// // Copyright 2014 Celtoys Ltd // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // /* @Contents: @DEPS: External Dependencies @TIMERS: Platform-specific timers @TLS: Thread-Local Storage @ATOMIC: Atomic Operations @VMBUFFER: Mirror Buffer using Virtual Memory for auto-wrap @NEW: New/Delete operators with error values for simplifying object create/destroy @THREADS: Threads @SAFEC: Safe C Library excerpts @OBJALLOC: Reusable Object Allocator @DYNBUF: Dynamic Buffer @SOCKETS: Sockets TCP/IP Wrapper @SHA1: SHA-1 Cryptographic Hash Function @BASE64: Base-64 encoder @MURMURHASH: Murmur-Hash 3 @WEBSOCKETS: WebSockets @MESSAGEQ: Multiple producer, single consumer message queue @NETWORK: Network Server @JSON: Basic, text-based JSON serialisation @SAMPLE: Base Sample Description (CPU by default) @SAMPLETREE: A tree of samples with their allocator @TSAMPLER: Per-Thread Sampler @REMOTERY: Remotery @CUDA: CUDA event sampling @D3D11: Direct3D 11 event sampling @OPENGL: OpenGL event sampling */ #define RMT_IMPL #include "Remotery.h" #ifdef RMT_PLATFORM_WINDOWS #pragma comment(lib, "ws2_32.lib") #endif #if RMT_ENABLED // Global settings static rmtSettings g_Settings; static rmtBool g_SettingsInitialized = RMT_FALSE; /* ------------------------------------------------------------------------------------------------------------------------ ------------------------------------------------------------------------------------------------------------------------ @DEPS: External Dependencies ------------------------------------------------------------------------------------------------------------------------ ------------------------------------------------------------------------------------------------------------------------ */ // // Required CRT dependencies // #if RMT_USE_TINYCRT #include #include #include #define CreateFileMapping CreateFileMappingA #else #ifdef RMT_PLATFORM_MACOS #include #include #include #include #else #include #endif #include #ifdef RMT_PLATFORM_WINDOWS #include #ifndef __MINGW32__ #include #endif #undef min #undef max #endif #ifdef RMT_PLATFORM_LINUX #include #endif #if defined(RMT_PLATFORM_POSIX) #include #include #include #include #include #include #include #include #include #endif #ifdef __MINGW32__ #include #endif #endif #define RMT_UNREFERENCED_PARAMETER(i) (void)(1 ? (void)0 : ((void)i)) #if RMT_USE_CUDA #include #endif rmtU8 minU8(rmtU8 a, rmtU8 b) { return a < b ? a : b; } rmtS64 minS64(rmtS64 a, rmtS64 b) { return a < b ? a : b; } rmtU8 maxU8(rmtU8 a, rmtU8 b) { return a > b ? a : b; } rmtS64 maxS64(rmtS64 a, rmtS64 b) { return a > b ? a : b; } // Memory management functions static void* rmtMalloc( rmtU32 size ) { return g_Settings.malloc( g_Settings.mm_context, size ); } static void* rmtRealloc( void* ptr, rmtU32 size) { return g_Settings.realloc( g_Settings.mm_context, ptr, size ); } static void rmtFree( void* ptr ) { g_Settings.free( g_Settings.mm_context, ptr ); } /* ------------------------------------------------------------------------------------------------------------------------ ------------------------------------------------------------------------------------------------------------------------ @TIMERS: Platform-specific timers ------------------------------------------------------------------------------------------------------------------------ ------------------------------------------------------------------------------------------------------------------------ */ // // Get millisecond timer value that has only one guarantee: multiple calls are consistently comparable. // On some platforms, even though this returns milliseconds, the timer may be far less accurate. // static rmtU32 msTimer_Get() { #ifdef RMT_PLATFORM_WINDOWS return (rmtU32)GetTickCount(); #else clock_t time = clock(); rmtU32 msTime = (rmtU32) (time / (CLOCKS_PER_SEC / 1000)); return msTime; #endif } // // Micro-second accuracy high performance counter // #ifndef RMT_PLATFORM_WINDOWS typedef rmtU64 LARGE_INTEGER; #endif typedef struct { LARGE_INTEGER counter_start; double counter_scale; } usTimer; static void usTimer_Init(usTimer* timer) { #if defined(RMT_PLATFORM_WINDOWS) LARGE_INTEGER performance_frequency; assert(timer != NULL); // Calculate the scale from performance counter to microseconds QueryPerformanceFrequency(&performance_frequency); timer->counter_scale = 1000000.0 / performance_frequency.QuadPart; // Record the offset for each read of the counter QueryPerformanceCounter(&timer->counter_start); #elif defined(RMT_PLATFORM_MACOS) mach_timebase_info_data_t nsScale; mach_timebase_info( &nsScale ); const double ns_per_us = 1.0e3; timer->counter_scale = (double)(nsScale.numer) / ((double)nsScale.denom * ns_per_us); timer->counter_start = mach_absolute_time(); #elif defined(RMT_PLATFORM_LINUX) struct timespec tv; clock_gettime(CLOCK_REALTIME, &tv); timer->counter_start = (rmtU64)(tv.tv_sec * 1000000) + (rmtU64)(tv.tv_nsec * 0.001); #endif } static rmtU64 usTimer_Get(usTimer* timer) { #if defined(RMT_PLATFORM_WINDOWS) LARGE_INTEGER performance_count; assert(timer != NULL); // Read counter and convert to microseconds QueryPerformanceCounter(&performance_count); return (rmtU64)((performance_count.QuadPart - timer->counter_start.QuadPart) * timer->counter_scale); #elif defined(RMT_PLATFORM_MACOS) rmtU64 curr_time = mach_absolute_time(); return (rmtU64)((curr_time - timer->counter_start) * timer->counter_scale); #elif defined(RMT_PLATFORM_LINUX) struct timespec tv; clock_gettime(CLOCK_REALTIME, &tv); return ((rmtU64)(tv.tv_sec * 1000000) + (rmtU64)(tv.tv_nsec * 0.001)) - timer->counter_start; #endif } static void msSleep(rmtU32 time_ms) { #ifdef RMT_PLATFORM_WINDOWS Sleep(time_ms); #elif defined(RMT_PLATFORM_POSIX) usleep(time_ms * 1000); #endif } /* ------------------------------------------------------------------------------------------------------------------------ ------------------------------------------------------------------------------------------------------------------------ @TLS: Thread-Local Storage ------------------------------------------------------------------------------------------------------------------------ ------------------------------------------------------------------------------------------------------------------------ */ #define TLS_INVALID_HANDLE 0xFFFFFFFF #if defined(RMT_PLATFORM_WINDOWS) typedef rmtU32 rmtTLS; #else typedef pthread_key_t rmtTLS; #endif static rmtError tlsAlloc(rmtTLS* handle) { assert(handle != NULL); #if defined(RMT_PLATFORM_WINDOWS) *handle = (rmtTLS)TlsAlloc(); if (*handle == TLS_OUT_OF_INDEXES) { *handle = TLS_INVALID_HANDLE; return RMT_ERROR_TLS_ALLOC_FAIL; } #elif defined(RMT_PLATFORM_POSIX) if (pthread_key_create(handle, NULL) != 0) { *handle = TLS_INVALID_HANDLE; return