/* * Copyright 2011-2013 Branimir Karadzic. All rights reserved. * License: http://www.opensource.org/licenses/BSD-2-Clause */ #include "bgfx_p.h" #if (BGFX_CONFIG_RENDERER_OPENGLES2|BGFX_CONFIG_RENDERER_OPENGLES3|BGFX_CONFIG_RENDERER_OPENGL) # include "renderer_gl.h" # include # include namespace bgfx { struct Extension { enum Enum { EXT_texture_filter_anisotropic, EXT_texture_format_BGRA8888, EXT_bgra, EXT_texture_compression_s3tc, EXT_texture_compression_dxt1, CHROMIUM_texture_compression_dxt3, CHROMIUM_texture_compression_dxt5, EXT_texture_compression_latc, EXT_texture_compression_rgtc, ARB_texture_float, OES_texture_float, OES_texture_float_linear, OES_texture_half_float, OES_texture_half_float_linear, EXT_texture_type_2_10_10_10_REV, EXT_texture_sRGB, ARB_texture_swizzle, EXT_texture_swizzle, ARB_texture_multisample, OES_standard_derivatives, ARB_get_program_binary, OES_get_program_binary, EXT_framebuffer_blit, ARB_timer_query, EXT_timer_query, ARB_framebuffer_sRGB, EXT_framebuffer_sRGB, ARB_multisample, CHROMIUM_framebuffer_multisample, ANGLE_translated_shader_source, ARB_instanced_arrays, ANGLE_instanced_arrays, ARB_half_float_vertex, OES_vertex_half_float, ARB_vertex_type_2_10_10_10_rev, OES_vertex_type_10_10_10_2, EXT_occlusion_query_boolean, ARB_vertex_array_object, OES_vertex_array_object, ATI_meminfo, NVX_gpu_memory_info, OES_rgb8_rgba8, EXT_texture_storage, EXT_blend_color, Count }; const char* m_name; bool m_supported; bool m_initialize; }; static Extension s_extension[Extension::Count] = { { "GL_EXT_texture_filter_anisotropic", false, true }, { "GL_EXT_texture_format_BGRA8888", false, true }, { "GL_EXT_bgra", false, true }, { "GL_EXT_texture_compression_s3tc", false, true }, { "GL_EXT_texture_compression_dxt1", false, true }, { "GL_CHROMIUM_texture_compression_dxt3", false, true }, { "GL_CHROMIUM_texture_compression_dxt5", false, true }, { "GL_EXT_texture_compression_latc", false, true }, { "GL_EXT_texture_compression_rgtc", BGFX_CONFIG_RENDERER_OPENGL >= 31, true }, { "GL_ARB_texture_float", BGFX_CONFIG_RENDERER_OPENGL >= 31, true }, { "GL_OES_texture_float", false, true }, { "GL_OES_texture_float_linear", false, true }, { "GL_OES_texture_half_float", false, true }, { "GL_OES_texture_half_float_linear", false, true }, { "GL_EXT_texture_type_2_10_10_10_REV", false, true }, { "GL_EXT_texture_sRGB", false, true }, { "GL_ARB_texture_swizzle", BGFX_CONFIG_RENDERER_OPENGL >= 33, true }, { "GL_EXT_texture_swizzle", false, true }, { "GL_ARB_texture_multisample", false, true }, { "GL_OES_standard_derivatives", false, true }, { "GL_ARB_get_program_binary", BGFX_CONFIG_RENDERER_OPENGL >= 41, true }, { "GL_OES_get_program_binary", false, false }, { "GL_EXT_framebuffer_blit", BGFX_CONFIG_RENDERER_OPENGL >= 31, true }, { "GL_ARB_timer_query", false, true }, { "GL_EXT_timer_query", false, true }, { "GL_ARB_framebuffer_sRGB", false, true }, { "GL_EXT_framebuffer_sRGB", false, true }, { "GL_ARB_multisample", false, true }, { "GL_CHROMIUM_framebuffer_multisample", false, true }, { "GL_ANGLE_translated_shader_source", false, true }, { "GL_ARB_instanced_arrays", BGFX_CONFIG_RENDERER_OPENGL >= 33, true }, { "GL_ANGLE_instanced_arrays", false, true }, { "GL_ARB_half_float_vertex", false, true }, { "GL_OES_vertex_half_float", false, true }, { "GL_ARB_vertex_type_2_10_10_10_rev", false, true }, { "GL_OES_vertex_type_10_10_10_2", false, true }, { "GL_EXT_occlusion_query_boolean", false, true }, { "GL_ARB_vertex_array_object", BGFX_CONFIG_RENDERER_OPENGL >= 31, true }, { "OES_vertex_array_object", false, true }, { "GL_ATI_meminfo", false, true }, { "GL_NVX_gpu_memory_info", false, true }, { "GL_OES_rgb8_rgba8", false, true }, { "GL_EXT_texture_storage", false, true }, { "GL_EXT_blend_color", BGFX_CONFIG_RENDERER_OPENGL >= 31, true }, }; #if BGFX_CONFIG_RENDERER_OPENGLES3 # define s_vertexAttribDivisor glVertexAttribDivisor # define s_drawArraysInstanced glDrawArraysInstanced # define s_drawElementsInstanced glDrawElementsInstanced #else static void GL_APIENTRY stubVertexAttribDivisor(GLuint /*_index*/, GLuint /*_divisor*/) { } static void GL_APIENTRY stubDrawArraysInstanced(GLenum _mode, GLint _first, GLsizei _count, GLsizei /*_primcount*/) { GL_CHECK(glDrawArrays(_mode, _first, _count) ); } static void GL_APIENTRY stubDrawElementsInstanced(GLenum _mode, GLsizei _count, GLenum _type, const GLvoid* _indices, GLsizei /*_primcount*/) { GL_CHECK(glDrawElements(_mode, _count, _type, _indices) ); } static PFNGLVERTEXATTRIBDIVISORBGFXPROC s_vertexAttribDivisor = stubVertexAttribDivisor; static PFNGLDRAWARRAYSINSTANCEDBGFXPROC s_drawArraysInstanced = stubDrawArraysInstanced; static PFNGLDRAWELEMENTSINSTANCEDBGFXPROC s_drawElementsInstanced = stubDrawElementsInstanced; #endif // BGFX_CONFIG_RENDERER_OPENGLES3 typedef void (*PostSwapBuffersFn)(uint32_t _width, uint32_t _height); static void rgbaToBgra(uint8_t* _data, uint32_t _width, uint32_t _height) { uint32_t dstpitch = _width*4; for (uint32_t yy = 0; yy < _height; ++yy) { uint8_t* dst = &_data[yy*dstpitch]; for (uint32_t xx = 0; xx < _width; ++xx) { uint8_t tmp = dst[0]; dst[0] = dst[2]; dst[2] = tmp; dst += 4; } } } struct RendererContext { RendererContext() : m_rtMsaa(false) , m_capture(NULL) , m_captureSize(0) , m_maxAnisotropy(0.0f) , m_maxMsaa(0) , m_vao(0) , m_vaoSupport(BGFX_CONFIG_RENDERER_OPENGL >= 31) , m_programBinarySupport(false) , m_textureSwizzleSupport(false) , m_useClearQuad(true) , m_flip(false) , m_postSwapBuffers(NULL) , m_hash( (BX_PLATFORM_WINDOWS<<1) | BX_ARCH_64BIT) , m_backBufferFbo(0) { m_rt.idx = invalidHandle; memset(&m_resolution, 0, sizeof(m_resolution) ); } void updateResolution(const Resolution& _resolution) { if (m_resolution.m_width != _resolution.m_width || m_resolution.m_height != _resolution.m_height || m_resolution.m_flags != _resolution.m_flags) { m_textVideoMem.resize(false, _resolution.m_width, _resolution.m_height); m_textVideoMem.clear(); m_resolution = _resolution; uint32_t msaa = 1<<( (m_resolution.m_flags&BGFX_RESET_MSAA_MASK)>>BGFX_RESET_MSAA_SHIFT); msaa = uint32_min(m_maxMsaa, msaa == 0 ? 0 : 1<captureBegin(m_resolution.m_width, m_resolution.m_height, m_resolution.m_width*4, TextureFormat::BGRA8, true); } else { if (NULL != m_capture) { g_callback->captureEnd(); g_free(m_capture); m_capture = NULL; m_captureSize = 0; } } } void capture() { if (NULL != m_capture) { GLint fmt = s_extension[Extension::EXT_texture_format_BGRA8888].m_supported ? GL_BGRA_EXT : GL_RGBA; GL_CHECK(glReadPixels(0 , 0 , m_resolution.m_width , m_resolution.m_height , fmt , GL_UNSIGNED_BYTE , m_capture ) ); g_callback->captureFrame(m_capture, m_captureSize); } } void saveScreenShot(Memory* _mem) { uint32_t length = m_resolution.m_width*m_resolution.m_height*4; uint8_t* data = (uint8_t*)g_realloc(NULL, length); GLint fmt = s_extension[Extension::EXT_texture_format_BGRA8888].m_supported ? GL_BGRA_EXT : GL_RGBA; uint32_t width = m_resolution.m_width; uint32_t height = m_resolution.m_height; GL_CHECK(glReadPixels(0 , 0 , width , height , fmt , GL_UNSIGNED_BYTE , data ) ); if (GL_RGBA == fmt) { rgbaToBgra(data, width, height); } g_callback->screenShot( (const char*)_mem->data , width , height , width*4 , data , length , true ); g_free(data); } void init() { m_glctx.create(BGFX_DEFAULT_WIDTH, BGFX_DEFAULT_HEIGHT); #if BGFX_CONFIG_RENDERER_OPENGL m_queries.create(); #endif // BGFX_CONFIG_RENDERER_OPENGL } void shutdown() { invalidateCache(); #if BGFX_CONFIG_RENDERER_OPENGL m_queries.destroy(); #endif // BGFX_CONFIG_RENDERER_OPENGL destroyMsaaFbo(); m_glctx.destroy(); m_flip = false; } IndexBuffer m_indexBuffers[BGFX_CONFIG_MAX_INDEX_BUFFERS]; VertexBuffer m_vertexBuffers[BGFX_CONFIG_MAX_VERTEX_BUFFERS]; Shader m_vertexShaders[BGFX_CONFIG_MAX_VERTEX_SHADERS]; Shader m_fragmentShaders[BGFX_CONFIG_MAX_FRAGMENT_SHADERS]; Program m_program[BGFX_CONFIG_MAX_PROGRAMS]; Texture m_textures[BGFX_CONFIG_MAX_TEXTURES]; VertexDecl m_vertexDecls[BGFX_CONFIG_MAX_VERTEX_DECLS]; RenderTarget m_renderTargets[BGFX_CONFIG_MAX_RENDER_TARGETS]; UniformRegistry m_uniformReg; void* m_uniforms[BGFX_CONFIG_MAX_UNIFORMS]; #if BGFX_CONFIG_RENDERER_OPENGL Queries m_queries; #endif // BGFX_CONFIG_RENDERER_OPENGL VaoCache m_vaoCache; TextVideoMem m_textVideoMem; RenderTargetHandle m_rt; bool m_rtMsaa; Resolution m_resolution; void* m_capture; uint32_t m_captureSize; float m_maxAnisotropy; int32_t m_maxMsaa; GLuint m_vao; bool m_vaoSupport; bool m_programBinarySupport; bool m_textureSwizzleSupport; bool m_useClearQuad; bool m_flip; PostSwapBuffersFn m_postSwapBuffers; uint64_t m_hash; GLuint m_backBufferFbo; GLuint m_backBufferRbos[2]; GlContext m_glctx; }; RendererContext s_renderCtx; #if BX_PLATFORM_NACL static void GL_APIENTRY naclVertexAttribDivisor(GLuint _index, GLuint _divisor) { s_renderCtx.m_glctx.m_instancedArrays->VertexAttribDivisorANGLE(s_renderCtx.m_glctx.m_context, _index, _divisor); } static void GL_APIENTRY naclDrawArraysInstanced(GLenum _mode, GLint _first, GLsizei _count, GLsizei _primcount) { s_renderCtx.m_glctx.m_instancedArrays->DrawArraysInstancedANGLE(s_renderCtx.m_glctx.m_context, _mode, _first, _count, _primcount); } static void GL_APIENTRY