/* * Copyright 2011-2013 Branimir Karadzic. All rights reserved. * License: http://www.opensource.org/licenses/BSD-2-Clause */ #ifndef __BGFX_P_H__ #define __BGFX_P_H__ #include "bgfx.h" #include "config.h" #include #include // va_list #include #include #include #include namespace bgfx { void fatal(Fatal::Enum _code, const char* _format, ...); void dbgPrintf(const char* _format, ...); } #define _BX_TRACE(_format, ...) \ do { \ bgfx::dbgPrintf(BX_FILE_LINE_LITERAL "BGFX " _format "\n", ##__VA_ARGS__); \ } while(0) #define _BX_WARN(_condition, _format, ...) \ do { \ if (!(_condition) ) \ { \ BX_TRACE("WARN " _format, ##__VA_ARGS__); \ } \ } while(0) #define _BX_CHECK(_condition, _format, ...) \ do { \ if (!(_condition) ) \ { \ BX_TRACE("CHECK " _format, ##__VA_ARGS__); \ bgfx::fatal(bgfx::Fatal::DebugCheck, _format, ##__VA_ARGS__); \ } \ } while(0) #if BGFX_CONFIG_DEBUG # define BX_TRACE _BX_TRACE # define BX_WARN _BX_WARN # define BX_CHECK _BX_CHECK # define BX_CONFIG_ALLOCATOR_DEBUG 1 #endif // BGFX_CONFIG_DEBUG #define BGFX_FATAL(_condition, _err, _format, ...) \ do { \ if (!(_condition) ) \ { \ fatal(_err, _format, ##__VA_ARGS__); \ } \ } while(0) #include #include #include #include #include #include #include #include #include #include #include #include #include #include "image.h" #define BGFX_CHUNK_MAGIC_FSH BX_MAKEFOURCC('F', 'S', 'H', 0x1) #define BGFX_CHUNK_MAGIC_TEX BX_MAKEFOURCC('T', 'E', 'X', 0x0) #define BGFX_CHUNK_MAGIC_VSH BX_MAKEFOURCC('V', 'S', 'H', 0x1) #include // mingw wants it to be before tr1/unordered_*... #if BGFX_CONFIG_USE_TINYSTL namespace bgfx { struct TinyStlAllocator { static void* static_allocate(size_t _bytes); static void static_deallocate(void* _ptr, size_t /*_bytes*/); }; } // namespace bgfx # define TINYSTL_ALLOCATOR bgfx::TinyStlAllocator # include # include # include namespace stl = tinystl; #else # include # include # include namespace stl { using namespace std; using namespace std::tr1; } #endif // BGFX_CONFIG_USE_TINYSTL #if BX_PLATFORM_ANDROID # include #elif BX_PLATFORM_WINDOWS # include #elif BX_PLATFORM_XBOX360 # include # include #endif // BX_PLATFORM_* #include #include #include #include "vertexdecl.h" #define BGFX_DEFAULT_WIDTH 1280 #define BGFX_DEFAULT_HEIGHT 720 #define BGFX_STATE_TEX0 UINT64_C(0x0100000000000000) #define BGFX_STATE_TEX1 UINT64_C(0x0200000000000000) #define BGFX_STATE_TEX2 UINT64_C(0x0400000000000000) #define BGFX_STATE_TEX3 UINT64_C(0x0800000000000000) #define BGFX_STATE_TEX4 UINT64_C(0x1000000000000000) #define BGFX_STATE_TEX5 UINT64_C(0x2000000000000000) #define BGFX_STATE_TEX6 UINT64_C(0x4000000000000000) #define BGFX_STATE_TEX7 UINT64_C(0x8000000000000000) #define BGFX_STATE_TEX_MASK UINT64_C(0xff00000000000000) #define BGFX_STATE_TEX_COUNT 8 #define BGFX_SAMPLER_DEFAULT_FLAGS UINT32_C(0x10000000) #define BGFX_SAMPLER_TEXTURE UINT32_C(0x00000000) #define BGFX_SAMPLER_RENDERTARGET_COLOR UINT32_C(0x40000000) #define BGFX_SAMPLER_RENDERTARGET_DEPTH UINT32_C(0x80000000) #define BGFX_SAMPLER_TYPE_MASK UINT32_C(0xc0000000) #if BGFX_CONFIG_RENDERER_DIRECT3D9 # define BGFX_RENDERER_NAME "Direct3D 9" #elif BGFX_CONFIG_RENDERER_DIRECT3D11 # define BGFX_RENDERER_NAME "Direct3D 11" #elif BGFX_CONFIG_RENDERER_OPENGL # if BGFX_CONFIG_RENDERER_OPENGL >= 31 # define BGFX_RENDERER_NAME "OpenGL 3.1" # else # define BGFX_RENDERER_NAME "OpenGL 2.1" # endif // BGFX_CONFIG_RENDERER_OPENGL #elif BGFX_CONFIG_RENDERER_OPENGLES2 # define BGFX_RENDERER_NAME "OpenGL ES 2" #elif BGFX_CONFIG_RENDERER_OPENGLES3 # define BGFX_RENDERER_NAME "OpenGL ES 3" #endif // BGFX_CONFIG_RENDERER_ namespace bgfx { #if BX_PLATFORM_ANDROID extern ::ANativeWindow* g_bgfxAndroidWindow; #elif BX_PLATFORM_IOS extern void* g_bgfxEaglLayer; #elif BX_PLATFORM_OSX extern void* g_bgfxNSWindow; #elif BX_PLATFORM_WINDOWS extern ::HWND g_bgfxHwnd; #endif // BX_PLATFORM_* struct Clear { uint32_t m_rgba; float m_depth; uint8_t m_stencil; uint8_t m_flags; }; struct Rect { void clear() { m_x = m_y = m_width = m_height = 0; } bool isZero() const { uint64_t ui64 = *( (uint64_t*)this); return UINT64_C(0) == ui64; } void intersect(const Rect& _a, const Rect& _b) { const uint16_t sx = bx::uint16_max(_a.m_x, _b.m_x); const uint16_t sy = bx::uint16_max(_a.m_y, _b.m_y); const uint16_t ex = bx::uint16_min(_a.m_x + _a.m_width, _b.m_x + _b.m_width ); const uint16_t ey = bx::uint16_min(_a.m_y + _a.m_height, _b.m_y + _b.m_height); m_x = sx; m_y = sy; m_width = (uint16_t)bx::uint32_satsub(ex, sx); m_height = (uint16_t)bx::uint32_satsub(ey, sy); } uint16_t m_x; uint16_t m_y; uint16_t m_width; uint16_t m_height; }; struct TextureCreate { uint32_t m_flags; uint16_t m_width; uint16_t m_height; uint16_t m_sides; uint16_t m_depth; uint8_t m_numMips; uint8_t m_format; bool m_cubeMap; const Memory* m_mem; }; extern const uint32_t g_uniformTypeSize[UniformType::Count+1]; extern CallbackI* g_callback; extern bx::ReallocatorI* g_allocator; void release(const Memory* _mem); const char* getAttribName(Attrib::Enum _attr); bool renderFrame(); inline uint32_t gcd(uint32_t _a, uint32_t _b) { do { uint32_t tmp = _a % _b; _a = _b; _b = tmp; } while (_b); return _a; } inline uint32_t lcm(uint32_t _a, uint32_t _b) { return _a * (_b / gcd(_a, _b) ); } inline uint32_t strideAlign(uint32_t _offset, uint32_t _stride) { using namespace bx; const uint32_t mod = uint32_mod(_offset, _stride); const uint32_t add = uint32_sub(_stride, mod); const uint32_t mask = uint32_cmpeq(mod, 0); const uint32_t tmp = uint32_selb(mask, 0, add); const uint32_t result = uint32_add(_offset, tmp); return result; } inline uint32_t strideAlign16(uint32_t _offset, uint32_t _stride) { uint32_t align = lcm(16, _stride); return _offset+align-(_offset%align); } inline uint32_t strideAlign256(uint32_t _offset, uint32_t _stride) { uint32_t align = lcm(256, _stride); return _offset+align-(_offset%align); } inline uint32_t castfu(float _value) { union { float fl; uint32_t ui; } un; un.fl = _value; return un.ui; } inline uint64_t packStencil(uint32_t _fstencil, uint32_t _bstencil) { return (uint64_t(_bstencil)<<32)|uint64_t(_fstencil); } inline uint32_t unpackStencil(uint8_t _0or1, uint64_t _stencil) { return uint32_t( (_stencil >> (32*_0or1) ) ); } void dump(const VertexDecl& _decl); struct TextVideoMem { TextVideoMem() : m_mem(NULL) , m_size(0) , m_width(0) , m_height(0) , m_small(false) { resize(); clear(); } ~TextVideoMem() { BX_FREE(g_allocator, m_mem); } void resize(bool _small = false, uint16_t _width = BGFX_DEFAULT_WIDTH, uint16_t _height = BGFX_DEFAULT_HEIGHT) { uint32_t width = bx::uint32_max(1, _width/8); uint32_t height = bx::uint32_max(1, _height/(_small ? 8 : 16) ); if (NULL == m_mem || m_width != width || m_height != height || m_small != _small) { m_small = _small; m_width = (uint16_t)width; m_height = (uint16_t)height; uint32_t size = m_size; m_size = m_width * m_height * 2; m_mem = (uint8_t*)BX_REALLOC(g_allocator, m_mem, m_size); if (size < m_size) { memset(&m_mem[size], 0, m_size-size); } } } void clear(uint8_t _attr = 0) { uint8_t* mem = m_mem; for (uint32_t ii = 0, num = m_size/2; ii < num; ++ii) { mem[0] = 0; mem[1] = _attr; mem += 2; } } void printfVargs(uint16_t _x, uint16_t _y, uint8_t _attr, const char* _format, va_list _argList) { if (_x < m_width && _y < m_height) { char* temp = (char*)alloca(m_width); uint32_t num = bx::vsnprintf(temp, m_width, _format, _argList); uint8_t* mem = &m_mem[(_y*m_width+_x)*2]; for (uint32_t ii = 0, xx = _x; ii < num && xx < m_width; ++ii, ++xx) { mem[0] = temp[ii]; mem[1] = _attr; mem += 2; } } } void printf(uint16_t _x, uint16_t _y, uint8_t _attr, const char* _format, ...) { va_list argList; va_start(argList, _format); printfVargs(_x, _y, _attr, _format, argList); va_end(argList); } uint8_t* m_mem; uint32_t m_size; uint16_t m_width; uint16_t m_height; bool m_small; }; struct TextVideoMemBlitter { void init(); void shutdown(); void blit(const TextVideoMem* _mem) { blit(*_mem); } void blit(const TextVideoMem& _mem); void setup(); void render(uint32_t _numIndices); TextureHandle m_texture; TransientVertexBuffer* m_vb; TransientIndexBuffer* m_ib; VertexDecl m_decl; ProgramHandle m_program; bool m_init; }; template struct UpdateBatchT { UpdateBatchT() : m_num(0) { } void add(uint32_t _key, uint32_t _value) { uint32_t num = m_num++; m_keys[num] = _key; m_values[num] = _value; } bool sort() { if (0 < m_num) { uint32_t* tempKeys = (uint32_t*)alloca(sizeof(m_keys) ); uint32_t* tempValues = (uint32_t*)alloca(sizeof(m_values) ); bx::radixSort32(m_keys, tempKeys, m_values, tempValues, m_num); return true; } return false; } bool isFull() const { return m_num >= maxKeys; } void reset() { m_num = 0; } uint32_t m_num; uint32_t m_keys[maxKeys]; uint32_t m_values[maxKeys]; }; struct ClearQuad { void init(); void shutdown(); void clear(const Rect& _rect, const Clear& _clear, uint32_t _height = 0); TransientVertexBuffer* m_vb; IndexBufferHandle