RMT_ERROR_TLS_ALLOC_FAIL; } #endif return RMT_ERROR_NONE; } static void tlsFree(rmtTLS handle) { assert(handle != TLS_INVALID_HANDLE); #if defined(RMT_PLATFORM_WINDOWS) TlsFree(handle); #elif defined(RMT_PLATFORM_POSIX) pthread_key_delete((pthread_key_t)handle); #endif } static void tlsSet(rmtTLS handle, void* value) { assert(handle != TLS_INVALID_HANDLE); #if defined(RMT_PLATFORM_WINDOWS) TlsSetValue(handle, value); #elif defined(RMT_PLATFORM_POSIX) pthread_setspecific((pthread_key_t)handle, value); #endif } static void* tlsGet(rmtTLS handle) { assert(handle != TLS_INVALID_HANDLE); #if defined(RMT_PLATFORM_WINDOWS) return TlsGetValue(handle); #elif defined(RMT_PLATFORM_POSIX) return pthread_getspecific((pthread_key_t)handle); #endif } /* ------------------------------------------------------------------------------------------------------------------------ ------------------------------------------------------------------------------------------------------------------------ @ATOMIC: Atomic Operations ------------------------------------------------------------------------------------------------------------------------ ------------------------------------------------------------------------------------------------------------------------ */ static rmtBool AtomicCompareAndSwap(rmtU32 volatile* val, long old_val, long new_val) { #if defined(RMT_PLATFORM_WINDOWS) && !defined(__MINGW32__) return _InterlockedCompareExchange((long volatile*)val, new_val, old_val) == old_val ? RMT_TRUE : RMT_FALSE; #elif defined(RMT_PLATFORM_POSIX) || defined(__MINGW32__) return __sync_bool_compare_and_swap(val, old_val, new_val) ? RMT_TRUE : RMT_FALSE; #endif } static rmtBool AtomicCompareAndSwapPointer(long* volatile* ptr, long* old_ptr, long* new_ptr) { #if defined(RMT_PLATFORM_WINDOWS) && !defined(__MINGW32__) #ifdef _WIN64 return _InterlockedCompareExchange64((__int64 volatile*)ptr, (__int64)new_ptr, (__int64)old_ptr) == (__int64)old_ptr ? RMT_TRUE : RMT_FALSE; #else return _InterlockedCompareExchange((long volatile*)ptr, (long)new_ptr, (long)old_ptr) == (long)old_ptr ? RMT_TRUE : RMT_FALSE; #endif #elif defined(RMT_PLATFORM_POSIX) || defined(__MINGW32__) return __sync_bool_compare_and_swap(ptr, old_ptr, new_ptr) ? RMT_TRUE : RMT_FALSE; #endif } // // NOTE: Does not guarantee a memory barrier // TODO: Make sure all platforms don't insert a memory barrier as this is only for stats // Alternatively, add strong/weak memory order equivalents // static rmtS32 AtomicAdd(rmtS32 volatile* value, rmtS32 add) { #if defined(RMT_PLATFORM_WINDOWS) && !defined(__MINGW32__) return _InterlockedExchangeAdd((long volatile*)value, (long)add); #elif defined(RMT_PLATFORM_POSIX) || defined(__MINGW32__) return __sync_fetch_and_add(value, add); #endif } static void AtomicSub(rmtS32 volatile* value, rmtS32 sub) { // Not all platforms have an implementation so just negate and add AtomicAdd(value, -sub); } // Compiler write fences (windows implementation) static void WriteFence() { #if defined(RMT_PLATFORM_WINDOWS) && !defined(__MINGW32__) _WriteBarrier(); #else asm volatile ("" : : : "memory"); #endif } /* ------------------------------------------------------------------------------------------------------------------------ ------------------------------------------------------------------------------------------------------------------------ @NEW: New/Delete operators with error values for simplifying object create/destroy ------------------------------------------------------------------------------------------------------------------------ ------------------------------------------------------------------------------------------------------------------------ */ // Ensures the pointer is non-NULL, calls the destructor, frees memory and sets the pointer to NULL #define Delete(type, obj) \ if (obj != NULL) \ { \ type##_Destructor(obj); \ rmtFree(obj); \ obj = NULL; \ } // New is implemented in terms of two begin/end macros // New will allocate enough space for the object and call the constructor // If allocation fails the constructor won't be called // If the constructor fails, the destructor is called and memory is released // NOTE: Use of sizeof() requires that the type be defined at the point of call // This is a disadvantage over requiring only a custom Create function #define BeginNew(type, obj) \ { \ obj = (type*)rmtMalloc(sizeof(type)); \ if (obj == NULL) \ { \ error = RMT_ERROR_MALLOC_FAIL; \ } \ else \ { \ #define EndNew(type, obj) \ if (error != RMT_ERROR_NONE) \ Delete(type, obj); \ } \ } // Specialisations for New with varying constructor parameter counts #define New_0(type, obj) \ BeginNew(type, obj); error = type##_Constructor(obj); EndNew(type, obj) #define New_1(type, obj, a0) \ BeginNew(type, obj); error = type##_Constructor(obj, a0); EndNew(type, obj) #define New_2(type, obj, a0, a1) \ BeginNew(type, obj); error = type##_Constructor(obj, a0, a1); EndNew(type, obj) #define New_3(type, obj, a0, a1, a2) \ BeginNew(type, obj); error = type##_Constructor(obj, a0, a1, a2); EndNew(type, obj) /* ------------------------------------------------------------------------------------------------------------------------ ------------------------------------------------------------------------------------------------------------------------ @VMBUFFER: Mirror Buffer using Virtual Memory for auto-wrap ------------------------------------------------------------------------------------------------------------------------ ------------------------------------------------------------------------------------------------------------------------ */ typedef struct VirtualMirrorBuffer { // Page-rounded size of the buffer without mirroring rmtU32 size; // Pointer to the first part of the mirror // The second part comes directly after at ptr+size bytes rmtU8* ptr; #ifdef RMT_PLATFORM_WINDOWS HANDLE file_map_handle; #endif } VirtualMirrorBuffer; #ifdef __ANDROID__ /* * Copyright (C) 2008 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #define ASHMEM_DEVICE "/dev/ashmem" /* * ashmem_create_region - creates a new ashmem region and returns the file * descriptor, or <0 on error * * `name' is an optional label to give the region (visible in /proc/pid/maps) * `size' is the size of the region, in page-aligned bytes */ int ashmem_create_region(const char *name, size_t size) { int fd, ret; fd = open(ASHMEM_DEVICE, O_RDWR); if (fd < 0) return fd; if (name) { char buf[ASHMEM_NAME_LEN] = {0}; strncpy(buf, name, sizeof(buf)); buf[sizeof(buf)-1] = 0; ret = ioctl(fd, ASHMEM_SET_NAME, buf); if (ret < 0) goto error; } ret = ioctl(fd, ASHMEM_SET_SIZE, size); if (ret < 0) goto error; return fd; error: close(fd); return ret; } #endif // __ANDROID__ static rmtError VirtualMirrorBuffer_Constructor(VirtualMirrorBuffer* buffer, rmtU32 size, int