naclDrawElementsInstanced(GLenum _mode, GLsizei _count, GLenum _type, const GLvoid* _indices, GLsizei _primcount) { s_renderCtx.m_glctx.m_instancedArrays->DrawElementsInstancedANGLE(s_renderCtx.m_glctx.m_context, _mode, _count, _type, _indices, _primcount); } void naclSetIntefraces(PP_Instance _instance, const PPB_Instance* _instInterface, const PPB_Graphics3D* _graphicsInterface, PostSwapBuffersFn _postSwapBuffers) { s_renderCtx.m_glctx.m_instance = _instance; s_renderCtx.m_glctx.m_instInterface = _instInterface; s_renderCtx.m_glctx.m_graphicsInterface = _graphicsInterface; s_renderCtx.m_postSwapBuffers = _postSwapBuffers; s_renderCtx.m_glctx.m_instancedArrays = glGetInstancedArraysInterfacePPAPI(); s_renderCtx.setRenderContextSize(BGFX_DEFAULT_WIDTH, BGFX_DEFAULT_HEIGHT); if (NULL != s_renderCtx.m_glctx.m_instancedArrays) { s_vertexAttribDivisor = naclVertexAttribDivisor; s_drawArraysInstanced = naclDrawArraysInstanced; s_drawElementsInstanced = naclDrawElementsInstanced; } } void naclSwapCompleteCb(void* /*_data*/, int32_t /*_result*/) { renderFrame(); } #endif // BX_PLATFORM_ static const GLenum s_primType[] = { GL_TRIANGLES, GL_LINES, GL_POINTS, }; static const char* s_attribName[Attrib::Count] = { "a_position", "a_normal", "a_tangent", "a_color0", "a_color1", "a_indices", "a_weight", "a_texcoord0", "a_texcoord1", "a_texcoord2", "a_texcoord3", "a_texcoord4", "a_texcoord5", "a_texcoord6", "a_texcoord7", }; static const char* s_instanceDataName[BGFX_CONFIG_MAX_INSTANCE_DATA_COUNT] = { "i_data0", "i_data1", "i_data2", "i_data3", "i_data4", }; static const GLenum s_attribType[AttribType::Count] = { GL_UNSIGNED_BYTE, GL_SHORT, GL_HALF_FLOAT, GL_FLOAT, }; static const GLenum s_blendFactor[][2] = { { 0, 0 }, // ignored { GL_ZERO, GL_ZERO }, { GL_ONE, GL_ONE }, { GL_SRC_COLOR, GL_SRC_COLOR }, { GL_ONE_MINUS_SRC_COLOR, GL_ONE_MINUS_SRC_COLOR }, { GL_SRC_ALPHA, GL_SRC_ALPHA }, { GL_ONE_MINUS_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA }, { GL_DST_ALPHA, GL_DST_ALPHA }, { GL_ONE_MINUS_DST_ALPHA, GL_ONE_MINUS_DST_ALPHA }, { GL_DST_COLOR, GL_DST_COLOR }, { GL_ONE_MINUS_DST_COLOR, GL_ONE_MINUS_DST_COLOR }, { GL_SRC_ALPHA_SATURATE, GL_ONE }, { GL_CONSTANT_COLOR, GL_CONSTANT_COLOR }, { GL_ONE_MINUS_CONSTANT_COLOR, GL_ONE_MINUS_CONSTANT_COLOR }, }; static const GLenum s_depthFunc[] = { 0, // ignored GL_LESS, GL_LEQUAL, GL_EQUAL, GL_GEQUAL, GL_GREATER, GL_NOTEQUAL, GL_NEVER, GL_ALWAYS, }; static const GLenum s_stencilFunc[] = { 0, // ignored GL_LESS, GL_LEQUAL, GL_EQUAL, GL_GEQUAL, GL_GREATER, GL_NOTEQUAL, GL_NEVER, GL_ALWAYS, }; static const GLenum s_stencilOp[] = { GL_ZERO, GL_KEEP, GL_REPLACE, GL_INCR_WRAP, GL_INCR, GL_DECR_WRAP, GL_DECR, GL_INVERT, }; static const GLenum s_stencilFace[] = { GL_FRONT_AND_BACK, GL_FRONT, GL_BACK, }; // Specifies the internal format of the texture. // Must be one of the following symbolic constants: // GL_ALPHA, GL_LUMINANCE, GL_LUMINANCE_ALPHA, GL_RGB, GL_RGBA. static const GLenum s_colorFormat[][2] = { { 0, 0 }, // ignored { GL_RGBA8, GL_UNSIGNED_BYTE }, { GL_RGB10_A2, GL_UNSIGNED_INT_2_10_10_10_REV }, { GL_RGBA16, GL_UNSIGNED_SHORT }, { GL_RGBA16F, GL_HALF_FLOAT }, { GL_R16F, GL_HALF_FLOAT }, { GL_R32F, GL_FLOAT }, }; static const GLenum s_depthFormat[] = { 0, // ignored 0, }; static const GLenum s_textureAddress[] = { GL_REPEAT, GL_MIRRORED_REPEAT, GL_CLAMP_TO_EDGE, }; static const GLenum s_textureFilter[] = { GL_LINEAR, GL_NEAREST, GL_LINEAR, }; struct TextureFormatInfo { GLenum m_internalFmt; GLenum m_fmt; GLenum m_type; uint8_t m_bpp; bool m_supported; }; static TextureFormatInfo s_textureFormat[TextureFormat::Count] = { { GL_COMPRESSED_RGBA_S3TC_DXT1_EXT, GL_COMPRESSED_RGBA_S3TC_DXT1_EXT, GL_ZERO, 4, false }, { GL_COMPRESSED_RGBA_S3TC_DXT3_EXT, GL_COMPRESSED_RGBA_S3TC_DXT3_EXT, GL_ZERO, 8, false }, { GL_COMPRESSED_RGBA_S3TC_DXT5_EXT, GL_COMPRESSED_RGBA_S3TC_DXT5_EXT, GL_ZERO, 8, false }, { GL_COMPRESSED_LUMINANCE_LATC1_EXT, GL_COMPRESSED_LUMINANCE_LATC1_EXT, GL_ZERO, 4, false }, { GL_COMPRESSED_LUMINANCE_ALPHA_LATC2_EXT, GL_COMPRESSED_LUMINANCE_ALPHA_LATC2_EXT, GL_ZERO, 8, false }, { GL_ZERO, GL_ZERO, GL_ZERO, 0, true }, { GL_LUMINANCE, GL_LUMINANCE, GL_UNSIGNED_BYTE, 8, true }, { GL_RGBA, GL_RGBA, GL_UNSIGNED_BYTE, 32, true }, { GL_RGBA, GL_RGBA, GL_UNSIGNED_BYTE, 32, true }, { GL_RGBA16, GL_RGBA, GL_UNSIGNED_BYTE, 64, true }, { GL_RGBA16F, GL_RGBA, GL_HALF_FLOAT, 64, true }, { GL_RGB565, GL_RGB, GL_UNSIGNED_SHORT_5_6_5, 16, true }, { GL_RGBA4, GL_RGBA, GL_UNSIGNED_SHORT_4_4_4_4, 16, true }, { GL_RGB5_A1, GL_RGBA, GL_UNSIGNED_SHORT_5_5_5_1, 16, true }, { GL_RGB10_A2, GL_RGBA, GL_UNSIGNED_INT_2_10_10_10_REV, 32, true }, }; const char* glslTypeName(GLuint _type) { #define GLSL_TYPE(_ty) case _ty: return #_ty switch (_type) { GLSL_TYPE(GL_FLOAT); GLSL_TYPE(GL_FLOAT_VEC2); GLSL_TYPE(GL_FLOAT_VEC3); GLSL_TYPE(GL_FLOAT_VEC4); GLSL_TYPE(GL_FLOAT_MAT2); GLSL_TYPE(GL_FLOAT_MAT3); GLSL_TYPE(GL_FLOAT_MAT4); // GLSL_TYPE(GL_FLOAT_MAT2x3); // GLSL_TYPE(GL_FLOAT_MAT2x4); // GLSL_TYPE(GL_FLOAT_MAT3x2); // GLSL_TYPE(GL_FLOAT_MAT3x4); // GLSL_TYPE(GL_FLOAT_MAT4x2); // GLSL_TYPE(GL_FLOAT_MAT4x3); // GLSL_TYPE(GL_SAMPLER_1D); GLSL_TYPE(GL_SAMPLER_2D); GLSL_TYPE(GL_SAMPLER_3D); GLSL_TYPE(GL_SAMPLER_CUBE); // GLSL_TYPE(GL_SAMPLER_1D_SHADOW); // GLSL_TYPE(GL_SAMPLER_2D_SHADOW); } #undef GLSL_TYPE return "UNKNOWN GLSL TYPE!"; } const char* glEnumName(GLenum _enum) { #define GLENUM(_ty) case _ty: return #_ty switch (_enum) { GLENUM(GL_TEXTURE); GLENUM(GL_RENDERBUFFER); } #undef GLENUM return "UNKNOWN GLENUM!"; } UniformType::Enum convertGlType(GLenum _type) { switch (_type) { case GL_FLOAT: return UniformType::Uniform1fv; case GL_FLOAT_VEC2: return UniformType::Uniform2fv; case GL_FLOAT_VEC3: return UniformType::Uniform3fv; case GL_FLOAT_VEC4: return UniformType::Uniform4fv; case GL_FLOAT_MAT2: break; case GL_FLOAT_MAT3: return UniformType::Uniform3x3fv; case GL_FLOAT_MAT4: return UniformType::Uniform4x4fv; // case GL_FLOAT_MAT2x3: // case GL_FLOAT_MAT2x4: // case GL_FLOAT_MAT3x2: // case GL_FLOAT_MAT3x4: // case GL_FLOAT_MAT4x2: // case GL_FLOAT_MAT4x3: // break; // case GL_SAMPLER_1D: case GL_SAMPLER_2D: case GL_SAMPLER_3D: case GL_SAMPLER_CUBE: // case GL_SAMPLER_1D_SHADOW: // case GL_SAMPLER_2D_SHADOW: return UniformType::Uniform1iv; }; return UniformType::End; } void Program::create(const Shader& _vsh, const Shader& _fsh) { m_id = glCreateProgram(); BX_TRACE("program create: %d: %d, %d", m_id, _vsh.m_id, _fsh.m_id); bool cached = false; uint64_t id = (uint64_t(_vsh.m_hash)<<32) | _fsh.m_hash; id ^= s_renderCtx.m_hash; if (s_renderCtx.m_programBinarySupport) { uint32_t length = g_callback->cacheReadSize(id); cached = length > 0; if (cached) { void* data = g_realloc(NULL, length); if (g_callback->cacheRead(id, data, length) ) { bx::MemoryReader reader(data, length); GLenum format; bx::read(&reader, format); GL_CHECK(glProgramBinary(m_id, format, reader.getDataPtr(), (GLsizei)reader.remaining() ) ); } g_free(data); } #if BGFX_CONFIG_RENDERER_OPENGL GL_CHECK(glProgramParameteri(m_id, GL_PROGRAM_BINARY_RETRIEVABLE_HINT, GL_TRUE) ); #endif // BGFX_CONFIG_RENDERER_OPENGL } if (!cached) { GL_CHECK(glAttachShader(m_id, _vsh.m_id) ); GL_CHECK(glAttachShader(m_id, _fsh.m_id) ); GL_CHECK(glLinkProgram(m_id) ); GLint linked = 0; GL_CHECK(glGetProgramiv(m_id, GL_LINK_STATUS, &linked) ); if (0 == linked) { char log[1024]; GL_CHECK(glGetProgramInfoLog(m_id, sizeof(log), NULL, log) ); BX_TRACE("%d: %s", linked, log); GL_CHECK(glDeleteProgram(m_id) ); return; } if (s_renderCtx.m_programBinarySupport) { GLint programLength; GLenum format; GL_CHECK(glGetProgramiv(m_id, GL_PROGRAM_BINARY_LENGTH, &programLength) ); if (0 < programLength) { uint32_t length = programLength + 4; uint8_t* data = (uint8_t*)g_realloc(NULL, length); GL_CHECK(glGetProgramBinary(m_id, programLength, NULL, &format, &data[4]) ); *(uint32_t*)data = format; g_callback->cacheWrite(id, data, length); g_free(data); } } } init(); } void Program::destroy() { GL_CHECK(glUseProgram(0) ); GL_CHECK(glDeleteProgram(m_id) ); m_vcref.invalidate(s_renderCtx.m_vaoCache); } void Program::init() { GLint activeAttribs; GLint activeUniforms; GL_CHECK(glGetProgramiv(m_id, GL_ACTIVE_ATTRIBUTES, &activeAttribs) ); GL_CHECK(glGetProgramiv(m_id, GL_ACTIVE_UNIFORMS, &activeUniforms) ); GLint max0, max1; GL_CHECK(glGetProgramiv(m_id, GL_ACTIVE_ATTRIBUTE_MAX_LENGTH, &max0) ); GL_CHECK(glGetProgramiv(m_id, GL_ACTIVE_UNIFORM_MAX_LENGTH, &max1) ); GLint maxLength = uint32_max(max0, max1); char* name = (char*)g_realloc(NULL, maxLength + 1); BX_TRACE("Program %d", m_id); BX_TRACE("Attributes:"); for (int32_t ii = 0; ii < activeAttribs; ++ii) { GLint size; GLenum type; GL_CHECK(glGetActiveAttrib(m_id, ii, maxLength + 1, NULL, &size, &type, name) ); BX_TRACE("\t%s %s is at location %d" , glslTypeName(type) , name , glGetAttribLocation(m_id, name) ); } m_numPredefined = 0; m_constantBuffer = ConstantBuffer::create(1024); m_numSamplers = 0; BX_TRACE("Uniforms:"); for (int32_t ii = 0; ii < activeUniforms; ++ii) { GLint num; GLenum gltype; GL_CHECK(glGetActiveUniform(m_id, ii, maxLength + 1, NULL, &num, &gltype, name) ); GLint loc = glGetUniformLocation(m_id, name); int