// This code is in the public domain -- castanyo@yahoo.es #ifndef NV_MATH_VECTOR_INL #define NV_MATH_VECTOR_INL #include "vector.h" #include "nvcore/utils.h" // min, max #include "nvcore/hash.h" // hash namespace nv { // Helpers to convert vector types. Assume T has x,y members and 2 argument constructor. //template T to(Vector2::Arg v) { return T(v.x, v.y); } // Helpers to convert vector types. Assume T has x,y,z members and 3 argument constructor. //template T to(Vector3::Arg v) { return T(v.x, v.y, v.z); } // Helpers to convert vector types. Assume T has x,y,z members and 3 argument constructor. //template T to(Vector4::Arg v) { return T(v.x, v.y, v.z, v.w); } // Vector2 inline Vector2::Vector2() {} inline Vector2::Vector2(float f) : x(f), y(f) {} inline Vector2::Vector2(float x, float y) : x(x), y(y) {} inline Vector2::Vector2(Vector2::Arg v) : x(v.x), y(v.y) {} inline const Vector2 & Vector2::operator=(Vector2::Arg v) { x = v.x; y = v.y; return *this; } inline const float * Vector2::ptr() const { return &x; } inline void Vector2::set(float x, float y) { this->x = x; this->y = y; } inline Vector2 Vector2::operator-() const { return Vector2(-x, -y); } inline void Vector2::operator+=(Vector2::Arg v) { x += v.x; y += v.y; } inline void Vector2::operator-=(Vector2::Arg v) { x -= v.x; y -= v.y; } inline void Vector2::operator*=(float s) { x *= s; y *= s; } inline void Vector2::operator*=(Vector2::Arg v) { x *= v.x; y *= v.y; } inline bool operator==(Vector2::Arg a, Vector2::Arg b) { return a.x == b.x && a.y == b.y; } inline bool operator!=(Vector2::Arg a, Vector2::Arg b) { return a.x != b.x || a.y != b.y; } // Vector3 inline Vector3::Vector3() {} inline Vector3::Vector3(float f) : x(f), y(f), z(f) {} inline Vector3::Vector3(float x, float y, float z) : x(x), y(y), z(z) {} inline Vector3::Vector3(Vector2::Arg v, float z) : x(v.x), y(v.y), z(z) {} inline Vector3::Vector3(Vector3::Arg v) : x(v.x), y(v.y), z(v.z) {} inline const Vector3 & Vector3::operator=(Vector3::Arg v) { x = v.x; y = v.y; z = v.z; return *this; } inline Vector2 Vector3::xy() const { return Vector2(x, y); } inline const float * Vector3::ptr() const { return &x; } inline void Vector3::set(float x, float y, float z) { this->x = x; this->y = y; this->z = z; } inline Vector3 Vector3::operator-() const { return Vector3(-x, -y, -z); } inline void Vector3::operator+=(Vector3::Arg v) { x += v.x; y += v.y; z += v.z; } inline void Vector3::operator-=(Vector3::Arg v) { x -= v.x; y -= v.y; z -= v.z; } inline void Vector3::operator*=(float s) { x *= s; y *= s; z *= s; } inline void Vector3::operator/=(float s) { float is = 1.0f / s; x *= is; y *= is; z *= is; } inline void Vector3::operator*=(Vector3::Arg v) { x *= v.x; y *= v.y; z *= v.z; } inline void Vector3::operator/=(Vector3::Arg v) { x /= v.x; y /= v.y; z /= v.z; } inline bool operator==(Vector3::Arg a, Vector3::Arg b) { return a.x == b.x && a.y == b.y && a.z == b.z; } inline bool operator!