nb_attempts) { static const rmtU32 k_64 = 64 * 1024; RMT_UNREFERENCED_PARAMETER(nb_attempts); #ifdef RMT_PLATFORM_LINUX char path[] = "/dev/shm/ring-buffer-XXXXXX"; int file_descriptor; #endif // Round up to page-granulation; the nearest 64k boundary for now size = (size + k_64 - 1) / k_64 * k_64; // Set defaults buffer->size = size; buffer->ptr = NULL; #ifdef RMT_PLATFORM_WINDOWS buffer->file_map_handle = INVALID_HANDLE_VALUE; #endif #ifdef RMT_PLATFORM_WINDOWS // Windows version based on https://gist.github.com/rygorous/3158316 while (nb_attempts-- > 0) { rmtU8* desired_addr; // Create a file mapping for pointing to its physical address with multiple virtual pages buffer->file_map_handle = CreateFileMapping( INVALID_HANDLE_VALUE, 0, PAGE_READWRITE, 0, size, 0); if (buffer->file_map_handle == NULL) break; // Reserve two contiguous pages of virtual memory desired_addr = (rmtU8*)VirtualAlloc(0, size * 2, MEM_RESERVE, PAGE_NOACCESS); if (desired_addr == NULL) break; // Release the range immediately but retain the address for the next sequence of code to // try and map to it. In the mean-time some other OS thread may come along and allocate this // address range from underneath us so multiple attempts need to be made. VirtualFree(desired_addr, 0, MEM_RELEASE); // Immediately try to point both pages at the file mapping if (MapViewOfFileEx(buffer->file_map_handle, FILE_MAP_ALL_ACCESS, 0, 0, size, desired_addr) == desired_addr && MapViewOfFileEx(buffer->file_map_handle, FILE_MAP_ALL_ACCESS, 0, 0, size, desired_addr + size) == desired_addr + size) { buffer->ptr = desired_addr; break; } // Failed to map the virtual pages; cleanup and try again CloseHandle(buffer->file_map_handle); buffer->file_map_handle = NULL; } #endif #ifdef RMT_PLATFORM_MACOS // // Mac version based on https://github.com/mikeash/MAMirroredQueue // // Copyright (c) 2010, Michael Ash // All rights reserved. // // Redistribution and use in source and binary forms, with or without modification, are permitted provided that // the following conditions are met: // // Redistributions of source code must retain the above copyright notice, this list of conditions and the following // disclaimer. // // Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the // following disclaimer in the documentation and/or other materials provided with the distribution. // Neither the name of Michael Ash nor the names of its contributors may be used to endorse or promote products // derived from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, // INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE // GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY // OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // while (nb_attempts-- > 0) { vm_prot_t cur_prot, max_prot; kern_return_t mach_error; rmtU8* ptr = NULL; rmtU8* target = NULL; // Allocate 2 contiguous pages of virtual memory if (vm_allocate(mach_task_self(), (vm_address_t*)&ptr, size * 2, VM_FLAGS_ANYWHERE) != KERN_SUCCESS) break; // Try to deallocate the last page, leaving its virtual memory address free target = ptr + size; if (vm_deallocate(mach_task_self(), (vm_address_t)target, size) != KERN_SUCCESS) { vm_deallocate(mach_task_self(), (vm_address_t)ptr, size * 2); break; } // Attempt to remap the page just deallocated to the buffer again mach_error = vm_remap( mach_task_self(), (vm_address_t*)&target, size, 0, // mask 0, // anywhere mach_task_self(), (vm_address_t)ptr, 0, //copy &cur_prot, &max_prot, VM_INHERIT_COPY); if (mach_error == KERN_NO_SPACE) { // Failed on this pass, cleanup and make another attempt if (vm_deallocate(mach_task_self(), (vm_address_t)ptr, size) != KERN_SUCCESS) break; } else if (mach_error == KERN_SUCCESS) { // Leave the loop on success buffer->ptr = ptr; break; } else { // Unknown error, can't recover vm_deallocate(mach_task_self(), (vm_address_t)ptr, size); break; } } #endif #ifdef RMT_PLATFORM_LINUX // Linux version based on now-defunct Wikipedia section http://en.wikipedia.org/w/index.php?title=Circular_buffer&oldid=600431497 #ifdef __ANDROID__ file_descriptor = ashmem_create_region("remotery_shm", size * 2); if (file_descriptor < 0) { return RMT_ERROR_VIRTUAL_MEMORY_BUFFER_FAIL; } #else // Create a unique temporary filename in the shared memory folder file_descriptor = mkstemp(path); if (file_descriptor < 0) return RMT_ERROR_VIRTUAL_MEMORY_BUFFER_FAIL; // Delete the name if (unlink(path)) return RMT_ERROR_VIRTUAL_MEMORY_BUFFER_FAIL; // Set the file size to twice the buffer size // TODO: this 2x behaviour can be avoided with similar solution to Win/Mac if (ftruncate (file_descriptor, size * 2)) return RMT_ERROR_VIRTUAL_MEMORY_BUFFER_FAIL; #endif // Map 2 contiguous pages buffer->ptr = (rmtU8*)mmap(NULL, size * 2, PROT_NONE, MAP_ANONYMOUS | MAP_PRIVATE, -1, 0); if (buffer->ptr == MAP_FAILED) { buffer->ptr = NULL; return RMT_ERROR_VIRTUAL_MEMORY_BUFFER_FAIL; } // Point both pages to the same memory file if (mmap(buffer->ptr, size, PROT_READ | PROT_WRITE, MAP_FIXED | MAP_SHARED, file_descriptor, 0) != buffer->ptr || mmap(buffer->ptr + size, size, PROT_READ | PROT_WRITE, MAP_FIXED | MAP_SHARED, file_descriptor, 0) != buffer->ptr + size) return RMT_ERROR_VIRTUAL_MEMORY_BUFFER_FAIL; #endif // Cleanup if exceeded number of attempts or failed if (buffer->ptr == NULL) return RMT_ERROR_VIRTUAL_MEMORY_BUFFER_FAIL; return RMT_ERROR_NONE; } static void VirtualMirrorBuffer_Destructor(VirtualMirrorBuffer* buffer) { assert(buffer != 0); #ifdef RMT_PLATFORM_WINDOWS if (buffer->file_map_handle != NULL) { CloseHandle(buffer->file_map_handle); buffer->file_map_handle = NULL; } #endif #ifdef RMT_PLATFORM_MACOS if (buffer->ptr != NULL) vm_deallocate(mach_task_self(), (vm_address_t)buffer->ptr, buffer->size * 2); #endif #ifdef RMT_PLATFORM_LINUX if (buffer->ptr != NULL) munmap(buffer->ptr, buffer->size * 2); #endif buffer->ptr = NULL; } /* ------------------------------------------------------------------------------------------------------------------------ ------------------------------------------------------------------------------------------------------------------------ @THREADS: Threads ------------------------------------------------------------------------------------------------------------------------ ------------------------------------------------------------------------------------------------------------------------ */ typedef struct Thread Thread; typedef rmtError(*ThreadProc)(Thread* thread); typedef struct Thread { // OS-specific data #if defined(RMT_PLATFORM_WINDOWS) HANDLE handle; #else pthread_t handle; #endif // Callback executed when the thread is created ThreadProc callback; // Caller-specified parameter passed to Thread_Create void* param; // Error state returned from callback rmtError error; // External threads can set this to request an exit volatile rmtBool request_exit; } Thread; typedef rmtError (*ThreadProc)(Thread* thread); #if defined(RMT_PLATFORM_WINDOWS) static DWORD WINAPI ThreadProcWindows(LPVOID lpParameter) { Thread* thread = (Thread*)lpParameter; assert(thread != NULL); thread->error = thread->callback(thread); return thread->error == RMT_ERROR_NONE ? 