offset = 0; char* array = strchr(name, '['); if (NULL != array) { BX_TRACE("--- %s", name); *array = '\0'; array++; char* end = strchr(array, ']'); *end = '\0'; offset = atoi(array); } if (GL_SAMPLER_2D == gltype) { BX_TRACE("Sampler %d at %d.", m_numSamplers, loc); m_sampler[m_numSamplers] = loc; m_numSamplers++; } const void* data = NULL; PredefinedUniform::Enum predefined = nameToPredefinedUniformEnum(name); if (PredefinedUniform::Count != predefined) { m_predefined[m_numPredefined].m_loc = loc; m_predefined[m_numPredefined].m_type = predefined; m_predefined[m_numPredefined].m_count = num; m_numPredefined++; } else { const UniformInfo* info = s_renderCtx.m_uniformReg.find(name); if (NULL != info) { data = info->m_data; UniformType::Enum type = convertGlType(gltype); m_constantBuffer->writeUniformRef(type, 0, data, num); m_constantBuffer->write(loc); BX_TRACE("store %s %p", name, data); } } BX_TRACE("\tuniform %s %s%s is at location %d, size %d (%p), offset %d" , glslTypeName(gltype) , name , PredefinedUniform::Count != predefined ? "*" : "" , loc , num , data , offset ); BX_UNUSED(offset); } m_constantBuffer->finish(); g_free(name); memset(m_attributes, 0xff, sizeof(m_attributes) ); uint32_t used = 0; for (uint32_t ii = 0; ii < Attrib::Count; ++ii) { GLint loc = glGetAttribLocation(m_id, s_attribName[ii]); if (-1 != loc) { BX_TRACE("attr %s: %d", s_attribName[ii], loc); m_attributes[ii] = loc; m_used[used++] = ii; } } m_used[used] = Attrib::Count; used = 0; for (uint32_t ii = 0; ii < countof(s_instanceDataName); ++ii) { GLuint loc = glGetAttribLocation(m_id, s_instanceDataName[ii]); if (GLuint(-1) != loc ) { BX_TRACE("instance data %s: %d", s_instanceDataName[ii], loc); m_instanceData[used++] = loc; } } m_instanceData[used] = 0xffff; } void Program::bindAttributes(const VertexDecl& _vertexDecl, uint32_t _baseVertex) const { uint32_t enabled = 0; for (uint32_t ii = 0; Attrib::Count != m_used[ii]; ++ii) { Attrib::Enum attr = Attrib::Enum(m_used[ii]); GLint loc = m_attributes[attr]; uint8_t num; AttribType::Enum type; bool normalized; bool asInt; _vertexDecl.decode(attr, num, type, normalized, asInt); if (-1 != loc && 0xff != _vertexDecl.m_attributes[attr]) { GL_CHECK(glEnableVertexAttribArray(loc) ); enabled |= 1< 1) { m_target = GL_TEXTURE_3D; } #endif // BGFX_CONFIG_RENDERER_OPENGL|BGFX_CONFIG_RENDERER_OPENGLES3 else { m_target = GL_TEXTURE_2D; } GL_CHECK(glGenTextures(1, &m_id) ); BX_CHECK(0 != m_id, "Failed to generate texture id."); GL_CHECK(glBindTexture(m_target, m_id) ); const TextureFormatInfo& tfi = s_textureFormat[dds.m_type]; GLenum internalFmt = tfi.m_internalFmt; m_fmt = tfi.m_fmt; m_type = tfi.m_type; GLenum target = m_target; if (dds.m_cubeMap) { target = GL_TEXTURE_CUBE_MAP_POSITIVE_X; } if (!tfi.m_supported || TextureFormat::Unknown < dds.m_type) { uint8_t textureFormat = dds.m_type; bool decompress = TextureFormat::Unknown > textureFormat; if (decompress) { textureFormat = TextureFormat::BGRA8; const TextureFormatInfo& tfi = s_textureFormat[textureFormat]; internalFmt = tfi.m_internalFmt; m_fmt = tfi.m_fmt; m_type = tfi.m_type; } bool swizzle = GL_RGBA == m_fmt; #if BGFX_CONFIG_RENDERER_OPENGL if (swizzle && s_renderCtx.m_textureSwizzleSupport) { swizzle = false; GLint swizzleMask[] = { GL_BLUE, GL_GREEN, GL_RED, GL_ALPHA }; GL_CHECK(glTexParameteriv(GL_TEXTURE_2D, GL_TEXTURE_SWIZZLE_RGBA, swizzleMask) ); } #endif // BGFX_CONFIG_RENDERER_OPENGL uint8_t* bits = (uint8_t*)g_realloc(NULL, dds.m_width*dds.m_height*tfi.m_bpp/8); for (uint8_t side = 0, numSides = dds.m_cubeMap ? 6 : 1; side < numSides; ++side) { uint32_t width = dds.m_width; uint32_t height = dds.m_height; uint32_t depth = dds.m_depth; for (uint32_t lod = 0, num = dds.m_numMips; lod < num; ++lod) { width = uint32_max(1, width); height = uint32_max(1, height); depth = uint32_max(1, depth); Mip mip; if (getRawImageData(dds, side, lod, _mem, mip) ) { mip.decode(bits); if (swizzle) { rgbaToBgra(bits, width, height); } texImage(target+side , lod , internalFmt , width , height , depth , 0 , m_fmt , m_type , bits ); } width >>= 1; height >>= 1; depth >>= 1; } } g_free(bits); } else { m_compressed = true; for (uint8_t side = 0, numSides = dds.m_cubeMap ? 6 : 1; side < numSides; ++side) { uint32_t width = dds.m_width; uint32_t height = dds.m_height; uint32_t depth = dds.m_depth; for (uint32_t ii = 0, num = dds.m_numMips; ii < num; ++ii) { width = uint32_max(1, width); height = uint32_max(1, height); depth = uint32_max(1, depth); Mip mip; if (getRawImageData(dds, side, ii, _mem, mip) ) { compressedTexImage(target+side , ii , internalFmt , width , height , depth , 0 , mip.m_size , mip.m_data ); } width >>= 1; height >>= 1; depth >>= 1; } } } } else { bx::MemoryReader reader(_mem->data, _mem->size); uint32_t magic; bx::read(&reader, magic); if (BGFX_CHUNK_MAGIC_TEX == magic) { TextureCreate tc; bx::read(&reader, tc); if (tc.m_cubeMap) { m_target = GL_TEXTURE_CUBE_MAP; } #if BGFX_CONFIG_RENDERER_OPENGL|BGFX_CONFIG_RENDERER_OPENGLES3 else if (tc.m_depth > 1) { m_target = GL_TEXTURE_3D; } #endif // BGFX_CONFIG_RENDERER_OPENGL|BGFX_CONFIG_RENDERER_OPENGLES3 else { m_target = GL_TEXTURE_2D; } GL_CHECK(glGenTextures(1, &m_id) ); BX_CHECK(0 != m_id, "Failed to generate texture id."); GL_CHECK(glBindTexture(m_target, m_id) ); const TextureFormatInfo& tfi = s_textureFormat[tc.m_format]; GLenum internalFmt = tfi.m_internalFmt; m_fmt = tfi.m_fmt; m_type = tfi.m_type; m_compressed = tc.m_format < TextureFormat::Unknown; GLenum target = m_target; if (tc.m_cubeMap) { target = GL_TEXTURE_CUBE_MAP_POSITIVE_X; } uint32_t bpp = tfi.m_bpp; uint8_t* data = NULL != tc.m_mem ? tc.m_mem->data : NULL; uint32_t min = m_compressed ? 4 : 1; bool swizzle = GL_RGBA == m_fmt; #if BGFX_CONFIG_RENDERER_OPENGL if (swizzle && s_renderCtx.m_textureSwizzleSupport) { swizzle = false; GLint swizzleMask[] = { GL_BLUE, GL_GREEN, GL_RED, GL_ALPHA }; GL_CHECK(glTexParameteriv(GL_TEXTURE_2D, GL_TEXTURE_SWIZZLE_RGBA, swizzleMask) ); } #endif // BGFX_CONFIG_RENDERER_OPENGL for (uint8_t side = 0, numSides = tc.m_cubeMap ? 6 : 1; side < numSides; ++side) { uint32_t width = tc.m_width; uint32_t height = tc.m_height; uint32_t depth = tc.m_depth; for (uint32_t lod = 0, num = tc.m_numMips; lod < num; ++lod) { width = uint32_max(width, min); height = uint32_max(height, min); depth = uint32_max(1, depth); uint32_t size = width*height*bpp/8; if (m_compressed) { compressedTexImage(target+side , lod , internalFmt , width , height , depth , 0 , size , data ); } else { if (NULL != data && swizzle) { rgbaToBgra(data, width, height); } texImage(target+side , lod , internalFmt , width , height , depth , 0 , m_fmt , m_type , data ); } if (NULL != data) { data += size; } width >>= 1; height >>= 1; depth >>= 1; } } if (NULL != tc.m_mem) { release(tc.m_mem); } } else { // } } GL_CHECK(glTexParameteri(m_target, GL_TEXTURE_WRAP_S, s_textureAddress[(_flags&BGFX_TEXTURE_U_MASK)>>BGFX_TEXTURE_U_SHIFT]) ); GL_CHECK(glTexParameteri(m_target, GL_TEXTURE_WRAP_T, s_textureAddress[(_flags&BGFX_TEXTURE_V_MASK)>>BGFX_TEXTURE_V_SHIFT]) ); #if BGFX_CONFIG_RENDERER_OPENGL if (m_target == GL_TEXTURE_3D) { GL_CHECK(glTexParameteri(m_target, GL_TEXTURE_WRAP_R, s_textureAddress[(_flags&BGFX_TEXTURE_W_MASK)>>BGFX_TEXTURE_W_SHIFT]) ); } #endif // BGFX_CONFIG_RENDERER_OPENGL GL_CHECK(glTexParameteri(m_target, GL_TEXTURE_MIN_FILTER, s_textureFilter[(_flags&BGFX_TEXTURE_MIN_MASK)>>BGFX_TEXTURE_MIN_SHIFT]) ); GL_CHECK(glTexParameteri(m_target, GL_TEXTURE_MAG_FILTER, s_textureFilter[(_flags&BGFX_TEXTURE_MAG_MASK)>>BGFX_TEXTURE_MAG_SHIFT]) ); GL_CHECK(glTexParameteri(m_target, GL_TEXTURE_MIN_FILTER, 1 < numMips ? GL_LINEAR_MIPMAP_LINEAR : GL_LINEAR) ); if (0 != (_flags & (BGFX_TEXTURE_MIN_ANISOTROPIC|BGFX_TEXTURE_MAG_ANISOTROPIC) ) && 0.0f < s_renderCtx.m_maxAnisotropy) { GL_CHECK(glTexParameterf(m_target, GL_TEXTURE_MAX_ANISOTROPY_EXT, s_renderCtx.m_maxAnisotropy) ); } GL_CHECK(glBindTexture(m_target, 0) ); } void Texture::createColor(uint32_t _colorFormat, uint32_t _width, uint32_t _height, GLenum _min, GLenum _mag) { GLenum internalFormat = s_colorFormat[_colorFormat][0]; GLenum type = s_colorFormat[_colorFormat][1]; m_target = GL_TEXTURE_2D; GL_CHECK(glGenTextures(1, &m_id) ); BX_CHECK(0 != m_id, "Failed to generate texture id."); GL_CHECK(glBindTexture(m_target, m_id) ); GL_CHECK(glTexParameteri(m_target, GL_TEXTURE_MIN_FILTER, _min) ); GL_CHECK(glTexParameteri(m_target, GL_TEXTURE_MAG_FILTER, _mag) ); GL_CHECK(glTexParameteri(m_target, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE) ); GL_CHECK(glTexParameteri(m_target, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE) ); GL_CHECK(glTexImage2D(m_target , 0 , internalFormat , _width , _height , 0 , GL_RGBA , type , NULL ) ); GL_CHECK(glBindTexture(m_target, 0) ); } void Texture::createDepth(uint32_t _width, uint32_t _height) { m_target = GL_TEXTURE_2D; GL_CHECK(glGenTextures(1, &m_id) ); BX_CHECK(0 != m_id, "Failed to generate texture