT_D32_FLOAT }, // D16F { DXGI_FORMAT_R32_TYPELESS, DXGI_FORMAT_R32_FLOAT, DXGI_FORMAT_D32_FLOAT }, // D24F { DXGI_FORMAT_R32_TYPELESS, DXGI_FORMAT_R32_FLOAT, DXGI_FORMAT_D32_FLOAT }, // D32F { DXGI_FORMAT_R24G8_TYPELESS, DXGI_FORMAT_R24_UNORM_X8_TYPELESS, DXGI_FORMAT_D24_UNORM_S8_UINT }, // D0S8 }; BX_STATIC_ASSERT(TextureFormat::Count == BX_COUNTOF(s_textureFormat) ); static const D3D11_INPUT_ELEMENT_DESC s_attrib[] = { { "POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 }, { "NORMAL", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 }, { "TANGENT", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 }, { "BITANGENT", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 }, { "COLOR", 0, DXGI_FORMAT_R8G8B8A8_UINT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 }, { "COLOR", 1, DXGI_FORMAT_R8G8B8A8_UINT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 }, { "BLENDINDICES", 0, DXGI_FORMAT_R8G8B8A8_UINT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 }, { "BLENDWEIGHT", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 }, { "TEXCOORD", 0, DXGI_FORMAT_R32G32_FLOAT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 }, { "TEXCOORD", 1, DXGI_FORMAT_R32G32_FLOAT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 }, { "TEXCOORD", 2, DXGI_FORMAT_R32G32_FLOAT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 }, { "TEXCOORD", 3, DXGI_FORMAT_R32G32_FLOAT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 }, { "TEXCOORD", 4, DXGI_FORMAT_R32G32_FLOAT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 }, { "TEXCOORD", 5, DXGI_FORMAT_R32G32_FLOAT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 }, { "TEXCOORD", 6, DXGI_FORMAT_R32G32_FLOAT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 }, { "TEXCOORD", 7, DXGI_FORMAT_R32G32_FLOAT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 }, }; BX_STATIC_ASSERT(Attrib::Count == BX_COUNTOF(s_attrib) ); static const DXGI_FORMAT s_attribType[][4][2] = { { { DXGI_FORMAT_R8_UINT, DXGI_FORMAT_R8_UNORM }, { DXGI_FORMAT_R8G8_UINT, DXGI_FORMAT_R8G8_UNORM }, { DXGI_FORMAT_R8G8B8A8_UINT, DXGI_FORMAT_R8G8B8A8_UNORM }, { DXGI_FORMAT_R8G8B8A8_UINT, DXGI_FORMAT_R8G8B8A8_UNORM }, }, { { DXGI_FORMAT_R16_SINT, DXGI_FORMAT_R16_SNORM }, { DXGI_FORMAT_R16G16_SINT, DXGI_FORMAT_R16G16_SNORM }, { DXGI_FORMAT_R16G16B16A16_SINT, DXGI_FORMAT_R16G16B16A16_SNORM }, { DXGI_FORMAT_R16G16B16A16_SINT, DXGI_FORMAT_R16G16B16A16_SNORM }, }, { { DXGI_FORMAT_R16_FLOAT, DXGI_FORMAT_R16_FLOAT }, { DXGI_FORMAT_R16G16_FLOAT, DXGI_FORMAT_R16G16_FLOAT }, { DXGI_FORMAT_R16G16B16A16_FLOAT, DXGI_FORMAT_R16G16B16A16_FLOAT }, { DXGI_FORMAT_R16G16B16A16_FLOAT, DXGI_FORMAT_R16G16B16A16_FLOAT }, }, { { DXGI_FORMAT_R32_FLOAT, DXGI_FORMAT_R32_FLOAT }, { DXGI_FORMAT_R32G32_FLOAT, DXGI_FORMAT_R32G32_FLOAT }, { DXGI_FORMAT_R32G32B32_FLOAT, DXGI_FORMAT_R32G32B32_FLOAT }, { DXGI_FORMAT_R32G32B32A32_FLOAT, DXGI_FORMAT_R32G32B32A32_FLOAT }, }, }; BX_STATIC_ASSERT(AttribType::Count == BX_COUNTOF(s_attribType) ); static D3D11_INPUT_ELEMENT_DESC* fillVertexDecl(D3D11_INPUT_ELEMENT_DESC* _out, const VertexDecl& _decl) { D3D11_INPUT_ELEMENT_DESC* elem = _out; for (uint32_t attr = 0; attr < Attrib::Count; ++attr) { if (0xff != _decl.m_attributes[attr]) { memcpy(elem, &s_attrib[attr], sizeof(D3D11_INPUT_ELEMENT_DESC) ); if (0 == _decl.m_attributes[attr]) { elem->AlignedByteOffset = 0; } else { uint8_t num; AttribType::Enum type; bool normalized; bool asInt; _decl.decode(Attrib::Enum(attr), num, type, normalized, asInt); elem->Format = s_attribType[type][num-1][normalized]; elem->AlignedByteOffset = _decl.m_offset[attr]; } ++elem; } } return elem; } struct TextureStage { TextureStage() { clear(); } void clear() { memset(m_srv, 0, sizeof(m_srv) ); memset(m_sampler, 0, sizeof(m_sampler) ); } ID3D11ShaderResourceView* m_srv[BGFX_CONFIG_MAX_TEXTURE_SAMPLERS]; ID3D11SamplerState* m_sampler[BGFX_CONFIG_MAX_TEXTURE_SAMPLERS]; }; BX_PRAGMA_DIAGNOSTIC_PUSH(); BX_PRAGMA_DIAGNOSTIC_IGNORED_CLANG("-Wunused-const-variable"); BX_PRAGMA_DIAGNOSTIC_IGNORED_CLANG("-Wunneeded-internal-declaration"); static const GUID WKPDID_D3DDebugObjectName = { 0x429b8c22, 0x9188, 0x4b0c, { 0x87, 0x42, 0xac, 0xb0, 0xbf, 0x85, 0xc2, 0x00 } }; static const GUID IID_ID3D11Texture2D = { 0x6f15aaf2, 0xd208, 0x4e89, { 0x9a, 0xb4, 0x48, 0x95, 0x35, 0xd3, 0x4f, 0x9c } }; static const GUID IID_IDXGIFactory = { 0x7b7166ec, 0x21c7, 0x44ae, { 0xb2, 0x1a, 0xc9, 0xae, 0x32, 0x1a, 0xe3, 0x69 } }; static const GUID IID_IDXGIDevice0 = { 0x54ec77fa, 0x1377, 0x44e6, { 0x8c, 0x32, 0x88, 0xfd, 0x5f, 0x44, 0xc8, 0x4c } }; static const GUID IID_IDXGIDevice1 = { 0x77db970f, 0x6276, 0x48ba, { 0xba, 0x28, 0x07, 0x01, 0x43, 0xb4, 0x39, 0x2c } }; static const GUID IID_IDXGIDevice2 = { 0x05008617, 0xfbfd, 0x4051, { 0xa7, 0x90, 0x14, 0x48, 0x84, 0xb4, 0xf6, 0xa9 } }; static const GUID IID_IDXGIDevice3 = { 0x6007896c, 0x3244, 0x4afd, { 0xbf, 0x18, 0xa6, 0xd3, 0xbe, 0xda, 0x50, 0x23 } }; static const GUID IID_IDXGIAdapter = { 0x2411e7e1, 0x12ac, 0x4ccf, { 0xbd, 0x14, 0x97, 0x98, 0xe8, 0x53, 0x4d, 0xc0 } }; static const GUID IID_ID3D11InfoQueue = { 0x6543dbb6, 0x1b48, 0x42f5, { 0xab, 0x82, 0xe9, 0x7e, 0xc7, 0x43, 0x26, 0xf6 } }; static const GUID s_deviceIIDs[] = { IID_IDXGIDevice3, IID_IDXGIDevice2, IID_IDXGIDevice1, IID_IDXGIDevice0, }; template static BX_NO_INLINE void setDebugObjectName(Ty* _interface, const char* _format, ...) { if (BX_ENABLED(BGFX_CONFIG_DEBUG_OBJECT_NAME) ) { char temp[2048]; va_list argList; va_start(argList, _format); int size = bx::uint32_min(sizeof(temp)-1, vsnprintf(temp, sizeof(temp), _format, argList) ); va_end(argList); temp[size] = '\0'; _interface->SetPrivateData(WKPDID_D3DDebugObjectName, size, temp); } } BX_PRAGMA_DIAGNOSTIC_POP(); static BX_NO_INLINE bool getIntelExtensions(ID3D11Device* _device) { uint8_t temp[28]; D3D11_BUFFER_DESC desc; desc.ByteWidth = sizeof(temp); desc.Usage = D3D11_USAGE_STAGING; desc.BindFlags = 0; desc.CPUAccessFlags = D3D11_CPU_ACCESS_READ; desc.MiscFlags = 0; desc.StructureByteStride = 0; D3D11_SUBRESOURCE_DATA initData; initData.pSysMem = &temp; initData.SysMemPitch = sizeof(temp); initData.SysMemSlicePitch = 0; bx::StaticMemoryBlockWriter writer(&temp, sizeof(temp) ); bx::write(&writer, "INTCEXTNCAPSFUNC", 16); bx::write(&writer, UINT32_C(0x00010000) ); bx::write(&writer, UINT32_C(0) ); bx::write(&writer, UINT32_C(0) ); ID3D11Buffer* buffer; HRESULT hr = _device->CreateBuffer(&desc, &initData, &buffer); if (SUCCEEDED(hr) ) { buffer->Release(); bx::MemoryReader reader(&temp, sizeof(temp) ); bx::skip(&reader, 16); uint32_t version; bx::read(&reader, version); uint32_t driverVersion; bx::read(&reader, driverVersion); return version <= driverVersion; } return false; }; #if USE_D3D11_DYNAMIC_LIB static PFN_D3D11_CREATE_DEVICE D3D11CreateDevice; static PFN_CREATE_DXGI_FACTORY CreateDXGIFactory; static PFN_D3DPERF_SET_MARKER D3DPERF_SetMarker; static PFN_D3DPERF_BEGIN_EVENT D3DPERF_BeginEvent; static PFN_D3DPERF_END_EVENT D3DPERF_EndEvent; #endif // USE_D3D11_DYNAMIC_LIB struct RendererContextD3D11 : public RendererContextI { RendererContextD3D11() : m_renderdocdll(NULL) , m_lost(0) , m_backBufferColor(NULL) , m_backBufferDepthStencil(NULL) , m_captureTexture(NULL) , m_captureResolve(NULL) , m_wireframe(false) , m_flags(BGFX_RESET_NONE) , m_maxAnisotropy(1) , m_vsChanges(0) , m_fsChanges(0) , m_rtMsaa(false) , m_ovrRtv(NULL) , m_ovrDsv(NULL) { } ~RendererContextD3D11() { } void init() { // Must be before device creation, and before RenderDoc. m_ovr.init(); if (!m_ovr.isInitialized() ) { m_renderdocdll = loadRenderDoc(); } m_fbh.idx = invalidHandle; memset(m_uniforms, 0, sizeof(m_uniforms) ); memset(&m_resolution, 0, sizeof(m_resolution) ); #if USE_D3D11_DYNAMIC_LIB m_d3d11dll = bx::dlopen("d3d11.dll"); BGFX_FATAL(NULL != m_d3d11dll, Fatal::UnableToInitialize, "Failed to load d3d11.dll."); m_d3d9dll = NULL; if (BX_ENABLED(BGFX_CONFIG_DEBUG_PIX) ) { // D3D11_1.h has ID3DUserDefinedAnnotation // http://msdn.microsoft.com/en-us/library/windows/desktop/hh446881%28v=vs.85%29.aspx m_d3d9dll = bx::dlopen("d3d9.dll"); BGFX_FATAL(NULL != m_d3d9dll, Fatal::UnableToInitialize, "Failed to load d3d9.dll."); D3DPERF_SetMarker = (PFN_D3DPERF_SET_MARKER )bx::dlsym(m_d3d9dll, "D3DPERF_SetMarker" ); D3DPERF_BeginEvent = (PFN_D3DPERF_BEGIN_EVENT)bx::dlsym(m_d3d9dll, "D3DPERF_BeginEvent"); D3DPERF_EndEvent = (PFN_D3DPERF_END_EVENT )bx::dlsym(m_d3d9dll, "D3DPERF_EndEvent" ); BX_CHECK(NULL != D3DPERF_SetMarker && NULL != D3DPERF_BeginEvent && NULL != D3DPERF_EndEvent , "Failed to initialize PIX events." ); } D3D11CreateDevice = (PFN_D3D11_CREATE_DEVICE)bx::dlsym(m_d3d11dll, "D3D11CreateDevice"); BGFX_FATAL(NULL != D3D11CreateDevice, Fatal::UnableToInitialize, "Function D3D11CreateDevice not found."); m_dxgidll = bx::dlopen("dxgi.dll"); BGFX_FATAL(NULL != m_dxgidll, Fatal::UnableToInitialize, "Failed to load dxgi.dll."); CreateDXGIFactory = (PFN_CREATE_DXGI_FACTORY)bx::dlsym(m_dxgidll, "CreateDXGIFactory"); BGFX_FATAL(NULL != CreateDXGIFactory, Fatal::UnableToInitialize, "Function CreateDXGIFactory not found."); #endif // USE_D3D11_DYNAMIC_LIB HRESULT hr; IDXGIFactory* factory; #if BX_PLATFORM_WINRT // WinRT requires the IDXGIFactory2 interface, which isn't supported on older platforms hr = CreateDXGIFactory1(__uuidof(IDXGIFactory2), (void**)&factory); BGFX_FATAL(SUCCEEDED(hr), Fatal::UnableToInitialize, "Unable to create DXGI factory."); #else hr = CreateDXGIFactory(IID_IDXGIFactory, (void**)&factory); BGFX_FATAL(SUCCEEDED(hr), Fatal::UnableToInitialize, "Unable to create DXGI factory."); #endif // BX_PLATFORM_WINRT m_adapter = NULL; m_driverType = D3D_DRIVER_TYPE_HARDWARE; IDXGIAdapter* adapter; for (uint32_t ii = 0 ; DXGI_ERROR_NOT_FOUND != factory->EnumAdapters(ii, &adapter) && ii < BX_COUNTOF(g_caps.gpu) ; ++ii ) { DXGI_ADAPTER_DESC desc; hr = adapter->GetDesc(&desc); if (SUCCEEDED(hr) ) { BX_TRACE("Adapter #%d", ii); char description[BX_COUNTOF(desc.Description)]; wcstombs(description, desc.Description, BX_COUNTOF(desc.Description) ); BX_TRACE("\tDescription: %s", description); BX_TRACE("\tVendorId: 0x%08x, DeviceId: 0x%08x, SubSysId: 0x%08x, Revision: 0x%08x" , desc.VendorId , desc.DeviceId , desc.SubSysId , desc.Revision ); BX_TRACE("\tMemory: %" PRIi64 " (video), %" PRIi64 " (system), %" PRIi64 " (shared)" , desc.DedicatedVideoMemory , desc.DedicatedSystemMemory , desc.SharedSystemMemory ); g_caps.gpu[ii].vendorId = (uint16_t)desc.VendorId; g_caps.gpu[ii].deviceId = (uint16_t)desc.DeviceId; ++g_caps.numGPUs; if (NULL == m_adapter) { if ( (BGFX_PCI_ID_NONE != g_caps.vendorId || 0 != g_caps.deviceId) && (BGFX_PCI_ID_NONE == g_caps.vendorId || desc.VendorId == g_caps.vendorId) && ( 0 == g_caps.deviceId || desc.DeviceId == g_caps.deviceId) ) { m_adapter = adapter; m_adapter->AddRef(); m_driverType = D3D_DRIVER_TYPE_UNKNOWN; } if (BX_ENABLED(BGFX_CONFIG_DEBUG_PERFHUD) && 0 != strstr(description, "PerfHUD") ) { m_adapter = adapter; m_driverType = D3D_DRIVER_TYPE_REFERENCE; } } } DX_RELEASE(adapter, adapter == m_adapter ? 1 : 0); } DX_RELEASE(factory, NULL != m_adapter ? 1 : 0); D3D_FEATURE_LEVEL features[] = { D3D_FEATURE_LEVEL_11_1, D3D_FEATURE_LEVEL_11_0, D3D_FEATURE_LEVEL_10_1, D3D_FEATURE_LEVEL_10_0, D3D_FEATURE_LEVEL_9_3, D3D_FEATURE_LEVEL_9_2, D3D_FEATURE_LEVEL_9_1, }; uint32_t flags = 0 | D3D11_CREATE_DEVICE_SINGLETHREADED | D3D11_CREATE_DEVICE_BGRA_SUPPORT | (BX_ENABLED(BGFX_CONFIG_DEBUG) ? D3D11_CREATE_DEVICE_DEBUG : 0) ; D3D_FEATURE_LEVEL featureLevel; hr = E_FAIL; for (uint32_t ii = 0; ii < 3 && FAILED(hr);) { hr = D3D11CreateDevice(m_adapter , m_driverType , NULL , flags , &features[ii] , BX_COUNTOF(features)-ii , D3D11_SDK_VERSION , &m_device , &featureLevel , &m_deviceCtx ); if (FAILED(hr) && 0 != (flags & D3D11_CREATE_DEVICE_DEBUG) ) { // Try without debug in case D3D11 SDK Layers // is not present? flags &= ~D3D11_CREATE_DEVICE_DEBUG; continue; } ++ii; } BGFX_FATAL(SUCCEEDED(hr), Fatal::UnableToInitialize, "Unable to create Direct3D11 device."); if (NULL != m_adapter) { DX_RELEASE(m_adapter, 2); } IDXGIDevice* device = NULL; hr = E_FAIL; for (uint32_t ii = 0; ii < BX_COUNTOF(s_deviceIIDs) && FAILED(hr); ++ii) { hr = m_device->QueryInterface(s_deviceIIDs[ii], (void**)&device); BX_TRACE("D3D device 11.