m_ib; VertexDecl m_decl; ProgramHandle m_program; }; struct PredefinedUniform { enum Enum { ViewRect, ViewTexel, View, ViewProj, ViewProjX, Model, ModelView, ModelViewProj, ModelViewProjX, AlphaRef, Count }; uint32_t m_loc; uint16_t m_count; uint8_t m_type; }; const char* getPredefinedUniformName(PredefinedUniform::Enum _enum); PredefinedUniform::Enum nameToPredefinedUniformEnum(const char* _name); struct CommandBuffer { CommandBuffer() : m_pos(0) , m_size(BGFX_CONFIG_MAX_COMMAND_BUFFER_SIZE) { finish(); } enum Enum { RendererInit, RendererShutdownBegin, CreateVertexDecl, CreateIndexBuffer, CreateVertexBuffer, CreateDynamicIndexBuffer, UpdateDynamicIndexBuffer, CreateDynamicVertexBuffer, UpdateDynamicVertexBuffer, CreateVertexShader, CreateFragmentShader, CreateProgram, CreateTexture, UpdateTexture, CreateRenderTarget, CreateUniform, UpdateViewName, End, RendererShutdownEnd, DestroyVertexDecl, DestroyIndexBuffer, DestroyVertexBuffer, DestroyDynamicIndexBuffer, DestroyDynamicVertexBuffer, DestroyVertexShader, DestroyFragmentShader, DestroyProgram, DestroyTexture, DestroyRenderTarget, DestroyUniform, SaveScreenShot, }; void write(const void* _data, uint32_t _size) { BX_CHECK(m_pos < m_size, ""); memcpy(&m_buffer[m_pos], _data, _size); m_pos += _size; } template void write(const Type& _in) { write(reinterpret_cast(&_in), sizeof(Type) ); } void read(void* _data, uint32_t _size) { BX_CHECK(m_pos < m_size, ""); memcpy(_data, &m_buffer[m_pos], _size); m_pos += _size; } template void read(Type& _in) { read(reinterpret_cast(&_in), sizeof(Type) ); } const uint8_t* skip(uint32_t _size) { BX_CHECK(m_pos < m_size, ""); const uint8_t* result = &m_buffer[m_pos]; m_pos += _size; return result; } void reset() { m_pos = 0; } void finish() { uint8_t cmd = End; write(cmd); m_pos = 0; } uint32_t m_pos; uint32_t m_size; uint8_t m_buffer[BGFX_CONFIG_MAX_COMMAND_BUFFER_SIZE]; private: CommandBuffer(const CommandBuffer&); void operator=(const CommandBuffer&); }; struct SortKey { uint64_t encode() { // | 3 2 1 0| // |fedcba9876543210fedcba9876543210fedcba9876543210fedcba9876543210| // | vvvvvsssssssssssttmmmmmmmmmdddddddddddddddddddddddd| // | ^ ^ ^ ^ ^| // | | | | | || uint64_t tmp0 = m_depth; uint64_t tmp1 = uint64_t(m_program)<<0x18; uint64_t tmp2 = uint64_t(m_trans)<<0x21; uint64_t tmp3 = uint64_t(m_seq)<<0x23; uint64_t tmp4 = uint64_t(m_view)<<0x2e; uint64_t key = tmp0|tmp1|tmp2|tmp3|tmp4; return key; } void decode(uint64_t _key) { m_depth = _key&0xffffffff; m_program = (_key>>0x18)&(BGFX_CONFIG_MAX_PROGRAMS-1); m_trans = (_key>>0x21)&0x3; m_seq = (_key>>0x23)&0x7ff; m_view = (_key>>0x2e)&(BGFX_CONFIG_MAX_VIEWS-1); } void reset() { m_depth = 0; m_program = 0; m_seq = 0; m_view = 0; m_trans = 0; } int32_t m_depth; uint16_t m_program; uint16_t m_seq; uint8_t m_view; uint8_t m_trans; }; BX_ALIGN_STRUCT_16(struct) Matrix4 { float val[16]; void setIdentity() { memset(val, 0, sizeof(val) ); val[0] = val[5] = val[10] = val[15] = 1.0f; } }; void mtxMul(float* __restrict _result, const float* __restrict _a, const float* __restrict _b); void mtxOrtho(float* _result, float _left, float _right, float _bottom, float _top, float _near, float _far); struct MatrixCache { MatrixCache() : m_num(1) { m_cache[0].setIdentity(); } void reset() { m_num = 1; } uint32_t add(const void* _mtx, uint16_t _num) { if (NULL != _mtx) { BX_CHECK(m_num+_num < BGFX_CONFIG_MAX_MATRIX_CACHE, "Matrix cache overflow. %d (max: %d)", m_num+_num, BGFX_CONFIG_MAX_MATRIX_CACHE); uint32_t num = bx::uint32_min(BGFX_CONFIG_MAX_MATRIX_CACHE-m_num, _num); uint32_t first = m_num; memcpy(&m_cache[m_num], _mtx, sizeof(Matrix4)*num); m_num += num; return first; } return 0; } Matrix4 m_cache[BGFX_CONFIG_MAX_MATRIX_CACHE]; uint32_t m_num; }; struct RectCache { RectCache() : m_num(0) { } void reset() { m_num = 0; } uint32_t add(uint16_t _x, uint16_t _y, uint16_t _width, uint16_t _height) { BX_CHECK(m_num+1 < BGFX_CONFIG_MAX_RECT_CACHE, "Rect cache overflow. %d (max: %d)", m_num, BGFX_CONFIG_MAX_RECT_CACHE); uint32_t first = m_num; Rect& rect = m_cache[m_num]; rect.m_x = _x; rect.m_y = _y; rect.m_width = _width; rect.m_height = _height; m_num++; return first; } Rect m_cache[BGFX_CONFIG_MAX_RECT_CACHE]; uint32_t m_num; }; struct Sampler { uint32_t m_flags; uint16_t m_idx; }; struct Uniform { UniformType::Enum m_type; uint16_t m_num; }; #define CONSTANT_OPCODE_TYPE_SHIFT 27 #define CONSTANT_OPCODE_TYPE_MASK UINT32_C(0xf8000000) #define CONSTANT_OPCODE_LOC_SHIFT 11 #define CONSTANT_OPCODE_LOC_MASK UINT32_C(0x07fff800) #define CONSTANT_OPCODE_NUM_SHIFT 1 #define CONSTANT_OPCODE_NUM_MASK UINT32_C(0x000007fe) #define CONSTANT_OPCODE_COPY_SHIFT 0 #define CONSTANT_OPCODE_COPY_MASK UINT32_C(0x00000001) #define BGFX_UNIFORM_FRAGMENTBIT UINT8_C(0x10) class ConstantBuffer { public: static ConstantBuffer* create(uint32_t _size) { uint32_t size = BX_ALIGN_16(bx::uint32_max(_size, sizeof(ConstantBuffer) ) ); void* data = BX_ALLOC(g_allocator, size); return ::new(data) ConstantBuffer(_size); } static void destroy(ConstantBuffer* _constantBuffer) { _constantBuffer->~ConstantBuffer(); BX_FREE(g_allocator, _constantBuffer); } static uint32_t encodeOpcode(UniformType::Enum _type, uint16_t _loc, uint16_t _num, uint16_t _copy) { const uint32_t type = _type << CONSTANT_OPCODE_TYPE_SHIFT; const uint32_t loc = _loc << CONSTANT_OPCODE_LOC_SHIFT; const uint32_t num = _num << CONSTANT_OPCODE_NUM_SHIFT; const uint32_t copy = _copy << CONSTANT_OPCODE_COPY_SHIFT; return type|loc|num|copy; } static void decodeOpcode(uint32_t _opcode, UniformType::Enum& _type, uint16_t& _loc, uint16_t& _num, uint16_t& _copy) { const uint32_t type = (_opcode&CONSTANT_OPCODE_TYPE_MASK) >> CONSTANT_OPCODE_TYPE_SHIFT; const uint32_t loc = (_opcode&CONSTANT_OPCODE_LOC_MASK) >> CONSTANT_OPCODE_LOC_SHIFT; const uint32_t num = (_opcode&CONSTANT_OPCODE_NUM_MASK) >> CONSTANT_OPCODE_NUM_SHIFT; const uint32_t copy = (_opcode&CONSTANT_OPCODE_COPY_MASK) >> CONSTANT_OPCODE_COPY_SHIFT; _type = (UniformType::Enum)(type); _copy = (uint16_t)copy; _num = (uint16_t)num; _loc = (uint16_t)loc; } void write(const void* _data, uint32_t _size) { BX_CHECK(m_pos + _size < m_size, "Write would go out of bounds. pos %d + size %d > max size: %d).", m_pos, _size, m_size); if (m_pos + _size < m_size) { memcpy(&m_buffer[m_pos], _data, _size); m_pos += _size; } } void write(uint32_t _value) { write(&_value, sizeof(uint32_t) ); } const char* read(uint32_t _size) { BX_CHECK(m_pos < m_size, "Out of bounds %d (size: %d).", m_pos, m_size); const char* result = &m_buffer[m_pos]; m_pos += _size; return result; } uint32_t read() { const char* result = read(sizeof(uint32_t) ); return *( (uint32_t*)result); } bool isEmpty() const { return 0 == m_pos; } uint32_t getPos() const { return m_pos; } void reset(uint32_t _pos = 0) { m_pos = _pos; } void finish() { write(UniformType::End); m_pos = 0; } void writeUniform(UniformType::Enum _type, uint16_t _loc, const void* _value, uint16_t _num = 1); void writeUniformRef(UniformType::Enum _type, uint16_t _loc, const void* _value, uint16_t _num = 1); void writeMarker(const char* _marker); void commit(); private: ConstantBuffer(uint32_t _size) : m_size(_size-sizeof(m_buffer) ) , m_pos(0) { BX_TRACE("ConstantBuffer %d, %d", _size, m_size); finish(); } ~ConstantBuffer() { } uint32_t m_size; uint32_t m_pos; char m_buffer[8]; }; typedef const void* (*UniformFn)(const void* _data); struct UniformInfo { const void* m_data; UniformFn m_func; }; class UniformRegistry { public: UniformRegistry() { } ~UniformRegistry() { } const UniformInfo* find(const char* _name) const { UniformHashMap::const_iterator it = m_uniforms.find(_name); if (it != m_uniforms.end() ) { return &it->second; } return NULL; } const UniformInfo& add(const char* _name, const void* _data, UniformFn _func = NULL) { UniformHashMap::iterator it = m_uniforms.find(_name); if (it == m_uniforms.end() ) { UniformInfo info; info.m_data = _data; info.m_func = _func; stl::pair result = m_uniforms.insert(UniformHashMap::value_type(_name, info) ); return result.first->second; } return it->second; } private: typedef stl::unordered_map UniformHashMap; UniformHashMap m_uniforms; }; struct RenderState { void reset() { m_constEnd = 0; clear(); } void clear() { m_constBegin = m_constEnd; m_flags = BGFX_STATE_DEFAULT; m_stencil = packStencil(BGFX_STENCIL_DEFAULT, BGFX_STENCIL_DEFAULT); m_rgba = UINT32_MAX; m_matrix = 0; m_startIndex = 0; m_numIndices = UINT32_MAX; m_startVertex = 0; m_numVertices = UINT32_MAX; m_instanceDataOffset = 0; m_instanceDataStride = 0; m_numInstances = 1; m_num = 1; m_scissor = UINT16_MAX; m_vertexBuffer.idx = invalidHandle; m_vertexDecl.idx = invalidHandle; m_indexBuffer.idx = invalidHandle; m_instanceDataBuffer.idx = invalidHandle; for (uint32_t ii = 0; ii < BGFX_STATE_TEX_COUNT; ++ii) { m_sampler[ii].m_idx = invalidHandle; m_sampler[ii].m_flags = BGFX_SAMPLER_TEXTURE; } } uint64_t