id."); GL_CHECK(glBindTexture(m_target, m_id) ); // GL_CHECK(glTexParameteri(m_target, GL_TEXTURE_COMPARE_MODE, GL_NONE) ); // GL_CHECK(glTexParameteri(m_target, GL_DEPTH_TEXTURE_MODE, GL_NONE) ); GL_CHECK(glTexParameteri(m_target, GL_TEXTURE_MIN_FILTER, GL_LINEAR) ); GL_CHECK(glTexParameteri(m_target, GL_TEXTURE_MAG_FILTER, GL_LINEAR) ); GL_CHECK(glTexParameteri(m_target, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE) ); GL_CHECK(glTexParameteri(m_target, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE) ); // OpenGL ES 2.0 doesn't support GL_DEPTH_COMPONENT... this will fail. GL_CHECK(glTexImage2D(m_target , 0 , GL_DEPTH_COMPONENT , _width , _height , 0 , GL_DEPTH_COMPONENT , GL_FLOAT , NULL ) ); GL_CHECK(glBindTexture(m_target, 0) ); } void Texture::destroy() { if (0 != m_id) { GL_CHECK(glBindTexture(m_target, 0) ); GL_CHECK(glDeleteTextures(1, &m_id) ); m_id = 0; } } void Texture::update(uint8_t _side, uint8_t _mip, const Rect& _rect, uint16_t _z, uint16_t _depth, const Memory* _mem) { BX_UNUSED(_z); BX_UNUSED(_depth); GL_CHECK(glBindTexture(m_target, m_id) ); GL_CHECK(glPixelStorei(GL_UNPACK_ALIGNMENT, 1) ); switch (m_target) { case GL_TEXTURE_2D: if (m_compressed) { GL_CHECK(glCompressedTexSubImage2D(m_target , _mip , _rect.m_x , _rect.m_y , _rect.m_width , _rect.m_height , m_fmt , _mem->size , _mem->data ) ); } else { GL_CHECK(glTexSubImage2D(m_target , _mip , _rect.m_x , _rect.m_y , _rect.m_width , _rect.m_height , m_fmt , m_type , _mem->data ) ); } break; case GL_TEXTURE_CUBE_MAP: if (m_compressed) { GL_CHECK(glCompressedTexSubImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X+_side , _mip , _rect.m_x , _rect.m_y , _rect.m_width , _rect.m_height , m_fmt , _mem->size , _mem->data ) ); } else { GL_CHECK(glTexSubImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X+_side , _mip , _rect.m_x , _rect.m_y , _rect.m_width , _rect.m_height , m_fmt , m_type , _mem->data ) ); } break; #if BGFX_CONFIG_RENDERER_OPENGL case GL_TEXTURE_3D: if (m_compressed) { GL_CHECK(glCompressedTexSubImage3D(m_target , _mip , _rect.m_x , _rect.m_y , _z , _rect.m_width , _rect.m_height , _depth , m_fmt , _mem->size , _mem->data ) ); } else { GL_CHECK(glTexSubImage3D(m_target , _mip , _rect.m_x , _rect.m_y , _z , _rect.m_width , _rect.m_height , _depth , m_fmt , m_type , _mem->data ) ); } break; #endif // BGFX_CONFIG_RENDERER_OPENGL } } void RenderTarget::create(uint16_t _width, uint16_t _height, uint32_t _flags, uint32_t _textureFlags) { BX_TRACE("Create render target %dx%d 0x%02x", _width, _height, _flags); m_width = _width; m_height = _height; uint32_t msaa = (_flags&BGFX_RENDER_TARGET_MSAA_MASK)>>BGFX_RENDER_TARGET_MSAA_SHIFT; m_msaa = uint32_min(s_renderCtx.m_maxMsaa, msaa == 0 ? 0 : 1<>BGFX_RENDER_TARGET_COLOR_SHIFT; uint32_t depthFormat = (_flags&BGFX_RENDER_TARGET_DEPTH_MASK)>>BGFX_RENDER_TARGET_DEPTH_SHIFT; GLenum minFilter = s_textureFilter[(_textureFlags&BGFX_TEXTURE_MIN_MASK)>>BGFX_TEXTURE_MIN_SHIFT]; GLenum magFilter = s_textureFilter[(_textureFlags&BGFX_TEXTURE_MAG_MASK)>>BGFX_TEXTURE_MAG_SHIFT]; if (0 < colorFormat) { m_color.createColor(colorFormat, _width, _height, minFilter, magFilter); } #if 0 // GLES can't create texture with depth texture format... if (0 < depthFormat) { m_depth.createDepth(_width, _height); } #endif // #if BGFX_CONFIG_RENDERER_OPENGL|BGFX_CONFIG_RENDERER_OPENGLES3 if (0 < colorFormat && 0 != m_msaa) { GL_CHECK(glGenFramebuffers(2, m_fbo) ); GL_CHECK(glBindFramebuffer(GL_FRAMEBUFFER, m_fbo[0]) ); GL_CHECK(glGenRenderbuffers(1, &m_colorRbo) ); BX_CHECK(0 != m_colorRbo, "Failed to generate color renderbuffer id."); GL_CHECK(glBindRenderbuffer(GL_RENDERBUFFER, m_colorRbo) ); GL_CHECK(glRenderbufferStorageMultisample(GL_RENDERBUFFER, m_msaa, s_colorFormat[colorFormat][0], _width, _height) ); GL_CHECK(glBindRenderbuffer(GL_RENDERBUFFER, 0) ); GL_CHECK(glFramebufferRenderbuffer(GL_FRAMEBUFFER , GL_COLOR_ATTACHMENT0 , GL_RENDERBUFFER , m_colorRbo ) ); GL_CHECK(glBindFramebuffer(GL_FRAMEBUFFER, m_fbo[1]) ); } else #endif // BGFX_CONFIG_RENDERER_OPENGL|BGFX_CONFIG_RENDERER_OPENGLES3 { GL_CHECK(glGenFramebuffers(1, m_fbo) ); GL_CHECK(glBindFramebuffer(GL_FRAMEBUFFER, m_fbo[0]) ); } if (0 < colorFormat) { GL_CHECK(glFramebufferTexture2D(GL_FRAMEBUFFER , GL_COLOR_ATTACHMENT0 , m_color.m_target , m_color.m_id , 0 ) ); } BX_CHECK(GL_FRAMEBUFFER_COMPLETE == glCheckFramebufferStatus(GL_FRAMEBUFFER) , "glCheckFramebufferStatus failed 0x%08x" , glCheckFramebufferStatus(GL_FRAMEBUFFER) ); if (0 < depthFormat) { GL_CHECK(glBindFramebuffer(GL_FRAMEBUFFER, m_fbo[0]) ); if (0 < colorFormat) { #if BGFX_CONFIG_RENDERER_OPENGL GLenum depthComponent = GL_DEPTH_COMPONENT32; #else GLenum depthComponent = GL_DEPTH_COMPONENT16; #endif // BGFX_CONFIG_RENDERER_OPENGL GL_CHECK(glGenRenderbuffers(1, &m_depthRbo) ); BX_CHECK(0 != m_depthRbo, "Failed to generate renderbuffer id."); GL_CHECK(glBindRenderbuffer(GL_RENDERBUFFER, m_depthRbo) ); #if BGFX_CONFIG_RENDERER_OPENGL|BGFX_CONFIG_RENDERER_OPENGLES3 if (0 != m_msaa) { GL_CHECK(glRenderbufferStorageMultisample(GL_RENDERBUFFER, m_msaa, depthComponent, _width, _height) ); } else #endif // BGFX_CONFIG_RENDERER_OPENGL|BGFX_CONFIG_RENDERER_OPENGLES3 { GL_CHECK(glRenderbufferStorage(GL_RENDERBUFFER, depthComponent, _width, _height) ); } GL_CHECK(glBindRenderbuffer(GL_RENDERBUFFER, 0) ); GL_CHECK(glFramebufferRenderbuffer(GL_FRAMEBUFFER , GL_DEPTH_ATTACHMENT , GL_RENDERBUFFER , m_depthRbo ) ); } else { GL_CHECK(glFramebufferTexture2D(GL_FRAMEBUFFER , GL_DEPTH_ATTACHMENT , m_depth.m_target , m_depth.m_id , 0 ) ); } BX_CHECK(GL_FRAMEBUFFER_COMPLETE == glCheckFramebufferStatus(GL_FRAMEBUFFER) , "glCheckFramebufferStatus failed 0x%08x" , glCheckFramebufferStatus(GL_FRAMEBUFFER) ); } GL_CHECK(glBindFramebuffer(GL_FRAMEBUFFER, s_renderCtx.m_backBufferFbo) ); } void RenderTarget::destroy() { GL_CHECK(glDeleteFramebuffers(0 == m_fbo[1] ? 1 : 2, m_fbo) ); memset(m_fbo, 0, sizeof(m_fbo) ); if (0 != m_colorRbo) { GL_CHECK(glDeleteRenderbuffers(1, &m_colorRbo) ); m_colorRbo = 0; } if (0 != m_depthRbo) { GL_CHECK(glDeleteRenderbuffers(1, &m_depthRbo) ); m_depthRbo = 0; } m_color.destroy(); m_depth.destroy(); } void RenderTarget::resolve() { #if BGFX_CONFIG_RENDERER_OPENGL|BGFX_CONFIG_RENDERER_OPENGLES3 BX_CHECK(0 != m_fbo[1], "Can resolve without two framebuffers."); GL_CHECK(glBindFramebuffer(GL_READ_FRAMEBUFFER, m_fbo[0]) ); GL_CHECK(glBindFramebuffer(GL_DRAW_FRAMEBUFFER, m_fbo[1]) ); GL_CHECK(glBlitFramebuffer(0 , 0 , m_width , m_height , 0 , 0 , m_width , m_height , GL_COLOR_BUFFER_BIT , GL_LINEAR ) ); GL_CHECK(glBindFramebuffer(GL_FRAMEBUFFER, s_renderCtx.m_backBufferFbo) ); #endif // BGFX_CONFIG_RENDERER_OPENGL|BGFX_CONFIG_RENDERER_OPENGLES3 } void ConstantBuffer::commit() { reset(); do { uint32_t opcode = read(); if (UniformType::End == opcode) { break; } UniformType::Enum type; uint16_t ignore; uint16_t num; uint16_t copy; decodeOpcode(opcode, type, ignore, num, copy); const char* data; if (copy) { data = read(g_uniformTypeSize[type]*num); } else { memcpy(&data, read(sizeof(void*) ), sizeof(void*) ); } uint32_t loc = read(); #define CASE_IMPLEMENT_UNIFORM(_uniform, _glsuffix, _dxsuffix, _type) \ case UniformType::_uniform: \ { \ _type* value = (_type*)data; \ GL_CHECK(glUniform##_glsuffix(loc, num, value) ); \ } \ break; #define CASE_IMPLEMENT_UNIFORM_T(_uniform, _glsuffix, _dxsuffix, _type) \ case UniformType::_uniform: \ { \ _type* value = (_type*)data; \ GL_CHECK(glUniform##_glsuffix(loc, num, GL_FALSE, value) ); \ } \ break; switch (type) { // case ConstantType::Uniform1iv: // { // int* value = (int*)data; // BX_TRACE("Uniform1iv sampler %d, loc %d (num %d, copy %d)", *value, loc, num, copy); // GL_CHECK(glUniform1iv(loc, num, value) ); // } // break; CASE_IMPLEMENT_UNIFORM(Uniform1i, 1iv, I, int); CASE_IMPLEMENT_UNIFORM(Uniform1f, 1fv, F, float); CASE_IMPLEMENT_UNIFORM(Uniform1iv, 1iv, I, int); CASE_IMPLEMENT_UNIFORM(Uniform1fv, 1fv, F, float); CASE_IMPLEMENT_UNIFORM(Uniform2fv, 2fv, F, float); CASE_IMPLEMENT_UNIFORM(Uniform3fv, 3fv, F, float); CASE_IMPLEMENT_UNIFORM(Uniform4fv, 4fv, F, float); CASE_IMPLEMENT_UNIFORM_T(Uniform3x3fv, Matrix3fv, F, float); CASE_IMPLEMENT_UNIFORM_T(Uniform4x4fv, Matrix4fv, F, float); case UniformType::End: break; default: BX_TRACE("%4d: INVALID 0x%08x, t %d, l %d, n %d, c %d", m_pos, opcode, type, loc, num, copy); break; } #undef CASE_IMPLEMENT_UNIFORM #undef CASE_IMPLEMENT_UNIFORM_T } while (true); } void TextVideoMemBlitter::setup() { if (0 != s_renderCtx.m_vao) { GL_CHECK(glBindVertexArray(s_renderCtx.m_vao) ); } uint32_t width = s_renderCtx.m_resolution.m_width; uint32_t height = s_renderCtx.m_resolution.m_height; GL_CHECK(glBindFramebuffer(GL_FRAMEBUFFER, 0) ); GL_CHECK(glViewport(0, 0, width, height) ); GL_CHECK(glDisable(GL_STENCIL_TEST) ); GL_CHECK(glDisable(GL_DEPTH_TEST) ); GL_CHECK(glDepthFunc(GL_ALWAYS) ); GL_CHECK(glDisable(GL_CULL_FACE) ); GL_CHECK(glDisable(GL_BLEND) ); GL_CHECK(glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE) ); Program& program = s_renderCtx.m_program[m_program.idx]; GL_CHECK(glUseProgram(program.m_id) ); GL_CHECK(glUniform1i(program.m_sampler[0], 0) ); float proj[16]; mtxOrtho(proj, 0.0f, (float)width, (float)height, 0.0f, 0.0f, 1000.0f); GL_CHECK(glUniformMatrix4fv(program.m_predefined[0].m_loc , 1 , GL_FALSE , proj ) ); GL_CHECK(glActiveTexture(GL_TEXTURE0) ); GL_CHECK(glBindTexture(GL_TEXTURE_2D, s_renderCtx.m_textures[m_texture.idx].m_id) ); } void TextVideoMemBlitter::render(uint32_t _numIndices) { uint32_t numVertices = _numIndices*4/6; s_renderCtx.m_indexBuffers[m_ib->handle.idx].update(0, _numIndices*2, m_ib->data); s_renderCtx.m_vertexBuffers[m_vb->handle.idx].update(0, numVertices*m_decl.m_stride, m_vb->data); VertexBuffer& vb = s_renderCtx.m_vertexBuffers[m_vb->handle.idx]; GL_CHECK(glBindBuffer(GL_ARRAY_BUFFER, vb.m_id) ); IndexBuffer& ib = s_renderCtx.m_indexBuffers[m_ib->handle.idx]; GL_CHECK(glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ib.m_id) ); Program& program = s_renderCtx.m_program[m_program.idx]; program.bindAttributes(m_decl, 0); GL_CHECK(glDrawElements(GL_TRIANGLES , _numIndices , GL_UNSIGNED_SHORT , (void*)0 ) ); } void ClearQuad::clear(const Rect& _rect, const Clear& _clear, uint32_t _height) { #if BGFX_CONFIG_CLEAR_QUAD if (s_renderCtx.m_useClearQuad) { GL_CHECK(glDisable(GL_STENCIL_TEST) ); GL_CHECK(glEnable(GL_DEPTH_TEST) ); GL_CHECK(glDepthFunc(GL_ALWAYS) ); GL_CHECK(glDisable(GL_CULL_FACE) ); GL_CHECK(glDisable(GL_BLEND) ); GL_CHECK(glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE) ); GL_CHECK(glDepthMask(GL_TRUE) ); VertexBuffer& vb = s_renderCtx.m_vertexBuffers[m_vb->handle.idx]; VertexDecl& vertexDecl = s_renderCtx.m_vertexDecls[m_vb->decl.idx]; { struct Vertex { float m_x; float m_y; float m_z; uint32_t m_abgr; } * vertex = (Vertex*)m_vb->data; BX_CHECK(vertexDecl.m_stride == sizeof(Vertex), "Stride/Vertex mismatch (stride %d, sizeof(Vertex) %d)", vertexDecl.m_stride, sizeof(Vertex) ); const uint32_t abgr = bx::endianSwap(_clear.m_rgba); const float depth = _clear.m_depth; vertex->m_x = -1.0f; vertex->m_y = -1.0f; vertex->m_z = depth; vertex->m_abgr = abgr; vertex++; vertex->m_x = 1.0f; vertex->m_y = -1.0f; vertex->m_z = depth; vertex->m_abgr = abgr; vertex++; vertex->m_x = 1.0f; vertex->m_y = 1.0f; vertex->m_z = depth; vertex->m_abgr = abgr; vertex++; vertex->m_x = -1.0f; vertex->m_y = 1.0f; vertex->m_z = depth; vertex->m_abgr = abgr; } s_renderCtx.m_vertexBuffers[m_vb->handle.idx].update(0, 4*m_decl.m_stride, m_vb->data); GL_CHECK(glBindBuffer(GL_ARRAY_BUFFER, vb.m_id) ); IndexBuffer& ib = s_renderCtx.m_indexBuffers[m_ib.idx]; GL_CHECK(glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ib.m_id) ); Program& program = s_renderCtx.m_program[m_program.idx]; GL_CHECK(glUseProgram(program.m_id) ); program.bindAttributes(vertexDecl, 0); GL_CHECK(glDrawElements(GL_TRIANGLES , 6 , GL_UNSIGNED_SHORT , (void*)0 ) ); } else #endif // BGFX_CONFIG_CLEAR_QUAD { GLuint flags = 0; if (BGFX_CLEAR_COLOR_BIT & _clear.m_flags) { flags |= GL_COLOR_BUFFER_BIT; uint32_t rgba = _clear.m_rgba; float rr = (rgba>>24)/255.0f; float gg = ( (rgba>>16)&0xff)/255.0f; float bb = ( (rgba>>8)&0xff)/255.0f; float aa = (rgba&0xff)/255.0f; GL_CHECK(glClearColor(rr, gg, bb, aa) ); GL_CHECK(glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE) ); } if (BGFX_CLEAR_DEPTH_BIT & _clear.m_flags) { flags |= GL_DEPTH_BUFFER_BIT; GL_CHECK(glClearDepth(_clear.m_depth) ); GL_CHECK(glDepthMask(GL_TRUE) ); } if (BGFX_CLEAR_STENCIL_BIT & _clear.m_flags) { flags |= GL_STENCIL_BUFFER_BIT; GL_CHECK(glClearStencil(_clear.m_stencil) ); } if (0 != flags) { GL_CHECK(glEnable(GL_SCISSOR_TEST) ); GL_CHECK(glScissor(_rect.m_x, _height-_rect.m_height-_rect.m_y, _rect.m_width, _rect.m_height) ); GL_CHECK(glClear(flags) ); GL_CHECK(glDisable(GL_SCISSOR_TEST) ); } } } void Context::flip() { s_renderCtx.flip(); } GLint glGet(GLenum _pname) { GLint result; GL_CHECK(glGetIntegerv(_pname, &result) ); return result; } uint32_t glGetStringHash(GLenum _name) { const char* str = (const char*)glGetString(_name); glGetError(); // ignore error if glGetString returns NULL. if (NULL != str) { return bx::hashMurmur2A(str, strlen(str) ); } return 0; } void Context::rendererInit() { s_renderCtx.init(); #if BGFX_CONFIG_DEBUG GLint numCmpFormats; GL_CHECK(glGetIntegerv(GL_NUM_COMPRESSED_TEXTURE_FORMATS, &numCmpFormats) ); BX_TRACE("GL_NUM_COMPRESSED_TEXTURE_FORMATS %d", numCmpFormats); if (0 < numCmpFormats) { GLint* formats = (GLint*)alloca(sizeof(GLint)*numCmpFormats); GL_CHECK(glGetIntegerv(GL_COMPRESSED_TEXTURE_FORMATS, formats) ); for (GLint ii = 0; ii < numCmpFormats; ++ii) { BX_TRACE("\t%3d: %8x", ii, formats[ii]); } } # define GL_GET(_pname, _min) BX_TRACE(#_pname " %d (min: %d)", glGet(_pname), _min) # if BX_PLATFORM_OSX GL_GET(GL_MAX_FRAGMENT_UNIFORM_COMPONENTS, 16 * 4); GL_GET(GL_MAX_VERTEX_UNIFORM_COMPONENTS, 128 * 4); GL_GET(GL_MAX_VARYING_FLOATS, 8 * 4); # else GL_GET(GL_MAX_FRAGMENT_UNIFORM_VECTORS, 16); GL_GET(GL_MAX_VERTEX_UNIFORM_VECTORS, 128); GL_GET(GL_MAX_VARYING_VECTORS, 8); # endif GL_GET(GL_MAX_VERTEX_ATTRIBS, 8); GL_GET(GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS, 8); GL_GET(GL_MAX_CUBE_MAP_TEXTURE_SIZE, 16); GL_GET(GL_MAX_TEXTURE_IMAGE_UNITS, 8); GL_GET(GL_MAX_TEXTURE_SIZE, 64); GL_GET(GL_MAX_VERTEX_TEXTURE_IMAGE_UNITS, 0); GL_GET(GL_MAX_RENDERBUFFER_SIZE, 1); const char* version = (const char*)glGetString(GL_SHADING_LANGUAGE_VERSION); GL_CHECK(;); // check if error is generated by glGetString. BX_TRACE("GLSL version: %s", version); #endif // BGFX_CONFIG_DEBUG // Initial binary shader hash depends on driver version. s_renderCtx.m_hash = ( (BX_PLATFORM_WINDOWS<<1) | BX_ARCH_64BIT) ^ (uint64_t(glGetStringHash(GL_VENDOR ) )<<32) ^ (uint64_t(glGetStringHash(GL_RENDERER) )<<0 ) ^ (uint64_t(glGetStringHash(GL_VERSION ) )<<16) ; const char* extensions = (const char*)glGetString(GL_EXTENSIONS); glGetError(); // ignore error if glGetString returns NULL. if (NULL != extensions) { char name[1024]; const char* pos = extensions; const char* end = extensions + strlen(extensions); while (pos < end) { uint32_t len; const char* space = strchr(pos, ' '); if (NULL != space) { len = uint32_min(sizeof(name), (uint32_t)(space - pos) ); } else { len = uint32_min(sizeof(name), (uint32_t)strlen(pos) ); } strncpy(name, pos, len); name[len] = '\0'; bool supported = false; for (uint32_t ii = 0; ii < Extension::Count; ++ii) { Extension& extension = s_extension[ii]; if (!extension.m_supported && extension.m_initialize) { if (0 == strcmp(name, extension.m_name) ) { extension.m_supported = true; supported = true; break; } } } BX_TRACE("GL_EXTENSION%s: %s", supported ? " (supported)" : "", name); BX_UNUSED(supported); pos += len+1; } BX_TRACE("Supported extensions:"); for (uint32_t ii = 0; ii < Extension::Count; ++ii) { if (s_extension[ii].m_supported) { BX_TRACE("\t%2d: %s", ii, s_extension[ii].m_name); } } } bool bc123Supported = s_extension[Extension::EXT_texture_compression_s3tc].m_supported; s_textureFormat[TextureFormat::BC1].m_supported = bc123Supported || s_extension[Extension::EXT_texture_compression_dxt1].m_supported; s_textureFormat[TextureFormat::BC2].m_supported = bc123Supported || s_extension[Extension::CHROMIUM_texture_compression_dxt3].m_supported; s_textureFormat[TextureFormat::BC3].m_supported = bc123Supported || s_extension[Extension::CHROMIUM_texture_compression_dxt5].m_supported; bool bc45Supported = s_extension[Extension::EXT_texture_compression_latc].m_supported || s_extension[Extension::EXT_texture_compression_rgtc].m_supported ; s_textureFormat[TextureFormat::BC4].m_supported = bc45Supported; s_textureFormat[TextureFormat::BC5].m_supported = bc45Supported; s_renderCtx.m_vaoSupport = !!BGFX_CONFIG_RENDERER_OPENGLES3 || s_extension[Extension::ARB_vertex_array_object].m_supported || s_extension[Extension::OES_vertex_array_object].m_supported ; s_renderCtx.m_programBinarySupport = !!BGFX_CONFIG_RENDERER_OPENGLES3 || s_extension[Extension::ARB_get_program_binary].m_supported || s_extension[Extension::OES_get_program_binary].m_supported ; s_renderCtx.m_textureSwizzleSupport = false || s_extension[Extension::ARB_texture_swizzle].m_supported || s_extension[Extension::EXT_texture_swizzle].m_supported ; if (s_extension[Extension::EXT_texture_filter_anisotropic].m_supported) { GL_CHECK(glGetFloatv(GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT, &s_renderCtx.m_maxAnisotropy) ); } #if BGFX_CONFIG_RENDERER_OPENGL|BGFX_CONFIG_RENDERER_OPENGLES3 if (s_extension[Extension::ARB_texture_multisample].m_supported) { GL_CHECK(glGetIntegerv(GL_MAX_SAMPLES, &s_renderCtx.m_maxMsaa) ); } #endif // BGFX_CONFIG_RENDERER_OPENGL|BGFX_CONFIG_RENDERER_OPENGLES3 if (s_extension[Extension::EXT_texture_format_BGRA8888].m_supported || s_extension[Extension::EXT_bgra].m_supported) { s_textureFormat[TextureFormat::BGRX8].m_fmt = GL_BGRA_EXT; s_textureFormat[TextureFormat::BGRA8].m_fmt = GL_BGRA_EXT; // Mixing GLES and GL extensions here. OpenGL EXT_bgra wants // format to be BGRA but internal format to stay RGBA, but // EXT_texture_format_BGRA8888 wants both format and internal // format to be BGRA. // // Reference: // https://www.khronos.org/registry/gles/extensions/EXT/EXT_texture_format_BGRA8888.txt // https://www.opengl.org/registry/specs/EXT/bgra.txt if (!s_extension[Extension::EXT_bgra].m_supported) { s_textureFormat[TextureFormat::BGRX8].m_internalFmt = GL_BGRA_EXT; s_textureFormat[TextureFormat::BGRA8].m_internalFmt = GL_BGRA_EXT; } } if (s_extension[Extension::EXT_texture_compression_rgtc].m_supported) { s_textureFormat[TextureFormat::BC4].m_fmt = GL_COMPRESSED_RED_RGTC1_EXT; s_textureFormat[TextureFormat::BC4].m_internalFmt = GL_COMPRESSED_RED_RGTC1_EXT; s_textureFormat[TextureFormat::BC5].m_fmt = GL_COMPRESSED_RED_GREEN_RGTC2_EXT; s_textureFormat[TextureFormat::BC5].m_internalFmt = GL_COMPRESSED_RED_GREEN_RGTC2_EXT; } #if !BGFX_CONFIG_RENDERER_OPENGLES3 if (NULL != glVertexAttribDivisor && NULL != glDrawArraysInstanced && NULL != glDrawElementsInstanced) { s_vertexAttribDivisor = glVertexAttribDivisor; s_drawArraysInstanced = glDrawArraysInstanced; s_drawElementsInstanced = glDrawElementsInstanced; } else { s_vertexAttribDivisor = stubVertexAttribDivisor; s_drawArraysInstanced = stubDrawArraysInstanced; s_drawElementsInstanced = stubDrawElementsInstanced; } #endif // !BGFX_CONFIG_RENDERER_OPENGLES3 if (s_renderCtx.m_vaoSupport) { GL_CHECK(glGenVertexArrays(1, &s_renderCtx.m_vao) ); } #if BGFX_CONFIG_RENDERER_OPENGL >= 31 s_textureFormat[TextureFormat::L8].m_internalFmt = GL_R8; s_textureFormat[TextureFormat::L8].m_fmt = GL_RED; #endif // BGFX_CONFIG_RENDERER_OPENGL >= 31 } void Context::rendererShutdown() { if (s_renderCtx.m_vaoSupport) { GL_CHECK(glBindVertexArray(0) ); GL_CHECK(glDeleteVertexArrays(1, &s_renderCtx.m_vao) ); s_renderCtx.m_vao = 0; } s_renderCtx.shutdown(); } void Context::rendererCreateIndexBuffer(IndexBufferHandle _handle, Memory* _mem) { s_renderCtx.m_indexBuffers[_handle.idx].create(_mem->size, _mem->data); } void Context::rendererDestroyIndexBuffer(IndexBufferHandle _handle) { s_renderCtx.m_indexBuffers[_handle.idx].destroy(); } void Context::rendererCreateVertexDecl(VertexDeclHandle _handle, const VertexDecl& _decl) { VertexDecl& decl = s_renderCtx.m_vertexDecls[_handle.idx]; memcpy(&decl, &_decl, sizeof(VertexDecl) ); dump(decl); } void Context::rendererDestroyVertexDecl(VertexDeclHandle /*_handle*/) { } void Context::rendererCreateVertexBuffer(VertexBufferHandle _handle, Memory* _mem, VertexDeclHandle _declHandle) { s_renderCtx.m_vertexBuffers[_handle.idx].create(_mem->size, _mem->data, _declHandle); } void Context::rendererDestroyVertexBuffer(VertexBufferHandle _handle) { s_renderCtx.m_vertexBuffers[_handle.idx].destroy(); } void Context::rendererCreateDynamicIndexBuffer(IndexBufferHandle _handle, uint32_t _size) { s_renderCtx.m_indexBuffers[_handle.idx].create(_size, NULL); } void Context::rendererUpdateDynamicIndexBuffer(IndexBufferHandle _handle, uint32_t _offset, uint32_t _size, Memory* _mem) { s_renderCtx.m_indexBuffers[_handle.idx].update(_offset, uint32_min(_size, _mem->size), _mem->data); } void Context::rendererDestroyDynamicIndexBuffer(IndexBufferHandle _handle) { s_renderCtx.m_indexBuffers[_handle.idx].destroy(); } void Context::rendererCreateDynamicVertexBuffer(VertexBufferHandle _handle, uint32_t _size) { VertexDeclHandle decl = BGFX_INVALID_HANDLE; s_renderCtx.m_vertexBuffers[_handle.idx].create(_size, NULL, decl); } void Context::rendererUpdateDynamicVertexBuffer(VertexBufferHandle _handle, uint32_t _offset, uint32_t _size, Memory* _mem) { s_renderCtx.m_vertexBuffers[_handle.idx].update(_offset, uint32_min(_size, _mem->size), _mem->data); } void Context::rendererDestroyDynamicVertexBuffer(VertexBufferHandle _handle) { s_renderCtx.m_vertexBuffers[_handle.idx].destroy(); } void Context::rendererCreateVertexShader(VertexShaderHandle _handle, Memory* _mem) { s_renderCtx.m_vertexShaders[_handle.idx].create(GL_VERTEX_SHADER, _mem); } void Context::rendererDestroyVertexShader(VertexShaderHandle _handle) { s_renderCtx.m_vertexShaders[_handle.idx].destroy(); } void Context::rendererCreateFragmentShader(FragmentShaderHandle _handle, Memory* _mem) { s_renderCtx.m_fragmentShaders[_handle.idx].create(GL_FRAGMENT_SHADER, _mem); } void Context::rendererDestroyFragmentShader(FragmentShaderHandle _handle) { s_renderCtx.m_fragmentShaders[_handle.idx].destroy(); } void Context::rendererCreateProgram(ProgramHandle _handle, VertexShaderHandle _vsh, FragmentShaderHandle _fsh) { s_renderCtx.m_program[_handle.idx].create(s_renderCtx.m_vertexShaders[_vsh.idx], s_renderCtx.m_fragmentShaders[_fsh.idx]); } void Context::rendererDestroyProgram(FragmentShaderHandle _handle) { s_renderCtx.m_program[_handle.idx].destroy(); } void Context::rendererCreateTexture(TextureHandle _handle, Memory* _mem, uint32_t _flags) { s_renderCtx.m_textures[_handle.idx].create(_mem, _flags); } void Context::rendererUpdateTextureBegin(TextureHandle /*_handle*/, uint8_t /*_side*/, uint8_t /*_mip*/) { } void Context::rendererUpdateTexture(TextureHandle _handle, uint8_t _side, uint8_t _mip, const Rect& _rect, uint16_t _z, uint16_t _depth, const Memory* _mem) { s_renderCtx.m_textures[_handle.idx].update(_side, _mip, _rect, _z, _depth, _mem); } void Context::rendererUpdateTextureEnd() { } void Context::rendererDestroyTexture(TextureHandle _handle) { s_renderCtx.m_textures[_handle.idx].destroy(); } void Context::rendererCreateRenderTarget(RenderTargetHandle _handle, uint16_t _width, uint16_t _height, uint32_t _flags, uint32_t _textureFlags) { s_renderCtx.m_renderTargets[_handle.idx].create(_width, _height, _flags, _textureFlags); } void Context::rendererDestroyRenderTarget(RenderTargetHandle _handle) { s_renderCtx.m_renderTargets[_handle.idx].destroy(); } void Context::rendererCreateUniform(UniformHandle _handle, UniformType::Enum _type, uint16_t _num, const char* _name) { uint32_t size = g_uniformTypeSize[_type]*_num; void* data = g_realloc(NULL, size); memset(data, 0, size); s_renderCtx.m_uniforms[_handle.idx] = data; s_renderCtx.m_uniformReg.add(_name, s_renderCtx.m_uniforms[_handle.idx]); } void Context::rendererDestroyUniform(UniformHandle _handle) { g_free(s_renderCtx.m_uniforms[_handle.idx]); } void Context::rendererSaveScreenShot(Memory* _mem) { s_renderCtx.saveScreenShot(_mem); } void Context::rendererUpdateUniform(uint16_t _loc, const void* _data, uint32_t _size) { memcpy(s_renderCtx.m_uniforms[_loc], _data, _size); } void Context::rendererSubmit() { const GLuint defaultVao = s_renderCtx.m_vaoSupport; if (0 != defaultVao) { GL_CHECK(glBindVertexArray(defaultVao) ); } GL_CHECK(glBindFramebuffer(GL_FRAMEBUFFER, 0) ); s_renderCtx.updateResolution(m_render->m_resolution); int64_t elapsed = -bx::getHPCounter(); int64_t captureElapsed = 0; #if BGFX_CONFIG_RENDERER_OPENGL if (m_render->m_debug & (BGFX_DEBUG_IFH|BGFX_DEBUG_STATS) ) { s_renderCtx.m_queries.begin(0, GL_TIME_ELAPSED); } #endif // BGFX_CONFIG_RENDERER_OPENGL if (0 < m_render->m_iboffset) { TransientIndexBuffer* ib = m_render->m_transientIb; s_renderCtx.m_indexBuffers[ib->handle.idx].update(0, m_render->m_iboffset, ib->data); } if (0 < m_render->m_vboffset) { TransientVertexBuffer* vb = m_render->m_transientVb; s_renderCtx.m_vertexBuffers[vb->handle.idx].update(0, m_render->m_vboffset, vb->data); } m_render->sort(); RenderState currentState; currentState.reset(); currentState.m_flags = BGFX_STATE_NONE; currentState.m_stencil = packStencil(BGFX_STENCIL_NONE, BGFX_STENCIL_NONE); Matrix4 viewProj[BGFX_CONFIG_MAX_VIEWS]; for (uint32_t ii = 0; ii < BGFX_CONFIG_MAX_VIEWS; ++ii) { mtxMul(viewProj[ii].val, m_render->m_view[ii].val, m_render->m_proj[ii].val); } uint16_t programIdx = invalidHandle; SortKey key; uint8_t view = 0xff; RenderTargetHandle rt = BGFX_INVALID_HANDLE; int32_t height = m_render->m_resolution.m_height; float alphaRef = 0.0f; uint32_t blendFactor = 0; GLenum primType = m_render->m_debug&BGFX_DEBUG_WIREFRAME ? GL_LINES : GL_TRIANGLES; uint32_t primNumVerts = 3; uint32_t baseVertex = 0; GLuint currentVao = 0; uint32_t statsNumPrimsSubmitted = 0; uint32_t statsNumIndices = 0; uint32_t statsNumInstances = 0; uint32_t statsNumPrimsRendered = 0; if (0 == (m_render->m_debug&BGFX_DEBUG_IFH) ) { GL_CHECK(glBindFramebuffer(GL_FRAMEBUFFER, s_renderCtx.m_backBufferFbo) ); for (uint32_t item = 0, numItems = m_render->m_num; item < numItems; ++item) { key.decode(m_render->m_sortKeys[item]); const RenderState& state = m_render->m_renderState[m_render->m_sortValues[item] ]; const uint64_t newFlags = state.m_flags; uint64_t changedFlags = currentState.m_flags ^ state.m_flags; currentState.m_flags = newFlags; const uint64_t newStencil = state.m_stencil; uint64_t changedStencil = currentState.m_stencil ^ state.m_stencil; currentState.m_stencil = newStencil; if (key.m_view != view) { currentState.clear(); changedFlags = BGFX_STATE_MASK; changedStencil = packStencil(BGFX_STENCIL_MASK, BGFX_STENCIL_MASK); currentState.m_flags = newFlags; GREMEDY_SETMARKER("view"); view = key.m_view; programIdx = invalidHandle; if (m_render->m_rt[view].idx != rt.idx) { rt = m_render->m_rt[view]; height = s_renderCtx.setRenderTarget(rt, m_render->m_resolution.m_height); } Rect& rect = m_render->m_rect[view]; GL_CHECK(glViewport(rect.m_x, height-rect.m_height-rect.m_y, rect.m_width, rect.m_height) ); Clear& clear = m_render->m_clear[view]; if (BGFX_CLEAR_NONE != clear.m_flags) { m_clearQuad.clear(rect, clear, height); } GL_CHECK(glDisable(GL_STENCIL_TEST) ); GL_CHECK(glEnable(GL_DEPTH_TEST) ); GL_CHECK(glDepthFunc(GL_LESS) ); GL_CHECK(glEnable(GL_CULL_FACE) ); GL_CHECK(glDisable(GL_BLEND) ); } if (0 != changedStencil) { if (0 != newStencil) { GL_CHECK(glEnable(GL_STENCIL_TEST) ); uint32_t bstencil = unpackStencil(1, newStencil); uint32_t frontAndBack = bstencil != BGFX_STENCIL_NONE && bstencil != unpackStencil(0, newStencil); // uint32_t bchanged = unpackStencil(1, changedStencil); // if (BGFX_STENCIL_FUNC_RMASK_MASK & bchanged) // { // uint32_t wmask = (bstencil&BGFX_STENCIL_FUNC_RMASK_MASK)>>BGFX_STENCIL_FUNC_RMASK_SHIFT; // GL_CHECK(glStencilMask(wmask) ); // } for (uint32_t ii = 0, num = frontAndBack+1; ii < num; ++ii) { uint32_t stencil = unpackStencil(ii, newStencil); uint32_t changed = unpackStencil(ii, changedStencil); GLenum face = s_stencilFace[frontAndBack+ii]; if ( (BGFX_STENCIL_TEST_MASK|BGFX_STENCIL_FUNC_REF_MASK|BGFX_STENCIL_FUNC_RMASK_MASK) & changed) { GLint ref = (stencil&BGFX_STENCIL_FUNC_REF_MASK)>>BGFX_STENCIL_FUNC_REF_SHIFT; GLint mask = (stencil&BGFX_STENCIL_FUNC_RMASK_MASK)>>BGFX_STENCIL_FUNC_RMASK_SHIFT; uint32_t func = (stencil&BGFX_STENCIL_TEST_MASK)>>BGFX_STENCIL_TEST_SHIFT; GL_CHECK(glStencilFuncSeparate(face, s_stencilFunc[func], ref, mask)); } if ( (BGFX_STENCIL_OP_FAIL_S_MASK|BGFX_STENCIL_OP_FAIL_Z_MASK|BGFX_STENCIL_OP_PASS_Z_MASK) & changed) { uint32_t sfail = (stencil&BGFX_STENCIL_OP_FAIL_S_MASK)>>BGFX_STENCIL_OP_FAIL_S_SHIFT; uint32_t zfail = (stencil&BGFX_STENCIL_OP_FAIL_Z_MASK)>>BGFX_STENCIL_OP_FAIL_Z_SHIFT; uint32_t zpass = (stencil&BGFX_STENCIL_OP_PASS_Z_MASK)>>BGFX_STENCIL_OP_PASS_Z_SHIFT; GL_CHECK(glStencilOpSeparate(face, s_stencilOp[sfail], s_stencilOp[zfail], s_stencilOp[zpass]) ); } } } else { GL_CHECK(glDisable(GL_STENCIL_TEST) ); } } if ( (BGFX_STATE_CULL_MASK|BGFX_STATE_DEPTH_WRITE|BGFX_STATE_DEPTH_TEST_MASK |BGFX_STATE_ALPHA_MASK|BGFX_STATE_RGB_WRITE|BGFX_STATE_BLEND_MASK |BGFX_STATE_ALPHA_REF_MASK|BGFX_STATE_PT_MASK|BGFX_STATE_POINT_SIZE_MASK |BGFX_STATE_MSAA) & changedFlags) { if (BGFX_STATE_CULL_MASK & changedFlags) { if (BGFX_STATE_CULL_CW & newFlags) { GL_CHECK(glEnable(GL_CULL_FACE) ); GL_CHECK(glCullFace(GL_BACK) ); } else if (BGFX_STATE_CULL_CCW & newFlags) { GL_CHECK(glEnable(GL_CULL_FACE) ); GL_CHECK(glCullFace(GL_FRONT) ); } else { GL_CHECK(glDisable(GL_CULL_FACE) ); } } if (BGFX_STATE_DEPTH_WRITE & changedFlags) { GL_CHECK(glDepthMask(!!(BGFX_STATE_DEPTH_WRITE & newFlags) ) ); } if (BGFX_STATE_DEPTH_TEST_MASK & changedFlags) { uint32_t func = (newFlags&BGFX_STATE_DEPTH_TEST_MASK)>>BGFX_STATE_DEPTH_TEST_SHIFT; if (0 != func) { GL_CHECK(glEnable(GL_DEPTH_TEST) ); GL_CHECK(glDepthFunc(s_depthFunc[func]) ); } else { GL_CHECK(glDisable(GL_DEPTH_TEST) ); } } if (BGFX_STATE_ALPHA_REF_MASK & changedFlags) { uint32_t ref = (newFlags&BGFX_STATE_ALPHA_REF_MASK)>>BGFX_STATE_ALPHA_REF_SHIFT; alphaRef = ref/255.0f; } #if BGFX_CONFIG_RENDERER_OPENGL if ( (BGFX_STATE_PT_POINTS|BGFX_STATE_POINT_SIZE_MASK) & changedFlags) { float pointSize = (float)(uint32_max(1, (newFlags&BGFX_STATE_POINT_SIZE_MASK)>>BGFX_STATE_POINT_SIZE_SHIFT) ); GL_CHECK(glPointSize(pointSize) ); } if (BGFX_STATE_MSAA & changedFlags) { if (BGFX_STATE_MSAA & newFlags) { GL_CHECK(glEnable(GL_MULTISAMPLE) ); } else { GL_CHECK(glDisable(GL_MULTISAMPLE) ); } } #endif // BGFX_CONFIG_RENDERER_OPENGL if ( (BGFX_STATE_ALPHA_WRITE|BGFX_STATE_RGB_WRITE) & changedFlags) { GLboolean alpha = !!(newFlags&BGFX_STATE_ALPHA_WRITE); GLboolean rgb = !!(newFlags&BGFX_STATE_RGB_WRITE); GL_CHECK(glColorMask(rgb, rgb, rgb, alpha) ); } if (BGFX_STATE_BLEND_MASK & changedFlags) { if (BGFX_STATE_BLEND_MASK & newFlags) { uint32_t blend = (newFlags&BGFX_STATE_BLEND_MASK)>>BGFX_STATE_BLEND_SHIFT; uint32_t src = blend&0xf; uint32_t dst = (blend>>4)&0xf; GL_CHECK(glEnable(GL_BLEND) ); GL_CHECK(glBlendFunc(s_blendFactor[src][0], s_blendFactor[dst][1]) ); if (0 != (blend&(BGFX_STATE_BLEND_FUNC(BGFX_STATE_BLEND_FACTOR, BGFX_STATE_BLEND_FACTOR) ) ) && blendFactor != state.m_rgba) { blendFactor = state.m_rgba; GLclampf rr = (blendFactor>>24)/255.0f; GLclampf gg = ( (blendFactor>>16)&0xff)/255.0f; GLclampf bb = ( (blendFactor>>8)&0xff)/255.0f; GLclampf aa = (blendFactor&0xff)/255.0f; GL_CHECK(glBlendColor(rr, gg, bb, aa) ); } } else { GL_CHECK(glDisable(GL_BLEND) ); } } uint8_t primIndex = uint8_t( (newFlags&BGFX_STATE_PT_MASK)>>BGFX_STATE_PT_SHIFT); primType = m_render->m_debug&BGFX_DEBUG_WIREFRAME ? GL_LINES : s_primType[primIndex]; primNumVerts = 3-primIndex; } bool programChanged = false; bool constantsChanged = state.m_constBegin < state.m_constEnd; bool bindAttribs = false; rendererUpdateUniforms(m_render->m_constantBuffer, state.m_constBegin, state.m_constEnd); if (key.m_program != programIdx) { programIdx = key.m_program; GLuint id = invalidHandle == programIdx ? 0 : s_renderCtx.m_program[programIdx].m_id; GL_CHECK(glUseProgram(id) ); programChanged = constantsChanged = bindAttribs = true; } if (invalidHandle != programIdx) { Program& program = s_renderCtx.m_program[programIdx]; if (constantsChanged) { program.commit(); } for (uint32_t ii = 0, num = program.m_numPredefined; ii < num; ++ii) { PredefinedUniform& predefined = program.m_predefined[ii]; switch (predefined.m_type) { case PredefinedUniform::ViewRect: { float rect[4]; rect[0] = m_render->m_rect[view].m_x; rect[1] = m_render->m_rect[view].m_y; rect[2] = m_render->m_rect[view].m_width; rect[3] = m_render->m_rect[view].m_height; GL_CHECK(glUniform4fv(predefined.m_loc , 1 , &rect[0] ) ); } break; case PredefinedUniform::ViewTexel: { float rect[4]; rect[0] = 1.0f/float(m_render->m_rect[view].m_width); rect[1] = 1.0f/float(m_render->m_rect[view].m_height); GL_CHECK(glUniform4fv(predefined.m_loc , 1 , &rect[0] ) ); } break; case PredefinedUniform::View: { GL_CHECK(glUniformMatrix4fv(predefined.m_loc , 1 , GL_FALSE , m_render->m_view[view].val ) ); } break; case PredefinedUniform::ViewProj: { GL_CHECK(glUniformMatrix4fv(predefined.m_loc , 1 , GL_FALSE , viewProj[view].val ) ); } break; case PredefinedUniform::Model: { const Matrix4& model = m_render->m_matrixCache.m_cache[state.m_matrix]; GL_CHECK(glUniformMatrix4fv(predefined.m_loc , uint32_min(predefined.m_count, state.m_num) , GL_FALSE , model.val ) ); } break; case PredefinedUniform::ModelView: { Matrix4 modelView; const Matrix4& model = m_render->m_matrixCache.m_cache[state.m_matrix]; mtxMul(modelView.val, model.val, m_render->m_view[view].val); GL_CHECK(glUniformMatrix4fv(predefined.m_loc , 1 , GL_FALSE , modelView.val ) ); } break; case PredefinedUniform::ModelViewProj: { Matrix4 modelViewProj; const Matrix4& model = m_render->m_matrixCache.m_cache[state.m_matrix]; mtxMul(modelViewProj.val, model.val, viewProj[view].val); GL_CHECK(glUniformMatrix4fv(predefined.m_loc , 1 , GL_FALSE , modelViewProj.val ) ); } break; case PredefinedUniform::ModelViewProjX: { const Matrix4& model = m_render->m_matrixCache.m_cache[state.m_matrix]; static const BX_ALIGN_STRUCT_16(float) s_bias[16] = { 0.5f, 0.0f, 0.0f, 0.0f, 0.0f, 0.5f, 0.0f, 0.0f, 0.0f, 0.0f, 0.5f, 0.0f, 0.5f, 0.5f, 0.5f, 1.0f, }; uint8_t other = m_render->m_other[view]; Matrix4 viewProjBias; mtxMul(viewProjBias.val, viewProj[other].val, s_bias); Matrix4 modelViewProj; mtxMul(modelViewProj.val, model.val, viewProjBias.val); GL_CHECK(glUniformMatrix4fv(predefined.m_loc , 1 , GL_FALSE , modelViewProj.val ) ); } break; case PredefinedUniform::ViewProjX: { static const BX_ALIGN_STRUCT_16(float) s_bias[16] = { 0.5f, 0.0f, 0.0f, 0.0f, 0.0f, 0.5f, 0.0f, 0.0f, 0.0f, 0.0f, 0.5f, 0.0f, 0.5f, 0.5f, 0.5f, 1.0f, }; uint8_t other = m_render->m_other[view]; Matrix4 viewProjBias; mtxMul(viewProjBias.val, viewProj[other].val, s_bias); GL_CHECK(glUniformMatrix4fv(predefined.m_loc , 1 , GL_FALSE , viewProjBias.val ) ); } break; case PredefinedUniform::AlphaRef: { GL_CHECK(glUniform1f(predefined.m_loc, alphaRef) ); } break; case PredefinedUniform::Count: break; } } // if (BGFX_STATE_TEX_MASK & changedFlags) { uint64_t flag = BGFX_STATE_TEX0; for (uint32_t stage = 0; stage < BGFX_STATE_TEX_COUNT; ++stage) { const Sampler& sampler = state.m_sampler[stage]; Sampler& current = currentState.m_sampler[stage]; if (current.m_idx != sampler.m_idx || current.m_flags != sampler.m_flags || programChanged) { if (invalidHandle != sampler.m_idx) { GL_CHECK(glActiveTexture(GL_TEXTURE0+stage) ); switch (sampler.m_flags&BGFX_SAMPLER_TYPE_MASK) { case BGFX_SAMPLER_TEXTURE: { const Texture& texture = s_renderCtx.m_textures[sampler.m_idx]; GL_CHECK(glBindTexture(texture.m_target, texture.m_id) ); } break; case BGFX_SAMPLER_RENDERTARGET_COLOR: { const RenderTarget& rt = s_renderCtx.m_renderTargets[sampler.m_idx]; GL_CHECK(glBindTexture(rt.m_color.m_target, rt.m_color.m_id) ); } break; case BGFX_SAMPLER_RENDERTARGET_DEPTH: { const RenderTarget& rt = s_renderCtx.m_renderTargets[sampler.m_idx]; GL_CHECK(glBindTexture(rt.m_depth.m_target, rt.m_depth.m_id) ); } break; } } } current = sampler; flag <<= 1; } } if (0 != defaultVao && 0 == state.m_startVertex && 0 == state.m_instanceDataOffset) { if (programChanged || currentState.m_vertexBuffer.idx != state.m_vertexBuffer.idx || currentState.m_indexBuffer.idx != state.m_indexBuffer.idx || currentState.m_instanceDataBuffer.idx != state.m_instanceDataBuffer.idx) { bx::HashMurmur2A