%d, hr %x", BX_COUNTOF(s_deviceIIDs)-1-ii, hr); } BGFX_FATAL(SUCCEEDED(hr), Fatal::UnableToInitialize, "Unable to create Direct3D11 device."); hr = device->GetParent(IID_IDXGIAdapter, (void**)&adapter); BGFX_FATAL(SUCCEEDED(hr), Fatal::UnableToInitialize, "Unable to create Direct3D11 device."); // GPA increases device ref count. // RenderDoc makes device ref count 0 here. // // This causes assert in debug. When debugger is present refcount // checks are off. setGraphicsDebuggerPresent(2 != getRefCount(device) ); DX_RELEASE(device, 2); hr = adapter->GetDesc(&m_adapterDesc); BGFX_FATAL(SUCCEEDED(hr), Fatal::UnableToInitialize, "Unable to create Direct3D11 device."); g_caps.vendorId = (uint16_t)m_adapterDesc.VendorId; g_caps.deviceId = (uint16_t)m_adapterDesc.DeviceId; #if BX_PLATFORM_WINRT hr = adapter->GetParent(__uuidof(IDXGIFactory2), (void**)&m_factory); BGFX_FATAL(SUCCEEDED(hr), Fatal::UnableToInitialize, "Unable to create Direct3D11 device."); DX_RELEASE(adapter, 2); memset(&m_scd, 0, sizeof(m_scd) ); m_scd.Width = BGFX_DEFAULT_WIDTH; m_scd.Height = BGFX_DEFAULT_HEIGHT; m_scd.Format = DXGI_FORMAT_R8G8B8A8_UNORM; m_scd.Stereo = false; m_scd.SampleDesc.Count = 1; m_scd.SampleDesc.Quality = 0; m_scd.BufferUsage = DXGI_USAGE_RENDER_TARGET_OUTPUT; m_scd.BufferCount = 2; m_scd.Scaling = DXGI_SCALING_NONE; m_scd.SwapEffect = DXGI_SWAP_EFFECT_FLIP_SEQUENTIAL; m_scd.AlphaMode = DXGI_ALPHA_MODE_IGNORE; hr = m_factory->CreateSwapChainForCoreWindow(m_device , g_bgfxCoreWindow , &m_scd , NULL , &m_swapChain ); #else hr = adapter->GetParent(IID_IDXGIFactory, (void**)&m_factory); BGFX_FATAL(SUCCEEDED(hr), Fatal::UnableToInitialize, "Unable to create Direct3D11 device."); DX_RELEASE(adapter, 2); memset(&m_scd, 0, sizeof(m_scd) ); m_scd.BufferDesc.Width = BGFX_DEFAULT_WIDTH; m_scd.BufferDesc.Height = BGFX_DEFAULT_HEIGHT; m_scd.BufferDesc.RefreshRate.Numerator = 60; m_scd.BufferDesc.RefreshRate.Denominator = 1; m_scd.BufferDesc.Format = DXGI_FORMAT_R8G8B8A8_UNORM; m_scd.SampleDesc.Count = 1; m_scd.SampleDesc.Quality = 0; m_scd.BufferUsage = DXGI_USAGE_RENDER_TARGET_OUTPUT; m_scd.BufferCount = 1; m_scd.OutputWindow = g_bgfxHwnd; m_scd.Windowed = true; hr = m_factory->CreateSwapChain(m_device , &m_scd , &m_swapChain ); #endif // BX_PLATFORM_WINRT BGFX_FATAL(SUCCEEDED(hr), Fatal::UnableToInitialize, "Failed to create swap chain."); DX_CHECK(m_factory->MakeWindowAssociation(g_bgfxHwnd, 0 | DXGI_MWA_NO_WINDOW_CHANGES | DXGI_MWA_NO_ALT_ENTER ) ); m_numWindows = 1; #if !defined(__MINGW32__) if (BX_ENABLED(BGFX_CONFIG_DEBUG) ) { ID3D11InfoQueue* infoQueue; hr = m_device->QueryInterface(IID_ID3D11InfoQueue, (void**)&infoQueue); if (SUCCEEDED(hr) ) { infoQueue->SetBreakOnSeverity(D3D11_MESSAGE_SEVERITY_CORRUPTION, true); infoQueue->SetBreakOnSeverity(D3D11_MESSAGE_SEVERITY_ERROR, true); infoQueue->SetBreakOnSeverity(D3D11_MESSAGE_SEVERITY_WARNING, false); D3D11_INFO_QUEUE_FILTER filter; memset(&filter, 0, sizeof(filter) ); D3D11_MESSAGE_CATEGORY catlist[] = { D3D11_MESSAGE_CATEGORY_STATE_SETTING, D3D11_MESSAGE_CATEGORY_EXECUTION, }; filter.DenyList.NumCategories = BX_COUNTOF(catlist); filter.DenyList.pCategoryList = catlist; infoQueue->PushStorageFilter(&filter); DX_RELEASE(infoQueue, 3); } else { // InfoQueue QueryInterface will fail when AMD GPU Perfstudio 2 is present. setGraphicsDebuggerPresent(true); } } #endif // __MINGW__ UniformHandle handle = BGFX_INVALID_HANDLE; for (uint32_t ii = 0; ii < PredefinedUniform::Count; ++ii) { m_uniformReg.add(handle, getPredefinedUniformName(PredefinedUniform::Enum(ii) ), &m_predefinedUniforms[ii]); } g_caps.supported |= ( 0 | BGFX_CAPS_TEXTURE_3D | BGFX_CAPS_TEXTURE_COMPARE_ALL | BGFX_CAPS_INSTANCING | BGFX_CAPS_VERTEX_ATTRIB_HALF | BGFX_CAPS_FRAGMENT_DEPTH | BGFX_CAPS_BLEND_INDEPENDENT | BGFX_CAPS_COMPUTE | (getIntelExtensions(m_device) ? BGFX_CAPS_FRAGMENT_ORDERING : 0) | BGFX_CAPS_SWAP_CHAIN | (m_ovr.isInitialized() ? BGFX_CAPS_HMD : 0) ); g_caps.maxTextureSize = D3D11_REQ_TEXTURE2D_U_OR_V_DIMENSION; g_caps.maxFBAttachments = uint8_t(bx::uint32_min(D3D11_SIMULTANEOUS_RENDER_TARGET_COUNT, BGFX_CONFIG_MAX_FRAME_BUFFER_ATTACHMENTS) ); for (uint32_t ii = 0; ii < TextureFormat::Count; ++ii) { uint8_t support = BGFX_CAPS_FORMAT_TEXTURE_NONE; if (DXGI_FORMAT_UNKNOWN != s_textureFormat[ii].m_fmt) { D3D11_FEATURE_DATA_FORMAT_SUPPORT data; // D3D11_FEATURE_DATA_FORMAT_SUPPORT2 data.InFormat = s_textureFormat[ii].m_fmt; hr = m_device->CheckFeatureSupport(D3D11_FEATURE_FORMAT_SUPPORT, &data, sizeof(data) ); if (SUCCEEDED(hr) ) { support |= 0 != (data.OutFormatSupport & (0 | D3D11_FORMAT_SUPPORT_TEXTURE2D | D3D11_FORMAT_SUPPORT_TEXTURE3D | D3D11_FORMAT_SUPPORT_TEXTURECUBE ) ) ? BGFX_CAPS_FORMAT_TEXTURE_COLOR : BGFX_CAPS_FORMAT_TEXTURE_NONE ; support |= 0 != (data.OutFormatSupport & (0 | D3D11_FORMAT_SUPPORT_BUFFER | D3D11_FORMAT_SUPPORT_IA_VERTEX_BUFFER | D3D11_FORMAT_SUPPORT_IA_INDEX_BUFFER ) ) ? BGFX_CAPS_FORMAT_TEXTURE_VERTEX : BGFX_CAPS_FORMAT_TEXTURE_NONE ; } else { BX_TRACE("CheckFeatureSupport failed with %x for format %s.", hr, getName(TextureFormat::Enum(ii) ) ); } } g_caps.formats[ii] = support; } // Init reserved part of view name. for (uint32_t ii = 0; ii < BGFX_CONFIG_MAX_VIEWS; ++ii) { char name[BGFX_CONFIG_MAX_VIEW_NAME_RESERVED+1]; bx::snprintf(name, sizeof(name), "%3d ", ii); mbstowcs(s_viewNameW[ii], name, BGFX_CONFIG_MAX_VIEW_NAME_RESERVED); } updateMsaa(); postReset(); } void shutdown() { preReset(); m_ovr.shutdown(); m_deviceCtx->ClearState(); invalidateCache(); for (uint32_t ii = 0; ii < BX_COUNTOF(m_indexBuffers); ++ii) { m_indexBuffers[ii].destroy(); } for (uint32_t ii = 0; ii < BX_COUNTOF(m_vertexBuffers); ++ii) { m_vertexBuffers[ii].destroy(); } for (uint32_t ii = 0; ii < BX_COUNTOF(m_shaders); ++ii) { m_shaders[ii].destroy(); } for (uint32_t ii = 0; ii < BX_COUNTOF(m_textures); ++ii) { m_textures[ii].destroy(); } DX_RELEASE(m_swapChain, 0); DX_RELEASE(m_deviceCtx, 0); DX_RELEASE(m_device, 0); DX_RELEASE(m_factory, 0); unloadRenderDoc(m_renderdocdll); #if USE_D3D11_DYNAMIC_LIB bx::dlclose(m_dxgidll); bx::dlclose(m_d3d9dll); bx::dlclose(m_d3d11dll); #endif // USE_D3D11_DYNAMIC_LIB } RendererType::Enum getRendererType() const BX_OVERRIDE { return RendererType::Direct3D11; } const char* getRendererName() const BX_OVERRIDE { return BGFX_RENDERER_DIRECT3D11_NAME; } void createIndexBuffer(IndexBufferHandle _handle, Memory* _mem, uint8_t _flags) BX_OVERRIDE { m_indexBuffers[_handle.idx].create(_mem->size, _mem->data, _flags); } void destroyIndexBuffer(IndexBufferHandle _handle) BX_OVERRIDE { m_indexBuffers[_handle.idx].destroy(); } void createVertexDecl(VertexDeclHandle _handle, const VertexDecl& _decl) BX_OVERRIDE { VertexDecl& decl = m_vertexDecls[_handle.idx]; memcpy(&decl, &_decl, sizeof(VertexDecl) ); dump(decl); } void destroyVertexDecl(VertexDeclHandle /*_handle*/) BX_OVERRIDE { } void createVertexBuffer(VertexBufferHandle _handle, Memory* _mem, VertexDeclHandle _declHandle, uint8_t _flags) BX_OVERRIDE { m_vertexBuffers[_handle.idx].create(_mem->size, _mem->data, _declHandle, _flags); } void destroyVertexBuffer(VertexBufferHandle _handle) BX_OVERRIDE { m_vertexBuffers[_handle.idx].destroy(); } void createDynamicIndexBuffer(IndexBufferHandle _handle, uint32_t _size, uint8_t _flags) BX_OVERRIDE { m_indexBuffers[_handle.idx].create(_size, NULL, _flags); } void updateDynamicIndexBuffer(IndexBufferHandle _handle, uint32_t _offset, uint32_t _size, Memory* _mem) BX_OVERRIDE { m_indexBuffers[_handle.idx].update(_offset, bx::uint32_min(_size, _mem->size), _mem->data); } void destroyDynamicIndexBuffer(IndexBufferHandle _handle) BX_OVERRIDE { m_indexBuffers[_handle.idx].destroy(); } void createDynamicVertexBuffer(VertexBufferHandle _handle, uint32_t _size, uint8_t _flags) BX_OVERRIDE { VertexDeclHandle decl = BGFX_INVALID_HANDLE; m_vertexBuffers[_handle.idx].create(_size, NULL, decl, _flags); } void updateDynamicVertexBuffer(VertexBufferHandle _handle, uint32_t _offset, uint32_t _size, Memory* _mem) BX_OVERRIDE { m_vertexBuffers[_handle.idx].update(_offset, bx::uint32_min(_size, _mem->size), _mem->data); } void destroyDynamicVertexBuffer(VertexBufferHandle _handle) BX_OVERRIDE { m_vertexBuffers[_handle.idx].destroy(); } void createShader(ShaderHandle _handle, Memory* _mem) BX_OVERRIDE { m_shaders[_handle.idx].create(_mem); } void destroyShader(ShaderHandle _handle) BX_OVERRIDE { m_shaders[_handle.idx].destroy(); } void createProgram(ProgramHandle _handle, ShaderHandle _vsh, ShaderHandle _fsh) BX_OVERRIDE { m_program[_handle.idx].create(&m_shaders[_vsh.idx], isValid(_fsh) ? &m_shaders[_fsh.idx] : NULL); } void destroyProgram(ProgramHandle _handle) BX_OVERRIDE { m_program[_handle.idx].destroy(); } void createTexture(TextureHandle _handle, Memory* _mem, uint32_t _flags, uint8_t _skip) BX_OVERRIDE { m_textures[_handle.idx].create(_mem, _flags, _skip); } void updateTextureBegin(TextureHandle /*_handle*/, uint8_t /*_side*/, uint8_t /*_mip*/) BX_OVERRIDE { } void updateTexture(TextureHandle _handle, uint8_t _side, uint8_t _mip, const Rect& _rect, uint16_t _z, uint16_t _depth, uint16_t _pitch, const Memory* _mem) BX_OVERRIDE { m_textures[_handle.idx].update(_side, _mip, _rect, _z, _depth, _pitch, _mem); } void updateTextureEnd() BX_OVERRIDE { } void destroyTexture(TextureHandle _handle) BX_OVERRIDE { m_textures[_handle.idx].destroy(); } void createFrameBuffer(FrameBufferHandle _handle, uint8_t _num, const TextureHandle* _textureHandles) BX_OVERRIDE { m_frameBuffers[_handle.idx].create(_num, _textureHandles); } void createFrameBuffer(FrameBufferHandle _handle, void* _nwh, uint32_t _width, uint32_t _height, TextureFormat::Enum _depthFormat) BX_OVERRIDE { uint16_t denseIdx = m_numWindows++; m_windows[denseIdx] = _handle; m_frameBuffers[_handle.idx].create(denseIdx, _nwh, _width, _height, _depthFormat); } void destroyFrameBuffer(FrameBufferHandle _handle) BX_OVERRIDE { uint16_t denseIdx = m_frameBuffers[_handle.idx].destroy(); if (UINT16_MAX != denseIdx) { --m_numWindows; if (m_numWindows > 1) { FrameBufferHandle handle = m_windows[m_numWindows]; m_windows[denseIdx] = handle; m_frameBuffers[handle.idx].m_denseIdx = denseIdx; } } } void createUniform(UniformHandle _handle, UniformType::Enum _type, uint16_t _num, const char* _name) BX_OVERRIDE { if (NULL != m_uniforms[_handle.idx]) { BX_FREE(g_allocator, m_uniforms[_handle.idx]); } uint32_t size = BX_ALIGN_16(g_uniformTypeSize[_type]*_num); void* data = BX_ALLOC(g_allocator, size); memset(data, 0, size); m_uniforms[_handle.idx] = data; m_uniformReg.add(_handle, _name, data); } void destroyUniform(UniformHandle _handle) BX_OVERRIDE { BX_FREE(g_allocator, m_uniforms[_handle.idx]); m_uniforms[_handle.idx] = NULL; } void saveScreenShot(const char* _filePath) BX_OVERRIDE { ID3D11Texture2D* backBuffer; DX_CHECK(m_swapChain->GetBuffer(0, IID_ID3D11Texture2D, (void**)&backBuffer)); D3D11_TEXTURE2D_DESC backBufferDesc; backBuffer->GetDesc(&backBufferDesc); D3D11_TEXTURE2D_DESC desc; memcpy(&desc, &backBufferDesc, sizeof(desc) ); desc.SampleDesc.Count = 1; desc.SampleDesc.Quality = 0; desc.Usage = D3D11_USAGE_STAGING; desc.BindFlags = 0; desc.CPUAccessFlags = D3D11_CPU_ACCESS_READ; ID3D11Texture2D* texture; HRESULT hr = m_device->CreateTexture2D(&desc, NULL, &texture); if (SUCCEEDED(hr) ) { if (backBufferDesc.SampleDesc.Count == 1) { m_deviceCtx->CopyResource(texture, backBuffer); } else { desc.Usage = D3D11_USAGE_DEFAULT; desc.CPUAccessFlags = 0; ID3D11Texture2D* resolve; hr = m_device->CreateTexture2D(&desc, NULL, &resolve); if (SUCCEEDED(hr) ) { m_deviceCtx->ResolveSubresource(resolve, 0, backBuffer, 0, desc.Format); m_deviceCtx->CopyResource(texture, resolve); DX_RELEASE(resolve, 0); } } D3D11_MAPPED_SUBRESOURCE mapped; DX_CHECK(m_deviceCtx->Map(texture, 0, D3D11_MAP_READ, 0, &mapped) ); imageSwizzleBgra8(backBufferDesc.Width , backBufferDesc.Height , mapped.RowPitch , mapped.pData , mapped.pData ); g_callback->screenShot(_filePath , backBufferDesc.Width , backBufferDesc.Height , mapped.RowPitch , mapped.pData , backBufferDesc.Height*mapped.RowPitch , false ); m_deviceCtx->Unmap(texture, 0); DX_RELEASE(texture, 0); } DX_RELEASE(backBuffer, 0); } void updateViewName(uint8_t _id, const char* _name) BX_OVERRIDE { if (BX_ENABLED(BGFX_CONFIG_DEBUG_PIX) ) { mbstowcs(&s_viewNameW[_id][BGFX_CONFIG_MAX_VIEW_NAME_RESERVED] , _name , BX_COUNTOF(s_viewNameW[0])-BGFX_CONFIG_MAX_VIEW_NAME_RESERVED ); } } void updateUniform(uint16_t _loc, const void* _data, uint32_t _size) BX_OVERRIDE { memcpy(m_uniforms[_loc], _data, _size); } void setMarker(const char* _marker, uint32_t _size) BX_OVERRIDE { if (BX_ENABLED(BGFX_CONFIG_DEBUG_PIX) ) { uint32_t size = _size*sizeof(wchar_t); wchar_t* name = (wchar_t*)alloca(size); mbstowcs(name, _marker, size-2); PIX_SETMARKER(D3DCOLOR_RGBA(0xff, 0xff, 0xff, 0xff), name); } } void submit(Frame* _render, ClearQuad& _clearQuad, TextVideoMemBlitter& _textVideoMemBlitter) BX_OVERRIDE; void blitSetup(TextVideoMemBlitter& _blitter) BX_OVERRIDE { ID3D11DeviceContext* deviceCtx = m_deviceCtx; uint32_t width = getBufferWidth(); uint32_t height = getBufferHeight(); if (m_ovr.isEnabled() ) { m_ovr.getSize(width, height); } FrameBufferHandle fbh = BGFX_INVALID_HANDLE; setFrameBuffer(fbh, false); D3D11_VIEWPORT vp; vp.TopLeftX = 0; vp.TopLeftY = 0; vp.Width = (float)width; vp.Height = (float)height; vp.MinDepth = 0.0f; vp.MaxDepth = 1.0f; deviceCtx->RSSetViewports(1, &vp); uint64_t state = BGFX_STATE_RGB_WRITE | BGFX_STATE_ALPHA_WRITE | BGFX_STATE_DEPTH_TEST_ALWAYS ; setBlendState(state); setDepthStencilState(state); setRasterizerState(state); ProgramD3D11& program = m_program[_blitter.m_program.idx]; m_currentProgram = &program; deviceCtx->VSSetShader(program.m_vsh->m_vertexShader, NULL, 0); deviceCtx->VSSetConstantBuffers(0, 1, &program.m_vsh->m_buffer); deviceCtx->PSSetShader(program.m_fsh->m_pixelShader, NULL, 0); deviceCtx->PSSetConstantBuffers(0, 1, &program.m_fsh->m_buffer); VertexBufferD3D11& vb = m_vertexBuffers[_blitter.m_vb->handle.idx]; VertexDecl& vertexDecl = m_vertexDecls[_blitter.m_vb->decl.idx]; uint32_t stride = vertexDecl.m_stride; uint32_t offset = 0; deviceCtx->IASetVertexBuffers(0, 1, &vb.m_ptr, &stride, &offset); setInputLayout(vertexDecl, program, 0); IndexBufferD3D11& ib = m_indexBuffers[_blitter.m_ib->handle.idx]; deviceCtx->IASetIndexBuffer(ib.m_ptr, DXGI_FORMAT_R16_UINT, 0); float proj[16]; mtxOrtho(proj, 0.0f, (float)width, (float)height, 0.0f, 0.0f, 1000.0f); PredefinedUniform& predefined = program.m_predefined[0]; uint8_t flags = predefined.m_type; setShaderUniform(flags, predefined.m_loc, proj, 4); commitShaderConstants(); m_textures[_blitter.m_texture.idx].commit(0); commitTextureStage(); } void blitRender(TextVideoMemBlitter& _blitter, uint32_t _numIndices) BX_OVERRIDE { const uint32_t numVertices = _numIndices*4/6; if (0 < numVertices) { ID3D11DeviceContext* deviceCtx = m_deviceCtx; m_indexBuffers [_blitter.m_ib->handle.idx].update(0, _numIndices*2, _blitter.m_ib->data); m_vertexBuffers[_blitter.m_vb->handle.idx].update(0, numVertices*_blitter.m_decl.m_stride, _blitter.m_vb->data, true); deviceCtx->IASetPrimitiveTopology(D3D11_PRIMITIVE_TOPOLOGY_TRIANGLELIST); deviceCtx->DrawIndexed(_numIndices, 0, 0); } } void preReset() { ovrPreReset(); DX_RELEASE(m_backBufferDepthStencil, 0); DX_RELEASE(m_backBufferColor, 0); // invalidateCache(); capturePreReset(); } void postReset() { ID3D11Texture2D* color; DX_CHECK(m_swapChain->GetBuffer(0, IID_ID3D11Texture2D, (void**)&color)); DX_CHECK(m_device->CreateRenderTargetView(color, NULL, &m_backBufferColor) ); DX_RELEASE(color, 0); ovrPostReset(); // If OVR doesn't create separate depth stencil view, create default one. if (NULL == m_backBufferDepthStencil) { D3D11_TEXTURE2D_DESC dsd; dsd.Width = getBufferWidth(); dsd.Height = getBufferHeight(); dsd.MipLevels = 1; dsd.ArraySize = 1; dsd.Format = DXGI_FORMAT_D24_UNORM_S8_UINT; dsd.SampleDesc = m_scd.SampleDesc; dsd.Usage = D3D11_USAGE_DEFAULT; dsd.BindFlags = D3D11_BIND_DEPTH_STENCIL; dsd.CPUAccessFlags = 0; dsd.MiscFlags = 0; ID3D11Texture2D* depthStencil; DX_CHECK(m_device->CreateTexture2D(&dsd, NULL, &depthStencil) ); DX_CHECK(m_device->CreateDepthStencilView(depthStencil, NULL, &m_backBufferDepthStencil) ); DX_RELEASE(depthStencil, 0); } m_deviceCtx->OMSetRenderTargets(1, &m_backBufferColor, m_backBufferDepthStencil); m_currentColor = m_backBufferColor; m_currentDepthStencil = m_backBufferDepthStencil; capturePostReset(); } static bool isLost(HRESULT _hr) { return DXGI_ERROR_DEVICE_REMOVED == _hr || DXGI_ERROR_DEVICE_HUNG == _hr || DXGI_ERROR_DEVICE_RESET == _hr || DXGI_ERROR_DRIVER_INTERNAL_ERROR == _hr || DXGI_ERROR_NOT_CURRENTLY_AVAILABLE == _hr ; } void flip() BX_OVERRIDE { if (NULL != m_swapChain) { HRESULT hr = S_OK; uint32_t syncInterval = !!(m_flags & BGFX_RESET_VSYNC); #if BX_PLATFORM_WINRT syncInterval = 1; // sync interval of 0 is not supported on WinRT #endif for (uint32_t ii = 1, num = m_numWindows; ii < num && SUCCEEDED(hr); ++ii) { hr = m_frameBuffers[m_windows[ii].idx].m_swapChain->Present(syncInterval, 0); } if (SUCCEEDED(hr) ) { if (!m_ovr.swap() ) { hr = m_swapChain->Present(syncInterval, 0); } } if (FAILED(hr) && isLost(hr) ) { ++m_lost; BGFX_FATAL(10 > m_lost, bgfx::Fatal::DeviceLost, "Device is lost. FAILED 0x%08x", hr); } else { m_lost = 0; } } } void invalidateCache() { m_inputLayoutCache.invalidate(); m_blendStateCache.invalidate(); m_depthStencilStateCache.invalidate(); m_rasterizerStateCache.invalidate(); m_samplerStateCache.invalidate(); } void invalidateCompute() { m_deviceCtx->CSSetShader(NULL, NULL, 0); ID3D11UnorderedAccessView* uav[BGFX_MAX_COMPUTE_BINDINGS] = {}; m_deviceCtx->CSSetUnorderedAccessViews(0, BX_COUNTOF(uav), uav, NULL); ID3D11ShaderResourceView* srv[BGFX_MAX_COMPUTE_BINDINGS] = {}; m_deviceCtx->CSSetShaderResources(0, BX_COUNTOF(srv), srv); ID3D11SamplerState* samplers[BGFX_MAX_COMPUTE_BINDINGS] = {}; m_deviceCtx->CSSetSamplers(0, BX_COUNTOF(samplers), samplers); } void updateMsaa() { for (uint32_t ii = 1, last = 0; ii < BX_COUNTOF(s_msaa); ++ii) { uint32_t msaa = s_checkMsaa[ii]; uint32_t quality = 0; HRESULT hr = m_device->CheckMultisampleQualityLevels(getBufferFormat(), msaa, &quality); if (SUCCEEDED(hr) && 0 < quality) { s_msaa[ii].Count = msaa; s_msaa[ii].Quality = quality - 1; last = ii; } else { s_msaa[ii] = s_msaa[last]; } } } void updateResolution(const Resolution& _resolution) { bool recenter = !!(_resolution.m_flags & BGFX_RESET_HMD_RECENTER); m_maxAnisotropy = !!(_resolution.m_flags & BGFX_RESET_MAXANISOTROPY) ? D3D11_REQ_MAXANISOTROPY : 1 ; uint32_t flags = _resolution.m_flags & ~(BGFX_RESET_HMD_RECENTER | BGFX_RESET_MAXANISOTROPY); if ( getBufferWidth() != _resolution.m_width || getBufferHeight() != _resolution.m_height || m_flags != flags) { bool resize = true && !BX_ENABLED(BX_PLATFORM_WINRT) // can't use ResizeBuffers on Windows Phone && (m_flags&BGFX_RESET_MSAA_MASK) == (flags&BGFX_RESET_MSAA_MASK) ; m_flags = flags; m_textVideoMem.resize(false, _resolution.m_width, _resolution.m_height); m_textVideoMem.clear(); m_resolution = _resolution; m_resolution.m_flags = flags; setBufferSize(_resolution.m_width, _resolution.m_height); preReset(); if (resize) { DX_CHECK(m_swapChain->ResizeBuffers(2 , getBufferWidth() , getBufferHeight() , getBufferFormat() , DXGI_SWAP_CHAIN_FLAG_ALLOW_MODE_SWITCH ) ); } else { updateMsaa(); m_scd.SampleDesc = s_msaa[(m_flags&BGFX_RESET_MSAA_MASK)>>BGFX_RESET_MSAA_SHIFT]; DX_RELEASE(m_swapChain, 0); #if BX_PLATFORM_WINRT HRESULT hr; hr = m_factory->CreateSwapChainForCoreWindow(m_device , g_bgfxCoreWindow , &m_scd , NULL , &m_swapChain ); #else HRESULT hr; hr = m_factory->CreateSwapChain(m_device , &m_scd , &m_swapChain ); #endif // BX_PLATFORM_WINRT BGFX_FATAL(SUCCEEDED(hr), bgfx::Fatal::UnableToInitialize, "Failed to create swap chain."); } postReset(); } if (recenter) { m_ovr.recenter(); } } void setShaderUniform(uint8_t _flags, uint32_t _regIndex, const void* _val, uint32_t _numRegs) { if (_flags&BGFX_UNIFORM_FRAGMENTBIT) { memcpy(&m_fsScratch[_regIndex], _val, _numRegs*16); m_fsChanges += _numRegs; } else { memcpy(&m_vsScratch[_regIndex], _val, _numRegs*16); m_vsChanges += _numRegs; } } void setShaderUniform4f(uint8_t _flags, uint32_t _regIndex, const void* _val, uint32_t _numRegs) { setShaderUniform(_flags, _regIndex, _val, _numRegs); } void setShaderUniform4x4f(uint8_t _flags, uint32_t _regIndex, const void* _val, uint32_t _numRegs) { setShaderUniform(_flags, _regIndex, _val, _numRegs); } void commitShaderConstants() { if (0 < m_vsChanges) { if (NULL != m_currentProgram->m_vsh->m_buffer) { m_deviceCtx->UpdateSubresource(m_currentProgram->m_vsh->m_buffer, 0, 0, m_vsScratch, 0, 0); } m_vsChanges = 0; } if (0 < m_fsChanges) { if (NULL != m_currentProgram->m_fsh->m_buffer) { m_deviceCtx->UpdateSubresource(m_currentProgram->m_fsh->m_buffer, 0, 0, m_fsScratch, 0, 0); } m_fsChanges = 0; } } void setFrameBuffer(FrameBufferHandle _fbh, bool _msaa = true) { if (isValid(m_fbh) && m_fbh.idx != _fbh.idx && m_rtMsaa) { FrameBufferD3D11& frameBuffer = m_frameBuffers[m_fbh.idx]; frameBuffer.resolve(); } if (!isValid(_fbh) ) { m_deviceCtx->OMSetRenderTargets(1, &m_backBufferColor, m_backBufferDepthStencil); m_currentColor = m_backBufferColor; m_currentDepthStencil = m_backBufferDepthStencil; } else { invalidateTextureStage(); FrameBufferD3D11& frameBuffer = m_frameBuffers[_fbh.idx]; m_deviceCtx->OMSetRenderTargets(frameBuffer.m_num, frameBuffer.m_rtv, frameBuffer.m_dsv); m_currentColor = frameBuffer.m_rtv[0]; m_currentDepthStencil = frameBuffer.m_dsv; } m_fbh = _fbh; m_rtMsaa = _msaa; } void clear(const Clear& _clear, const float _palette[][4]) { if (isValid(m_fbh) ) { FrameBufferD3D11& frameBuffer = m_frameBuffers[m_fbh.idx]; frameBuffer.clear(_clear, _palette); } else { if (NULL != m_currentColor && BGFX_CLEAR_COLOR & _clear.m_flags) { if (BGFX_CLEAR_COLOR_USE_PALETTE & _clear.m_flags) { uint8_t index = _clear.m_index[0]; if (UINT8_MAX != index) { m_deviceCtx->ClearRenderTargetView(m_currentColor, _palette[index]); } } else { float frgba[4] = { _clear.m_index[0]*1.0f/255.0f, _clear.m_index[1]*1.0f/255.0f, _clear.m_index[2]*1.0f/255.0f, _clear.m_index[3]*1.0f/255.0f, }; m_deviceCtx->ClearRenderTargetView(m_currentColor, frgba); } } if (NULL != m_currentDepthStencil && (BGFX_CLEAR_DEPTH|BGFX_CLEAR_STENCIL) & _clear.m_flags) { DWORD flags = 0; flags |= (_clear.m_flags & BGFX_CLEAR_DEPTH) ? D3D11_CLEAR_DEPTH : 0; flags |= (_clear.m_flags & BGFX_CLEAR_STENCIL) ? D3D11_CLEAR_STENCIL : 0; m_deviceCtx->ClearDepthStencilView(m_currentDepthStencil, flags, _clear.m_depth, _clear.m_stencil); } } } void setInputLayout(const VertexDecl& _vertexDecl, const ProgramD3D11& _program, uint16_t _numInstanceData) { uint64_t layoutHash = (uint64_t(_vertexDecl.m_hash)<<32) | _program.m_vsh->m_hash; layoutHash ^= _numInstanceData; ID3D11InputLayout* layout = m_inputLayoutCache.find(layoutHash); if (NULL == layout) { D3D11_INPUT_ELEMENT_DESC vertexElements[Attrib::Count+1+BGFX_CONFIG_MAX_INSTANCE_DATA_COUNT]; VertexDecl decl; memcpy(&decl, &_vertexDecl, sizeof(VertexDecl) ); const uint8_t* attrMask = _program.m_vsh->m_attrMask; for (uint32_t ii = 0; ii < Attrib::Count; ++ii) { uint8_t mask = attrMask[ii]; uint8_t attr = (decl.m_attributes[ii] & mask); decl.m_attributes[ii] = attr == 0 ? 0xff : attr == 0xff ? 