m_flags; uint64_t m_stencil; uint32_t m_rgba; uint32_t m_constBegin; uint32_t m_constEnd; uint32_t m_matrix; uint32_t m_startIndex; uint32_t m_numIndices; uint32_t m_startVertex; uint32_t m_numVertices; uint32_t m_instanceDataOffset; uint16_t m_instanceDataStride; uint16_t m_numInstances; uint16_t m_num; uint16_t m_scissor; VertexBufferHandle m_vertexBuffer; VertexDeclHandle m_vertexDecl; IndexBufferHandle m_indexBuffer; VertexBufferHandle m_instanceDataBuffer; Sampler m_sampler[BGFX_STATE_TEX_COUNT]; }; struct Resolution { Resolution() : m_width(BGFX_DEFAULT_WIDTH) , m_height(BGFX_DEFAULT_HEIGHT) , m_flags(BGFX_RESET_NONE) { } uint32_t m_width; uint32_t m_height; uint32_t m_flags; }; struct DynamicIndexBuffer { IndexBufferHandle m_handle; uint32_t m_offset; uint32_t m_size; }; struct DynamicVertexBuffer { VertexBufferHandle m_handle; uint32_t m_offset; uint32_t m_size; uint32_t m_startVertex; uint32_t m_numVertices; uint32_t m_stride; VertexDeclHandle m_decl; }; struct Frame { BX_CACHE_LINE_ALIGN_MARKER(); Frame() { } ~Frame() { } void create() { m_constantBuffer = ConstantBuffer::create(BGFX_CONFIG_MAX_CONSTANT_BUFFER_SIZE); reset(); finish(); m_textVideoMem = BX_NEW(g_allocator, TextVideoMem); } void destroy() { ConstantBuffer::destroy(m_constantBuffer); BX_DELETE(g_allocator, m_textVideoMem); } void reset() { m_flags = BGFX_STATE_NONE; m_state.reset(); m_matrixCache.reset(); m_rectCache.reset(); m_key.reset(); m_num = 0; m_numRenderStates = 0; m_numDropped = 0; m_iboffset = 0; m_vboffset = 0; m_cmdPre.reset(); m_cmdPost.reset(); m_constantBuffer->reset(); m_discard = false; resetFreeHandles(); } void finish() { m_cmdPre.finish(); m_cmdPost.finish(); m_constantBuffer->finish(); if (0 < m_numDropped) { BX_TRACE("Too many draw calls: %d, dropped %d (max: %d)" , m_num+m_numDropped , m_numDropped , BGFX_CONFIG_MAX_DRAW_CALLS ); } } void setMarker(const char* _name) { m_constantBuffer->writeMarker(_name); } void setState(uint64_t _state, uint32_t _rgba) { uint8_t blend = ( (_state&BGFX_STATE_BLEND_MASK)>>BGFX_STATE_BLEND_SHIFT)&0xff; // transparency sort order table m_key.m_trans = "\x0\x1\x1\x2\x2\x1\x2\x1\x2\x1\x1\x1\x1\x1\x1\x1\x1\x1\x1"[( (blend)&0xf) + (!!blend)]; m_state.m_flags = _state; m_state.m_rgba = _rgba; } void setStencil(uint32_t _fstencil, uint32_t _bstencil) { m_state.m_stencil = packStencil(_fstencil, _bstencil); } uint16_t setScissor(uint16_t _x, uint16_t _y, uint16_t _width, uint16_t _height) { uint16_t scissor = m_rectCache.add(_x, _y, _width, _height); m_state.m_scissor = scissor; return scissor; } void setScissor(uint16_t _cache) { m_state.m_scissor = _cache; } uint32_t setTransform(const void* _mtx, uint16_t _num) { m_state.m_matrix = m_matrixCache.add(_mtx, _num); m_state.m_num = _num; return m_state.m_matrix; } void setTransform(uint32_t _cache, uint16_t _num) { m_state.m_matrix = _cache; m_state.m_num = _num; } void setIndexBuffer(IndexBufferHandle _handle, uint32_t _firstIndex, uint32_t _numIndices) { m_state.m_startIndex = _firstIndex; m_state.m_numIndices = _numIndices; m_state.m_indexBuffer = _handle; } void setIndexBuffer(const TransientIndexBuffer* _tib, uint32_t _numIndices) { m_state.m_indexBuffer = _tib->handle; m_state.m_startIndex = _tib->startIndex; m_state.m_numIndices = _numIndices; m_discard = 0 == _numIndices; } void setVertexBuffer(VertexBufferHandle _handle, uint32_t _numVertices) { BX_CHECK(_handle.idx < BGFX_CONFIG_MAX_VERTEX_BUFFERS, "Invalid vertex buffer handle. %d (< %d)", _handle.idx, BGFX_CONFIG_MAX_VERTEX_BUFFERS); m_state.m_startVertex = 0; m_state.m_numVertices = _numVertices; m_state.m_vertexBuffer = _handle; } void setVertexBuffer(const DynamicVertexBuffer& _dvb, uint32_t _numVertices) { m_state.m_startVertex = _dvb.m_startVertex; m_state.m_numVertices = bx::uint32_min(_dvb.m_numVertices, _numVertices); m_state.m_vertexBuffer = _dvb.m_handle; m_state.m_vertexDecl = _dvb.m_decl; } void setVertexBuffer(const TransientVertexBuffer* _tvb, uint32_t _numVertices) { m_state.m_startVertex = _tvb->startVertex; m_state.m_numVertices = bx::uint32_min(_tvb->size/_tvb->stride, _numVertices); m_state.m_vertexBuffer = _tvb->handle; m_state.m_vertexDecl = _tvb->decl; } void setInstanceDataBuffer(const InstanceDataBuffer* _idb, uint16_t _num) { m_state.m_instanceDataOffset = _idb->offset; m_state.m_instanceDataStride = _idb->stride; m_state.m_numInstances = bx::uint16_min( (uint16_t)_idb->num, _num); m_state.m_instanceDataBuffer = _idb->handle; BX_FREE(g_allocator, const_cast(_idb) ); } void setProgram(ProgramHandle _handle) { BX_CHECK(invalidHandle != _handle.idx, "Can't set program with invalid handle."); m_key.m_program = _handle.idx; } void setTexture(uint8_t _stage, UniformHandle _sampler, TextureHandle _handle, uint32_t _flags) { m_flags |= BGFX_STATE_TEX0<<_stage; Sampler& sampler = m_state.m_sampler[_stage]; sampler.m_idx = _handle.idx; sampler.m_flags = 0 | BGFX_SAMPLER_TEXTURE | ( (_flags&BGFX_SAMPLER_TYPE_MASK) ? BGFX_SAMPLER_DEFAULT_FLAGS : _flags) ; if (invalidHandle != _sampler.idx) { uint32_t stage = _stage; setUniform(_sampler, &stage); } } void setTexture(uint8_t _stage, UniformHandle _sampler, RenderTargetHandle _handle, bool _depth, uint32_t _flags) { m_flags |= BGFX_STATE_TEX0<<_stage; Sampler& sampler = m_state.m_sampler[_stage]; sampler.m_idx = _handle.idx; sampler.m_flags = 0 | (_depth ? BGFX_SAMPLER_RENDERTARGET_DEPTH : BGFX_SAMPLER_RENDERTARGET_COLOR) | ( (_flags&BGFX_SAMPLER_TYPE_MASK) ? BGFX_SAMPLER_DEFAULT_FLAGS : _flags) ; if (invalidHandle != _sampler.idx) { uint32_t stage = _stage; setUniform(_sampler, &stage); } } void discard() { m_discard = false; m_state.clear(); m_flags = BGFX_STATE_NONE; } void submit(uint8_t _id, int32_t _depth); void submitMask(uint32_t _viewMask, int32_t _depth); void sort(); bool checkAvailTransientIndexBuffer(uint32_t _num) { uint32_t offset = m_iboffset; uint32_t iboffset = offset + _num*sizeof(uint16_t); iboffset = bx::uint32_min(iboffset, BGFX_CONFIG_TRANSIENT_INDEX_BUFFER_SIZE); uint32_t num = (iboffset-offset)/sizeof(uint16_t); return num == _num; } uint32_t allocTransientIndexBuffer(uint32_t& _num) { uint32_t offset = m_iboffset; m_iboffset = offset + _num*sizeof(uint16_t); m_iboffset = bx::uint32_min(m_iboffset, BGFX_CONFIG_TRANSIENT_INDEX_BUFFER_SIZE); _num = (m_iboffset-offset)/sizeof(uint16_t); return offset; } bool checkAvailTransientVertexBuffer(uint32_t _num, uint16_t _stride) { uint32_t offset = strideAlign(m_vboffset, _stride); uint32_t vboffset = offset + _num * _stride; vboffset = bx::uint32_min(vboffset, BGFX_CONFIG_TRANSIENT_VERTEX_BUFFER_SIZE); uint32_t num = (vboffset-offset)/_stride; return num == _num; } uint32_t allocTransientVertexBuffer(uint32_t& _num, uint16_t _stride) { uint32_t offset = strideAlign(m_vboffset, _stride); m_vboffset = offset + _num * _stride; m_vboffset = bx::uint32_min(m_vboffset, BGFX_CONFIG_TRANSIENT_VERTEX_BUFFER_SIZE); _num = (m_vboffset-offset)/_stride; return offset; } void writeConstant(UniformType::Enum _type, UniformHandle _handle, const void* _value, uint16_t _num) { m_constantBuffer->writeUniform(_type, _handle.idx, _value, _num); } void free(IndexBufferHandle _handle) { m_freeIndexBufferHandle[m_numFreeIndexBufferHandles] = _handle; ++m_numFreeIndexBufferHandles; } void free(VertexDeclHandle _handle) { m_freeVertexDeclHandle[m_numFreeVertexDeclHandles] = _handle; ++m_numFreeVertexDeclHandles; } void free(VertexBufferHandle _handle) { m_freeVertexBufferHandle[m_numFreeVertexBufferHandles] = _handle; ++m_numFreeVertexBufferHandles; } void free(VertexShaderHandle _handle) { m_freeVertexShaderHandle[m_numFreeVertexShaderHandles] = _handle; ++m_numFreeVertexShaderHandles; } void free(FragmentShaderHandle _handle) { m_freeFragmentShaderHandle[m_numFreeFragmentShaderHandles] = _handle; ++m_numFreeFragmentShaderHandles; } void free(ProgramHandle _handle) { m_freeProgramHandle[m_numFreeProgramHandles] = _handle; ++m_numFreeProgramHandles; } void free(TextureHandle _handle) { m_freeTextureHandle[m_numFreeTextureHandles] = _handle; ++m_numFreeTextureHandles; } void free(RenderTargetHandle _handle) { m_freeRenderTargetHandle[m_numFreeRenderTargetHandles] = _handle; ++m_numFreeRenderTargetHandles; } void free(UniformHandle _handle) { m_freeUniformHandle[m_numFreeUniformHandles] = _handle; ++m_numFreeUniformHandles; } void resetFreeHandles() { m_numFreeIndexBufferHandles = 0; m_numFreeVertexDeclHandles = 0; m_numFreeVertexBufferHandles = 0; m_numFreeVertexShaderHandles = 0; m_numFreeFragmentShaderHandles = 0; m_numFreeFragmentShaderHandles = 0; m_numFreeProgramHandles = 0; m_numFreeTextureHandles = 0; m_numFreeRenderTargetHandles = 0; m_numFreeUniformHandles = 0; } SortKey m_key; RenderTargetHandle m_rt[BGFX_CONFIG_MAX_VIEWS]; Clear m_clear[BGFX_CONFIG_MAX_VIEWS]; Rect m_rect[BGFX_CONFIG_MAX_VIEWS]; Rect m_scissor[BGFX_CONFIG_MAX_VIEWS]; Matrix4 m_view[BGFX_CONFIG_MAX_VIEWS]; Matrix4 