1 : 0; } #else static void* StartFunc( void* pArgs ) { Thread* thread = (Thread*)pArgs; assert(thread != NULL); thread->error = thread->callback(thread); return NULL; // returned error not use, check thread->error. } #endif static int Thread_Valid(Thread* thread) { assert(thread != NULL); #if defined(RMT_PLATFORM_WINDOWS) return thread->handle != NULL; #else return !pthread_equal(thread->handle, pthread_self()); #endif } static rmtError Thread_Constructor(Thread* thread, ThreadProc callback, void* param) { assert(thread != NULL); thread->callback = callback; thread->param = param; thread->error = RMT_ERROR_NONE; thread->request_exit = RMT_FALSE; // OS-specific thread creation #if defined (RMT_PLATFORM_WINDOWS) thread->handle = CreateThread( NULL, // lpThreadAttributes 0, // dwStackSize ThreadProcWindows, // lpStartAddress thread, // lpParameter 0, // dwCreationFlags NULL); // lpThreadId if (thread->handle == NULL) return RMT_ERROR_CREATE_THREAD_FAIL; #else int32_t error = pthread_create( &thread->handle, NULL, StartFunc, thread ); if (error) { // Contents of 'thread' parameter to pthread_create() are undefined after // failure call so can't pre-set to invalid value before hand. thread->handle = pthread_self(); return RMT_ERROR_CREATE_THREAD_FAIL; } #endif return RMT_ERROR_NONE; } static void Thread_RequestExit(Thread* thread) { // Not really worried about memory barriers or delayed visibility to the target thread assert(thread != NULL); thread->request_exit = RMT_TRUE; } static void Thread_Join(Thread* thread) { assert(Thread_Valid(thread)); #if defined(RMT_PLATFORM_WINDOWS) WaitForSingleObject(thread->handle, INFINITE); #else pthread_join(thread->handle, NULL); #endif } static void Thread_Destructor(Thread* thread) { assert(thread != NULL); if (Thread_Valid(thread)) { // Shutdown the thread Thread_RequestExit(thread); Thread_Join(thread); // OS-specific release of thread resources #if defined(RMT_PLATFORM_WINDOWS) CloseHandle(thread->handle); thread->handle = NULL; #endif } } /* ------------------------------------------------------------------------------------------------------------------------ ------------------------------------------------------------------------------------------------------------------------ @SAFEC: Safe C Library excerpts http://sourceforge.net/projects/safeclib/ ------------------------------------------------------------------------------------------------------------------------ ------------------------------------------------------------------------------------------------------------------------ */ /*------------------------------------------------------------------ * * November 2008, Bo Berry * * Copyright (c) 2008-2011 by Cisco Systems, Inc * All rights reserved. * * Permission is hereby granted, free of charge, to any person * obtaining a copy of this software and associated documentation * files (the "Software"), to deal in the Software without * restriction, including without limitation the rights to use, * copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following * conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. *------------------------------------------------------------------ */ // NOTE: Microsoft also has its own version of these functions so I'm do some hacky PP to remove them #define strnlen_s strnlen_s_safe_c #define strncat_s strncat_s_safe_c #define RSIZE_MAX_STR (4UL << 10) /* 4KB */ #define RCNEGATE(x) x #define EOK ( 0 ) #define ESNULLP ( 400 ) /* null ptr */ #define ESZEROL ( 401 ) /* length is zero */ #define ESLEMAX ( 403 ) /* length exceeds max */ #define ESOVRLP ( 404 ) /* overlap undefined */ #define ESNOSPC ( 406 ) /* not enough space for s2 */ #define ESUNTERM ( 407 ) /* unterminated string */ #define ESNOTFND ( 409 ) /* not found */ #ifndef _ERRNO_T_DEFINED #define _ERRNO_T_DEFINED typedef int errno_t; #endif #if !defined(_WIN64) && !defined(__APPLE__) || defined(__MINGW32__) typedef unsigned int rsize_t; #endif #if defined(RMT_PLATFORM_MACOS) && !defined(_RSIZE_T) typedef __darwin_size_t rsize_t; #endif static rsize_t strnlen_s (const char *dest, rsize_t dmax) { rsize_t count; if (dest == NULL) { return RCNEGATE(0); } if (dmax == 0) { return RCNEGATE(0); } if (dmax > RSIZE_MAX_STR) { return RCNEGATE(0); } count = 0; while (*dest && dmax) { count++; dmax--; dest++; } return RCNEGATE(count); } static errno_t strstr_s (char *dest, rsize_t dmax, const char *src, rsize_t slen, char **substring) { rsize_t len; rsize_t dlen; int i; if (substring == NULL) { return RCNEGATE(ESNULLP); } *substring = NULL; if (dest == NULL) { return RCNEGATE(ESNULLP); } if (dmax == 0) { return RCNEGATE(ESZEROL); } if (dmax > RSIZE_MAX_STR) { return RCNEGATE(ESLEMAX); } if (src == NULL) { return RCNEGATE(ESNULLP); } if (slen == 0) { return RCNEGATE(ESZEROL); } if (slen > RSIZE_MAX_STR) { return RCNEGATE(ESLEMAX); } /* * src points to a string with zero length, or * src equals dest, return dest */ if (*src == '\0' || dest == src) { *substring = dest; return RCNEGATE(EOK); } while (*dest && dmax) { i = 0; len = slen; dlen = dmax; while (src[i] && dlen) { /* not a match, not a substring */ if (dest[i] != src[i]) { break; } /* move to the next char */ i++; len--; dlen--; if (src[i] == '\0' || !len) { *substring = dest; return RCNEGATE(EOK); } } dest++; dmax--; } /* * substring was not found, return NULL */ *substring = NULL; return RCNEGATE(ESNOTFND); } static errno_t strncat_s (char *dest, rsize_t dmax, const char *src, rsize_t slen) { const char *overlap_bumper; if (dest == NULL) { return RCNEGATE(ESNULLP); } if (src == NULL) { return RCNEGATE(ESNULLP); } if (slen > RSIZE_MAX_STR) { return RCNEGATE(ESLEMAX); } if (dmax == 0) { return RCNEGATE(ESZEROL); } if (dmax > RSIZE_MAX_STR) { return RCNEGATE(ESLEMAX); } /* hold base of dest in case src was not copied */ if (dest < src) { overlap_bumper = src; /* Find the end of dest */ while (*dest != '\0') { if (dest == overlap_bumper) { return RCNEGATE(ESOVRLP); } dest++; dmax--; if (dmax == 0) { return RCNEGATE(ESUNTERM); } } while (dmax > 0) { if (dest == overlap_bumper) { return RCNEGATE(ESOVRLP); } /* * Copying truncated before the source null is encountered */ if (slen == 0) { *dest = '\0'; return RCNEGATE(EOK); } *dest = *src; if (*dest == '\0') { return RCNEGATE(EOK); } dmax--; slen--; dest++; src++; } } else { overlap_bumper = dest; /* Find the end of dest */ while (*dest != '\0') { /* * NOTE: no need