=(Vector3::Arg a, Vector3::Arg b) { return a.x != b.x || a.y != b.y || a.z != b.z; } // Vector4 inline Vector4::Vector4() {} inline Vector4::Vector4(float f) : x(f), y(f), z(f), w(f) {} inline Vector4::Vector4(float x, float y, float z, float w) : x(x), y(y), z(z), w(w) {} inline Vector4::Vector4(Vector2::Arg v, float z, float w) : x(v.x), y(v.y), z(z), w(w) {} inline Vector4::Vector4(Vector2::Arg v, Vector2::Arg u) : x(v.x), y(v.y), z(u.x), w(u.y) {} inline Vector4::Vector4(Vector3::Arg v, float w) : x(v.x), y(v.y), z(v.z), w(w) {} inline Vector4::Vector4(Vector4::Arg v) : x(v.x), y(v.y), z(v.z), w(v.w) {} inline const Vector4 & Vector4::operator=(const Vector4 & v) { x = v.x; y = v.y; z = v.z; w = v.w; return *this; } inline Vector2 Vector4::xy() const { return Vector2(x, y); } inline Vector2 Vector4::zw() const { return Vector2(z, w); } inline Vector3 Vector4::xyz() const { return Vector3(x, y, z); } inline const float * Vector4::ptr() const { return &x; } inline void Vector4::set(float x, float y, float z, float w) { this->x = x; this->y = y; this->z = z; this->w = w; } inline Vector4 Vector4::operator-() const { return Vector4(-x, -y, -z, -w); } inline void Vector4::operator+=(Vector4::Arg v) { x += v.x; y += v.y; z += v.z; w += v.w; } inline void Vector4::operator-=(Vector4::Arg v) { x -= v.x; y -= v.y; z -= v.z; w -= v.w; } inline void Vector4::operator*=(float s) { x *= s; y *= s; z *= s; w *= s; } inline void Vector4::operator/=(float s) { x /= s; y /= s; z /= s; w /= s; } inline void Vector4::operator*=(Vector4::Arg v) { x *= v.x; y *= v.y; z *= v.z; w *= v.w; } inline void Vector4::operator/=(Vector4::Arg v) { x /= v.x; y /= v.y; z /= v.z; w /= v.w; } inline bool operator==(Vector4::Arg a, Vector4::Arg b) { return a.x == b.x && a.y == b.y && a.z == b.z && a.w == b.w; } inline bool operator!=(Vector4::Arg a, Vector4::Arg b) { return a.x != b.x || a.y != b.y || a.z != b.z || a.w != b.w; } // Functions // Vector2 inline Vector2 add(Vector2::Arg a, Vector2::Arg b) { return Vector2(a.x + b.x, a.y + b.y); } inline Vector2 operator+(Vector2::Arg a, Vector2::Arg b) { return add(a, b); } inline Vector2 sub(Vector2::Arg a, Vector2::Arg b) { return Vector2(a.x - b.x, a.y - b.y); } inline Vector2 operator-(Vector2::Arg a, Vector2::Arg b) { return sub(a, b); } inline Vector2 scale(Vector2::Arg v, float s) { return Vector2(v.x * s, v.y * s); } inline Vector2 scale(Vector2::Arg v, Vector2::Arg s) { return Vector2(v.x * s.x, v.y * s.y); } inline Vector2 operator*(Vector2::Arg v, float s) { return scale(v, s); } inline Vector2 operator*(Vector2::Arg v1, Vector2::Arg v2) { return Vector2(v1.x*v2.x, v1.y*v2.y); } inline Vector2 operator*(float s, Vector2::Arg v) { return scale(v, s); } inline Vector2 operator/(Vector2::Arg v, float s) { return scale(v, 1.0f/s); } inline Vector2 lerp(Vector2::Arg v1, Vector2::Arg v2, float t) { const float s = 1.0f - t; return Vector2(v1.x * s + t * v2.x, v1.y * s + t * v2.y); } inline float dot(Vector2::Arg a, Vector2::Arg b) { return a.x * b.x + a.y * b.y; } inline float lengthSquared(Vector2::Arg v) { return v.x * v.x + v.y * v.y; } inline float length(Vector2::Arg v) { return