0 : attr; } D3D11_INPUT_ELEMENT_DESC* elem = fillVertexDecl(vertexElements, decl); uint32_t num = uint32_t(elem-vertexElements); const D3D11_INPUT_ELEMENT_DESC inst = { "TEXCOORD", 0, DXGI_FORMAT_R32G32B32A32_FLOAT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_INSTANCE_DATA, 1 }; for (uint32_t ii = 0; ii < _numInstanceData; ++ii) { uint32_t index = 8-_numInstanceData+ii; uint32_t jj; D3D11_INPUT_ELEMENT_DESC* curr = vertexElements; for (jj = 0; jj < num; ++jj) { curr = &vertexElements[jj]; if (0 == strcmp(curr->SemanticName, "TEXCOORD") && curr->SemanticIndex == index) { break; } } if (jj == num) { curr = elem; ++elem; } memcpy(curr, &inst, sizeof(D3D11_INPUT_ELEMENT_DESC) ); curr->InputSlot = 1; curr->SemanticIndex = index; curr->AlignedByteOffset = ii*16; } num = uint32_t(elem-vertexElements); DX_CHECK(m_device->CreateInputLayout(vertexElements , num , _program.m_vsh->m_code->data , _program.m_vsh->m_code->size , &layout ) ); m_inputLayoutCache.add(layoutHash, layout); } m_deviceCtx->IASetInputLayout(layout); } void setBlendState(uint64_t _state, uint32_t _rgba = 0) { _state &= 0 | BGFX_STATE_BLEND_MASK | BGFX_STATE_BLEND_EQUATION_MASK | BGFX_STATE_BLEND_INDEPENDENT | BGFX_STATE_ALPHA_WRITE | BGFX_STATE_RGB_WRITE ; bx::HashMurmur2A murmur; murmur.begin(); murmur.add(_state); const uint64_t f0 = BGFX_STATE_BLEND_FUNC(BGFX_STATE_BLEND_FACTOR, BGFX_STATE_BLEND_FACTOR); const uint64_t f1 = BGFX_STATE_BLEND_FUNC(BGFX_STATE_BLEND_INV_FACTOR, BGFX_STATE_BLEND_INV_FACTOR); bool hasFactor = f0 == (_state & f0) || f1 == (_state & f1) ; float blendFactor[4] = { 1.0f, 1.0f, 1.0f, 1.0f }; if (hasFactor) { blendFactor[0] = ( (_rgba>>24) )/255.0f; blendFactor[1] = ( (_rgba>>16)&0xff)/255.0f; blendFactor[2] = ( (_rgba>> 8)&0xff)/255.0f; blendFactor[3] = ( (_rgba )&0xff)/255.0f; } else { murmur.add(_rgba); } uint32_t hash = murmur.end(); ID3D11BlendState* bs = m_blendStateCache.find(hash); if (NULL == bs) { D3D11_BLEND_DESC desc; memset(&desc, 0, sizeof(desc) ); desc.IndependentBlendEnable = !!(BGFX_STATE_BLEND_INDEPENDENT & _state); D3D11_RENDER_TARGET_BLEND_DESC* drt = &desc.RenderTarget[0]; drt->BlendEnable = !!(BGFX_STATE_BLEND_MASK & _state); const uint32_t blend = uint32_t( (_state&BGFX_STATE_BLEND_MASK)>>BGFX_STATE_BLEND_SHIFT); const uint32_t equation = uint32_t( (_state&BGFX_STATE_BLEND_EQUATION_MASK)>>BGFX_STATE_BLEND_EQUATION_SHIFT); const uint32_t srcRGB = (blend )&0xf; const uint32_t dstRGB = (blend>> 4)&0xf; const uint32_t srcA = (blend>> 8)&0xf; const uint32_t dstA = (blend>>12)&0xf; const uint32_t equRGB = (equation )&0x7; const uint32_t equA = (equation>>3)&0x7; drt->SrcBlend = s_blendFactor[srcRGB][0]; drt->DestBlend = s_blendFactor[dstRGB][0]; drt->BlendOp = s_blendEquation[equRGB]; drt->SrcBlendAlpha = s_blendFactor[srcA][1]; drt->DestBlendAlpha = s_blendFactor[dstA][1]; drt->BlendOpAlpha = s_blendEquation[equA]; uint8_t writeMask = (_state&BGFX_STATE_ALPHA_WRITE) ? D3D11_COLOR_WRITE_ENABLE_ALPHA : 0; writeMask |= (_state&BGFX_STATE_RGB_WRITE) ? D3D11_COLOR_WRITE_ENABLE_RED|D3D11_COLOR_WRITE_ENABLE_GREEN|D3D11_COLOR_WRITE_ENABLE_BLUE : 0; drt->RenderTargetWriteMask = writeMask; if (desc.IndependentBlendEnable) { for (uint32_t ii = 1, rgba = _rgba; ii < BGFX_CONFIG_MAX_FRAME_BUFFER_ATTACHMENTS; ++ii, rgba >>= 11) { drt = &desc.RenderTarget[ii]; drt->BlendEnable = 0 != (rgba&0x7ff); const uint32_t src = (rgba )&0xf; const uint32_t dst = (rgba>>4)&0xf; const uint32_t equationIndex = (rgba>>8)&0x7; drt->SrcBlend = s_blendFactor[src][0]; drt->DestBlend = s_blendFactor[dst][0]; drt->BlendOp = s_blendEquation[equationIndex]; drt->SrcBlendAlpha = s_blendFactor[src][1]; drt->DestBlendAlpha = s_blendFactor[dst][1]; drt->BlendOpAlpha = s_blendEquation[equationIndex]; drt->RenderTargetWriteMask = writeMask; } } else { for (uint32_t ii = 1; ii < BGFX_CONFIG_MAX_FRAME_BUFFER_ATTACHMENTS; ++ii) { memcpy(&desc.RenderTarget[ii], drt, sizeof(D3D11_RENDER_TARGET_BLEND_DESC) ); } } DX_CHECK(m_device->CreateBlendState(&desc, &bs) ); m_blendStateCache.add(hash, bs); } m_deviceCtx->OMSetBlendState(bs, blendFactor, 0xffffffff); } void setDepthStencilState(uint64_t _state, uint64_t _stencil = 0) { _state &= BGFX_STATE_DEPTH_WRITE|BGFX_STATE_DEPTH_TEST_MASK; uint32_t fstencil = unpackStencil(0, _stencil); uint32_t ref = (fstencil&BGFX_STENCIL_FUNC_REF_MASK)>>BGFX_STENCIL_FUNC_REF_SHIFT; _stencil &= packStencil(~BGFX_STENCIL_FUNC_REF_MASK, BGFX_STENCIL_MASK); bx::HashMurmur2A murmur; murmur.begin(); murmur.add(_state); murmur.add(_stencil); uint32_t hash = murmur.end(); ID3D11DepthStencilState* dss = m_depthStencilStateCache.find(hash); if (NULL == dss) { D3D11_DEPTH_STENCIL_DESC desc; memset(&desc, 0, sizeof(desc) ); uint32_t func = (_state&BGFX_STATE_DEPTH_TEST_MASK)>>BGFX_STATE_DEPTH_TEST_SHIFT; desc.DepthEnable = 0 != func; desc.DepthWriteMask = !!(BGFX_STATE_DEPTH_WRITE & _state) ? D3D11_DEPTH_WRITE_MASK_ALL : D3D11_DEPTH_WRITE_MASK_ZERO; desc.DepthFunc = s_cmpFunc[func]; uint32_t bstencil = unpackStencil(1, _stencil); uint32_t frontAndBack = bstencil != BGFX_STENCIL_NONE && bstencil != fstencil; bstencil = frontAndBack ? bstencil : fstencil; desc.StencilEnable = 0 != _stencil; desc.StencilReadMask = (fstencil&BGFX_STENCIL_FUNC_RMASK_MASK)>>BGFX_STENCIL_FUNC_RMASK_SHIFT; desc.StencilWriteMask = 0xff; desc.FrontFace.StencilFailOp = s_stencilOp[(fstencil&BGFX_STENCIL_OP_FAIL_S_MASK)>>BGFX_STENCIL_OP_FAIL_S_SHIFT]; desc.FrontFace.StencilDepthFailOp = s_stencilOp[(fstencil&BGFX_STENCIL_OP_FAIL_Z_MASK)>>BGFX_STENCIL_OP_FAIL_Z_SHIFT]; desc.FrontFace.StencilPassOp = s_stencilOp[(fstencil&BGFX_STENCIL_OP_PASS_Z_MASK)>>BGFX_STENCIL_OP_PASS_Z_SHIFT]; desc.FrontFace.StencilFunc = s_cmpFunc[(fstencil&BGFX_STENCIL_TEST_MASK)>>BGFX_STENCIL_TEST_SHIFT]; desc.BackFace.StencilFailOp = s_stencilOp[(bstencil&BGFX_STENCIL_OP_FAIL_S_MASK)>>BGFX_STENCIL_OP_FAIL_S_SHIFT]; desc.BackFace.StencilDepthFailOp = s_stencilOp[(bstencil&BGFX_STENCIL_OP_FAIL_Z_MASK)>>BGFX_STENCIL_OP_FAIL_Z_SHIFT]; desc.BackFace.StencilPassOp = s_stencilOp[(bstencil&BGFX_STENCIL_OP_PASS_Z_MASK)>>BGFX_STENCIL_OP_PASS_Z_SHIFT]; desc.BackFace.StencilFunc = s_cmpFunc[(bstencil&BGFX_STENCIL_TEST_MASK)>>BGFX_STENCIL_TEST_SHIFT]; DX_CHECK(m_device->CreateDepthStencilState(&desc, &dss) ); m_depthStencilStateCache.add(hash, dss); } m_deviceCtx->OMSetDepthStencilState(dss, ref); } void setDebugWireframe(bool _wireframe) { if (m_wireframe != _wireframe) { m_wireframe = _wireframe; m_rasterizerStateCache.invalidate(); } } void setRasterizerState(uint64_t _state, bool _wireframe = false, bool _scissor = false) { _state &= BGFX_STATE_CULL_MASK|BGFX_STATE_MSAA; _state |= _wireframe ? BGFX_STATE_PT_LINES : BGFX_STATE_NONE; _state |= _scissor ? BGFX_STATE_RESERVED_MASK : 0; ID3D11RasterizerState* rs = m_rasterizerStateCache.find(_state); if (NULL == rs) { uint32_t cull = (_state&BGFX_STATE_CULL_MASK)>>BGFX_STATE_CULL_SHIFT; D3D11_RASTERIZER_DESC desc; desc.FillMode = _wireframe ? D3D11_FILL_WIREFRAME : D3D11_FILL_SOLID; desc.CullMode = s_cullMode[cull]; desc.FrontCounterClockwise = false; desc.DepthBias = 0; desc.DepthBiasClamp = 0.0f; desc.SlopeScaledDepthBias = 0.0f; desc.DepthClipEnable = false; desc.ScissorEnable = _scissor; desc.MultisampleEnable = !!(_state&BGFX_STATE_MSAA); desc.AntialiasedLineEnable = false; DX_CHECK(m_device->CreateRasterizerState(&desc, &rs) ); m_rasterizerStateCache.add(_state, rs); } m_deviceCtx->RSSetState(rs); } ID3D11SamplerState* getSamplerState(uint32_t _flags) { _flags &= BGFX_TEXTURE_SAMPLER_BITS_MASK; ID3D11SamplerState* sampler = m_samplerStateCache.find(_flags); if (NULL == sampler) { const uint32_t cmpFunc = (_flags&BGFX_TEXTURE_COMPARE_MASK)>>BGFX_TEXTURE_COMPARE_SHIFT; const uint8_t minFilter = s_textureFilter[0][(_flags&BGFX_TEXTURE_MIN_MASK)>>BGFX_TEXTURE_MIN_SHIFT]; const uint8_t magFilter = s_textureFilter[1][(_flags&BGFX_TEXTURE_MAG_MASK)>>BGFX_TEXTURE_MAG_SHIFT]; const uint8_t mipFilter = s_textureFilter[2][(_flags&BGFX_TEXTURE_MIP_MASK)>>BGFX_TEXTURE_MIP_SHIFT]; const uint8_t filter = 0 == cmpFunc ? 0 : D3D11_COMPARISON_FILTERING_BIT; D3D11_SAMPLER_DESC sd; sd.Filter = (D3D11_FILTER)(filter|minFilter|magFilter|mipFilter); sd.AddressU = s_textureAddress[(_flags&BGFX_TEXTURE_U_MASK)>>BGFX_TEXTURE_U_SHIFT]; sd.AddressV = s_textureAddress[(_flags&BGFX_TEXTURE_V_MASK)>>BGFX_TEXTURE_V_SHIFT]; sd.AddressW = s_textureAddress[(_flags&BGFX_TEXTURE_W_MASK)>>BGFX_TEXTURE_W_SHIFT]; sd.MipLODBias = 0.0f; sd.MaxAnisotropy = m_maxAnisotropy; sd.ComparisonFunc = 0 == cmpFunc ? D3D11_COMPARISON_NEVER : s_cmpFunc[cmpFunc]; sd.BorderColor[0] = 0.0f; sd.BorderColor[1] = 0.0f; sd.BorderColor[2] = 0.0f; sd.BorderColor[3] = 0.0f; sd.MinLOD = 0; sd.MaxLOD = D3D11_FLOAT32_MAX; m_device->CreateSamplerState(&sd, &sampler); DX_CHECK_REFCOUNT(sampler, 1); m_samplerStateCache.add(_flags, sampler); } return sampler; } DXGI_FORMAT getBufferFormat() { #if BX_PLATFORM_WINRT return m_scd.Format; #else return m_scd.BufferDesc.Format; #endif } uint32_t getBufferWidth() { #if BX_PLATFORM_WINRT return m_scd.Width; #else return m_scd.BufferDesc.Width; #endif } uint32_t getBufferHeight() { #if BX_PLATFORM_WINRT return m_scd.Height; #else return m_scd.BufferDesc.Height; #endif } void setBufferSize(uint32_t _width, uint32_t _height) { #if BX_PLATFORM_WINRT m_scd.Width = _width; m_scd.Height = _height; #else m_scd.BufferDesc.Width = _width; m_scd.BufferDesc.Height = _height; #endif } void commitTextureStage() { m_deviceCtx->VSSetShaderResources(0, BGFX_CONFIG_MAX_TEXTURE_SAMPLERS, m_textureStage.m_srv); m_deviceCtx->VSSetSamplers(0, BGFX_CONFIG_MAX_TEXTURE_SAMPLERS, m_textureStage.m_sampler); m_deviceCtx->PSSetShaderResources(0, BGFX_CONFIG_MAX_TEXTURE_SAMPLERS, m_textureStage.m_srv); m_deviceCtx->PSSetSamplers(0, BGFX_CONFIG_MAX_TEXTURE_SAMPLERS, m_textureStage.m_sampler); } void invalidateTextureStage() { m_textureStage.clear(); commitTextureStage(); } void ovrPostReset() { #if BGFX_CONFIG_USE_OVR if (m_flags & (BGFX_RESET_HMD|BGFX_RESET_HMD_DEBUG) ) { ovrD3D11Config config; config.D3D11.Header.API = ovrRenderAPI_D3D11; # if OVR_VERSION > OVR_VERSION_043 config.D3D11.Header.BackBufferSize.w = m_scd.BufferDesc.Width; config.D3D11.Header.BackBufferSize.h = m_scd.BufferDesc.Height; config.D3D11.pBackBufferUAV = NULL; # else config.D3D11.Header.RTSize.w = m_scd.BufferDesc.Width; config.D3D11.Header.RTSize.h = m_scd.BufferDesc.Height; # endif // OVR_VERSION > OVR_VERSION_042 config.D3D11.Header.Multisample = 0; config.D3D11.pDevice = m_device; config.D3D11.pDeviceContext = m_deviceCtx; config.D3D11.pBackBufferRT = m_backBufferColor; config.D3D11.pSwapChain = m_swapChain; if (m_ovr.postReset(g_bgfxHwnd, &config.Config, !!