to check for overlap here since src comes first * in memory and we're not incrementing src here. */ dest++; dmax--; if (dmax == 0) { return RCNEGATE(ESUNTERM); } } while (dmax > 0) { if (src == overlap_bumper) { return RCNEGATE(ESOVRLP); } /* * Copying truncated */ if (slen == 0) { *dest = '\0'; return RCNEGATE(EOK); } *dest = *src; if (*dest == '\0') { return RCNEGATE(EOK); } dmax--; slen--; dest++; src++; } } /* * the entire src was not copied, so the string will be nulled. */ return RCNEGATE(ESNOSPC); } /* very simple integer to hex */ static const char* hex_encoding_table = "0123456789ABCDEF"; static void itoahex_s( char *dest, rsize_t dmax, rmtS32 value ) { rsize_t len; rmtS32 halfbytepos; halfbytepos = 8; /* strip leading 0's */ while (halfbytepos > 1) { --halfbytepos; if (value >> (4 * halfbytepos) & 0xF) { ++halfbytepos; break; } } len = 0; while(len + 1 < dmax && halfbytepos > 0) { --halfbytepos; dest[len] = hex_encoding_table[value >> (4 * halfbytepos) & 0xF]; ++len; } if (len < dmax) { dest[len] = 0; } } /* ------------------------------------------------------------------------------------------------------------------------ ------------------------------------------------------------------------------------------------------------------------ @OBJALLOC: Reusable Object Allocator ------------------------------------------------------------------------------------------------------------------------ ------------------------------------------------------------------------------------------------------------------------ */ // // All objects that require free-list-backed allocation need to inherit from this type. // typedef struct ObjectLink_s { struct ObjectLink_s* volatile next; } ObjectLink; static void ObjectLink_Constructor(ObjectLink* link) { assert(link != NULL); link->next = NULL; } typedef rmtError (*ObjConstructor)(void*); typedef void (*ObjDestructor)(void*); typedef struct { // Object create/destroy parameters rmtU32 object_size; ObjConstructor constructor; ObjDestructor destructor; // Number of objects in the free list volatile rmtS32 nb_free; // Number of objects used by callers volatile rmtS32 nb_inuse; // Total allocation count volatile rmtS32 nb_allocated; ObjectLink* first_free; } ObjectAllocator; static rmtError ObjectAllocator_Constructor(ObjectAllocator* allocator, rmtU32 object_size, ObjConstructor constructor, ObjDestructor destructor) { allocator->object_size = object_size; allocator->constructor = constructor; allocator->destructor = destructor; allocator->nb_free = 0; allocator->nb_inuse = 0; allocator->nb_allocated = 0; allocator->first_free = NULL; return RMT_ERROR_NONE; } static void ObjectAllocator_Destructor(ObjectAllocator* allocator) { // Ensure everything has been released to the allocator assert(allocator != NULL); assert(allocator->nb_inuse == 0); // Destroy all objects released to the allocator while (allocator->first_free != NULL) { ObjectLink* next = allocator->first_free->next; assert(allocator->destructor != NULL); allocator->destructor(allocator->first_free); rmtFree(allocator->first_free); allocator->first_free = next; } } static void ObjectAllocator_Push(ObjectAllocator* allocator, ObjectLink* start, ObjectLink* end) { assert(allocator != NULL); assert(start != NULL); assert(end != NULL); // CAS pop add range to the front of the list for (;;) { ObjectLink* old_link = (ObjectLink*)allocator->first_free; end->next = old_link; if (AtomicCompareAndSwapPointer((long* volatile*)&allocator->first_free, (long*)old_link, (long*)start) == RMT_TRUE) break; } } static ObjectLink* ObjectAllocator_Pop(ObjectAllocator* allocator) { ObjectLink* link; assert(allocator != NULL); assert(allocator->first_free != NULL); // CAS pop from the front of the list for (;;) { ObjectLink* old_link = (ObjectLink*)allocator->first_free; ObjectLink* next_link = old_link->next; if (AtomicCompareAndSwapPointer((long* volatile*)&allocator->first_free, (long*)old_link, (long*)next_link) == RMT_TRUE) { link = old_link; break; } } link->next = NULL; return link; } static rmtError ObjectAllocator_Alloc(ObjectAllocator* allocator, void** object) { // This function only calls the object constructor on initial malloc of an object assert(allocator != NULL); assert(object != NULL); // Has the free list run out? if (allocator->first_free == NULL) { rmtError error; // Allocate/construct a new object void* free_object = rmtMalloc( allocator->object_size ); if (free_object == NULL) return RMT_ERROR_MALLOC_FAIL; assert(allocator->constructor != NULL); error = allocator->constructor(free_object); if (error != RMT_ERROR_NONE) { // Auto-teardown on failure assert(allocator->destructor != NULL); allocator->destructor(free_object); rmtFree(free_object); return error; } // Add to the free list ObjectAllocator_Push(allocator, (ObjectLink*)free_object, (ObjectLink*)free_object); AtomicAdd(&allocator->nb_allocated, 1); AtomicAdd(&allocator->nb_free, 1); } // Pull available objects from the free list *object = ObjectAllocator_Pop(allocator); AtomicSub(&allocator->nb_free, 1); AtomicAdd(&allocator->nb_inuse, 1); return RMT_ERROR_NONE; } static void ObjectAllocator_Free(ObjectAllocator* allocator, void* object) { // Add back to the free-list assert(allocator != NULL); ObjectAllocator_Push(allocator, (ObjectLink*)object, (ObjectLink*)object); AtomicSub(&allocator->nb_inuse, 1); AtomicAdd(&allocator->nb_free, 1); } static void ObjectAllocator_FreeRange(ObjectAllocator* allocator, void* start, void* end, rmtU32 count) { assert(allocator != NULL); ObjectAllocator_Push(allocator, (ObjectLink*)start, (ObjectLink*)end); AtomicSub(&allocator->nb_inuse, count); AtomicAdd(&allocator->nb_free, count); } /* ------------------------------------------------------------------------------------------------------------------------ ------------------------------------------------------------------------------------------------------------------------ @DYNBUF: Dynamic Buffer ------------------------------------------------------------------------------------------------------------------------ ------------------------------------------------------------------------------------------------------------------------ */ typedef struct { rmtU32 alloc_granularity; rmtU32 bytes_allocated; rmtU32 bytes_used; rmtU8* data; } Buffer; static rmtError Buffer_Constructor(Buffer* buffer, rmtU32 alloc_granularity) { assert(buffer != NULL); buffer->alloc_granularity = alloc_granularity; buffer->bytes_allocated = 0; buffer->bytes_used = 0; buffer->data = NULL; return RMT_ERROR_NONE; } static void Buffer_Destructor(Buffer* buffer) { assert(buffer != NULL); if (buffer->data != NULL) { rmtFree(buffer->data); buffer->data = NULL; } } static rmtError Buffer_Write(Buffer* buffer, void* data, rmtU32 