sqrtf(lengthSquared(v)); } inline float distance(Vector2::Arg a, Vector2::Arg b) { return length(a - b); } inline float inverseLength(Vector2::Arg v) { return 1.0f / sqrtf(lengthSquared(v)); } inline bool isNormalized(Vector2::Arg v, float epsilon = NV_NORMAL_EPSILON) { return equal(length(v), 1, epsilon); } inline Vector2 normalize(Vector2::Arg v, float epsilon = NV_EPSILON) { float l = length(v); NV_UNUSED(epsilon); nvDebugCheck(!isZero(l, epsilon)); Vector2 n = scale(v, 1.0f / l); nvDebugCheck(isNormalized(n)); return n; } inline Vector2 normalizeSafe(Vector2::Arg v, Vector2::Arg fallback, float epsilon = NV_EPSILON) { float l = length(v); if (isZero(l, epsilon)) { return fallback; } return scale(v, 1.0f / l); } // Safe, branchless normalization from Andy Firth. All error checking ommitted. // http://altdevblogaday.com/2011/08/21/practical-flt-point-tricks/ inline Vector2 normalizeFast(Vector2::Arg v) { const float very_small_float = 1.0e-037f; float l = very_small_float + length(v); return scale(v, 1.0f / l); } inline bool equal(Vector2::Arg v1, Vector2::Arg v2, float epsilon = NV_EPSILON) { return equal(v1.x, v2.x, epsilon) && equal(v1.y, v2.y, epsilon); } inline Vector2 min(Vector2::Arg a, Vector2::Arg b) { return Vector2(min(a.x, b.x), min(a.y, b.y)); } inline Vector2 max(Vector2::Arg a, Vector2::Arg b) { return Vector2(max(a.x, b.x), max(a.y, b.y)); } inline Vector2 clamp(Vector2::Arg v, float min, float max) { return Vector2(clamp(v.x, min, max), clamp(v.y, min, max)); } inline Vector2 saturate(Vector2::Arg v) { return Vector2(saturate(v.x), saturate(v.y)); } inline bool isFinite(Vector2::Arg v) { return isFinite(v.x) && isFinite(v.y); } inline Vector2 validate(Vector2::Arg v, Vector2::Arg fallback = Vector2(0.0f)) { if (!isFinite(v)) return fallback; Vector2 vf = v; nv::floatCleanup(vf.component, 2); return vf; } // Note, this is the area scaled by 2! inline float triangleArea(Vector2::Arg v0, Vector2::Arg v1) { return (v0.x * v1.y - v0.y * v1.x); // * 0.5f; } inline float triangleArea(Vector2::Arg a, Vector2::Arg b, Vector2::Arg c) { // IC: While it may be appealing to use the following expression: //return (c.x * a.y + a.x * b.y + b.x * c.y - b.x * a.y - c.x * b.y - a.x * c.y); // * 0.5f; // That's actually a terrible idea. Small triangles far from the origin can end up producing fairly large floating point // numbers and the results becomes very unstable and dependent on the order of the factors. // Instead, it's preferable to substract the vertices first, and multiply the resulting small values together. The result // in this case is always much more accurate (as long as the triangle is small) and less dependent of the location of // the triangle. //return ((a.x - c.x) * (b.y - c.y) - (a.y - c.y) * (b.x - c.x)); // * 0.5f; return triangleArea(a-c, b-c); } template <> inline uint hash(const Vector2 & v, uint h) { return sdbmFloatHash(v.component, 2, h); } // Vector3 inline Vector3 add(Vector3::Arg a, Vector3::Arg b) { return Vector3(a.x + b.x, a.y + b.y, a.z + b.z); } inline Vector3 add(Vector3::Arg