m_proj[BGFX_CONFIG_MAX_VIEWS]; uint8_t m_other[BGFX_CONFIG_MAX_VIEWS]; uint64_t m_sortKeys[BGFX_CONFIG_MAX_DRAW_CALLS]; uint16_t m_sortValues[BGFX_CONFIG_MAX_DRAW_CALLS]; RenderState m_renderState[BGFX_CONFIG_MAX_DRAW_CALLS]; RenderState m_state; uint64_t m_flags; ConstantBuffer* m_constantBuffer; uint16_t m_num; uint16_t m_numRenderStates; uint16_t m_numDropped; MatrixCache m_matrixCache; RectCache m_rectCache; uint32_t m_iboffset; uint32_t m_vboffset; TransientIndexBuffer* m_transientIb; TransientVertexBuffer* m_transientVb; Resolution m_resolution; uint32_t m_debug; CommandBuffer m_cmdPre; CommandBuffer m_cmdPost; uint16_t m_numFreeIndexBufferHandles; uint16_t m_numFreeVertexDeclHandles; uint16_t m_numFreeVertexBufferHandles; uint16_t m_numFreeVertexShaderHandles; uint16_t m_numFreeFragmentShaderHandles; uint16_t m_numFreeProgramHandles; uint16_t m_numFreeTextureHandles; uint16_t m_numFreeRenderTargetHandles; uint16_t m_numFreeUniformHandles; IndexBufferHandle m_freeIndexBufferHandle[BGFX_CONFIG_MAX_INDEX_BUFFERS]; VertexDeclHandle m_freeVertexDeclHandle[BGFX_CONFIG_MAX_VERTEX_DECLS]; VertexBufferHandle m_freeVertexBufferHandle[BGFX_CONFIG_MAX_VERTEX_BUFFERS]; VertexShaderHandle m_freeVertexShaderHandle[BGFX_CONFIG_MAX_VERTEX_SHADERS]; FragmentShaderHandle m_freeFragmentShaderHandle[BGFX_CONFIG_MAX_FRAGMENT_SHADERS]; ProgramHandle m_freeProgramHandle[BGFX_CONFIG_MAX_PROGRAMS]; TextureHandle m_freeTextureHandle[BGFX_CONFIG_MAX_TEXTURES]; RenderTargetHandle m_freeRenderTargetHandle[BGFX_CONFIG_MAX_RENDER_TARGETS]; UniformHandle m_freeUniformHandle[BGFX_CONFIG_MAX_UNIFORMS]; TextVideoMem* m_textVideoMem; int64_t m_waitSubmit; int64_t m_waitRender; bool m_discard; }; struct VertexDeclRef { VertexDeclRef() { } void init() { memset(m_vertexDeclRef, 0, sizeof(m_vertexDeclRef) ); memset(m_vertexBufferRef, 0xff, sizeof(m_vertexBufferRef) ); } template void shutdown(bx::HandleAllocT& _handleAlloc) { for (VertexDeclMap::iterator it = m_vertexDeclMap.begin(), itEnd = m_vertexDeclMap.end(); it != itEnd; ++it) { _handleAlloc.free(it->second.idx); } m_vertexDeclMap.clear(); } VertexDeclHandle find(uint32_t _hash) { VertexDeclMap::const_iterator it = m_vertexDeclMap.find(_hash); if (it != m_vertexDeclMap.end() ) { return it->second; } VertexDeclHandle result = BGFX_INVALID_HANDLE; return result; } void add(VertexBufferHandle _handle, VertexDeclHandle _declHandle, uint32_t _hash) { m_vertexBufferRef[_handle.idx] = _declHandle; m_vertexDeclRef[_declHandle.idx]++; m_vertexDeclMap.insert(stl::make_pair(_hash, _declHandle) ); } VertexDeclHandle release(VertexBufferHandle _handle) { VertexDeclHandle declHandle = m_vertexBufferRef[_handle.idx]; m_vertexDeclRef[declHandle.idx]--; if (0 != m_vertexDeclRef[declHandle.idx]) { VertexDeclHandle invalid = BGFX_INVALID_HANDLE; return invalid; } return declHandle; } typedef stl::unordered_map VertexDeclMap; VertexDeclMap m_vertexDeclMap; uint16_t m_vertexDeclRef[BGFX_CONFIG_MAX_VERTEX_DECLS]; VertexDeclHandle m_vertexBufferRef[BGFX_CONFIG_MAX_VERTEX_BUFFERS]; }; // First-fit non-local allocator. class NonLocalAllocator { public: static const uint64_t invalidBlock = UINT64_MAX; NonLocalAllocator() { } ~NonLocalAllocator() { } void reset() { m_free.clear(); m_used.clear(); } void add(uint64_t _ptr, uint32_t _size) { m_free.push_back(Free(_ptr, _size) ); } uint64_t alloc(uint32_t _size) { for (FreeList::iterator it = m_free.begin(), itEnd = m_free.end(); it != itEnd; ++it) { if (it->m_size >= _size) { uint64_t ptr = it->m_ptr; m_used.insert(stl::make_pair(ptr, _size) ); if (it->m_size != _size) { it->m_size -= _size; it->m_ptr += _size; } else { m_free.erase(it); } return ptr; } } // there is no block large enough. return invalidBlock; } void free(uint64_t _block) { UsedList::iterator it = m_used.find(_block); if (it != m_used.end() ) { m_free.push_front(Free(it->first, it->second) ); m_used.erase(it); } } void compact() { m_free.sort(); for (FreeList::iterator it = m_free.begin(), next = it, itEnd = m_free.end(); next != itEnd;) { if ( (it->m_ptr + it->m_size) == next->m_ptr) { it->m_size += next->m_size; next = m_free.erase(next); } else { it = next; ++next; } } } private: struct Free { Free(uint64_t _ptr, uint32_t _size) : m_ptr(_ptr) , m_size(_size) { } bool operator<(const Free& rhs) const { return m_ptr < rhs.m_ptr; } uint64_t m_ptr; uint32_t m_size; }; typedef std::list FreeList; FreeList m_free; typedef stl::unordered_map UsedList; UsedList m_used; }; struct Context { Context() : m_render(&m_frame[0]) , m_submit(&m_frame[1]) , m_numFreeDynamicIndexBufferHandles(0) , m_numFreeDynamicVertexBufferHandles(0) , m_frames(0) , m_debug(BGFX_DEBUG_NONE) , m_rendererInitialized(false) , m_exit(false) { } ~Context() { } static int32_t renderThread(void* _userData) { BX_TRACE("render thread start"); Context* ctx = (Context*)_userData; while (!ctx->renderFrame() ); BX_TRACE("render thread exit"); return EXIT_SUCCESS; } // game thread void init(bool _createRenderThread); void shutdown(); void frame() { // wait for render thread to finish renderSemWait(); frameNoRenderWait(); } void frameNoRenderWait() { swap(); // release render thread gameSemPost(); #if !BGFX_CONFIG_MULTITHREADED renderFrame(); #endif // BGFX_CONFIG_MULTITHREADED } CommandBuffer& getCommandBuffer(CommandBuffer::Enum _cmd) { CommandBuffer& cmdbuf = _cmd < CommandBuffer::End ? m_submit->m_cmdPre : m_submit->m_cmdPost; uint8_t cmd = (uint8_t)_cmd; cmdbuf.write(cmd); return cmdbuf; } void reset(uint32_t _width, uint32_t _height, uint32_t _flags) { BX_WARN(0 != _width && 0 != _height, "Frame buffer resolution width or height cannot be 0 (width %d, height %d).", _width, _height); m_resolution.m_width = bx::uint32_max(1, _width); m_resolution.m_height = bx::uint32_max(1, _height); m_resolution.m_flags = _flags; memset(m_rt, 0xff, sizeof(m_rt) ); } void dbgTextClear(uint8_t _attr, bool _small) { m_submit->m_textVideoMem->resize(_small, (uint16_t)m_resolution.m_width, (uint16_t)m_resolution.m_height); m_submit->m_textVideoMem->clear(_attr); } void dbgTextPrintfVargs(uint16_t _x, uint16_t _y, uint8_t _attr, const char* _format, va_list _argList) { m_submit->m_textVideoMem->printfVargs(_x, _y, _attr, _format, _argList); } IndexBufferHandle createIndexBuffer(const Memory* _mem) { IndexBufferHandle handle = { m_indexBufferHandle.alloc() }; BX_WARN(invalidHandle != handle.idx, "Failed to allocate index buffer handle."); if (invalidHandle != handle.idx) { CommandBuffer& cmdbuf = getCommandBuffer(CommandBuffer::CreateIndexBuffer); cmdbuf.write(handle); cmdbuf.write(_mem); } return handle; } void destroyIndexBuffer(IndexBufferHandle _handle) { CommandBuffer& cmdbuf = getCommandBuffer(CommandBuffer::DestroyIndexBuffer); cmdbuf.write(_handle); m_submit->free(_handle); } VertexDeclHandle findVertexDecl(const VertexDecl& _decl) { VertexDeclHandle declHandle = m_declRef.find(_decl.m_hash); if (invalidHandle == declHandle.idx) { VertexDeclHandle temp = { m_vertexDeclHandle.alloc() }; declHandle = temp; CommandBuffer& cmdbuf = getCommandBuffer(CommandBuffer::CreateVertexDecl); cmdbuf.write(declHandle); cmdbuf.write(_decl); } return declHandle; } VertexBufferHandle createVertexBuffer(const Memory* _mem, const VertexDecl& _decl) { VertexBufferHandle handle = { m_vertexBufferHandle.alloc() }; BX_WARN(invalidHandle != handle.idx, "Failed to allocate vertex buffer handle."); if (invalidHandle != handle.idx) { VertexDeclHandle declHandle = findVertexDecl(_decl); m_declRef.add(handle, declHandle, _decl.m_hash); CommandBuffer& cmdbuf = getCommandBuffer(CommandBuffer::CreateVertexBuffer); cmdbuf.write(handle); cmdbuf.write(_mem); cmdbuf.write(declHandle); } return handle; } void destroyVertexBuffer(VertexBufferHandle _handle) { VertexDeclHandle declHandle = m_declRef.release(_handle); if (invalidHandle != declHandle.idx) { CommandBuffer& cmdbuf = getCommandBuffer(CommandBuffer::DestroyVertexDecl); cmdbuf.write(declHandle); } CommandBuffer& cmdbuf = getCommandBuffer(CommandBuffer::DestroyVertexBuffer); cmdbuf.write(_handle); m_submit->free(_handle); } DynamicIndexBufferHandle createDynamicIndexBuffer(uint16_t _num) { DynamicIndexBufferHandle handle = BGFX_INVALID_HANDLE; uint32_t size = BX_ALIGN_16(uint32_t(_num*2) ); uint64_t ptr = m_dynamicIndexBufferAllocator.alloc(size); if (ptr == NonLocalAllocator::invalidBlock) { IndexBufferHandle indexBufferHandle = { m_indexBufferHandle.alloc() }; BX_WARN(invalidHandle != indexBufferHandle.idx, "Failed to allocate index buffer handle."); if (indexBufferHandle.idx == invalidHandle) { return handle; } CommandBuffer& cmdbuf = getCommandBuffer(CommandBuffer::CreateDynamicIndexBuffer); cmdbuf.write(indexBufferHandle); cmdbuf.write(BGFX_CONFIG_DYNAMIC_INDEX_BUFFER_SIZE); m_dynamicIndexBufferAllocator.add(uint64_t(indexBufferHandle.idx)<<32, BGFX_CONFIG_DYNAMIC_INDEX_BUFFER_SIZE); ptr = m_dynamicIndexBufferAllocator.alloc(size); } handle.idx = m_dynamicIndexBufferHandle.alloc(); BX_WARN(invalidHandle != handle.idx, "Failed to allocate dynamic index buffer handle."); if (handle.idx == invalidHandle) { return handle; } DynamicIndexBuffer& dib = m_dynamicIndexBuffers[handle.idx]; dib.m_handle.idx = uint16_t(ptr>>32); dib.m_offset = uint32_t(ptr); dib.m_size = size; return handle; } DynamicIndexBufferHandle createDynamicIndexBuffer(const Memory* _mem) { DynamicIndexBufferHandle handle = createDynamicIndexBuffer(_mem->size/2); if (invalidHandle != handle.idx) { updateDynamicIndexBuffer(handle, _mem); } return handle; } void updateDynamicIndexBuffer(DynamicIndexBufferHandle _handle, const Memory* _mem) { DynamicIndexBuffer& dib = m_dynamicIndexBuffers[_handle.idx]; CommandBuffer& cmdbuf = getCommandBuffer(CommandBuffer::UpdateDynamicIndexBuffer); cmdbuf.write(dib.m_handle); cmdbuf.write(dib.m_offset); cmdbuf.write(dib.m_size); cmdbuf.write(_mem); } void destroyDynamicIndexBuffer(DynamicIndexBufferHandle _handle) { m_freeDynamicIndexBufferHandle[m_numFreeDynamicIndexBufferHandles++] = _handle; } void destroyDynamicIndexBufferInternal(DynamicIndexBufferHandle _handle) { DynamicIndexBuffer& dib = m_dynamicIndexBuffers[_handle.idx]; m_dynamicIndexBufferAllocator.free(uint64_t(dib.m_handle.idx)<<32 | dib.m_offset); m_dynamicIndexBufferHandle.free(_handle.idx); } DynamicVertexBufferHandle createDynamicVertexBuffer(uint16_t _num, const VertexDecl& _decl) { DynamicVertexBufferHandle handle = BGFX_INVALID_HANDLE; uint32_t size = strideAlign16(_num*_decl.m_stride, _decl.m_stride); uint64_t ptr = m_dynamicVertexBufferAllocator.alloc(size); if (ptr == NonLocalAllocator::invalidBlock) { VertexBufferHandle vertexBufferHandle = { m_vertexBufferHandle.alloc() }; BX_WARN(invalidHandle != handle.idx, "Failed to allocate dynamic vertex buffer handle."); if (vertexBufferHandle.idx == invalidHandle) { return handle; } CommandBuffer& cmdbuf = getCommandBuffer(CommandBuffer::CreateDynamicVertexBuffer); cmdbuf.write(vertexBufferHandle); cmdbuf.write(BGFX_CONFIG_DYNAMIC_VERTEX_BUFFER_SIZE); m_dynamicVertexBufferAllocator.add(uint64_t(vertexBufferHandle.idx)<<32, BGFX_CONFIG_DYNAMIC_VERTEX_BUFFER_SIZE); ptr = m_dynamicVertexBufferAllocator.alloc(size); } VertexDeclHandle declHandle = findVertexDecl(_decl); handle.idx = m_dynamicVertexBufferHandle.alloc(); DynamicVertexBuffer& dvb = m_dynamicVertexBuffers[handle.idx]; dvb.m_handle.idx = uint16_t(ptr>>32); dvb.m_offset = uint32_t(ptr); dvb.m_size = size; dvb.m_startVertex = dvb.m_offset/_decl.m_stride; dvb.m_numVertices = dvb.m_size/_decl.m_stride; dvb.m_decl = declHandle; m_declRef.add(dvb.m_handle, declHandle, _decl.m_hash); return handle; } DynamicVertexBufferHandle createDynamicVertexBuffer(const Memory* _mem, const VertexDecl& _decl) { DynamicVertexBufferHandle handle = createDynamicVertexBuffer(_mem->size/_decl.m_stride, _decl); if (invalidHandle != handle.idx) { updateDynamicVertexBuffer(handle, _mem); } return handle; } void updateDynamicVertexBuffer(DynamicVertexBufferHandle _handle, const Memory* _mem) { DynamicVertexBuffer& dvb = m_dynamicVertexBuffers[_handle.idx]; CommandBuffer& cmdbuf = getCommandBuffer(CommandBuffer::UpdateDynamicVertexBuffer); cmdbuf.write(dvb.m_handle); cmdbuf.write(dvb.m_offset); cmdbuf.write(dvb.m_size); cmdbuf.write(_mem); } void destroyDynamicVertexBuffer(DynamicVertexBufferHandle _handle) { m_freeDynamicVertexBufferHandle[m_numFreeDynamicVertexBufferHandles++] = _handle; } void destroyDynamicVertexBufferInternal(DynamicVertexBufferHandle _handle) { DynamicVertexBuffer& dvb = m_dynamicVertexBuffers[_handle.idx]; VertexDeclHandle declHandle = m_declRef.release(dvb.m_handle); if (invalidHandle != declHandle.idx) { CommandBuffer& cmdbuf = getCommandBuffer(CommandBuffer::DestroyVertexDecl); cmdbuf.write(declHandle); } m_dynamicVertexBufferAllocator.free(uint64_t(dvb.m_handle.idx)<<32 | dvb.m_offset); m_dynamicVertexBufferHandle.free(_handle.idx); } TransientIndexBuffer* createTransientIndexBuffer(uint32_t _size) { TransientIndexBuffer* ib = NULL; IndexBufferHandle handle = { m_indexBufferHandle.alloc() }; BX_WARN(invalidHandle != handle.idx, "Failed to allocate transient index buffer handle."); if (invalidHandle != handle.idx) { CommandBuffer& cmdbuf = getCommandBuffer(CommandBuffer::CreateDynamicIndexBuffer); cmdbuf.write(handle); cmdbuf.write(_size); ib = (TransientIndexBuffer*)BX_ALLOC(g_allocator, sizeof(TransientIndexBuffer)+_size); ib->data = (uint8_t*)&ib[1]; ib->size = _size; ib->handle = handle; } return ib; } void destroyTransientIndexBuffer(TransientIndexBuffer* _ib) { CommandBuffer& cmdbuf = getCommandBuffer(CommandBuffer::DestroyDynamicIndexBuffer); cmdbuf.write(_ib->handle); m_submit->free(_ib->handle); BX_FREE(g_allocator, const_cast(_ib) ); } void allocTransientIndexBuffer(TransientIndexBuffer* _tib, uint32_t _num) { uint32_t offset = m_submit->allocTransientIndexBuffer(_num); TransientIndexBuffer& dib = *m_submit->m_transientIb; _tib->data = &dib.data[offset]; _tib->size = _num * sizeof(uint16_t); _tib->handle = dib.handle; _tib->startIndex = offset/sizeof(uint16_t); } TransientVertexBuffer* createTransientVertexBuffer(uint32_t _size, const VertexDecl* _decl = NULL) { TransientVertexBuffer* vb = NULL; VertexBufferHandle handle = { m_vertexBufferHandle.alloc() }; BX_WARN(invalidHandle != handle.idx, "Failed to allocate transient vertex buffer handle."); if (invalidHandle != handle.idx) { uint16_t stride = 0; VertexDeclHandle declHandle = BGFX_INVALID_HANDLE; if (NULL != _decl) { declHandle = findVertexDecl(*_decl); m_declRef.add(handle, declHandle, _decl->m_hash); stride = _decl->m_stride; } CommandBuffer& cmdbuf = getCommandBuffer(CommandBuffer::CreateDynamicVertexBuffer); cmdbuf.write(handle); cmdbuf.write(_size); vb = (TransientVertexBuffer*)BX_ALLOC(g_allocator, sizeof(TransientVertexBuffer)+_size); vb->data = (uint8_t*)&vb[1]; vb->size = _size; vb->startVertex = 0; vb->stride = stride; vb->handle = handle; vb->decl = declHandle; } return vb; } void destroyTransientVertexBuffer(TransientVertexBuffer* _vb) { CommandBuffer& cmdbuf = getCommandBuffer(CommandBuffer::DestroyDynamicVertexBuffer); cmdbuf.write(_vb->handle); m_submit->free(_vb->handle); BX_FREE(g_allocator, const_cast(_vb) ); } void allocTransientVertexBuffer(TransientVertexBuffer* _tvb, uint32_t _num, const VertexDecl& _decl) { VertexDeclHandle declHandle = m_declRef.find(_decl.m_hash); TransientVertexBuffer& dvb = *m_submit->m_transientVb; if (invalidHandle == declHandle.idx) { VertexDeclHandle temp = { m_vertexDeclHandle.alloc() }; declHandle = temp; CommandBuffer& cmdbuf = getCommandBuffer(CommandBuffer::CreateVertexDecl); cmdbuf.write(declHandle); cmdbuf.write(_decl); m_declRef.add(dvb.handle, declHandle, _decl.m_hash); } uint32_t offset = m_submit->allocTransientVertexBuffer(_num, _decl.m_stride); _tvb->data = &dvb.data[offset]; _tvb->size = _num * _decl.m_stride; _tvb->startVertex = offset/_decl.m_stride; _tvb->stride = _decl.m_stride; _tvb->handle = dvb.handle; _tvb->decl = declHandle; } const InstanceDataBuffer* allocInstanceDataBuffer(uint32_t _num, uint16_t _stride) { uint16_t stride = BX_ALIGN_16(_stride); uint32_t offset = m_submit->allocTransientVertexBuffer(_num, stride); TransientVertexBuffer& dvb = *m_submit->m_transientVb; InstanceDataBuffer* idb = (InstanceDataBuffer*)BX_ALLOC(g_allocator, sizeof(InstanceDataBuffer) ); idb->data = &dvb.data[offset]; idb->size = _num * stride; idb->offset = offset; idb->stride = stride; idb->num = _num; idb->handle = dvb.handle; return idb; } VertexShaderHandle createVertexShader(const Memory* _mem) { bx::MemoryReader reader(_mem->data, _mem->size); uint32_t magic; bx::read(&reader, magic); if (BGFX_CHUNK_MAGIC_VSH != magic) { BX_WARN(false, "Invalid vertex shader signature! 0x%08x", magic); VertexShaderHandle invalid = BGFX_INVALID_HANDLE; return invalid; } VertexShaderHandle handle = { m_vertexShaderHandle.alloc() }; BX_WARN(invalidHandle != handle.idx, "Failed to allocate vertex shader handle."); if (invalidHandle != handle.idx) { VertexShaderRef& vsr = m_vertexShaderRef[handle.idx]; vsr.m_refCount = 1; bx::read(&reader, vsr.m_outputHash); CommandBuffer& cmdbuf = getCommandBuffer(CommandBuffer::CreateVertexShader); cmdbuf.write(handle); cmdbuf.write(_mem); } return handle; } void destroyVertexShader(VertexShaderHandle _handle) { if (invalidHandle == _handle.idx) { BX_WARN(false, "Passing invalid vertex shader handle to bgfx::destroyVertexShader"); return; } vertexShaderDecRef(_handle); } void vertexShaderIncRef(VertexShaderHandle _handle) { VertexShaderRef& vsr = m_vertexShaderRef[_handle.idx]; ++vsr.m_refCount; } void vertexShaderDecRef(VertexShaderHandle _handle) { VertexShaderRef& vsr = m_vertexShaderRef[_handle.idx]; int32_t refs = --vsr.m_refCount; if (0 == refs) { CommandBuffer& cmdbuf = getCommandBuffer(CommandBuffer::DestroyVertexShader); cmdbuf.write(_handle); m_submit->free(_handle); } } FragmentShaderHandle createFragmentShader(const Memory* _mem) { bx::MemoryReader reader(_mem->data, _mem->size); uint32_t magic; bx::read(&reader, magic); if (BGFX_CHUNK_MAGIC_FSH != magic) { BX_WARN(false, "Invalid fragment shader signature! 