/* Copyright (c) 2014, Conor Stokes All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "IndexBufferDecompression.h" #include "ReadBitstream.h" #include "IndexCompressionConstants.h" #include void DecompressIndexBuffer( uint32_t* triangles, uint32_t triangleCount, ReadBitstream& input ) { Edge edgeFifo[ EDGE_FIFO_SIZE ]; uint32_t vertexFifo[ VERTEX_FIFO_SIZE ]; uint32_t edgesRead = 0; uint32_t verticesRead = 0; uint32_t newVertices = 0; const uint32_t* triangleEnd = triangles + ( triangleCount * 3 ); // iterate through the triangles for ( uint32_t* triangle = triangles; triangle < triangleEnd; triangle += 3 ) { int readVertex = 0; bool skipFirstEdge = false; while ( readVertex < 3 ) { IndexBufferCodes code = static_cast< IndexBufferCodes >( input.Read( IB_CODE_BITS ) ); switch ( code ) { case IB_NEW_VERTEX: triangle[ readVertex ] = vertexFifo[ verticesRead & VERTEX_FIFO_MASK ] = newVertices; ++readVertex; ++verticesRead; ++newVertices; break; case IB_CACHED_EDGE: { assert( readVertex == 0 ); uint32_t fifoIndex = input.Read( CACHED_EDGE_BITS ); const Edge& edge = edgeFifo[ ( ( edgesRead - 1 ) - fifoIndex ) & EDGE_FIFO_MASK ]; triangle[ 0 ] = edge.second; triangle[ 1 ] = edge.first; readVertex += 2; skipFirstEdge = true; break; } case IB_CACHED_VERTEX: { uint32_t fifoIndex = input.Read( CACHED_VERTEX_BITS ); triangle[ readVertex ] = vertexFifo[ ( ( verticesRead - 1 ) - fifoIndex ) & VERTEX_FIFO_MASK ]; ++readVertex; break; } case IB_FREE_VERTEX: { uint32_t readByte = 0; uint32_t bitsToShift = 0; uint32_t relativeVertex = 0; // V-int decoding, done inline. do { readByte = input.Read( 8 ); relativeVertex |= ( readByte & 0x7F ) << bitsToShift; bitsToShift += 7; } while ( readByte & 0x80 ); uint32_t vertex = ( newVertices - 1 ) - relativeVertex; triangle[ readVertex ] = vertexFifo[ verticesRead & VERTEX_FIFO_MASK ] = vertex; ++verticesRead; ++readVertex; break; } } } if ( !skipFirstEdge ) { edgeFifo[ edgesRead & EDGE_FIFO_MASK ] = { triangle[ 0 ], triangle[ 1 ] }; ++edgesRead; } else // first 2 verts were an edge case, so insert them into the vertex fifo. { vertexFifo[ verticesRead & EDGE_FIFO_MASK ] = triangle[ 0 ]; ++verticesRead; vertexFifo[ verticesRead & EDGE_FIFO_MASK ] = triangle[ 1 ]; ++verticesRead; } edgeFifo[ edgesRead & EDGE_FIFO_MASK ] = { triangle[ 1 ], triangle[ 2 ] }; ++edgesRead; edgeFifo[ edgesRead & EDGE_FIFO_MASK ] = { triangle[ 2 ], triangle[ 0 ] }; ++edgesRead; } }