a, float b) { return Vector3(a.x + b, a.y + b, a.z + b); } inline Vector3 operator+(Vector3::Arg a, Vector3::Arg b) { return add(a, b); } inline Vector3 operator+(Vector3::Arg a, float b) { return add(a, b); } inline Vector3 sub(Vector3::Arg a, Vector3::Arg b) { return Vector3(a.x - b.x, a.y - b.y, a.z - b.z); } inline Vector3 sub(Vector3::Arg a, float b) { return Vector3(a.x - b, a.y - b, a.z - b); } inline Vector3 operator-(Vector3::Arg a, Vector3::Arg b) { return sub(a, b); } inline Vector3 operator-(Vector3::Arg a, float b) { return sub(a, b); } inline Vector3 cross(Vector3::Arg a, Vector3::Arg b) { return Vector3(a.y * b.z - a.z * b.y, a.z * b.x - a.x * b.z, a.x * b.y - a.y * b.x); } inline Vector3 scale(Vector3::Arg v, float s) { return Vector3(v.x * s, v.y * s, v.z * s); } inline Vector3 scale(Vector3::Arg v, Vector3::Arg s) { return Vector3(v.x * s.x, v.y * s.y, v.z * s.z); } inline Vector3 operator*(Vector3::Arg v, float s) { return scale(v, s); } inline Vector3 operator*(float s, Vector3::Arg v) { return scale(v, s); } inline Vector3 operator*(Vector3::Arg v, Vector3::Arg s) { return scale(v, s); } inline Vector3 operator/(Vector3::Arg v, float s) { return scale(v, 1.0f/s); } /*inline Vector3 add_scaled(Vector3::Arg a, Vector3::Arg b, float s) { return Vector3(a.x + b.x * s, a.y + b.y * s, a.z + b.z * s); }*/ inline Vector3 lerp(Vector3::Arg v1, Vector3::Arg v2, float t) { const float s = 1.0f - t; return Vector3(v1.x * s + t * v2.x, v1.y * s + t * v2.y, v1.z * s + t * v2.z); } inline float dot(Vector3::Arg a, Vector3::Arg b) { return a.x * b.x + a.y * b.y + a.z * b.z; } inline float lengthSquared(Vector3::Arg v) { return v.x * v.x + v.y * v.y + v.z * v.z; } inline float length(Vector3::Arg v) { return sqrtf(lengthSquared(v)); } inline float distance(Vector3::Arg a, Vector3::Arg b) { return length(a - b); } inline float distanceSquared(Vector3::Arg a, Vector3::Arg b) { return lengthSquared(a - b); } inline float inverseLength(Vector3::Arg v) { return 1.0f / sqrtf(lengthSquared(v)); } inline bool isNormalized(Vector3::Arg v, float epsilon = NV_NORMAL_EPSILON) { return equal(length(v), 1, epsilon); } inline Vector3 normalize(Vector3::Arg v, float epsilon = NV_EPSILON) { float l = length(v); NV_UNUSED(epsilon); nvDebugCheck(!isZero(l, epsilon)); Vector3 n = scale(v, 1.0f / l); nvDebugCheck(isNormalized(n)); return n; } inline Vector3 normalizeSafe(Vector3::Arg v, Vector3::Arg fallback, float epsilon = NV_EPSILON) { float l = length(v); if (isZero(l, epsilon)) { return fallback; } return scale(v, 1.0f / l); } // Safe, branchless normalization from Andy Firth. All error checking ommitted. // http://altdevblogaday.com/2011/08/21/practical-flt-point-tricks/ inline Vector3 normalizeFast(Vector3::Arg v) { const float very_small_float = 1.0e-037f; float l = very_small_float + length(v); return scale(v, 1.0f / l); } inline bool equal(Vector3::Arg v1, Vector3::Arg v2, float epsilon = NV_EPSILON) { return equal(v1.x, v2.x, epsilon) && equal(v1.y, v2.y, epsilon) && equal(v1.z, v2.z, epsilon); } inline