(m_flags & BGFX_RESET_HMD_DEBUG) ) ) { uint32_t size = sizeof(uint32_t) + sizeof(TextureCreate); const Memory* mem = alloc(size); bx::StaticMemoryBlockWriter writer(mem->data, mem->size); uint32_t magic = BGFX_CHUNK_MAGIC_TEX; bx::write(&writer, magic); TextureCreate tc; tc.m_flags = BGFX_TEXTURE_RT; tc.m_width = m_ovr.m_rtSize.w; tc.m_height = m_ovr.m_rtSize.h; tc.m_sides = 0; tc.m_depth = 0; tc.m_numMips = 1; tc.m_format = uint8_t(bgfx::TextureFormat::BGRA8); tc.m_cubeMap = false; tc.m_mem = NULL; bx::write(&writer, tc); m_ovrRT.create(mem, tc.m_flags, 0); release(mem); DX_CHECK(m_device->CreateRenderTargetView(m_ovrRT.m_ptr, NULL, &m_ovrRtv) ); D3D11_TEXTURE2D_DESC dsd; dsd.Width = m_ovr.m_rtSize.w; dsd.Height = m_ovr.m_rtSize.h; dsd.MipLevels = 1; dsd.ArraySize = 1; dsd.Format = DXGI_FORMAT_D24_UNORM_S8_UINT; dsd.SampleDesc = m_scd.SampleDesc; dsd.Usage = D3D11_USAGE_DEFAULT; dsd.BindFlags = D3D11_BIND_DEPTH_STENCIL; dsd.CPUAccessFlags = 0; dsd.MiscFlags = 0; ID3D11Texture2D* depthStencil; DX_CHECK(m_device->CreateTexture2D(&dsd, NULL, &depthStencil) ); DX_CHECK(m_device->CreateDepthStencilView(depthStencil, NULL, &m_ovrDsv) ); DX_RELEASE(depthStencil, 0); ovrD3D11Texture texture; texture.D3D11.Header.API = ovrRenderAPI_D3D11; texture.D3D11.Header.TextureSize = m_ovr.m_rtSize; texture.D3D11.pTexture = m_ovrRT.m_texture2d; texture.D3D11.pSRView = m_ovrRT.m_srv; m_ovr.postReset(texture.Texture); bx::xchg(m_ovrRtv, m_backBufferColor); BX_CHECK(NULL == m_backBufferDepthStencil, ""); bx::xchg(m_ovrDsv, m_backBufferDepthStencil); } } #endif // BGFX_CONFIG_USE_OVR } void ovrPreReset() { #if BGFX_CONFIG_USE_OVR m_ovr.preReset(); if (NULL != m_ovrRtv) { bx::xchg(m_ovrRtv, m_backBufferColor); bx::xchg(m_ovrDsv, m_backBufferDepthStencil); BX_CHECK(NULL == m_backBufferDepthStencil, ""); DX_RELEASE(m_ovrRtv, 0); DX_RELEASE(m_ovrDsv, 0); m_ovrRT.destroy(); } #endif // BGFX_CONFIG_USE_OVR } void capturePostReset() { if (m_flags&BGFX_RESET_CAPTURE) { ID3D11Texture2D* backBuffer; DX_CHECK(m_swapChain->GetBuffer(0, IID_ID3D11Texture2D, (void**)&backBuffer)); D3D11_TEXTURE2D_DESC backBufferDesc; backBuffer->GetDesc(&backBufferDesc); D3D11_TEXTURE2D_DESC desc; memcpy(&desc, &backBufferDesc, sizeof(desc) ); desc.SampleDesc.Count = 1; desc.SampleDesc.Quality = 0; desc.Usage = D3D11_USAGE_STAGING; desc.BindFlags = 0; desc.CPUAccessFlags = D3D11_CPU_ACCESS_READ; HRESULT hr = m_device->CreateTexture2D(&desc, NULL, &m_captureTexture); if (SUCCEEDED(hr) ) { if (backBufferDesc.SampleDesc.Count != 1) { desc.Usage = D3D11_USAGE_DEFAULT; desc.CPUAccessFlags = 0; m_device->CreateTexture2D(&desc, NULL, &m_captureResolve); } g_callback->captureBegin(backBufferDesc.Width, backBufferDesc.Height, backBufferDesc.Width*4, TextureFormat::BGRA8, false); } DX_RELEASE(backBuffer, 0); } } void capturePreReset() { if (NULL != m_captureTexture) { g_callback->captureEnd(); } DX_RELEASE(m_captureResolve, 0); DX_RELEASE(m_captureTexture, 0); } void capture() { if (NULL != m_captureTexture) { ID3D11Texture2D* backBuffer; DX_CHECK(m_swapChain->GetBuffer(0, IID_ID3D11Texture2D, (void**)&backBuffer)); if (NULL == m_captureResolve) { m_deviceCtx->CopyResource(m_captureTexture, backBuffer); } else { m_deviceCtx->ResolveSubresource(m_captureResolve, 0, backBuffer, 0, getBufferFormat()); m_deviceCtx->CopyResource(m_captureTexture, m_captureResolve); } D3D11_MAPPED_SUBRESOURCE mapped; DX_CHECK(m_deviceCtx->Map(m_captureTexture, 0, D3D11_MAP_READ, 0, &mapped) ); g_callback->captureFrame(mapped.pData, getBufferHeight()*mapped.RowPitch); m_deviceCtx->Unmap(m_captureTexture, 0); DX_RELEASE(backBuffer, 0); } } void commit(ConstantBuffer& _constantBuffer) { _constantBuffer.reset(); for (;;) { uint32_t opcode = _constantBuffer.read(); if (UniformType::End == opcode) { break; } UniformType::Enum type; uint16_t loc; uint16_t num; uint16_t copy; ConstantBuffer::decodeOpcode(opcode, type, loc, num, copy); const char* data; if (copy) { data = _constantBuffer.read(g_uniformTypeSize[type]*num); } else { UniformHandle handle; memcpy(&handle, _constantBuffer.read(sizeof(UniformHandle) ), sizeof(UniformHandle) ); data = (const char*)m_uniforms[handle.idx]; } #define CASE_IMPLEMENT_UNIFORM(_uniform, _dxsuffix, _type) \ case UniformType::_uniform: \ case UniformType::_uniform|BGFX_UNIFORM_FRAGMENTBIT: \ { \ setShaderUniform(uint8_t(type), loc, data, num); \ } \ break; switch ( (uint32_t)type) { case UniformType::Uniform3x3fv: case UniformType::Uniform3x3fv|BGFX_UNIFORM_FRAGMENTBIT: \ { float* value = (float*)data; for (uint32_t ii = 0, count = num/3; ii < count; ++ii, loc += 3*16, value += 9) { Matrix4 mtx; mtx.un.val[ 0] = value[0]; mtx.un.val[ 1] = value[1]; mtx.un.val[ 2] = value[2]; mtx.un.val[ 3] = 0.0f; mtx.un.val[ 4] = value[3]; mtx.un.val[ 5] = value[4]; mtx.un.val[ 6] = value[5]; mtx.un.val[ 7] = 0.0f; mtx.un.val[ 8] = value[6]; mtx.un.val[ 9] = value[7]; mtx.un.val[10] = value[8]; mtx.un.val[11] = 0.0f; setShaderUniform(uint8_t(type), loc, &mtx.un.val[0], 3); } } break; CASE_IMPLEMENT_UNIFORM(Uniform1i, I, int); CASE_IMPLEMENT_UNIFORM(Uniform1f, F, float); CASE_IMPLEMENT_UNIFORM(Uniform1iv, I, int); CASE_IMPLEMENT_UNIFORM(Uniform1fv, F, float); CASE_IMPLEMENT_UNIFORM(Uniform2fv, F, float); CASE_IMPLEMENT_UNIFORM(Uniform3fv, F, float); CASE_IMPLEMENT_UNIFORM(Uniform4fv, F, float); CASE_IMPLEMENT_UNIFORM(Uniform4x4fv, F, float); case UniformType::End: break; default: BX_TRACE("%4d: INVALID 0x%08x, t %d, l %d, n %d, c %d", _constantBuffer.getPos(), opcode, type, loc, num, copy); break; } #undef CASE_IMPLEMENT_UNIFORM } } void clearQuad(ClearQuad& _clearQuad, const Rect& _rect, const Clear& _clear, const float _palette[][4]) { uint32_t width = getBufferWidth(); uint32_t height = getBufferHeight(); if (0 == _rect.m_x && 0 == _rect.m_y && width == _rect.m_width && height == _rect.m_height) { clear(_clear, _palette); } else { ID3D11DeviceContext* deviceCtx = m_deviceCtx; uint64_t state = 0; state |= _clear.m_flags & BGFX_CLEAR_COLOR ? BGFX_STATE_RGB_WRITE|BGFX_STATE_ALPHA_WRITE : 0; state |= _clear.m_flags & BGFX_CLEAR_DEPTH ? BGFX_STATE_DEPTH_TEST_ALWAYS|BGFX_STATE_DEPTH_WRITE : 0; uint64_t stencil = 0; stencil |= _clear.m_flags & BGFX_CLEAR_STENCIL ? 0 | BGFX_STENCIL_TEST_ALWAYS | BGFX_STENCIL_FUNC_REF(_clear.m_stencil) | BGFX_STENCIL_FUNC_RMASK(0xff) | BGFX_STENCIL_OP_FAIL_S_REPLACE | BGFX_STENCIL_OP_FAIL_Z_REPLACE | BGFX_STENCIL_OP_PASS_Z_REPLACE : 0 ; setBlendState(state); setDepthStencilState(state, stencil); setRasterizerState(state); uint32_t numMrt = 1; FrameBufferHandle fbh = m_fbh; if (isValid(fbh) ) { const FrameBufferD3D11& fb = m_frameBuffers[fbh.idx]; numMrt = bx::uint32_max(1, fb.m_num); } ProgramD3D11& program = m_program[_clearQuad.m_program[numMrt-1].idx]; m_currentProgram = &program; deviceCtx->VSSetShader(program.m_vsh->m_vertexShader, NULL, 0); deviceCtx->VSSetConstantBuffers(0, 0, NULL); if (NULL != m_currentColor) { const ShaderD3D11* fsh = program.m_fsh; deviceCtx->PSSetShader(fsh->m_pixelShader, NULL, 0); deviceCtx->PSSetConstantBuffers(0, 1, &fsh->m_buffer); if (BGFX_CLEAR_COLOR_USE_PALETTE & _clear.m_flags) { float mrtClear[BGFX_CONFIG_MAX_FRAME_BUFFER_ATTACHMENTS][4]; for (uint32_t ii = 0; ii < numMrt; ++ii) { uint8_t index = (uint8_t)bx::uint32_min(BGFX_CONFIG_MAX_CLEAR_COLOR_PALETTE-1, _clear.m_index[ii]); memcpy(mrtClear[ii], _palette[index], 16); } deviceCtx->UpdateSubresource(fsh->m_buffer, 0, 0, mrtClear, 0, 0); } else { float rgba[4] = { _clear.m_index[0]*1.0f/255.0f, _clear.m_index[1]*1.0f/255.0f, _clear.m_index[2]*1.0f/255.0f, _clear.m_index[3]*1.0f/255.0f, }; deviceCtx->UpdateSubresource(fsh->m_buffer, 0, 0, rgba, 0, 0); } } else { deviceCtx->PSSetShader(NULL, NULL, 0); } VertexBufferD3D11& vb = m_vertexBuffers[_clearQuad.m_vb->handle.idx]; const VertexDecl& vertexDecl = m_vertexDecls[_clearQuad.m_vb->decl.idx]; const uint32_t stride = vertexDecl.m_stride; const uint32_t offset = 0; { struct Vertex { float m_x; float m_y; float m_z; }; Vertex* vertex = (Vertex*)_clearQuad.m_vb->data; BX_CHECK(stride == sizeof(Vertex), "Stride/Vertex mismatch (stride %d, sizeof(Vertex) %d)", stride, sizeof(Vertex) ); const float depth = _clear.m_depth; vertex->m_x = -1.0f; vertex->m_y = -1.0f; vertex->m_z = depth; vertex++; vertex->m_x = 1.0f; vertex->m_y = -1.0f; vertex->m_z = depth; vertex++; vertex->m_x = -1.0f; vertex->m_y = 1.0f; vertex->m_z = depth; vertex++; vertex->m_x = 1.0f; vertex->m_y = 1.0f; vertex->m_z = depth; } m_vertexBuffers[_clearQuad.m_vb->handle.idx].update(0, 4*_clearQuad.m_decl.m_stride, _clearQuad.m_vb->data); deviceCtx->IASetVertexBuffers(0, 1, &vb.m_ptr, &stride, &offset); setInputLayout(vertexDecl, program, 0); deviceCtx->IASetPrimitiveTopology(D3D11_PRIMITIVE_TOPOLOGY_TRIANGLESTRIP); deviceCtx->Draw(4, 0); } } #if USE_D3D11_DYNAMIC_LIB void* m_d3d9dll; void* m_d3d11dll; void* m_dxgidll; #endif // USE_D3D11_DYNAMIC_LIB void* m_renderdocdll; D3D_DRIVER_TYPE m_driverType; IDXGIAdapter* m_adapter; DXGI_ADAPTER_DESC m_adapterDesc; #if BX_PLATFORM_WINRT IDXGIFactory2* m_factory; IDXGISwapChain1* m_swapChain; #else IDXGIFactory* m_factory; IDXGISwapChain* m_swapChain; #endif uint16_t m_lost; uint16_t m_numWindows; FrameBufferHandle m_windows[BGFX_CONFIG_MAX_FRAME_BUFFERS]; ID3D11Device* m_device; ID3D11DeviceContext* m_deviceCtx; ID3D11RenderTargetView* m_backBufferColor; ID3D11DepthStencilView* m_backBufferDepthStencil; ID3D11RenderTargetView* m_currentColor; ID3D11DepthStencilView* m_currentDepthStencil; ID3D11Texture2D* m_captureTexture; ID3D11Texture2D* m_captureResolve; Resolution m_resolution; bool m_wireframe; #if BX_PLATFORM_WINRT DXGI_SWAP_CHAIN_DESC1 m_scd; #else DXGI_SWAP_CHAIN_DESC m_scd; #endif uint32_t m_flags; uint32_t m_maxAnisotropy; IndexBufferD3D11 m_indexBuffers[BGFX_CONFIG_MAX_INDEX_BUFFERS]; VertexBufferD3D11 m_vertexBuffers[BGFX_CONFIG_MAX_VERTEX_BUFFERS]; ShaderD3D11 m_shaders[BGFX_CONFIG_MAX_SHADERS]; ProgramD3D11 m_program[BGFX_CONFIG_MAX_PROGRAMS]; TextureD3D11 m_textures[BGFX_CONFIG_MAX_TEXTURES]; VertexDecl m_vertexDecls[BGFX_CONFIG_MAX_VERTEX_DECLS]; FrameBufferD3D11 m_frameBuffers[BGFX_CONFIG_MAX_FRAME_BUFFERS]; void* m_uniforms[BGFX_CONFIG_MAX_UNIFORMS]; Matrix4 m_predefinedUniforms[PredefinedUniform::Count]; UniformRegistry m_uniformReg; StateCacheT m_blendStateCache; StateCacheT m_depthStencilStateCache; StateCacheT m_inputLayoutCache; StateCacheT m_rasterizerStateCache; StateCacheT m_samplerStateCache; TextVideoMem m_textVideoMem; TextureStage m_textureStage; ProgramD3D11* m_currentProgram; uint8_t m_vsScratch[64<<10]; uint8_t m_fsScratch[64<<10]; uint32_t m_vsChanges; uint32_t m_fsChanges; FrameBufferHandle m_fbh; bool m_rtMsaa; OVR m_ovr; TextureD3D11 m_ovrRT; ID3D11RenderTargetView* m_ovrRtv; ID3D11DepthStencilView* m_ovrDsv; }; static RendererContextD3D11* s_renderD3D11; RendererContextI* rendererCreate() { s_renderD3D11 = BX_NEW(g_allocator, RendererContextD3D11); s_renderD3D11->init(); return s_renderD3D11; } void rendererDestroy() { s_renderD3D11->shutdown(); BX_DELETE(g_allocator, s_renderD3D11); s_renderD3D11 = NULL; } void BufferD3D11::create(uint32_t _size, void* _data, uint8_t _flags, uint16_t _stride, bool _vertex) { m_uav = NULL; m_size = _size; const bool needUav = 0 != (_flags & BGFX_BUFFER_COMPUTE_WRITE); const bool needSrv = 0 != (_flags & BGFX_BUFFER_COMPUTE_READ); m_dynamic = NULL == _data && !needUav; D3D11_BUFFER_DESC desc; desc.ByteWidth = _size; desc.BindFlags = 0 | (_vertex ? D3D11_BIND_VERTEX_BUFFER : D3D11_BIND_INDEX_BUFFER) | (needUav ? D3D11_BIND_UNORDERED_ACCESS : 0) | (needSrv ? D3D11_BIND_SHADER_RESOURCE : 0) ; desc.MiscFlags = 0; desc.StructureByteStride = 0; DXGI_FORMAT format = _vertex ? DXGI_FORMAT_R32G32B32A32_FLOAT : DXGI_FORMAT_R16_UINT ; ID3D11Device* device = s_renderD3D11->m_device; if (needUav) { desc.Usage = D3D11_USAGE_DEFAULT; desc.CPUAccessFlags = 0; desc.StructureByteStride = _stride; DX_CHECK(device->CreateBuffer(&desc , NULL , &m_ptr )); D3D11_UNORDERED_ACCESS_VIEW_DESC uavd; uavd.Format = format; uavd.ViewDimension = D3D11_UAV_DIMENSION_BUFFER; uavd.Buffer.FirstElement = 0; uavd.Buffer.NumElements = m_size / 16; uavd.Buffer.Flags = 0; DX_CHECK(device->CreateUnorderedAccessView(m_ptr , &uavd , &m_uav )); } else if (m_dynamic) { desc.Usage = D3D11_USAGE_DYNAMIC; desc.CPUAccessFlags = D3D11_CPU_ACCESS_WRITE; DX_CHECK(device->CreateBuffer(&desc , NULL , &m_ptr )); } else { desc.Usage = D3D11_USAGE_IMMUTABLE; desc.CPUAccessFlags = 0; D3D11_SUBRESOURCE_DATA srd; srd.pSysMem = _data; srd.SysMemPitch = 0; srd.SysMemSlicePitch = 0; DX_CHECK(device->CreateBuffer(&desc , &srd , &m_ptr )); } if (needSrv) { D3D11_SHADER_RESOURCE_VIEW_DESC srvd; srvd.Format = format; srvd.ViewDimension = D3D11_SRV_DIMENSION_BUFFER; srvd.Buffer.FirstElement = 0; srvd.Buffer.NumElements = m_size / 16; DX_CHECK(device->CreateShaderResourceView(m_ptr , &srvd , &m_srv )); } } void BufferD3D11::update(uint32_t _offset, uint32_t _size, void* _data, bool _discard) { ID3D11DeviceContext* deviceCtx = s_renderD3D11->m_deviceCtx; BX_CHECK(m_dynamic, "Must be dynamic!"); #if 1 BX_UNUSED(_discard); ID3D11Device* device = s_renderD3D11->m_device; D3D11_BUFFER_DESC desc; desc.ByteWidth = _size; desc.Usage = D3D11_USAGE_STAGING; desc.BindFlags = 0; desc.MiscFlags = 0; desc.CPUAccessFlags = D3D11_CPU_ACCESS_WRITE; desc.StructureByteStride = 0; D3D11_SUBRESOURCE_DATA srd; srd.pSysMem = _data; srd.SysMemPitch = 0; srd.SysMemSlicePitch = 0; ID3D11Buffer* ptr; DX_CHECK(device->CreateBuffer(&desc, &srd, &ptr) ); D3D11_BOX box; box.left = 0; box.top = 0; box.front = 0; box.right = _size; box.bottom = 1; box.back = 1; deviceCtx->CopySubresourceRegion(m_ptr , 0 , _offset , 0 , 0 , ptr , 0 , &box ); DX_RELEASE(ptr, 0); #else D3D11_MAPPED_SUBRESOURCE mapped; BX_UNUSED(_discard); D3D11_MAP type = D3D11_MAP_WRITE_DISCARD; DX_CHECK(deviceCtx->Map(m_ptr, 0, type, 0, &mapped)); memcpy( (uint8_t*)mapped.pData + _offset, _data, _size); deviceCtx->Unmap(m_ptr, 0); #endif // 0 } void VertexBufferD3D11::create(uint32_t _size, void* _data, VertexDeclHandle _declHandle, uint8_t _flags) { m_decl = _declHandle; uint16_t stride = isValid(_declHandle) ? s_renderD3D11->m_vertexDecls[_declHandle.idx].m_stride : 0 ; BufferD3D11::create(_size, _data, _flags, stride); } void ShaderD3D11::create(const Memory* _mem) { bx::MemoryReader reader(_mem->data, _mem->size); uint32_t magic; bx::read(&reader, magic); switch (magic) { case BGFX_CHUNK_MAGIC_CSH: case BGFX_CHUNK_MAGIC_FSH: case BGFX_CHUNK_MAGIC_VSH: break; default: BGFX_FATAL(false, Fatal::InvalidShader, "Unknown shader format %x.", magic); break; } bool fragment = BGFX_CHUNK_MAGIC_FSH == magic; uint32_t iohash; bx::read(&reader, iohash); uint16_t count; bx::read(&reader, count); m_numPredefined = 0; m_numUniforms = count; BX_TRACE("%s Shader consts %d" , BGFX_CHUNK_MAGIC_FSH == magic ? "Fragment" : BGFX_CHUNK_MAGIC_VSH == magic ? "Vertex" : "Compute" , count ); uint8_t fragmentBit = fragment ? BGFX_UNIFORM_FRAGMENTBIT : 0; if (0 < count) { for (uint32_t ii = 0; ii < count; ++ii) { uint8_t nameSize; bx::read(&reader, nameSize); char name[256]; bx::read(&reader, &name, nameSize); name[nameSize] = '\0'; uint8_t type; bx::read(&reader, type); uint8_t num; bx::read(&reader, num); uint16_t regIndex; bx::read(&reader, regIndex); uint16_t regCount; bx::read(&reader, regCount); const char* kind = "invalid"; PredefinedUniform::Enum predefined = nameToPredefinedUniformEnum(name); if (PredefinedUniform::Count != predefined) { kind = "predefined"; m_predefined[m_numPredefined].m_loc = regIndex; m_predefined[m_numPredefined].m_count = regCount; m_predefined[m_numPredefined].m_type = uint8_t(predefined|fragmentBit); m_numPredefined++; } else { const UniformInfo* info = s_renderD3D11->m_uniformReg.find(name); if (NULL != info) { if (NULL == m_constantBuffer) { m_constantBuffer = ConstantBuffer::create(1024); } kind = "user"; m_constantBuffer->writeUniformHandle( (UniformType::Enum)(type|fragmentBit), regIndex, info->m_handle, regCount); } } BX_TRACE("\t%s: %s (%s), num %2d, r.index %3d, r.count %2d" , kind , name , getUniformTypeName(UniformType::Enum(type&~BGFX_UNIFORM_FRAGMENTBIT) ) , num , regIndex , regCount ); BX_UNUSED(kind); } if (NULL != m_constantBuffer) { m_constantBuffer->finish(); } } uint16_t shaderSize; bx::read(&reader, shaderSize); const DWORD* code = (const DWORD*)reader.getDataPtr(); bx::skip(&reader, shaderSize+1); if (BGFX_CHUNK_MAGIC_FSH == magic) { DX_CHECK(s_renderD3D11->m_device->CreatePixelShader(code, shaderSize, NULL, &m_pixelShader) ); BGFX_FATAL(NULL != m_ptr, bgfx::Fatal::InvalidShader, "Failed to create fragment shader."); } else if (BGFX_CHUNK_MAGIC_VSH == magic) { m_hash = bx::hashMurmur2A(code, shaderSize); m_code = copy(code, shaderSize); DX_CHECK(s_renderD3D11->m_device->CreateVertexShader(code, shaderSize, NULL, &m_vertexShader) ); BGFX_FATAL(NULL != m_ptr, bgfx::Fatal::InvalidShader, "Failed to create vertex shader."); } else { DX_CHECK(s_renderD3D11->m_device->CreateComputeShader(code, shaderSize, NULL, &m_computeShader) ); BGFX_FATAL(NULL != m_ptr, bgfx::Fatal::InvalidShader, "Failed to create compute shader."); } uint8_t numAttrs; bx::read(&reader, numAttrs); memset(m_attrMask, 0, sizeof(m_attrMask)); for (uint32_t ii = 0; ii < numAttrs; ++ii) { uint16_t id; bx::read(&reader, id); Attrib::Enum attr = idToAttrib(id); if (Attrib::Count != attr) { m_attrMask[attr] = 0xff; } } uint16_t size; bx::read(&reader, size); if (0 < size) { D3D11_BUFFER_DESC desc; desc.ByteWidth = (size + 0xf) & ~0xf; desc.Usage = D3D11_USAGE_DEFAULT; desc.BindFlags = D3D11_BIND_CONSTANT_BUFFER; desc.CPUAccessFlags = 0; desc.MiscFlags = 0; desc.StructureByteStride = 0; DX_CHECK(s_renderD3D11->m_device->CreateBuffer(&desc, NULL, &m_buffer) ); } } void TextureD3D11::create(const Memory* _mem, uint32_t _flags, uint8_t _skip) { m_sampler = s_renderD3D11->getSamplerState(_flags); ImageContainer imageContainer; if (imageParse(imageContainer, _mem->data, _mem->size) ) { uint8_t numMips = imageContainer.m_numMips; const uint8_t startLod = uint8_t(bx::uint32_min(_skip, numMips-1) ); numMips -= startLod; const ImageBlockInfo& blockInfo = getBlockInfo(TextureFormat::Enum(imageContainer.m_format) ); const uint32_t textureWidth = bx::uint32_max(blockInfo.blockWidth, imageContainer.m_width >>startLod); const uint32_t textureHeight = bx::uint32_max(blockInfo.blockHeight, imageContainer.m_height>>startLod); m_flags = _flags; m_requestedFormat = (uint8_t)imageContainer.m_format; m_textureFormat = (uint8_t)imageContainer.m_format; const TextureFormatInfo& tfi = s_textureFormat[m_requestedFormat]; const bool convert = DXGI_FORMAT_UNKNOWN == tfi.m_fmt; uint8_t bpp = getBitsPerPixel(TextureFormat::Enum(m_textureFormat) ); if (convert) { m_textureFormat = (uint8_t)TextureFormat::BGRA8; bpp = 32; } if (imageContainer.m_cubeMap) { m_type = TextureCube; } else if (imageContainer.m_depth > 1) { m_type = Texture3D; } else { m_type = Texture2D; } m_numMips = numMips; uint32_t numSrd = numMips*(imageContainer.m_cubeMap ? 6 : 1); D3D11_SUBRESOURCE_DATA* srd = (D3D11_SUBRESOURCE_DATA*)alloca(numSrd*sizeof(D3D11_SUBRESOURCE_DATA) ); uint32_t kk = 0; const bool compressed = isCompressed(TextureFormat::Enum(m_textureFormat) ); const bool swizzle = TextureFormat::BGRA8 == m_textureFormat && 0 != (m_flags&BGFX_TEXTURE_COMPUTE_WRITE); BX_TRACE("Texture %3d: %s (requested: %s), %dx%d%s%s%s." , this - s_renderD3D11->m_textures , getName( (TextureFormat::Enum)m_textureFormat) , getName( (TextureFormat::Enum)m_requestedFormat) , textureWidth , textureHeight , imageContainer.m_cubeMap ? "x6" : "" , 0 != (m_flags&BGFX_TEXTURE_RT_MASK) ? " (render target)" : "" , swizzle ? " (swizzle BGRA8 -> RGBA8)" : "" ); for (uint8_t side = 0, numSides = imageContainer.m_cubeMap ? 6 : 1; side < numSides; ++side) { uint32_t width = textureWidth; uint32_t height = textureHeight; uint32_t depth = imageContainer.m_depth; for (uint8_t lod = 0, num = numMips; lod < num; ++lod) { width = bx::uint32_max(1, width); height = bx::uint32_max(1, height); depth = bx::uint32_max(1, depth); ImageMip mip; if (imageGetRawData(imageContainer, side, lod+startLod, _mem->data, _mem->size, mip) ) { srd[kk].pSysMem = mip.m_data; if (convert) { uint32_t srcpitch = mip.m_width*bpp/8; uint8_t* temp = (uint8_t*)BX_ALLOC(g_allocator, mip.m_width*mip.m_height*bpp/8); imageDecodeToBgra8(temp, mip.m_data, mip.m_width, mip.m_height, srcpitch, mip.m_format); srd[kk].pSysMem = temp; srd[kk].SysMemPitch = srcpitch; } else if (compressed) { srd[kk].SysMemPitch = (mip.m_width /blockInfo.blockWidth )*mip.m_blockSize; srd[kk].SysMemSlicePitch = (mip.m_height/blockInfo.blockHeight)*srd[kk].SysMemPitch; } else { srd[kk].SysMemPitch = mip.m_width*mip.m_bpp/8; } if (swizzle) { // imageSwizzleBgra8(width, height, mip.m_width*4, data, temp); } srd[kk].SysMemSlicePitch = mip.m_height*srd[kk].SysMemPitch; ++kk; } width >>= 1; height >>= 1; depth >>= 1; } } const bool bufferOnly = 0 != (m_flags&BGFX_TEXTURE_RT_BUFFER_ONLY); const bool computeWrite = 0 != (m_flags&BGFX_TEXTURE_COMPUTE_WRITE); const bool renderTarget = 0 != (m_flags&BGFX_TEXTURE_RT_MASK); const uint32_t msaaQuality = bx::uint32_satsub( (m_flags&BGFX_TEXTURE_RT_MSAA_MASK)>>BGFX_TEXTURE_RT_MSAA_SHIFT, 1); const DXGI_SAMPLE_DESC& msaa = s_msaa[msaaQuality]; D3D11_SHADER_RESOURCE_VIEW_DESC srvd; memset(&srvd, 0, sizeof(srvd) ); srvd.Format = s_textureFormat[m_textureFormat].m_fmtSrv; DXGI_FORMAT format = s_textureFormat[m_textureFormat].m_fmt; if (swizzle) { format = DXGI_FORMAT_R8G8B8A8_UNORM; srvd.Format = DXGI_FORMAT_R8G8B8A8_UNORM; } switch (m_type) { case Texture2D: case TextureCube: { D3D11_TEXTURE2D_DESC desc; desc.Width = textureWidth; desc.Height = textureHeight; desc.MipLevels = numMips; desc.Format = format; desc.SampleDesc = msaa; desc.Usage = kk == 0 ? D3D11_USAGE_DEFAULT : D3D11_USAGE_IMMUTABLE; desc.BindFlags = bufferOnly ? 0 : D3D11_BIND_SHADER_RESOURCE; desc.CPUAccessFlags = 0; if (isDepth( (TextureFormat::Enum)m_textureFormat) ) { desc.BindFlags |= D3D11_BIND_DEPTH_STENCIL; desc.Usage = D3D11_USAGE_DEFAULT; } else if (renderTarget) { desc.BindFlags |= D3D11_BIND_RENDER_TARGET; desc.Usage = D3D11_USAGE_DEFAULT; } if (computeWrite) { desc.BindFlags |= D3D11_BIND_UNORDERED_ACCESS; desc.Usage = D3D11_USAGE_DEFAULT; } if (imageContainer.m_cubeMap) { desc.ArraySize = 6; desc.MiscFlags = D3D11_RESOURCE_MISC_TEXTURECUBE; srvd.ViewDimension = D3D11_SRV_DIMENSION_TEXTURECUBE; srvd.TextureCube.MipLevels = numMips; } else { desc.ArraySize = 1; desc.MiscFlags = 0; srvd.ViewDimension = 1 < msaa.Count ? D3D11_SRV_DIMENSION_TEXTURE2DMS : D3D11_SRV_DIMENSION_TEXTURE2D; srvd.Texture2D.MipLevels = numMips; } DX_CHECK(s_renderD3D11->m_device->CreateTexture2D(&desc, kk == 0 ? NULL : srd, &m_texture2d) ); } break; case Texture3D: { D3D11_TEXTURE3D_DESC desc; desc.Width = textureWidth; desc.Height = textureHeight; desc.Depth = imageContainer.m_depth; desc.MipLevels = imageContainer.m_numMips; desc.Format = format; desc.Usage = kk == 0 ? D3D11_USAGE_DEFAULT : D3D11_USAGE_IMMUTABLE; desc.BindFlags = D3D11_BIND_SHADER_RESOURCE; desc.CPUAccessFlags = 0; desc.MiscFlags = 0; if (computeWrite) { desc.BindFlags |= D3D11_BIND_UNORDERED_ACCESS; desc.Usage = D3D11_USAGE_DEFAULT; } srvd.ViewDimension = D3D11_SRV_DIMENSION_TEXTURE3D; srvd.Texture3D.MipLevels = numMips; DX_CHECK(s_renderD3D11->m_device->CreateTexture3D(&desc, kk == 0 ? NULL : srd, &m_texture3d) ); } break; } if (!bufferOnly) { DX_CHECK(s_renderD3D11->m_device->CreateShaderResourceView(m_ptr, &srvd, &m_srv) ); } if (computeWrite) { DX_CHECK(s_renderD3D11->m_device->CreateUnorderedAccessView(m_ptr, NULL, &m_uav) ); } if (convert && 0 != kk) { kk = 0; for (uint8_t side = 0, numSides = imageContainer.m_cubeMap ? 