murmur; murmur.begin(); murmur.add(state.m_vertexBuffer.idx); murmur.add(state.m_indexBuffer.idx); murmur.add(state.m_instanceDataBuffer.idx); murmur.add(programIdx); uint32_t hash = murmur.end(); currentState.m_vertexBuffer = state.m_vertexBuffer; currentState.m_indexBuffer = state.m_indexBuffer; baseVertex = state.m_startVertex; GLuint id = s_renderCtx.m_vaoCache.find(hash); if (UINT32_MAX != id) { currentVao = id; GL_CHECK(glBindVertexArray(id) ); } else { id = s_renderCtx.m_vaoCache.add(hash); currentVao = id; GL_CHECK(glBindVertexArray(id) ); Program& program = s_renderCtx.m_program[programIdx]; program.add(hash); if (invalidHandle != state.m_vertexBuffer.idx) { VertexBuffer& vb = s_renderCtx.m_vertexBuffers[state.m_vertexBuffer.idx]; vb.add(hash); GL_CHECK(glBindBuffer(GL_ARRAY_BUFFER, vb.m_id) ); uint16_t decl = vb.m_decl.idx == invalidHandle ? state.m_vertexDecl.idx : vb.m_decl.idx; program.bindAttributes(s_renderCtx.m_vertexDecls[decl], state.m_startVertex); if (invalidHandle != state.m_instanceDataBuffer.idx) { VertexBuffer& instanceVb = s_renderCtx.m_vertexBuffers[state.m_instanceDataBuffer.idx]; instanceVb.add(hash); GL_CHECK(glBindBuffer(GL_ARRAY_BUFFER, instanceVb.m_id) ); program.bindInstanceData(state.m_instanceDataStride, state.m_instanceDataOffset); } } else { GL_CHECK(glBindBuffer(GL_ARRAY_BUFFER, 0) ); } if (invalidHandle != state.m_indexBuffer.idx) { IndexBuffer& ib = s_renderCtx.m_indexBuffers[state.m_indexBuffer.idx]; ib.add(hash); GL_CHECK(glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ib.m_id) ); } else { GL_CHECK(glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0) ); } } } } else { if (0 != defaultVao && 0 != currentVao) { GL_CHECK(glBindVertexArray(defaultVao) ); currentState.m_vertexBuffer.idx = invalidHandle; currentState.m_indexBuffer.idx = invalidHandle; bindAttribs = true; currentVao = 0; } if (programChanged || currentState.m_vertexBuffer.idx != state.m_vertexBuffer.idx) { currentState.m_vertexBuffer = state.m_vertexBuffer; uint16_t handle = state.m_vertexBuffer.idx; if (invalidHandle != handle) { VertexBuffer& vb = s_renderCtx.m_vertexBuffers[handle]; GL_CHECK(glBindBuffer(GL_ARRAY_BUFFER, vb.m_id) ); bindAttribs = true; } else { GL_CHECK(glBindBuffer(GL_ARRAY_BUFFER, 0) ); } } if (currentState.m_indexBuffer.idx != state.m_indexBuffer.idx) { currentState.m_indexBuffer = state.m_indexBuffer; uint16_t handle = state.m_indexBuffer.idx; if (invalidHandle != handle) { IndexBuffer& ib = s_renderCtx.m_indexBuffers[handle]; GL_CHECK(glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ib.m_id) ); } else { GL_CHECK(glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0) ); } } if (invalidHandle != currentState.m_vertexBuffer.idx) { if (baseVertex != state.m_startVertex || bindAttribs) { baseVertex = state.m_startVertex; const VertexBuffer& vb = s_renderCtx.m_vertexBuffers[state.m_vertexBuffer.idx]; uint16_t decl = vb.m_decl.idx == invalidHandle ? state.m_vertexDecl.idx : vb.m_decl.idx; const Program& program = s_renderCtx.m_program[programIdx]; program.bindAttributes(s_renderCtx.m_vertexDecls[decl], state.m_startVertex); if (invalidHandle != state.m_instanceDataBuffer.idx) { GL_CHECK(glBindBuffer(GL_ARRAY_BUFFER, s_renderCtx.m_vertexBuffers[state.m_instanceDataBuffer.idx].m_id) ); program.bindInstanceData(state.m_instanceDataStride, state.m_instanceDataOffset); } } } } if (invalidHandle != currentState.m_vertexBuffer.idx) { uint32_t numVertices = state.m_numVertices; if (UINT32_C(0xffffffff) == numVertices) { const VertexBuffer& vb = s_renderCtx.m_vertexBuffers[currentState.m_vertexBuffer.idx]; uint16_t decl = vb.m_decl.idx == invalidHandle ? state.m_vertexDecl.idx : vb.m_decl.idx; const VertexDecl& vertexDecl = s_renderCtx.m_vertexDecls[decl]; numVertices = vb.m_size/vertexDecl.m_stride; } uint32_t numIndices = 0; uint32_t numPrimsSubmitted = 0; uint32_t numInstances = 0; uint32_t numPrimsRendered = 0; if (invalidHandle != state.m_indexBuffer.idx) { if (UINT32_MAX == state.m_numIndices) { numIndices = s_renderCtx.m_indexBuffers[state.m_indexBuffer.idx].m_size/2; numPrimsSubmitted = numIndices/primNumVerts; numInstances = state.m_numInstances; numPrimsRendered = numPrimsSubmitted*state.m_numInstances; GL_CHECK(s_drawElementsInstanced(primType , numIndices , GL_UNSIGNED_SHORT , (void*)0 , state.m_numInstances ) ); } else if (primNumVerts <= state.m_numIndices) { numIndices = state.m_numIndices; numPrimsSubmitted = numIndices/primNumVerts; numInstances = state.m_numInstances; numPrimsRendered = numPrimsSubmitted*state.m_numInstances; GL_CHECK(s_drawElementsInstanced(primType , numIndices , GL_UNSIGNED_SHORT , (void*)(uintptr_t)(state.m_startIndex*2) , state.m_numInstances ) ); } } else { numPrimsSubmitted = numVertices/primNumVerts; numInstances = state.m_numInstances; numPrimsRendered = numPrimsSubmitted*state.m_numInstances; GL_CHECK(s_drawArraysInstanced(primType , 0 , numVertices , state.m_numInstances ) ); } statsNumPrimsSubmitted += numPrimsSubmitted; statsNumIndices += numIndices; statsNumInstances += numInstances; statsNumPrimsRendered += numPrimsRendered; } } } s_renderCtx.blitMsaaFbo(); if (0 < m_render->m_num) { captureElapsed = -bx::getHPCounter(); s_renderCtx.capture(); captureElapsed += bx::getHPCounter(); } } int64_t now = bx::getHPCounter(); elapsed += now; static int64_t last = now; int64_t frameTime = now - last; last = now; static int64_t min = frameTime; static int64_t max = frameTime; min = min > frameTime ? frameTime : min; max = max < frameTime ? frameTime : max; if (m_render->m_debug & (BGFX_DEBUG_IFH|BGFX_DEBUG_STATS) ) { double elapsedGpuMs = 0.0; #if BGFX_CONFIG_RENDERER_OPENGL s_renderCtx.m_queries.end(GL_TIME_ELAPSED); uint64_t elapsedGl = s_renderCtx.m_queries.getResult(0); elapsedGpuMs = double(elapsedGl)/1e6; #endif // BGFX_CONFIG_RENDERER_OPENGL TextVideoMem& tvm = s_renderCtx.m_textVideoMem; static int64_t next = now; if (now >= next) { next = now + bx::getHPFrequency(); double freq = double(bx::getHPFrequency() ); double toMs = 1000.0/freq; tvm.clear(); uint16_t pos = 10; tvm.printf(0, 0, BGFX_CONFIG_DEBUG ? 0x89 : 0x8f, " " BGFX_RENDERER_NAME " "); tvm.printf(10, pos++, 0x8e, " Frame CPU: %7.3f, % 7.3f \x1f, % 7.3f \x1e [ms] / % 6.2f FPS" , double(frameTime)*toMs , double(min)*toMs , double(max)*toMs , freq/frameTime ); double elapsedCpuMs = double(elapsed)*toMs; tvm.printf(10, pos++, 0x8e, " Draw calls: %4d / CPU %3.4f [ms] %c GPU %3.4f [ms]" , m_render->m_num , elapsedCpuMs , elapsedCpuMs > elapsedGpuMs ? '>' : '<' , elapsedGpuMs ); tvm.printf(10, pos++, 0x8e, " Prims: %7d (#inst: %5d), submitted: %7d" , statsNumPrimsRendered , statsNumInstances , statsNumPrimsSubmitted ); double captureMs = double(captureElapsed)*toMs; tvm.printf(10, pos++, 0x8e, " Capture: %3.4f [ms]", captureMs); tvm.printf(10, pos++, 0x8e, " Indices: %7d", statsNumIndices); tvm.printf(10, pos++, 0x8e, " DVB size: %7d", m_render->m_vboffset); tvm.printf(10, pos++, 0x8e, " DIB size: %7d", m_render->m_iboffset); #if BGFX_CONFIG_RENDERER_OPENGL if (s_extension[Extension::ATI_meminfo].m_supported) { GLint vboFree[4]; GL_CHECK(glGetIntegerv(GL_VBO_FREE_MEMORY_ATI, vboFree) ); GLint texFree[4]; GL_CHECK(glGetIntegerv(GL_TEXTURE_FREE_MEMORY_ATI, texFree) ); GLint rbfFree[4]; GL_CHECK(glGetIntegerv(GL_RENDERBUFFER_FREE_MEMORY_ATI, rbfFree) ); pos++; tvm.printf(10, pos++, 0x8c, " -------------| free| free b| aux| aux fb"); tvm.printf(10, pos++, 0x8e, " VBO: %7d, %7d, %7d, %7d", vboFree[0], vboFree[1], vboFree[2], vboFree[3]); tvm.printf(10, pos++, 0x8e, " Texture: %7d, %7d, %7d, %7d", texFree[0], texFree[1], texFree[2], texFree[3]); tvm.printf(10, pos++, 0x8e, " Render Buffer: %7d, %7d, %7d, %7d", rbfFree[0], rbfFree[1], rbfFree[2], rbfFree[3]); } else if (s_extension[Extension::NVX_gpu_memory_info].m_supported) { GLint dedicated; GL_CHECK(glGetIntegerv(GL_GPU_MEMORY_INFO_DEDICATED_VIDMEM_NVX, &dedicated) ); GLint totalAvail; GL_CHECK(glGetIntegerv(GL_GPU_MEMORY_INFO_TOTAL_AVAILABLE_MEMORY_NVX, &totalAvail) ); GLint currAvail; GL_CHECK(glGetIntegerv(GL_GPU_MEMORY_INFO_CURRENT_AVAILABLE_VIDMEM_NVX, &currAvail) ); GLint evictedCount; GL_CHECK(glGetIntegerv(GL_GPU_MEMORY_INFO_EVICTION_COUNT_NVX, &evictedCount) ); GLint evictedMemory; GL_CHECK(glGetIntegerv(GL_GPU_MEMORY_INFO_EVICTED_MEMORY_NVX, &evictedMemory) ); pos++; tvm.printf(10, pos++, 0x8c, "----------|"); tvm.printf(10, pos++, 0x8e, " Dedicated: %7d", dedicated); tvm.printf(10, pos++, 0x8e, " Available: %7d (%7d)", currAvail, totalAvail); tvm.printf(10, pos++, 0x8e, " Eviction: %7d / %7d", evictedCount, evictedMemory); } #endif // BGFX_CONFIG_RENDERER_OPENGL uint8_t attr[2] = { 0x89, 0x8a }; uint8_t attrIndex = m_render->m_waitSubmit < m_render->m_waitRender; pos++; tvm.printf(10, pos++, attr[attrIndex&1], "Submit wait: %3.4f [ms]", double(m_render->m_waitSubmit)*toMs); tvm.printf(10, pos++, attr[(attrIndex+1)&1], "Render wait: %3.4f [ms]", double(m_render->m_waitRender)*toMs); min = frameTime; max = frameTime; } m_textVideoMemBlitter.blit(tvm); } else if (m_render->m_debug & BGFX_DEBUG_TEXT) { m_textVideoMemBlitter.blit(m_render->m_textVideoMem); } GREMEDY_FRAMETERMINATOR(); } } #endif // (BGFX_CONFIG_RENDERER_OPENGLES2|BGFX_CONFIG_RENDERER_OPENGLES3|BGFX_CONFIG_RENDERER_OPENGL)