Vector3 min(Vector3::Arg a, Vector3::Arg b) { return Vector3(min(a.x, b.x), min(a.y, b.y), min(a.z, b.z)); } inline Vector3 max(Vector3::Arg a, Vector3::Arg b) { return Vector3(max(a.x, b.x), max(a.y, b.y), max(a.z, b.z)); } inline Vector3 clamp(Vector3::Arg v, float min, float max) { return Vector3(clamp(v.x, min, max), clamp(v.y, min, max), clamp(v.z, min, max)); } inline Vector3 saturate(Vector3::Arg v) { return Vector3(saturate(v.x), saturate(v.y), saturate(v.z)); } inline Vector3 floor(Vector3::Arg v) { return Vector3(floorf(v.x), floorf(v.y), floorf(v.z)); } inline Vector3 ceil(Vector3::Arg v) { return Vector3(ceilf(v.x), ceilf(v.y), ceilf(v.z)); } inline bool isFinite(Vector3::Arg v) { return isFinite(v.x) && isFinite(v.y) && isFinite(v.z); } inline Vector3 validate(Vector3::Arg v, Vector3::Arg fallback = Vector3(0.0f)) { if (!isFinite(v)) return fallback; Vector3 vf = v; nv::floatCleanup(vf.component, 3); return vf; } inline Vector3 reflect(Vector3::Arg v, Vector3::Arg n) { return v - (2 * dot(v, n)) * n; } template <> inline uint hash(const Vector3 & v, uint h) { return sdbmFloatHash(v.component, 3, h); } // Vector4 inline Vector4 add(Vector4::Arg a, Vector4::Arg b) { return Vector4(a.x + b.x, a.y + b.y, a.z + b.z, a.w + b.w); } inline Vector4 operator+(Vector4::Arg a, Vector4::Arg b) { return add(a, b); } inline Vector4 sub(Vector4::Arg a, Vector4::Arg b) { return Vector4(a.x - b.x, a.y - b.y, a.z - b.z, a.w - b.w); } inline Vector4 operator-(Vector4::Arg a, Vector4::Arg b) { return sub(a, b); } inline Vector4 scale(Vector4::Arg v, float s) { return Vector4(v.x * s, v.y * s, v.z * s, v.w * s); } inline Vector4 scale(Vector4::Arg v, Vector4::Arg s) { return Vector4(v.x * s.x, v.y * s.y, v.z * s.z, v.w * s.w); } inline Vector4 operator*(Vector4::Arg v, float s) { return scale(v, s); } inline Vector4 operator*(float s, Vector4::Arg v) { return scale(v, s); } inline Vector4 operator*(Vector4::Arg v, Vector4::Arg s) { return scale(v, s); } inline Vector4 operator/(Vector4::Arg v, float s) { return scale(v, 1.0f/s); } /*inline Vector4 add_scaled(Vector4::Arg a, Vector4::Arg b, float s) { return Vector4(a.x + b.x * s, a.y + b.y * s, a.z + b.z * s, a.w + b.w * s); }*/ inline Vector4 lerp(Vector4::Arg v1, Vector4::Arg v2, float t) { const float s = 1.0f - t; return Vector4(v1.x * s + t * v2.x, v1.y * s + t * v2.y, v1.z * s + t * v2.z, v1.w * s + t * v2.w); } inline float dot(Vector4::Arg a, Vector4::Arg b) { return a.x * b.x + a.y * b.y + a.z * b.z + a.w * b.w; } inline float lengthSquared(Vector4::Arg v) { return v.x * v.x + v.y * v.y + v.z * v.z + v.w * v.w; } inline float length(Vector4::Arg v) { return sqrtf(lengthSquared(v)); } inline float inverseLength(Vector4::Arg v) { return 1.0f / sqrtf(lengthSquared(v)); } inline bool isNormalized(Vector4::Arg v, float epsilon = NV_NORMAL_EPSILON) { return equal(length(v), 1, epsilon); } inline Vector4 normalize(Vector4::Arg v, float epsilon = NV_EPSILON) { float l = length(v); NV_UNUSED(epsilon); nvDebugCheck(!isZero(l, epsilon)); Vector4 n = scale(v, 1.0f / l); nvDebugCheck(isNormalized(n)); return n; } inline Vector4 normalizeSafe(Vector4::Arg v, Vector4::Arg fallback, float epsilon = NV_EPSILON) { float l = length(v); if (isZero(l, epsilon)) { return fallback; } return scale(v, 1.0f / l); } // Safe, branchless normalization from Andy Firth. All error checking ommitted. // http://altdevblogaday.com/2011/08/21/practical-flt-point-tricks/ inline Vector4 normalizeFast(Vector4::Arg v) { const float very_small_float = 1.0e-037f; float l = very_small_float + length(v); return scale(v, 1.0f / l); } inline bool equal(Vector4::Arg v1, Vector4::Arg v2, float epsilon = NV_EPSILON) { return equal(v1.x, v2.x, epsilon) && equal(v1.y, v2.y, epsilon) && equal(v1.z, v2.z, epsilon) && equal(v1.w, v2.w, epsilon); } inline Vector4 min(Vector4::Arg a, Vector4::Arg b) { return Vector4(min(a.x, b.x), min(a.y, b.y), min(a.z, b.z), min(a.w, b.w)); } inline Vector4 max(Vector4::Arg a, Vector4::Arg b) { return Vector4(max(a.x, b.x), max(a.y, b.y), max(a.z, b.z), max(a.w, b.w)); } inline Vector4 clamp(Vector4::Arg v, float min, float max) { return Vector4(clamp(v.x, min, max), clamp(v.y, min, max), clamp(v.z, min, max), clamp(v.w, min, max)); } inline Vector4 saturate(Vector4::Arg v) { return Vector4(saturate(v.x), saturate(v.y), saturate(v.z), saturate(v.w)); } inline bool isFinite(Vector4::Arg v) { return isFinite(v.x) && isFinite(v.y) && isFinite(v.z) && isFinite(v.w); } inline Vector4 validate(Vector4::Arg v, Vector4::Arg fallback = Vector4(0.0f)) { if (!isFinite(v)) return fallback; Vector4 vf = v; nv::floatCleanup(vf.component, 4); return vf; } template <> inline uint hash(const Vector4 & v, uint h) { return sdbmFloatHash(v.component, 4, h); } #if NV_OS_IOS // LLVM is not happy with implicit conversion of immediate constants to float //int: inline Vector2 scale(Vector2::Arg v, int s) { return Vector2(v.x * s, v.y * s); } inline Vector2 operator*(Vector2::Arg v, int s) { return scale(v, s); } inline Vector2 operator*(int s, Vector2::Arg v) { return scale(v, s); } inline Vector2 operator/(Vector2::Arg v, int s) { return scale(v, 1.0f/s); } inline Vector3 scale(Vector3::Arg v, int s) { return Vector3(v.x * s, v.y * s, v.z * s); } inline Vector3 operator*(Vector3::Arg v, int s) { return scale(v, s); } inline Vector3 operator*(int s, Vector3::Arg v) { return scale(v, s); } inline Vector3 operator/(Vector3::Arg v, int s) { return scale(v, 1.0f/s); } inline Vector4 scale(Vector4::Arg v, int s) { return Vector4(v.x * s, v.y * s, v.z * s, v.w * s); } inline Vector4 operator*(Vector4::Arg v, int s) { return scale(v, s); } inline Vector4 operator*(int s, Vector4::Arg v) { return scale(v, s); } inline Vector4 operator/(Vector4::Arg v, int s) { return scale(v, 1.0f/s); } //double: inline Vector3 operator*(Vector3::Arg v, double s) { return scale(v, (float)s); } inline Vector3 operator*(double s, Vector3::Arg v) { return scale(v, (float)s); } inline Vector3 operator/(Vector3::Arg v, double s) { return scale(v, 1.f/((float)s)); } #endif //NV_OS_IOS } // nv namespace #endif // NV_MATH_VECTOR_INL