0x%08x", magic); FragmentShaderHandle invalid = BGFX_INVALID_HANDLE; return invalid; } FragmentShaderHandle handle = { m_fragmentShaderHandle.alloc() }; BX_WARN(invalidHandle != handle.idx, "Failed to allocate fragment shader handle."); if (invalidHandle != handle.idx) { FragmentShaderRef& fsr = m_fragmentShaderRef[handle.idx]; fsr.m_refCount = 1; bx::read(&reader, fsr.m_inputHash); CommandBuffer& cmdbuf = getCommandBuffer(CommandBuffer::CreateFragmentShader); cmdbuf.write(handle); cmdbuf.write(_mem); } return handle; } void destroyFragmentShader(FragmentShaderHandle _handle) { if (invalidHandle == _handle.idx) { BX_WARN(false, "Passing invalid fragment shader handle to bgfx::destroyFragmentShader"); return; } fragmentShaderDecRef(_handle); } void fragmentShaderIncRef(FragmentShaderHandle _handle) { FragmentShaderRef& fsr = m_fragmentShaderRef[_handle.idx]; ++fsr.m_refCount; } void fragmentShaderDecRef(FragmentShaderHandle _handle) { FragmentShaderRef& fsr = m_fragmentShaderRef[_handle.idx]; int32_t refs = --fsr.m_refCount; if (0 == refs) { CommandBuffer& cmdbuf = getCommandBuffer(CommandBuffer::DestroyFragmentShader); cmdbuf.write(_handle); m_submit->free(_handle); } } ProgramHandle createProgram(VertexShaderHandle _vsh, FragmentShaderHandle _fsh) { if (invalidHandle == _vsh.idx || invalidHandle == _fsh.idx) { BX_WARN(false, "Vertex/fragment shader is invalid (vsh %d, fsh %d).", _vsh.idx, _fsh.idx); ProgramHandle invalid = BGFX_INVALID_HANDLE; return invalid; } const VertexShaderRef& vsr = m_vertexShaderRef[_vsh.idx]; const FragmentShaderRef& fsr = m_fragmentShaderRef[_fsh.idx]; if (vsr.m_outputHash != fsr.m_inputHash) { BX_WARN(vsr.m_outputHash == fsr.m_inputHash, "Vertex shader output doesn't match fragment shader input."); ProgramHandle invalid = BGFX_INVALID_HANDLE; return invalid; } ProgramHandle handle; handle.idx = m_programHandle.alloc(); BX_WARN(invalidHandle != handle.idx, "Failed to allocate program handle."); if (invalidHandle != handle.idx) { vertexShaderIncRef(_vsh); fragmentShaderIncRef(_fsh); m_programRef[handle.idx].m_vsh = _vsh; m_programRef[handle.idx].m_fsh = _fsh; CommandBuffer& cmdbuf = getCommandBuffer(CommandBuffer::CreateProgram); cmdbuf.write(handle); cmdbuf.write(_vsh); cmdbuf.write(_fsh); } return handle; } void destroyProgram(ProgramHandle _handle) { CommandBuffer& cmdbuf = getCommandBuffer(CommandBuffer::DestroyProgram); cmdbuf.write(_handle); m_submit->free(_handle); vertexShaderDecRef(m_programRef[_handle.idx].m_vsh); fragmentShaderDecRef(m_programRef[_handle.idx].m_fsh); } TextureHandle createTexture(const Memory* _mem, uint32_t _flags, TextureInfo* _info = NULL) { if (NULL != _info) { ImageContainer imageContainer; if (imageParse(imageContainer, _mem->data, _mem->size) ) { calcTextureSize(*_info , (uint16_t)imageContainer.m_width , (uint16_t)imageContainer.m_height , (uint16_t)imageContainer.m_depth , imageContainer.m_numMips , TextureFormat::Enum(imageContainer.m_format) ); } else { _info->format = TextureFormat::Unknown; _info->storageSize = 0; _info->width = 0; _info->height = 0; _info->depth = 0; _info->numMips = 0; _info->bitsPerPixel = 0; } } TextureHandle handle = { m_textureHandle.alloc() }; BX_WARN(invalidHandle != handle.idx, "Failed to allocate texture handle."); if (invalidHandle != handle.idx) { CommandBuffer& cmdbuf = getCommandBuffer(CommandBuffer::CreateTexture); cmdbuf.write(handle); cmdbuf.write(_mem); cmdbuf.write(_flags); } return handle; } void destroyTexture(TextureHandle _handle) { CommandBuffer& cmdbuf = getCommandBuffer(CommandBuffer::DestroyTexture); cmdbuf.write(_handle); m_submit->free(_handle); } void updateTexture(TextureHandle _handle, uint8_t _side, uint8_t _mip, uint16_t _x, uint16_t _y, uint16_t _z, uint16_t _width, uint16_t _height, uint16_t _depth, const Memory* _mem) { CommandBuffer& cmdbuf = getCommandBuffer(CommandBuffer::UpdateTexture); cmdbuf.write(_handle); cmdbuf.write(_side); cmdbuf.write(_mip); Rect rect; rect.m_x = _x; rect.m_y = _y; rect.m_width = _width; rect.m_height = _height; cmdbuf.write(rect); cmdbuf.write(_z); cmdbuf.write(_depth); cmdbuf.write(_mem); } RenderTargetHandle createRenderTarget(uint16_t _width, uint16_t _height, uint32_t _flags, uint32_t _textureFlags) { RenderTargetHandle handle = { m_renderTargetHandle.alloc() }; BX_WARN(invalidHandle != handle.idx, "Failed to allocate render target handle."); if (invalidHandle != handle.idx) { CommandBuffer& cmdbuf = getCommandBuffer(CommandBuffer::CreateRenderTarget); cmdbuf.write(handle); cmdbuf.write(_width); cmdbuf.write(_height); cmdbuf.write(_flags); cmdbuf.write(_textureFlags); } return handle; } void destroyRenderTarget(RenderTargetHandle _handle) { CommandBuffer& cmdbuf = getCommandBuffer(CommandBuffer::DestroyRenderTarget); cmdbuf.write(_handle); m_submit->free(_handle); } UniformHandle createUniform(const char* _name, UniformType::Enum _type, uint16_t _num) { BX_WARN(PredefinedUniform::Count == nameToPredefinedUniformEnum(_name), "%s is predefined uniform name.", _name); if (PredefinedUniform::Count != nameToPredefinedUniformEnum(_name) ) { UniformHandle handle = BGFX_INVALID_HANDLE; return handle; } UniformHandle handle = { m_uniformHandle.alloc() }; BX_WARN(invalidHandle != handle.idx, "Failed to allocate uniform handle."); if (invalidHandle != handle.idx) { Uniform& uniform = m_uniform[handle.idx]; uniform.m_type = _type; uniform.m_num = _num; CommandBuffer& cmdbuf = getCommandBuffer(CommandBuffer::CreateUniform); cmdbuf.write(handle); cmdbuf.write(_type); cmdbuf.write(_num); uint8_t len = (uint8_t)strlen(_name)+1; cmdbuf.write(len); cmdbuf.write(_name, len); } return handle; } void destroyUniform(UniformHandle _handle) { CommandBuffer& cmdbuf = getCommandBuffer(CommandBuffer::DestroyUniform); cmdbuf.write(_handle); m_submit->free(_handle); } void saveScreenShot(const char* _filePath) { CommandBuffer& cmdbuf = getCommandBuffer(CommandBuffer::SaveScreenShot); uint16_t len = (uint16_t)strlen(_filePath)+1; cmdbuf.write(len); cmdbuf.write(_filePath, len); } void setUniform(UniformHandle _handle, const void* _value, uint16_t _num) { Uniform& uniform = m_uniform[_handle.idx]; BX_CHECK(uniform.m_num >= _num, "Truncated uniform update. %d (max: %d)", _num, uniform.m_num); m_submit->writeConstant(uniform.m_type, _handle, _value, bx::uint16_min(uniform.m_num, _num) ); } void setViewName(uint8_t _id, const char* _name) { CommandBuffer& cmdbuf = getCommandBuffer(CommandBuffer::UpdateViewName); cmdbuf.write(_id); uint16_t len = (uint16_t)strlen(_name)+1; cmdbuf.write(len); cmdbuf.write(_name, len); } void setViewRect(uint8_t _id, uint16_t _x, uint16_t _y, uint16_t _width, uint16_t _height) { Rect& rect = m_rect[_id]; rect.m_x = _x; rect.m_y = _y; rect.m_width = bx::uint16_max(_width, 1); rect.m_height = bx::uint16_max(_height, 1); } void setViewRectMask(uint32_t _viewMask, uint16_t _x, uint16_t _y, uint16_t _width, uint16_t _height) { for (uint32_t view = 0, viewMask = _viewMask, ntz = bx::uint32_cnttz(_viewMask); 0 != viewMask; viewMask >>= 1, view += 1, ntz = bx::uint32_cnttz(viewMask) ) { viewMask >>= ntz; view += ntz; setViewRect( (uint8_t)view, _x, _y, _width, _height); } } void setViewScissor(uint8_t _id, uint16_t _x, uint16_t _y, uint16_t _width, uint16_t _height) { Rect& scissor = m_scissor[_id]; scissor.m_x = _x; scissor.m_y = _y; scissor.m_width = _width; scissor.m_height = _height; } void setViewScissorMask(uint32_t _viewMask, uint16_t _x, uint16_t _y, uint16_t _width, uint16_t _height) { for (uint32_t view = 0, viewMask = _viewMask, ntz = bx::uint32_cnttz(_viewMask); 0 != viewMask; viewMask >>= 1, view += 1, ntz = bx::uint32_cnttz(viewMask) ) { viewMask >>= ntz; view += ntz; setViewScissor( (uint8_t)view, _x, _y, _width, _height); } } void setViewClear(uint8_t _id, uint8_t _flags, uint32_t _rgba, float _depth, uint8_t _stencil) { Clear& clear = m_clear[_id]; clear.m_flags = _flags; clear.m_rgba = _rgba; clear.m_depth = _depth; clear.m_stencil = _stencil; } void setViewClearMask(uint32_t _viewMask, uint8_t _flags, uint32_t _rgba, float _depth, uint8_t _stencil) { for (uint32_t view = 0, viewMask = _viewMask, ntz = bx::uint32_cnttz(_viewMask); 0 != viewMask; viewMask >>= 1, view += 1, ntz = bx::uint32_cnttz(viewMask) ) { viewMask >>= ntz; view += ntz; setViewClear( (uint8_t)view, _flags, _rgba, _depth, _stencil); } } void setViewSeq(uint8_t _id, bool _enabled) { m_seqMask[_id] = _enabled ? 0xffff : 0x0; } void setViewSeqMask(uint32_t _viewMask, bool _enabled) { uint16_t mask = _enabled ? 