6 : 1; side < numSides; ++side) { for (uint32_t lod = 0, num = numMips; lod < num; ++lod) { BX_FREE(g_allocator, const_cast(srd[kk].pSysMem) ); ++kk; } } } } } void TextureD3D11::destroy() { DX_RELEASE(m_srv, 0); DX_RELEASE(m_uav, 0); DX_RELEASE(m_ptr, 0); } void TextureD3D11::update(uint8_t _side, uint8_t _mip, const Rect& _rect, uint16_t _z, uint16_t _depth, uint16_t _pitch, const Memory* _mem) { ID3D11DeviceContext* deviceCtx = s_renderD3D11->m_deviceCtx; D3D11_BOX box; box.left = _rect.m_x; box.top = _rect.m_y; box.right = box.left + _rect.m_width; box.bottom = box.top + _rect.m_height; box.front = _z; box.back = box.front + _depth; const uint32_t subres = _mip + (_side * m_numMips); const uint32_t bpp = getBitsPerPixel(TextureFormat::Enum(m_textureFormat) ); const uint32_t rectpitch = _rect.m_width*bpp/8; const uint32_t srcpitch = UINT16_MAX == _pitch ? rectpitch : _pitch; const bool convert = m_textureFormat != m_requestedFormat; uint8_t* data = _mem->data; uint8_t* temp = NULL; if (convert) { temp = (uint8_t*)BX_ALLOC(g_allocator, rectpitch*_rect.m_height); imageDecodeToBgra8(temp, data, _rect.m_width, _rect.m_height, srcpitch, m_requestedFormat); data = temp; } deviceCtx->UpdateSubresource(m_ptr, subres, &box, data, srcpitch, 0); if (NULL != temp) { BX_FREE(g_allocator, temp); } } void TextureD3D11::commit(uint8_t _stage, uint32_t _flags) { TextureStage& ts = s_renderD3D11->m_textureStage; ts.m_srv[_stage] = m_srv; ts.m_sampler[_stage] = 0 == (BGFX_SAMPLER_DEFAULT_FLAGS & _flags) ? s_renderD3D11->getSamplerState(_flags) : m_sampler ; } void TextureD3D11::resolve() { } void FrameBufferD3D11::create(uint8_t _num, const TextureHandle* _handles) { for (uint32_t ii = 0; ii < BX_COUNTOF(m_rtv); ++ii) { m_rtv[ii] = NULL; } m_dsv = NULL; m_swapChain = NULL; m_num = 0; for (uint32_t ii = 0; ii < _num; ++ii) { TextureHandle handle = _handles[ii]; if (isValid(handle) ) { const TextureD3D11& texture = s_renderD3D11->m_textures[handle.idx]; if (isDepth( (TextureFormat::Enum)texture.m_textureFormat) ) { BX_CHECK(NULL == m_dsv, "Frame buffer already has depth-stencil attached."); const uint32_t msaaQuality = bx::uint32_satsub( (texture.m_flags&BGFX_TEXTURE_RT_MSAA_MASK)>>BGFX_TEXTURE_RT_MSAA_SHIFT, 1); const DXGI_SAMPLE_DESC& msaa = s_msaa[msaaQuality]; D3D11_DEPTH_STENCIL_VIEW_DESC dsvDesc; dsvDesc.Format = s_textureFormat[texture.m_textureFormat].m_fmtDsv; dsvDesc.ViewDimension = 1 < msaa.Count ? D3D11_DSV_DIMENSION_TEXTURE2DMS : D3D11_DSV_DIMENSION_TEXTURE2D; dsvDesc.Flags = 0; dsvDesc.Texture2D.MipSlice = 0; DX_CHECK(s_renderD3D11->m_device->CreateDepthStencilView(texture.m_ptr, &dsvDesc, &m_dsv) ); } else { DX_CHECK(s_renderD3D11->m_device->CreateRenderTargetView(texture.m_ptr, NULL, &m_rtv[m_num]) ); DX_CHECK(s_renderD3D11->m_device->CreateShaderResourceView(texture.m_ptr, NULL, &m_srv[m_num]) ); m_num++; } } } } void FrameBufferD3D11::create(uint16_t _denseIdx, void* _nwh, uint32_t _width, uint32_t _height, TextureFormat::Enum _depthFormat) { BX_UNUSED(_depthFormat); DXGI_SWAP_CHAIN_DESC scd; memcpy(&scd, &s_renderD3D11->m_scd, sizeof(DXGI_SWAP_CHAIN_DESC) ); scd.BufferDesc.Width = _width; scd.BufferDesc.Height = _height; scd.OutputWindow = (HWND)_nwh; HRESULT hr; hr = s_renderD3D11->m_factory->CreateSwapChain(s_renderD3D11->m_device , &scd , &m_swapChain ); BGFX_FATAL(SUCCEEDED(hr), Fatal::UnableToInitialize, "Failed to create swap chain."); ID3D11Resource* ptr; DX_CHECK(m_swapChain->GetBuffer(0, IID_ID3D11Texture2D, (void**)&ptr)); DX_CHECK(s_renderD3D11->m_device->CreateRenderTargetView(ptr, NULL, &m_rtv[0]) ); DX_RELEASE(ptr, 0); m_srv[0] = NULL; m_dsv = NULL; m_denseIdx = _denseIdx; m_num = 1; } uint16_t FrameBufferD3D11::destroy() { for (uint32_t ii = 0, num = m_num; ii < num; ++ii) { DX_RELEASE(m_srv[ii], 0); DX_RELEASE(m_rtv[ii], 0); } DX_RELEASE(m_dsv, 0); DX_RELEASE(m_swapChain, 0); m_num = 0; uint16_t denseIdx = m_denseIdx; m_denseIdx = UINT16_MAX; return denseIdx; } void FrameBufferD3D11::resolve() { } void FrameBufferD3D11::clear(const Clear& _clear, const float _palette[][4]) { ID3D11DeviceContext* deviceCtx = s_renderD3D11->m_deviceCtx; if (BGFX_CLEAR_COLOR & _clear.m_flags) { if (BGFX_CLEAR_COLOR_USE_PALETTE & _clear.m_flags) { for (uint32_t ii = 0, num = m_num; ii < num; ++ii) { uint8_t index = _clear.m_index[ii]; if (NULL != m_rtv[ii] && UINT8_MAX != index) { deviceCtx->ClearRenderTargetView(m_rtv[ii], _palette[index]); } } } else { float frgba[4] = { _clear.m_index[0]*1.0f/255.0f, _clear.m_index[1]*1.0f/255.0f, _clear.m_index[2]*1.0f/255.0f, _clear.m_index[3]*1.0f/255.0f, }; for (uint32_t ii = 0, num = m_num; ii < num; ++ii) { if (NULL != m_rtv[ii]) { deviceCtx->ClearRenderTargetView(m_rtv[ii], frgba); } } } } if (NULL != m_dsv && (BGFX_CLEAR_DEPTH|BGFX_CLEAR_STENCIL) & _clear.m_flags) { DWORD flags = 0; flags |= (_clear.m_flags & BGFX_CLEAR_DEPTH) ? D3D11_CLEAR_DEPTH : 0; flags |= (_clear.m_flags & BGFX_CLEAR_STENCIL) ? D3D11_CLEAR_STENCIL : 0; deviceCtx->ClearDepthStencilView(m_dsv, flags, _clear.m_depth, _clear.m_stencil); } } void RendererContextD3D11::submit(Frame* _render, ClearQuad& _clearQuad, TextVideoMemBlitter& _textVideoMemBlitter) { PIX_BEGINEVENT(D3DCOLOR_RGBA(0xff, 0x00, 0x00, 0xff), L"rendererSubmit"); ID3D11DeviceContext* deviceCtx = m_deviceCtx; updateResolution(_render->m_resolution); int64_t elapsed = -bx::getHPCounter(); int64_t captureElapsed = 0; if (0 < _render->m_iboffset) { TransientIndexBuffer* ib = _render->m_transientIb; m_indexBuffers[ib->handle.idx].update(0, _render->m_iboffset, ib->data); } if (0 < _render->m_vboffset) { TransientVertexBuffer* vb = _render->m_transientVb; m_vertexBuffers[vb->handle.idx].update(0, _render->m_vboffset, vb->data); } _render->sort(); RenderDraw currentState; currentState.clear(); currentState.m_flags = BGFX_STATE_NONE; currentState.m_stencil = packStencil(BGFX_STENCIL_NONE, BGFX_STENCIL_NONE); const bool hmdEnabled = m_ovr.isEnabled() || m_ovr.isDebug(); _render->m_hmdEnabled = hmdEnabled; if (hmdEnabled) { HMD& hmd = _render->m_hmd; m_ovr.getEyePose(hmd); } ViewState viewState(_render, hmdEnabled); bool wireframe = !!(_render->m_debug&BGFX_DEBUG_WIREFRAME); bool scissorEnabled = false; setDebugWireframe(wireframe); uint16_t programIdx = invalidHandle; SortKey key; uint8_t view = 0xff; FrameBufferHandle fbh = BGFX_INVALID_HANDLE; const uint64_t primType = _render->m_debug&BGFX_DEBUG_WIREFRAME ? BGFX_STATE_PT_LINES : 0; uint8_t primIndex = uint8_t(primType>>BGFX_STATE_PT_SHIFT); PrimInfo prim = s_primInfo[primIndex]; deviceCtx->IASetPrimitiveTopology(prim.m_type); bool wasCompute = false; bool viewHasScissor = false; Rect viewScissorRect; viewScissorRect.clear(); uint32_t statsNumPrimsSubmitted[BX_COUNTOF(s_primInfo)] = {}; uint32_t statsNumPrimsRendered[BX_COUNTOF(s_primInfo)] = {}; uint32_t statsNumInstances[BX_COUNTOF(s_primInfo)] = {}; uint32_t statsNumIndices = 0; uint32_t statsKeyType[2] = {}; if (0 == (_render->m_debug&BGFX_DEBUG_IFH) ) { bool viewRestart = false; uint8_t eye = 0; uint8_t restartState = 0; viewState.m_rect = _render->m_rect[0]; int32_t numItems = _render->m_num; for (int32_t item = 0, restartItem = numItems; item < numItems || restartItem < numItems;) { const bool isCompute = key.decode(_render->m_sortKeys[item], _render->m_viewRemap); statsKeyType[isCompute]++; const bool viewChanged = 0 || key.m_view != view || item == numItems ; const RenderItem& renderItem = _render->m_renderItem[_render->m_sortValues[item] ]; ++item; if (viewChanged) { if (1 == restartState) { restartState = 2; item = restartItem; restartItem = numItems; view = 0xff; continue; } view = key.m_view; programIdx = invalidHandle; if (_render->m_fb[view].idx != fbh.idx) { fbh = _render->m_fb[view]; setFrameBuffer(fbh); } viewRestart = ( (BGFX_VIEW_STEREO == (_render->m_viewFlags[view] & BGFX_VIEW_STEREO) ) ); viewRestart &= hmdEnabled; if (viewRestart) { if (0 == restartState) { restartState = 1; restartItem = item - 1; } eye = (restartState - 1) & 1; restartState &= 1; } else { eye = 0; } PIX_ENDEVENT(); viewState.m_rect = _render->m_rect[view]; if (viewRestart) { if (BX_ENABLED(BGFX_CONFIG_DEBUG_PIX) ) { wchar_t* viewNameW = s_viewNameW[view]; viewNameW[3] = L' '; viewNameW[4] = eye ? L'R' : L'L'; PIX_BEGINEVENT(D3DCOLOR_RGBA(0xff, 0x00, 0x00, 0xff), viewNameW); } viewState.m_rect.m_x = eye * (viewState.m_rect.m_width+1)/2; viewState.m_rect.m_width /= 2; } else { if (BX_ENABLED(BGFX_CONFIG_DEBUG_PIX) ) { wchar_t* viewNameW = s_viewNameW[view]; viewNameW[3] = L' '; viewNameW[4] = L' '; PIX_BEGINEVENT(D3DCOLOR_RGBA(0xff, 0x00, 0x00, 0xff), viewNameW); } } const Rect& scissorRect = _render->m_scissor[view]; viewHasScissor = !scissorRect.isZero(); viewScissorRect = viewHasScissor ? scissorRect : viewState.m_rect; D3D11_VIEWPORT vp; vp.TopLeftX = viewState.m_rect.m_x; vp.TopLeftY = viewState.m_rect.m_y; vp.Width = viewState.m_rect.m_width; vp.Height = viewState.m_rect.m_height; vp.MinDepth = 0.0f; vp.MaxDepth = 1.0f; deviceCtx->RSSetViewports(1, &vp); Clear& clear = _render->m_clear[view]; if (BGFX_CLEAR_NONE != (clear.m_flags & BGFX_CLEAR_MASK) ) { clearQuad(_clearQuad, viewState.m_rect, clear, _render->m_clearColor); prim = s_primInfo[BX_COUNTOF(s_primName)]; // Force primitive type update after clear quad. } } if (isCompute) { if (!wasCompute) { wasCompute = true; if (BX_ENABLED(BGFX_CONFIG_DEBUG_PIX) ) { wchar_t* viewNameW = s_viewNameW[view]; viewNameW[3] = L'C'; PIX_ENDEVENT(); PIX_BEGINEVENT(D3DCOLOR_RGBA(0xff, 0x00, 0x00, 0xff), viewNameW); } deviceCtx->IASetVertexBuffers(0, 2, s_zero.m_buffer, s_zero.m_zero, s_zero.m_zero); deviceCtx->IASetIndexBuffer(NULL, DXGI_FORMAT_R16_UINT, 0); deviceCtx->VSSetShaderResources(0, BGFX_CONFIG_MAX_TEXTURE_SAMPLERS, s_zero.m_srv); deviceCtx->PSSetShaderResources(0, BGFX_CONFIG_MAX_TEXTURE_SAMPLERS, s_zero.m_srv); deviceCtx->VSSetSamplers(0, BGFX_CONFIG_MAX_TEXTURE_SAMPLERS, s_zero.m_sampler); deviceCtx->PSSetSamplers(0, BGFX_CONFIG_MAX_TEXTURE_SAMPLERS, s_zero.m_sampler); } const RenderCompute& compute = renderItem.compute; if (0 != eye && BGFX_SUBMIT_EYE_LEFT == (compute.m_submitFlags&BGFX_SUBMIT_EYE_MASK) ) { continue; } bool programChanged = false; bool constantsChanged = compute.m_constBegin < compute.m_constEnd; rendererUpdateUniforms(this, _render->m_constantBuffer, compute.m_constBegin, compute.m_constEnd); if (key.m_program != programIdx) { programIdx = key.m_program; ProgramD3D11& program = m_program[key.m_program]; m_currentProgram = &program; deviceCtx->CSSetShader(program.m_vsh->m_computeShader, NULL, 0); deviceCtx->CSSetConstantBuffers(0, 1, &program.m_vsh->m_buffer); programChanged = constantsChanged = true; } if (invalidHandle != programIdx) { ProgramD3D11& program = m_program[programIdx]; if (constantsChanged) { ConstantBuffer* vcb = program.m_vsh->m_constantBuffer; if (NULL != vcb) { commit(*vcb); } } viewState.setPredefined<4>(this, view, eye, program, _render, compute); if (constantsChanged || program.m_numPredefined > 0) { commitShaderConstants(); } } BX_UNUSED(programChanged); ID3D11UnorderedAccessView* uav[BGFX_MAX_COMPUTE_BINDINGS] = {}; ID3D11ShaderResourceView* srv[BGFX_MAX_COMPUTE_BINDINGS] = {}; ID3D11SamplerState* sampler[BGFX_MAX_COMPUTE_BINDINGS] = {}; for (uint32_t ii = 0; ii < BGFX_MAX_COMPUTE_BINDINGS; ++ii) { const Binding& bind = compute.m_bind[ii]; if (invalidHandle != bind.m_idx) { switch (bind.m_type) { case Binding::Image: { const TextureD3D11& texture = m_textures[bind.m_idx]; if (Access::Read != bind.m_un.m_compute.m_access) { uav[ii] = texture.m_uav; } else { srv[ii] = texture.m_srv; sampler[ii] = texture.m_sampler; } } break; case Binding::IndexBuffer: case Binding::VertexBuffer: { const BufferD3D11& buffer = Binding::IndexBuffer == bind.m_type ? m_indexBuffers[bind.m_idx] : m_vertexBuffers[bind.m_idx] ; if (Access::Read != bind.m_un.m_compute.m_access) { uav[ii] = buffer.m_uav; } else { srv[ii] = buffer.m_srv; } } break; } } } deviceCtx->CSSetUnorderedAccessViews(0, BX_COUNTOF(uav), uav, NULL); deviceCtx->CSSetShaderResources(0, BX_COUNTOF(srv), srv); deviceCtx->CSSetSamplers(0, BX_COUNTOF(sampler), sampler); deviceCtx->Dispatch(compute.m_numX, compute.m_numY, compute.m_numZ); continue; } bool resetState = viewChanged || wasCompute; if (wasCompute) { if (BX_ENABLED(BGFX_CONFIG_DEBUG_PIX) ) { wchar_t* viewNameW = s_viewNameW[view]; viewNameW[3] = L' '; PIX_ENDEVENT(); PIX_BEGINEVENT(D3DCOLOR_RGBA(0xff, 0x00, 0x00, 0xff), viewNameW); } wasCompute = false; programIdx = invalidHandle; m_currentProgram = NULL; invalidateCompute(); } const RenderDraw& draw = renderItem.draw; const uint64_t newFlags = draw.m_flags; uint64_t changedFlags = currentState.m_flags ^ draw.m_flags; currentState.m_flags = newFlags; const uint64_t newStencil = draw.m_stencil; uint64_t changedStencil = currentState.m_stencil ^ draw.m_stencil; currentState.m_stencil = newStencil; if (resetState) { currentState.clear(); currentState.m_scissor = !draw.m_scissor; changedFlags = BGFX_STATE_MASK; changedStencil = packStencil(BGFX_STENCIL_MASK, BGFX_STENCIL_MASK); currentState.m_flags = newFlags; currentState.m_stencil = newStencil; setBlendState(newFlags); setDepthStencilState(newFlags, packStencil(BGFX_STENCIL_DEFAULT, BGFX_STENCIL_DEFAULT) ); const uint64_t pt = newFlags&BGFX_STATE_PT_MASK; primIndex = uint8_t(pt>>BGFX_STATE_PT_SHIFT); } if (prim.m_type != s_primInfo[primIndex].m_type) { prim = s_primInfo[primIndex]; deviceCtx->IASetPrimitiveTopology(prim.m_type); } uint16_t scissor = draw.m_scissor; if (currentState.m_scissor != scissor) { currentState.m_scissor = scissor; if (UINT16_MAX == scissor) { scissorEnabled = viewHasScissor; if (viewHasScissor) { D3D11_RECT rc; rc.left = viewScissorRect.m_x; rc.top = viewScissorRect.m_y; rc.right = viewScissorRect.m_x + viewScissorRect.m_width; rc.bottom = viewScissorRect.m_y + viewScissorRect.m_height; deviceCtx->RSSetScissorRects(1, &rc); } } else { Rect scissorRect; scissorRect.intersect(viewScissorRect, _render->m_rectCache.m_cache[scissor]); scissorEnabled = true; D3D11_RECT rc; rc.left = scissorRect.m_x; rc.top = scissorRect.m_y; rc.right = scissorRect.m_x + scissorRect.m_width; rc.bottom = scissorRect.m_y + scissorRect.m_height; deviceCtx->RSSetScissorRects(1, &rc); } setRasterizerState(newFlags, wireframe, scissorEnabled); } if ( (BGFX_STATE_DEPTH_WRITE|BGFX_STATE_DEPTH_TEST_MASK) & changedFlags || 0 != changedStencil) { setDepthStencilState(newFlags, newStencil); } if ( (0 | BGFX_STATE_CULL_MASK | BGFX_STATE_RGB_WRITE | BGFX_STATE_ALPHA_WRITE | BGFX_STATE_BLEND_MASK | BGFX_STATE_BLEND_EQUATION_MASK | BGFX_STATE_ALPHA_REF_MASK | BGFX_STATE_PT_MASK | BGFX_STATE_POINT_SIZE_MASK | BGFX_STATE_MSAA ) & changedFlags) { if ( (BGFX_STATE_BLEND_MASK|BGFX_STATE_BLEND_EQUATION_MASK|BGFX_STATE_ALPHA_WRITE|BGFX_STATE_RGB_WRITE) & changedFlags) { setBlendState(newFlags, draw.m_rgba); } if ( (BGFX_STATE_CULL_MASK|BGFX_STATE_MSAA) & changedFlags) { setRasterizerState(newFlags, wireframe, scissorEnabled); } if (BGFX_STATE_ALPHA_REF_MASK & changedFlags) { uint32_t ref = (newFlags&BGFX_STATE_ALPHA_REF_MASK)>>BGFX_STATE_ALPHA_REF_SHIFT; viewState.m_alphaRef = ref/255.0f; } const uint64_t pt = newFlags&BGFX_STATE_PT_MASK; primIndex = uint8_t(pt>>BGFX_STATE_PT_SHIFT); if (prim.m_type != s_primInfo[primIndex].m_type) { prim = s_primInfo[primIndex]; deviceCtx->IASetPrimitiveTopology(prim.m_type); } } bool programChanged = false; bool constantsChanged = draw.m_constBegin < draw.m_constEnd; rendererUpdateUniforms(this, _render->m_constantBuffer, draw.m_constBegin, draw.m_constEnd); if (key.m_program != programIdx) { programIdx = key.m_program; if (invalidHandle == programIdx) { m_currentProgram = NULL; deviceCtx->VSSetShader(NULL, NULL, 0); deviceCtx->PSSetShader(NULL, NULL, 0); } else { ProgramD3D11& program = m_program[programIdx]; m_currentProgram = &program; const ShaderD3D11* vsh = program.m_vsh; deviceCtx->VSSetShader(vsh->m_vertexShader, NULL, 0); deviceCtx->VSSetConstantBuffers(0, 1, &vsh->m_buffer); if (NULL != m_currentColor) { const ShaderD3D11* fsh = program.m_fsh; deviceCtx->PSSetShader(fsh->m_pixelShader, NULL, 0); deviceCtx->PSSetConstantBuffers(0, 1, &fsh->m_buffer); } else { deviceCtx->PSSetShader(NULL, NULL, 0); } } programChanged = constantsChanged = true; } if (invalidHandle != programIdx) { ProgramD3D11& program = m_program[programIdx]; if (constantsChanged) { ConstantBuffer* vcb = program.m_vsh->m_constantBuffer; if (NULL != vcb) { commit(*vcb); } ConstantBuffer* fcb = program.m_fsh->m_constantBuffer; if (NULL != fcb) { commit(*fcb); } } viewState.setPredefined<4>(this, view, eye, program, _render, draw); if (constantsChanged || program.m_numPredefined > 0) { commitShaderConstants(); } } { uint32_t changes = 0; for (uint8_t stage = 0; stage < BGFX_CONFIG_MAX_TEXTURE_SAMPLERS; ++stage) { const Binding& sampler = draw.m_bind[stage]; Binding& current = currentState.m_bind[stage]; if (current.m_idx != sampler.m_idx || current.m_un.m_draw.m_flags != sampler.m_un.m_draw.m_flags || programChanged) { if (invalidHandle != sampler.m_idx) { TextureD3D11& texture = m_textures[sampler.m_idx]; texture.commit(stage, sampler.m_un.m_draw.m_flags); } else { m_textureStage.m_srv[stage] = NULL; m_textureStage.m_sampler[stage] = NULL; } ++changes; } current = sampler; } if (0 < changes) { commitTextureStage(); } } if (programChanged || currentState.m_vertexDecl.idx != draw.m_vertexDecl.idx || currentState.m_vertexBuffer.idx != draw.m_vertexBuffer.idx || currentState.m_instanceDataBuffer.idx != draw.m_instanceDataBuffer.idx || currentState.m_instanceDataOffset != draw.m_instanceDataOffset || currentState.m_instanceDataStride != draw.m_instanceDataStride) { currentState.m_vertexDecl = draw.m_vertexDecl; currentState.m_vertexBuffer = draw.m_vertexBuffer; currentState.m_instanceDataBuffer.idx = draw.m_instanceDataBuffer.idx; currentState.m_instanceDataOffset = draw.m_instanceDataOffset; currentState.m_instanceDataStride = draw.m_instanceDataStride; uint16_t handle = draw.m_vertexBuffer.idx; if (invalidHandle != handle) { const VertexBufferD3D11& vb = m_vertexBuffers[handle]; uint16_t decl = !isValid(vb.m_decl) ? draw.m_vertexDecl.idx : vb.m_decl.idx; const VertexDecl& vertexDecl = m_vertexDecls[decl]; uint32_t stride = vertexDecl.m_stride; uint32_t offset = 0; deviceCtx->IASetVertexBuffers(0, 1, &vb.m_ptr, &stride, &offset); if (isValid(draw.m_instanceDataBuffer) ) { const VertexBufferD3D11& inst = m_vertexBuffers[draw.m_instanceDataBuffer.idx]; uint32_t instStride = draw.m_instanceDataStride; deviceCtx->IASetVertexBuffers(1, 1, &inst.m_ptr, &instStride, &draw.m_instanceDataOffset); setInputLayout(vertexDecl, m_program[programIdx], draw.m_instanceDataStride/16); } else { deviceCtx->IASetVertexBuffers(1, 0, NULL, NULL, NULL); setInputLayout(vertexDecl, m_program[programIdx], 0); } } else { deviceCtx->IASetVertexBuffers(0, 0, NULL, NULL, NULL); } } if (currentState.m_indexBuffer.idx != draw.m_indexBuffer.idx) { currentState.m_indexBuffer = draw.m_indexBuffer; uint16_t handle = draw.m_indexBuffer.idx; if (invalidHandle != handle) { const IndexBufferD3D11& ib = m_indexBuffers[handle]; deviceCtx->IASetIndexBuffer(ib.m_ptr, DXGI_FORMAT_R16_UINT, 0); } else { deviceCtx->IASetIndexBuffer(NULL, DXGI_FORMAT_R16_UINT, 0); } } if (isValid(currentState.m_vertexBuffer) ) { uint32_t numVertices = draw.m_numVertices; if (UINT32_MAX == numVertices) { const VertexBufferD3D11& vb = m_vertexBuffers[currentState.m_vertexBuffer.idx]; uint16_t decl = !isValid(vb.m_decl) ? draw.m_vertexDecl.idx : vb.m_decl.idx; const VertexDecl& vertexDecl = m_vertexDecls[decl]; numVertices = vb.m_size/vertexDecl.m_stride; } uint32_t numIndices = 0; uint32_t numPrimsSubmitted = 0; uint32_t numInstances = 0; uint32_t numPrimsRendered = 0; if (isValid(draw.m_indexBuffer) ) { if (UINT32_MAX == draw.m_numIndices) { numIndices = m_indexBuffers[draw.m_indexBuffer.idx].m_size/2; numPrimsSubmitted = numIndices/prim.m_div - prim.m_sub; numInstances = draw.m_numInstances; numPrimsRendered = numPrimsSubmitted*draw.m_numInstances; deviceCtx->DrawIndexedInstanced(numIndices , draw.m_numInstances , 0 , draw.m_startVertex , 0 ); } else if (prim.m_min <= draw.m_numIndices) { numIndices = draw.m_numIndices; numPrimsSubmitted = numIndices/prim.m_div - prim.m_sub; numInstances = draw.m_numInstances; numPrimsRendered = numPrimsSubmitted*draw.m_numInstances; deviceCtx->DrawIndexedInstanced(numIndices , draw.m_numInstances , draw.m_startIndex , draw.m_startVertex , 0 ); } } else { numPrimsSubmitted = numVertices/prim.m_div - prim.m_sub; numInstances = draw.m_numInstances; numPrimsRendered = numPrimsSubmitted*draw.m_numInstances; deviceCtx->DrawInstanced(numVertices , draw.m_numInstances , draw.m_startVertex , 0 ); } statsNumPrimsSubmitted[primIndex] += numPrimsSubmitted; statsNumPrimsRendered[primIndex] += numPrimsRendered; statsNumInstances[primIndex] += numInstances; statsNumIndices += numIndices; } } if (wasCompute) { if (BX_ENABLED(BGFX_CONFIG_DEBUG_PIX) ) { wchar_t* viewNameW = s_viewNameW[view]; viewNameW[3] = L'C'; PIX_ENDEVENT(); PIX_BEGINEVENT(D3DCOLOR_RGBA(0xff, 0x00, 0x00, 0xff), viewNameW); } invalidateCompute(); } if (0 < _render->m_num) { captureElapsed = -bx::getHPCounter(); capture(); captureElapsed += bx::getHPCounter(); } } PIX_ENDEVENT(); int64_t now = bx::getHPCounter(); elapsed += now; static int64_t last = now; int64_t frameTime = now - last; last = now; static int64_t min = frameTime; static int64_t max = frameTime; min = min > frameTime ? frameTime : min; max = max < frameTime ? frameTime : max; if (_render->m_debug & (BGFX_DEBUG_IFH|BGFX_DEBUG_STATS) ) { PIX_BEGINEVENT(D3DCOLOR_RGBA(0x40, 0x40, 0x40, 0xff), L"debugstats"); TextVideoMem& tvm = m_textVideoMem; static int64_t next = now; if (now >= next) { next = now + bx::getHPFrequency(); double freq = double(bx::getHPFrequency() ); double toMs = 1000.0/freq; tvm.clear(); uint16_t pos = 0; tvm.printf(0, pos++, BGFX_CONFIG_DEBUG ? 0x89 : 0x8f , " %s / " BX_COMPILER_NAME " / " BX_CPU_NAME " / " BX_ARCH_NAME " / " BX_PLATFORM_NAME " " , getRendererName() ); const DXGI_ADAPTER_DESC& desc = m_adapterDesc; char description[BX_COUNTOF(desc.Description)]; wcstombs(description, desc.Description, BX_COUNTOF(desc.Description) ); tvm.printf(0, pos++, 0x0f, " Device: %s", description); char dedicatedVideo[16]; bx::prettify(dedicatedVideo, BX_COUNTOF(dedicatedVideo), desc.DedicatedVideoMemory); char dedicatedSystem[16]; bx::prettify(dedicatedSystem, BX_COUNTOF(dedicatedSystem), desc.DedicatedSystemMemory); char sharedSystem[16]; bx::prettify(sharedSystem, BX_COUNTOF(sharedSystem), desc.SharedSystemMemory); tvm.printf(0, pos++, 0x0f, " Memory: %s (video), %s (system), %s (shared)" , dedicatedVideo , dedicatedSystem , sharedSystem ); pos = 10; tvm.printf(10, pos++, 0x8e, " Frame: %7.3f, % 7.3f \x1f, % 7.3f \x1e [ms] / % 6.2f FPS " , double(frameTime)*toMs , double(min)*toMs , double(max)*toMs , freq/frameTime ); char hmd[16]; bx::snprintf(hmd, BX_COUNTOF(hmd), ", [%c] HMD ", hmdEnabled ? '\xfe' : ' '); const uint32_t msaa = (m_resolution.m_flags&BGFX_RESET_MSAA_MASK)>>BGFX_RESET_MSAA_SHIFT; tvm.printf(10, pos++, 0x8e, " Reset flags: [%c] vsync, [%c] MSAAx%d%s, [%c] MaxAnisotropy " , !!(m_resolution.m_flags&BGFX_RESET_VSYNC) ? '\xfe' : ' ' , 0 != msaa ? '\xfe' : ' ' , 1<m_num , statsKeyType[0] , statsKeyType[1] , elapsedCpuMs ); for (uint32_t ii = 0; ii < BX_COUNTOF(s_primName); ++ii) { tvm.printf(10, pos++, 0x8e, " %9s: %7d (#inst: %5d), submitted: %7d" , s_primName[ii] , statsNumPrimsRendered[ii] , statsNumInstances[ii] , statsNumPrimsSubmitted[ii] ); } if (NULL != m_renderdocdll) { tvm.printf(tvm.m_width-27, 0, 0x1f, " [F11 - RenderDoc capture] "); } tvm.printf(10, pos++, 0x8e, " Indices: %7d", statsNumIndices); tvm.printf(10, pos++, 0x8e, " DVB size: %7d", _render->m_vboffset); tvm.printf(10, pos++, 0x8e, " DIB size: %7d", _render->m_iboffset); pos++; tvm.printf(10, pos++, 0x8e, " State cache: "); tvm.printf(10, pos++, 0x8e, " Blend | DepthS | Input | Raster | Sampler "); tvm.printf(10, pos++, 0x8e, " %6d | %6d | %6d | %6d | %6d " , m_blendStateCache.getCount() , m_depthStencilStateCache.getCount() , m_inputLayoutCache.getCount() , m_rasterizerStateCache.getCount() , m_samplerStateCache.getCount() ); pos++; double captureMs = double(captureElapsed)*toMs; tvm.printf(10, pos++, 0x8e, " Capture: %3.4f [ms]", captureMs); uint8_t attr[2] = { 0x89, 0x8a }; uint8_t attrIndex = _render->m_waitSubmit < _render->m_waitRender; tvm.printf(10, pos++, attr[attrIndex&1], " Submit wait: %3.4f [ms]", _render->m_waitSubmit*toMs); tvm.printf(10, pos++, attr[(attrIndex+1)&1], " Render wait: %3.4f [ms]", _render->m_waitRender*toMs); min = frameTime; max = frameTime; } blit(this, _textVideoMemBlitter, tvm); PIX_ENDEVENT(); } else if (_render->m_debug & BGFX_DEBUG_TEXT) { PIX_BEGINEVENT(D3DCOLOR_RGBA(0x40, 0x40, 0x40, 0xff), L"debugtext"); blit(this, _textVideoMemBlitter, _render->m_textVideoMem); PIX_ENDEVENT(); } } } /* namespace d3d11 */ } // namespace bgfx #else namespace bgfx { namespace d3d11 { RendererContextI* rendererCreate() { return NULL; } void rendererDestroy() { } } /* namespace d3d11 */ } // namespace bgfx #endif // BGFX_CONFIG_RENDERER_DIRECT3D11