0xffff : 0x0; for (uint32_t view = 0, viewMask = _viewMask, ntz = bx::uint32_cnttz(_viewMask); 0 != viewMask; viewMask >>= 1, view += 1, ntz = bx::uint32_cnttz(viewMask) ) { viewMask >>= ntz; view += ntz; m_seqMask[view] = mask; } } void setViewRenderTarget(uint8_t _id, RenderTargetHandle _handle) { m_rt[_id] = _handle; } void setViewRenderTargetMask(uint32_t _viewMask, RenderTargetHandle _handle) { for (uint32_t view = 0, viewMask = _viewMask, ntz = bx::uint32_cnttz(_viewMask); 0 != viewMask; viewMask >>= 1, view += 1, ntz = bx::uint32_cnttz(viewMask) ) { viewMask >>= ntz; view += ntz; m_rt[view] = _handle; } } void setViewTransform(uint8_t _id, const void* _view, const void* _proj, uint8_t _other) { if (BGFX_CONFIG_MAX_VIEWS > _other) { m_other[_id] = _other; } else { m_other[_id] = _id; } if (NULL != _view) { memcpy(m_view[_id].val, _view, sizeof(Matrix4) ); } else { m_view[_id].setIdentity(); } if (NULL != _proj) { memcpy(m_proj[_id].val, _proj, sizeof(Matrix4) ); } else { m_proj[_id].setIdentity(); } } void setViewTransformMask(uint32_t _viewMask, const void* _view, const void* _proj, uint8_t _other) { for (uint32_t view = 0, viewMask = _viewMask, ntz = bx::uint32_cnttz(_viewMask); 0 != viewMask; viewMask >>= 1, view += 1, ntz = bx::uint32_cnttz(viewMask) ) { viewMask >>= ntz; view += ntz; setViewTransform( (uint8_t)view, _view, _proj, _other); } } void dumpViewStats() { #if 0 // BGFX_CONFIG_DEBUG for (uint8_t view = 0; view < BGFX_CONFIG_MAX_VIEWS; ++view) { if (0 < m_seq[view]) { BX_TRACE("%d: %d", view, m_seq[view]); } } #endif // BGFX_CONFIG_DEBUG } void freeDynamicBuffers() { for (uint16_t ii = 0, num = m_numFreeDynamicIndexBufferHandles; ii < num; ++ii) { destroyDynamicIndexBufferInternal(m_freeDynamicIndexBufferHandle[ii]); } m_numFreeDynamicIndexBufferHandles = 0; for (uint16_t ii = 0, num = m_numFreeDynamicVertexBufferHandles; ii < num; ++ii) { destroyDynamicVertexBufferInternal(m_freeDynamicVertexBufferHandle[ii]); } m_numFreeDynamicVertexBufferHandles = 0; } void freeAllHandles(Frame* _frame) { for (uint16_t ii = 0, num = _frame->m_numFreeIndexBufferHandles; ii < num; ++ii) { m_indexBufferHandle.free(_frame->m_freeIndexBufferHandle[ii].idx); } for (uint16_t ii = 0, num = _frame->m_numFreeVertexDeclHandles; ii < num; ++ii) { m_vertexDeclHandle.free(_frame->m_freeVertexDeclHandle[ii].idx); } for (uint16_t ii = 0, num = _frame->m_numFreeVertexBufferHandles; ii < num; ++ii) { m_vertexBufferHandle.free(_frame->m_freeVertexBufferHandle[ii].idx); } for (uint16_t ii = 0, num = _frame->m_numFreeVertexShaderHandles; ii < num; ++ii) { m_vertexShaderHandle.free(_frame->m_freeVertexShaderHandle[ii].idx); } for (uint16_t ii = 0, num = _frame->m_numFreeFragmentShaderHandles; ii < num; ++ii) { m_fragmentShaderHandle.free(_frame->m_freeFragmentShaderHandle[ii].idx); } for (uint16_t ii = 0, num = _frame->m_numFreeProgramHandles; ii < num; ++ii) { m_programHandle.free(_frame->m_freeProgramHandle[ii].idx); } for (uint16_t ii = 0, num = _frame->m_numFreeTextureHandles; ii < num; ++ii) { m_textureHandle.free(_frame->m_freeTextureHandle[ii].idx); } for (uint16_t ii = 0, num = _frame->m_numFreeRenderTargetHandles; ii < num; ++ii) { m_renderTargetHandle.free(_frame->m_freeRenderTargetHandle[ii].idx); } for (uint16_t ii = 0, num = _frame->m_numFreeUniformHandles; ii < num; ++ii) { m_uniformHandle.free(_frame->m_freeUniformHandle[ii].idx); } } void swap() { freeDynamicBuffers(); m_submit->m_resolution = m_resolution; m_submit->m_debug = m_debug; memcpy(m_submit->m_rt, m_rt, sizeof(m_rt) ); memcpy(m_submit->m_clear, m_clear, sizeof(m_clear) ); memcpy(m_submit->m_rect, m_rect, sizeof(m_rect) ); memcpy(m_submit->m_scissor, m_scissor, sizeof(m_scissor) ); memcpy(m_submit->m_view, m_view, sizeof(m_view) ); memcpy(m_submit->m_proj, m_proj, sizeof(m_proj) ); memcpy(m_submit->m_other, m_other, sizeof(m_other) ); m_submit->finish(); dumpViewStats(); freeAllHandles(m_render); memset(m_seq, 0, sizeof(m_seq) ); Frame* temp = m_render; m_render = m_submit; m_submit = temp; m_frames++; m_submit->reset(); m_submit->m_textVideoMem->resize(m_render->m_textVideoMem->m_small, m_resolution.m_width, m_resolution.m_height); } void flip(); // render thread bool renderFrame() { flip(); gameSemWait(); rendererExecCommands(m_render->m_cmdPre); if (m_rendererInitialized) { rendererSubmit(); } rendererExecCommands(m_render->m_cmdPost); renderSemPost(); return m_exit; } void rendererInit(); void rendererShutdown(); void rendererCreateIndexBuffer(IndexBufferHandle _handle, Memory* _mem); void rendererDestroyIndexBuffer(IndexBufferHandle _handle); void rendererCreateVertexBuffer(VertexBufferHandle _handle, Memory* _mem, VertexDeclHandle _declHandle); void rendererDestroyVertexBuffer(VertexBufferHandle _handle); void rendererCreateDynamicIndexBuffer(IndexBufferHandle _handle, uint32_t _size); void rendererUpdateDynamicIndexBuffer(IndexBufferHandle _handle, uint32_t _offset, uint32_t _size, Memory* _mem); void rendererDestroyDynamicIndexBuffer(IndexBufferHandle _handle); void rendererCreateDynamicVertexBuffer(VertexBufferHandle _handle, uint32_t _size); void rendererUpdateDynamicVertexBuffer(VertexBufferHandle _handle, uint32_t _offset, uint32_t _size, Memory* _mem); void rendererDestroyDynamicVertexBuffer(VertexBufferHandle _handle); void rendererCreateVertexDecl(VertexDeclHandle _handle, const VertexDecl& _decl); void rendererDestroyVertexDecl(VertexDeclHandle _handle); void rendererCreateVertexShader(VertexShaderHandle _handle, Memory* _mem); void rendererDestroyVertexShader(VertexShaderHandle _handle); void rendererCreateFragmentShader(FragmentShaderHandle _handle, Memory* _mem); void rendererDestroyFragmentShader(FragmentShaderHandle _handle); void rendererCreateProgram(ProgramHandle _handle, VertexShaderHandle _vsh, FragmentShaderHandle _fsh); void rendererDestroyProgram(FragmentShaderHandle _handle); void rendererCreateTexture(TextureHandle _handle, Memory* _mem, uint32_t _flags); void rendererUpdateTextureBegin(TextureHandle _handle, uint8_t _side, uint8_t _mip); void rendererUpdateTexture(TextureHandle _handle, uint8_t _side, uint8_t _mip, const Rect& _rect, uint16_t _z, uint16_t _depth, const Memory* _mem); void rendererUpdateTextureEnd(); void rendererDestroyTexture(TextureHandle _handle); void rendererCreateRenderTarget(RenderTargetHandle _handle, uint16_t _width, uint16_t _height, uint32_t _flags, uint32_t _textureFlags); void rendererDestroyRenderTarget(RenderTargetHandle _handle); void rendererCreateUniform(UniformHandle _handle, UniformType::Enum _type, uint16_t _num, const char* _name); void rendererDestroyUniform(UniformHandle _handle); void rendererSaveScreenShot(const char* _filePath); void rendererUpdateViewName(uint8_t _id, const char* _name); void rendererUpdateUniform(uint16_t _loc, const void* _data, uint32_t _size); void rendererSetMarker(const char* _marker, uint32_t _size); void rendererUpdateUniforms(ConstantBuffer* _constantBuffer, uint32_t _begin, uint32_t _end) { _constantBuffer->reset(_begin); while (_constantBuffer->getPos() < _end) { uint32_t opcode = _constantBuffer->read(); if (UniformType::End == opcode) { break; } UniformType::Enum type; uint16_t loc; uint16_t num; uint16_t copy; ConstantBuffer::decodeOpcode(opcode, type, loc, num, copy); uint32_t size = g_uniformTypeSize[type]*num; const char* data = _constantBuffer->read(size); if (UniformType::Count > type) { rendererUpdateUniform(loc, data, size); } else { rendererSetMarker(data, size); } } } void flushTextureUpdateBatch(CommandBuffer& _cmdbuf) { if (m_textureUpdateBatch.sort() ) { const uint32_t pos = _cmdbuf.m_pos; uint32_t currentKey = UINT32_MAX; for (uint32_t ii = 0, num = m_textureUpdateBatch.m_num; ii < num; ++ii) { _cmdbuf.m_pos = m_textureUpdateBatch.m_values[ii]; TextureHandle handle; _cmdbuf.read(handle); uint8_t side; _cmdbuf.read(side); uint8_t mip; _cmdbuf.read(mip); Rect rect; _cmdbuf.read(rect); uint16_t zz; _cmdbuf.read(zz); uint16_t depth; _cmdbuf.read(depth); Memory* mem; _cmdbuf.read(mem); uint32_t key = m_textureUpdateBatch.m_keys[ii]; if (key != currentKey) { if (currentKey != UINT32_MAX) { rendererUpdateTextureEnd(); } currentKey = key; rendererUpdateTextureBegin(handle, side, mip); } rendererUpdateTexture(handle, side, mip, rect, zz, depth, mem); release(mem); } if (currentKey != UINT32_MAX) { rendererUpdateTextureEnd(); } m_textureUpdateBatch.reset(); _cmdbuf.m_pos = pos; } } void rendererExecCommands(CommandBuffer& _cmdbuf) { _cmdbuf.reset(); bool end = false; do { uint8_t command; _cmdbuf.read(command); switch (command) { case CommandBuffer::RendererInit: { BX_CHECK(!m_rendererInitialized, "This shouldn't happen! Bad synchronization?"); rendererInit(); m_rendererInitialized = true; } break; case CommandBuffer::RendererShutdownBegin: { BX_CHECK(m_rendererInitialized, "This shouldn't happen! Bad synchronization?"); m_rendererInitialized = false; } break; case CommandBuffer::RendererShutdownEnd: { BX_CHECK(!m_rendererInitialized && !m_exit, "This shouldn't happen! Bad synchronization?"); rendererShutdown(); m_exit = true; } break; case CommandBuffer::CreateIndexBuffer: { IndexBufferHandle handle; _cmdbuf.read(handle); Memory* mem; _cmdbuf.read(mem); rendererCreateIndexBuffer(handle, mem); release(mem); } break; case CommandBuffer::DestroyIndexBuffer: { IndexBufferHandle handle; _cmdbuf.read(handle); rendererDestroyIndexBuffer(handle); } break; case CommandBuffer::CreateVertexDecl: { VertexDeclHandle handle; _cmdbuf.read(handle); VertexDecl decl; _cmdbuf.read(decl); rendererCreateVertexDecl(handle, decl); } break; case CommandBuffer::DestroyVertexDecl: { VertexDeclHandle handle; _cmdbuf.read(handle); rendererDestroyVertexDecl(handle); } break; case CommandBuffer::CreateVertexBuffer: { VertexBufferHandle handle; _cmdbuf.read(handle); Memory* mem; _cmdbuf.read(mem); VertexDeclHandle declHandle; _cmdbuf.read(declHandle); rendererCreateVertexBuffer(handle, mem, declHandle); release(mem); } break; case CommandBuffer::DestroyVertexBuffer: { VertexBufferHandle handle; _cmdbuf.read(handle); rendererDestroyVertexBuffer(handle); } break; case CommandBuffer::CreateDynamicIndexBuffer: { IndexBufferHandle handle; _cmdbuf.read(handle); uint32_t size; _cmdbuf.read(size); rendererCreateDynamicIndexBuffer(handle, size); } break; case CommandBuffer::UpdateDynamicIndexBuffer: { IndexBufferHandle handle; _cmdbuf.read(handle); uint32_t offset; _cmdbuf.read(offset); uint32_t size; _cmdbuf.read(size); Memory* mem; _cmdbuf.read(mem); rendererUpdateDynamicIndexBuffer(handle, offset, size, mem); release(mem); } break; case CommandBuffer::DestroyDynamicIndexBuffer: { IndexBufferHandle handle; _cmdbuf.read(handle); rendererDestroyDynamicIndexBuffer(handle); } break; case CommandBuffer::CreateDynamicVertexBuffer: { VertexBufferHandle handle; _cmdbuf.read(handle); uint32_t size; _cmdbuf.read(size); rendererCreateDynamicVertexBuffer(handle, size); } break; case CommandBuffer::UpdateDynamicVertexBuffer: { VertexBufferHandle handle; _cmdbuf.read(handle); uint32_t offset; _cmdbuf.read(offset); uint32_t size; _cmdbuf.read(size); Memory* mem; _cmdbuf.read(mem); rendererUpdateDynamicVertexBuffer(handle, offset, size, mem); release(mem); } break; case CommandBuffer::DestroyDynamicVertexBuffer: { VertexBufferHandle handle; _cmdbuf.read(handle); rendererDestroyDynamicVertexBuffer(handle); } break; case CommandBuffer::CreateVertexShader: { VertexShaderHandle handle; _cmdbuf.read(handle); Memory* mem; _cmdbuf.read(mem); rendererCreateVertexShader(handle, mem); release(mem); } break; case CommandBuffer::DestroyVertexShader: { VertexShaderHandle handle; _cmdbuf.read(handle); rendererDestroyVertexShader(handle); } break; case CommandBuffer::CreateFragmentShader: { FragmentShaderHandle handle; _cmdbuf.read(handle); Memory* mem; _cmdbuf.read(mem); rendererCreateFragmentShader(handle, mem); release(mem); } break; case CommandBuffer::DestroyFragmentShader: { FragmentShaderHandle handle; _cmdbuf.read(handle); rendererDestroyFragmentShader(handle); } break; case CommandBuffer::CreateProgram: { ProgramHandle handle; _cmdbuf.read(handle); VertexShaderHandle vsh; _cmdbuf.read(vsh); FragmentShaderHandle fsh; _cmdbuf.read(fsh); rendererCreateProgram(handle, vsh, fsh); } break; case CommandBuffer::DestroyProgram: { FragmentShaderHandle handle; _cmdbuf.read(handle); rendererDestroyProgram(handle); } break; case CommandBuffer::CreateTexture: { TextureHandle handle; _cmdbuf.read(handle); Memory* mem; _cmdbuf.read(mem); uint32_t flags; _cmdbuf.read(flags); rendererCreateTexture(handle, mem, flags); bx::MemoryReader reader(mem->data, mem->size); uint32_t magic; bx::read(&reader, magic); if (BGFX_CHUNK_MAGIC_TEX == magic) { TextureCreate tc; bx::read(&reader, tc); if (NULL != tc.m_mem) { release(tc.m_mem); } } release(mem); } break; case CommandBuffer::UpdateTexture: { if (m_textureUpdateBatch.isFull() ) { flushTextureUpdateBatch(_cmdbuf); } uint32_t value = _cmdbuf.m_pos; TextureHandle handle; _cmdbuf.read(handle); uint8_t side; _cmdbuf.read(side); uint8_t mip; _cmdbuf.read(mip); _cmdbuf.skip(sizeof(Rect)+sizeof(uint16_t)+sizeof(uint16_t)+sizeof(Memory*) ); uint32_t key = (handle.idx<<16) | (side<<8) | mip ; m_textureUpdateBatch.add(key, value); } break; case CommandBuffer::DestroyTexture: { TextureHandle handle; _cmdbuf.read(handle); rendererDestroyTexture(handle); } break; case CommandBuffer::CreateRenderTarget: { RenderTargetHandle handle; _cmdbuf.read(handle); uint16_t width; _cmdbuf.read(width); uint16_t height; _cmdbuf.read(height); uint32_t flags; _cmdbuf.read(flags); uint32_t textureFlags; _cmdbuf.read(textureFlags); rendererCreateRenderTarget(handle, width, height, flags, textureFlags); } break; case CommandBuffer::DestroyRenderTarget: { RenderTargetHandle handle; _cmdbuf.read(handle); rendererDestroyRenderTarget(handle); } break; case CommandBuffer::CreateUniform: { UniformHandle handle; _cmdbuf.read(handle); UniformType::Enum type; _cmdbuf.read(type); uint16_t num; _cmdbuf.read(num); uint8_t len; _cmdbuf.read(len); const char* name = (const char*)_cmdbuf.skip(len); rendererCreateUniform(handle, type, num, name); } break; case CommandBuffer::DestroyUniform: { UniformHandle handle; _cmdbuf.read(handle); rendererDestroyUniform(handle); } break; case CommandBuffer::SaveScreenShot: { uint16_t len; _cmdbuf.read(len); const char* filePath = (const char*)_cmdbuf.skip(len); rendererSaveScreenShot(filePath); } break; case CommandBuffer::UpdateViewName: { uint8_t id; _cmdbuf.read(id); uint16_t len; _cmdbuf.read(len); const char* name = (const char*)_cmdbuf.skip(len); rendererUpdateViewName(id, name); } break; case CommandBuffer::End: end = true; break; default: BX_CHECK(false, "WTF!"); break; } } while (!end); flushTextureUpdateBatch(_cmdbuf); } void rendererSubmit(); #if BGFX_CONFIG_MULTITHREADED void gameSemPost() { // BX_TRACE("game post"); m_gameSem.post(); } void gameSemWait() { // BX_TRACE("game wait"); int64_t start = bx::getHPCounter(); bool ok = m_gameSem.wait(); BX_CHECK(ok, "Semaphore wait failed."); BX_UNUSED(ok); m_render->m_waitSubmit = bx::getHPCounter()-start; } void renderSemPost() { // BX_TRACE("render post"); m_renderSem.post(); } void renderSemWait() { // BX_TRACE("render wait"); int64_t start = bx::getHPCounter(); bool ok = m_renderSem.wait(); BX_CHECK(ok, "Semaphore wait failed."); BX_UNUSED(ok); m_submit->m_waitRender = bx::getHPCounter() - start; } bx::Semaphore m_renderSem; bx::Semaphore m_gameSem; #else void gameSemPost() { } void gameSemWait() { } void renderSemPost() { } void renderSemWait() { } #endif // BGFX_CONFIG_MULTITHREADED bx::Thread m_thread; Frame m_frame[2]; Frame* m_render; Frame* m_submit; uint64_t m_tempKeys[BGFX_CONFIG_MAX_DRAW_CALLS]; uint16_t m_tempValues[BGFX_CONFIG_MAX_DRAW_CALLS]; DynamicIndexBuffer m_dynamicIndexBuffers[BGFX_CONFIG_MAX_DYNAMIC_INDEX_BUFFERS]; DynamicVertexBuffer m_dynamicVertexBuffers[BGFX_CONFIG_MAX_DYNAMIC_VERTEX_BUFFERS]; uint16_t m_numFreeDynamicIndexBufferHandles; uint16_t m_numFreeDynamicVertexBufferHandles; DynamicIndexBufferHandle m_freeDynamicIndexBufferHandle[BGFX_CONFIG_MAX_DYNAMIC_INDEX_BUFFERS]; DynamicVertexBufferHandle m_freeDynamicVertexBufferHandle[BGFX_CONFIG_MAX_DYNAMIC_VERTEX_BUFFERS]; NonLocalAllocator m_dynamicIndexBufferAllocator; bx::HandleAllocT m_dynamicIndexBufferHandle; NonLocalAllocator m_dynamicVertexBufferAllocator; bx::HandleAllocT m_dynamicVertexBufferHandle; bx::HandleAllocT m_indexBufferHandle; bx::HandleAllocT m_vertexDeclHandle; bx::HandleAllocT m_vertexBufferHandle; bx::HandleAllocT m_vertexShaderHandle; bx::HandleAllocT m_fragmentShaderHandle; bx::HandleAllocT m_programHandle; bx::HandleAllocT m_textureHandle; bx::HandleAllocT m_renderTargetHandle; bx::HandleAllocT m_uniformHandle; struct VertexShaderRef { int32_t m_refCount; uint32_t m_outputHash; } m_vertexShaderRef[BGFX_CONFIG_MAX_VERTEX_SHADERS]; struct FragmentShaderRef { int32_t m_refCount; uint32_t m_inputHash; } m_fragmentShaderRef[BGFX_CONFIG_MAX_FRAGMENT_SHADERS]; struct ProgramRef { VertexShaderHandle m_vsh; FragmentShaderHandle m_fsh; }; ProgramRef m_programRef[BGFX_CONFIG_MAX_PROGRAMS]; VertexDeclRef m_declRef; RenderTargetHandle m_rt[BGFX_CONFIG_MAX_VIEWS]; Clear m_clear[BGFX_CONFIG_MAX_VIEWS]; Rect m_rect[BGFX_CONFIG_MAX_VIEWS]; Rect m_scissor[BGFX_CONFIG_MAX_VIEWS]; Matrix4 m_view[BGFX_CONFIG_MAX_VIEWS]; Matrix4 m_proj[BGFX_CONFIG_MAX_VIEWS]; uint8_t m_other[BGFX_CONFIG_MAX_VIEWS]; uint16_t m_seq[BGFX_CONFIG_MAX_VIEWS]; uint16_t m_seqMask[BGFX_CONFIG_MAX_VIEWS]; Uniform m_uniform[BGFX_CONFIG_MAX_UNIFORMS]; Resolution m_resolution; uint32_t m_frames; uint32_t m_debug; TextVideoMemBlitter m_textVideoMemBlitter; ClearQuad m_clearQuad; bool m_rendererInitialized; bool m_exit; BX_CACHE_LINE_ALIGN_MARKER(); typedef UpdateBatchT<256> TextureUpdateBatch; TextureUpdateBatch m_textureUpdateBatch; }; } // namespace bgfx #endif // __BGFX_P_H__