length) { assert(buffer != NULL); // Reallocate the buffer on overflow if (buffer->bytes_used + length > buffer->bytes_allocated) { // Calculate size increase rounded up to the requested allocation granularity rmtU32 g = buffer->alloc_granularity; rmtU32 a = buffer->bytes_allocated + length; a = a + ((g - 1) - ((a - 1) % g)); buffer->bytes_allocated = a; buffer->data = (rmtU8*)rmtRealloc(buffer->data, buffer->bytes_allocated); if (buffer->data == NULL) return RMT_ERROR_MALLOC_FAIL; } // Copy all bytes memcpy(buffer->data + buffer->bytes_used, data, length); buffer->bytes_used += length; // NULL terminate (if possible) for viewing in debug if (buffer->bytes_used < buffer->bytes_allocated) buffer->data[buffer->bytes_used] = 0; return RMT_ERROR_NONE; } static rmtError Buffer_WriteString(Buffer* buffer, rmtPStr string) { assert(string != NULL); return Buffer_Write(buffer, (void*)string, (rmtU32)strnlen_s(string, 2048)); } /* ------------------------------------------------------------------------------------------------------------------------ ------------------------------------------------------------------------------------------------------------------------ @SOCKETS: Sockets TCP/IP Wrapper ------------------------------------------------------------------------------------------------------------------------ ------------------------------------------------------------------------------------------------------------------------ */ #ifndef RMT_PLATFORM_WINDOWS typedef int SOCKET; #define INVALID_SOCKET -1 #define SOCKET_ERROR -1 #define SD_SEND SHUT_WR #define closesocket close #endif typedef struct { SOCKET socket; } TCPSocket; typedef struct { rmtBool can_read; rmtBool can_write; rmtError error_state; } SocketStatus; // // Function prototypes // static void TCPSocket_Close(TCPSocket* tcp_socket); static rmtError InitialiseNetwork() { #ifdef RMT_PLATFORM_WINDOWS WSADATA wsa_data; if (WSAStartup(MAKEWORD(2, 2), &wsa_data)) return RMT_ERROR_SOCKET_INIT_NETWORK_FAIL; if (LOBYTE(wsa_data.wVersion) != 2 || HIBYTE(wsa_data.wVersion) != 2) return RMT_ERROR_SOCKET_INIT_NETWORK_FAIL; return RMT_ERROR_NONE; #else return RMT_ERROR_NONE; #endif } static void ShutdownNetwork() { #ifdef RMT_PLATFORM_WINDOWS WSACleanup(); #endif } static rmtError TCPSocket_Constructor(TCPSocket* tcp_socket) { assert(tcp_socket != NULL); tcp_socket->socket = INVALID_SOCKET; return InitialiseNetwork(); } static void TCPSocket_Destructor(TCPSocket* tcp_socket) { assert(tcp_socket != NULL); TCPSocket_Close(tcp_socket); ShutdownNetwork(); } static rmtError TCPSocket_RunServer(TCPSocket* tcp_socket, rmtU16 port) { SOCKET s = INVALID_SOCKET; struct sockaddr_in sin; #ifdef RMT_PLATFORM_WINDOWS u_long nonblock = 1; #endif memset(&sin, 0, sizeof(sin) ); assert(tcp_socket != NULL); // Try to create the socket s = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP); if (s == SOCKET_ERROR) return RMT_ERROR_SOCKET_CREATE_FAIL; // Bind the socket to the incoming port sin.sin_family = AF_INET; sin.sin_addr.s_addr = INADDR_ANY; sin.sin_port = htons(port); if (bind(s, (struct sockaddr*)&sin, sizeof(sin)) == SOCKET_ERROR) return RMT_ERROR_SOCKET_BIND_FAIL; // Connection is valid, remaining code is socket state modification tcp_socket->socket = s; // Enter a listening state with a backlog of 1 connection if (listen(s, 1) == SOCKET_ERROR) return RMT_ERROR_SOCKET_LISTEN_FAIL; // Set as non-blocking #ifdef RMT_PLATFORM_WINDOWS if (ioctlsocket(tcp_socket->socket, FIONBIO, &nonblock) == SOCKET_ERROR) return RMT_ERROR_SOCKET_SET_NON_BLOCKING_FAIL; #else if (fcntl(tcp_socket->socket, F_SETFL, O_NONBLOCK) == SOCKET_ERROR) return RMT_ERROR_SOCKET_SET_NON_BLOCKING_FAIL; #endif return RMT_ERROR_NONE; } static void TCPSocket_Close(TCPSocket* tcp_socket) { assert(tcp_socket != NULL); if (tcp_socket->socket != INVALID_SOCKET) { // Shutdown the connection, stopping all sends int result = shutdown(tcp_socket->socket, SD_SEND); if (result != SOCKET_ERROR) { // Keep receiving until the peer closes the connection int total = 0; char temp_buf[128]; while (result > 0) { result = (int)recv(tcp_socket->socket, temp_buf, sizeof(temp_buf), 0); total += result; } } // Close the socket and issue a network shutdown request closesocket(tcp_socket->socket); tcp_socket->socket = INVALID_SOCKET; } } static SocketStatus TCPSocket_PollStatus(TCPSocket* tcp_socket) { SocketStatus status; fd_set fd_read, fd_write, fd_errors; struct timeval tv; status.can_read = RMT_FALSE; status.can_write = RMT_FALSE; status.error_state = RMT_ERROR_NONE; assert(tcp_socket != NULL); if (tcp_socket->socket == INVALID_SOCKET) { status.error_state = RMT_ERROR_SOCKET_INVALID_POLL; return status; } // Set read/write/error markers for the socket FD_ZERO(&fd_read); FD_ZERO(&fd_write); FD_ZERO(&fd_errors); #ifdef _MSC_VER # pragma warning(push) # pragma warning(disable:4127) // warning C4127: conditional expression is constant #endif // _MSC_VER FD_SET(tcp_socket->socket, &fd_read); FD_SET(tcp_socket->socket, &fd_write); FD_SET(tcp_socket->socket, &fd_errors); #ifdef _MSC_VER # pragma warning(pop) #endif // _MSC_VER // Poll socket status without blocking tv.tv_sec = 0; tv.tv_usec = 0; if (select(((int)tcp_socket->socket)+1, &fd_read, &fd_write, &fd_errors, &tv) == SOCKET_ERROR) { status.error_state = RMT_ERROR_SOCKET_SELECT_FAIL; return status; } status.can_read = FD_ISSET(tcp_socket->socket, &fd_read) != 0 ? RMT_TRUE : RMT_FALSE; status.can_write = FD_ISSET(tcp_socket->socket, &fd_write) != 0 ? RMT_TRUE : RMT_FALSE; status.error_state = FD_ISSET(tcp_socket->socket, &fd_errors) != 0 ? RMT_ERROR_SOCKET_POLL_ERRORS : RMT_ERROR_NONE; return status; } static rmtError TCPSocket_AcceptConnection(TCPSocket* tcp_socket, TCPSocket** client_socket) { SocketStatus status; SOCKET s; rmtError error; // Ensure there is an incoming connection assert(tcp_socket != NULL); status = TCPSocket_PollStatus(tcp_socket); if (status.error_state != RMT_ERROR_NONE || !status.can_read) return status.error_state; // Accept the connection s = accept(tcp_socket->socket, 0, 0); if (s == SOCKET_ERROR) return RMT_ERROR_SOCKET_ACCEPT_FAIL; // Create a client socket for the new connection assert(client_socket != NULL); New_0(TCPSocket, *client_socket); if (error != RMT_ERROR_NONE) return error; (*client_socket)->socket = s; return RMT_ERROR_NONE; } static int TCPSocketWouldBlock() { #ifdef RMT_PLATFORM_WINDOWS DWORD error = WSAGetLastError(); return (error == WSAEWOULDBLOCK); #else int error = errno; return (error == EAGAIN || error == EWOULDBLOCK); #endif } static rmtError TCPSocket_Send(TCPSocket* tcp_socket, const void* data, rmtU32 length, rmtU32 timeout_ms) { SocketStatus status; char* cur_data = NULL; char* end_data = NULL; rmtU32 start_ms = 0; rmtU32 cur_ms = 0; assert(tcp_socket != NULL); start_ms = msTimer_Get(); // Loop until timeout checking whether data can be written status.can_write = RMT_FALSE; while (!status.can_write) { status = TCPSocket_PollStatus(tcp_socket); if (status.error_state != RMT_ERROR_NONE) return status.error_state; cur_ms = msTimer_Get(); if (cur_ms - start_ms > timeout_ms) return RMT_ERROR_SOCKET_SEND_TIMEOUT; } cur_data = (char*)data; end_data = cur_data + length; while (cur_data < end_data) { // Attempt to send the remaining chunk of data int bytes_sent = (int)send(tcp_socket->socket, cur_data, (int)(end_data - cur_data), 0); if (bytes_sent == SOCKET_ERROR || bytes_sent == 0) { // Close the connection if sending fails for any other reason other than blocking if (bytes_sent != 0 && !TCPSocketWouldBlock()) return RMT_ERROR_SOCKET_SEND_FAIL; // First check for tick-count overflow and reset, giving a slight hitch every 49.7 days cur_ms = msTimer_Get(); if (cur_ms < start_ms) { start_ms = cur_ms; continue; } // // Timeout can happen when: // // 1) endpoint is no longer there // 2) endpoint can't consume quick enough // 3) local buffers overflow // // As none of these are actually errors, we have to pass this timeout back to the caller. // // TODO: This strategy breaks down if a send partially completes and then times out! // if (cur_ms - start_ms > timeout_ms) { return RMT_ERROR_SOCKET_SEND_TIMEOUT; } } else { // Jump over the data sent cur_data += bytes_sent; } } return RMT_ERROR_NONE; } static rmtError TCPSocket_Receive(TCPSocket* tcp_socket, void* data, rmtU32 length, rmtU32 timeout_ms) { SocketStatus status; char* cur_data = NULL; char* end_data = NULL; rmtU32 start_ms = 0; rmtU32 cur_ms = 0; assert(tcp_socket != NULL); // Ensure there is data to receive status = TCPSocket_PollStatus(tcp_socket); if (status.error_state != RMT_ERROR_NONE) return status.error_state; if (!status.can_read) return RMT_ERROR_SOCKET_RECV_NO_DATA; cur_data = (char*)data; end_data = cur_data + length; // Loop until all data has been received start_ms = msTimer_Get(); while (cur_data < end_data) { int bytes_received = (int)recv(tcp_socket->socket, cur_data, (int)(end_data - cur_data), 0); if (bytes_received == SOCKET_ERROR || bytes_received == 0) { // Close the connection if receiving fails for any other reason other than blocking if (bytes_received != 0 && !TCPSocketWouldBlock()) return RMT_ERROR_SOCKET_RECV_FAILED; // First check for tick-count overflow and reset, giving a slight hitch every 49.7 days cur_ms = msTimer_Get(); if (cur_ms < start_ms) { start_ms = cur_ms; continue; } // // Timeout can happen when: // // 1) data is delayed by sender // 2) sender fails to send a complete set of packets // // As not all of these scenarios are errors, we need to pass this information back to the caller. // // TODO: This strategy breaks down if a receive partially completes and then times out! // if (cur_ms - start_ms > timeout_ms) { return RMT_ERROR_SOCKET_RECV_TIMEOUT; } } else { // Jump over the data received cur_data += bytes_received; } } return RMT_ERROR_NONE; } /* ------------------------------------------------------------------------------------------------------------------------ ------------------------------------------------------------------------------------------------------------------------ @SHA1: SHA-1 Cryptographic Hash Function ------------------------------------------------------------------------------------------------------------------------ ------------------------------------------------------------------------------------------------------------------------ */ // // Typed to allow enforced data size specification // typedef struct { rmtU8 data[20]; } SHA1; /* Copyright (c) 2011, Micael Hildenborg All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of Micael Hildenborg nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY Micael Hildenborg ''AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL Micael Hildenborg BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* Contributors: Gustav Several members in the gamedev.se forum. Gregory Petrosyan */ // Rotate an integer value to left. static unsigned int rol(const unsigned int value, const unsigned int steps) { return ((value << steps) | (value >> (32 - steps))); } // Sets the first 16 integers in the buffert to zero. // Used for clearing the W buffert. static void clearWBuffert(unsigned int* buffert) { int pos; for (pos = 16; --pos >= 0;) { buffert[pos] = 0; } } static void innerHash(unsigned int* result, unsigned int* w) { unsigned int a = result[0]; unsigned int b = result[1]; unsigned int c = result[2]; unsigned int d = result[3]; unsigned int e = result[4]; int round = 0; #define sha1macro(func,val) \ { \ const unsigned int t = rol(a, 5) + (func) + e + val + w[round]; \ e = d; \ d = c; \ c = rol(b, 30); \ b = a; \ a = t; \ } while (round < 16) { sha1macro((b & c) | (~b & d), 0x5a827999) ++round; } while (round < 20) { w[round] = rol((w[round - 3] ^ w[round - 8] ^ w[round - 14] ^ w[round - 16]), 1); sha1macro((b & c) | (~b & d), 0x5a827999) ++round; } while (round < 40) { w[round] = rol((w[round - 3] ^ w[round - 8] ^ w[round - 14] ^ w[round - 16]), 1); sha1macro(b ^ c ^ d, 0x6ed9eba1) ++round; } while (round < 60) { w[round] = rol((w[round - 3] ^ w[round - 8] ^ w[round - 14] ^ w[round - 16]), 1); sha1macro((b & c) | (b & d) | (c & d), 0x8f1bbcdc) ++round; } while (round < 80) { w[round] = rol((w[round - 3] ^ w[round - 8] ^ w[round - 14] ^ w[round - 16]), 1); sha1macro(b ^ c ^ d, 0xca62c1d6) ++round; } #undef sha1macro result[0] += a; result[1] += b; result[2] += c; result[3] += d; result[4] += e; } static void calc(const void* src, const int bytelength, unsigned char* hash) { int roundPos; int lastBlockBytes; int hashByte; // Init the result array. unsigned int result[5] = { 0x67452301, 0xefcdab89, 0x98badcfe, 0x10325476, 0xc3d2e1f0 }; // Cast the void src pointer to be the byte array we can work with. const unsigned char* sarray = (const unsigned char*) src; // The reusable round buffer unsigned int w[80]; // Loop through all complete 64byte blocks. const int endOfFullBlocks = bytelength - 64; int endCurrentBlock; int currentBlock = 0; while (currentBlock <= endOfFullBlocks) { endCurrentBlock = currentBlock + 64; // Init the round buffer with the 64 byte block data. for (roundPos = 0; currentBlock < endCurrentBlock; currentBlock += 4) { // This line will swap endian on big endian and keep endian on little endian. w[roundPos++] = (unsigned int) sarray[currentBlock + 3] | (((unsigned int) sarray[currentBlock + 2]) << 8) | (((unsigned int) sarray[currentBlock + 1]) << 16) | (((unsigned int) sarray[currentBlock]) << 24); } innerHash(result, w); } // Handle the last and not full 64 byte block if existing. endCurrentBlock = bytelength - currentBlock; clearWBuffert(w); lastBlockBytes = 0; for (;lastBlockBytes < endCurrentBlock; ++lastBlockBytes) { w[lastBlockBytes >> 2] |= (unsigned int) sarray[lastBlockBytes + currentBlock] << ((3 - (lastBlockBytes & 3)) << 3); } w[lastBlockBytes >> 2] |= 0x80 << ((3 - (lastBlockBytes & 3)) << 3); if (endCurrentBlock >= 56) { innerHash(result, w); clearWBuffert(w); } w[15] = bytelength << 3; innerHash(result, w); // Store hash in result pointer, and make sure we get in in the correct order on both endian models. for (hashByte = 20; --hashByte >= 0;) { hash[hashByte] = (result[hashByte >> 2] >> (((3 - hashByte) & 0x3) << 3)) & 0xff; } } static SHA1 SHA1_Calculate(const void* src, unsigned int length) { SHA1 hash; assert((int)length >= 0); calc(src, length, hash.data); return hash; } /* ------------------------------------------------------------------------------------------------------------------------ ------------------------------------------------------------------------------------------------------------------------ @BASE64: Base-64 encoder ------------------------------------------------------------------------------------------------------------------------ ------------------------------------------------------------------------------------------------------------------------ */ static const char* b64_encoding_table = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" "abcdefghijklmnopqrstuvwxyz" "0123456789+/"; static rmtU32 Base64_CalculateEncodedLength(rmtU32 length) { // ceil(l * 4/3) return 4 * ((length + 2) / 3); } static void Base64_Encode(const rmtU8* in_bytes, rmtU32 length, rmtU8* out_bytes) { rmtU32 i; rmtU32 encoded_length; rmtU32 remaining_bytes; rmtU8* optr = out_bytes; for (i = 0; i < length; ) { // Read input 3 values at a time, null terminating rmtU32 c0 = i < length ? in_bytes[i++] : 0; rmtU32 c1 = i < length ? in_bytes[i++] : 0; rmtU32 c2 = i < length ? in_bytes[i++] : 0; // Encode 4 bytes for ever 3 input bytes rmtU32 triple = (c0 << 0x10) + (c1 << 0x08) + c2; *optr++ = b64_encoding_table[(triple >> 3 * 6) & 0x3F]; *optr++ = b64_encoding_table[(triple >> 2 * 6) & 0x3F]; *optr++ = b64_encoding_table[(triple >> 1 * 6) & 0x3F]; *optr++ = b64_encoding_table[(triple >> 0 * 6) & 0x3F]; } // Pad output to multiple of 3 bytes with terminating '=' encoded_length = Base64_CalculateEncodedLength(length); remaining_bytes = (3 - ((length + 2) % 3)) - 1; for (i = 0; i < remaining_bytes; i++) out_bytes[encoded_length - 1 - i] = '='; // Null terminate out_bytes[encoded_length] = 0; } /* ------------------------------------------------------------------------------------------------------------------------ ------------------------------------------------------------------------------------------------------------------------ @MURMURHASH: MurmurHash3 https://code.google.com/p/smhasher ------------------------------------------------------------------------------------------------------------------------ ------------------------------------------------------------------------------------------------------------------------ */ //----------------------------------------------------------------------------- // MurmurHash3 was written by Austin Appleby, and is placed in the public // domain. The author hereby disclaims copyright to this source code. //----------------------------------------------------------------------------- static rmtU32 rotl32(rmtU32 x, rmtS8 r) { return (x << r) | (x >> (32 - r)); } // Block read - if your platform needs to do endian-swapping or can only // handle aligned reads, do the conversion here static rmtU32 getblock32(const rmtU32* p, int i) { return p[i]; } // Finalization mix - force all bits of a hash block to avalanche static rmtU32 fmix32(rmtU32 h) { h ^= h >> 16; h *= 0x85ebca6b; h ^= h >> 13; h *= 0xc2b2ae35; h ^= h >> 16; return h; } static rmtU32 MurmurHash3_x86_32(const void* key, int len, rmtU32 seed) { const rmtU8* data = (const rmtU8*)key; const int nblocks = len / 4; rmtU32 h1 = seed; const rmtU32 c1 = 0xcc9e2d51; const rmtU32 c2 = 0x1b873593; int i; const rmtU32 * blocks = (const rmtU32 *)(data + nblocks*4); const rmtU8 * tail = (const rmtU8*)(data + nblocks*4); rmtU32 k1 = 0; //---------- // body for (i = -nblocks; i; i++) { rmtU32 k2 = getblock32(blocks,i); k2 *= c1; k2 = rotl32(k2,15); k2 *= c2; h1 ^= k2; h1 = rotl32(h1,13); h1 = h1*5+0xe6546b64; } //---------- // tail switch(len & 3) { case 3: k1 ^= tail[2] << 16; case 2: k1 ^= tail[1] << 8; case 1: k1 ^= tail[0]; k1 *= c1; k1 = rotl32(k1,15); k1 *= c2; h1 ^= k1; }; //---------- // finalization h1 ^= len; h1 = fmix32(h1); return h1; } /* ------------------------------------------------------------------------------------------------------------------------ ------------------------------------------------------------------------------------------------------------------------ @WEBSOCKETS: WebSockets ------------------------------------------------------------------------------------------------------------------------ ------------------------------------------------------------------------------------------------------------------------ */ enum WebSocketMode { WEBSOCKET_NONE = 0, WEBSOCKET_TEXT = 1, WEBSOCKET_BINARY = 2, }; typedef struct { TCPSocket* tcp_socket; enum WebSocketMode mode; rmtU32 frame_bytes_remaining; rmtU32 mask_offset; union { rmtU8 data_mask[4]; rmtU32 data_mask_u32; }; } WebSocket; static void WebSocket_Close(WebSocket* web_socket); static char* GetField(char* buffer, rsize_t buffer_length, rmtPStr field_name) { char* field = NULL; char* buffer_end = buffer + buffer_length - 1; rsize_t field_length = strnlen_s(field_name, buffer_length); if (field_length == 0) return NULL; // Search for the start of the field if (strstr_s(buffer, buffer_length, field_name, field_length, &field) != EOK) return NULL; // Field name is now guaranteed to be in the buffer so its safe to jump over it without hitting the bounds field += strlen(field_name); // Skip any trailing whitespace while (*field == ' ') { if (field >= buffer_end) return NULL; field++; } return field; } static const char websocket_guid[] = "258EAFA5-E914-47DA-95CA-C5AB0DC85B11"; static const char websocket_response[] = "HTTP/1.1 101 Switching Protocols\r\n" "Upgrade: websocket\r\n" "Connection: Upgrade\r\n" "Sec-WebSocket-Accept: "; static rmtError WebSocketHandshake(TCPSocket* tcp_socket, rmtPStr limit_host) { rmtU32 start_ms, now_ms; // Parsing scratchpad char buffer[1024]; char* buffer_ptr = buffer; int buffer_len = sizeof(buffer) - 1; char* buffer_end = buffer + buffer_len; char response_buffer[256]; int response_buffer_len = sizeof(response_buffer) - 1; char* version; char* host; char* key; char* key_end; SHA1 hash; assert(tcp_socket != NULL); start_ms = msTimer_Get(); // Really inefficient way of receiving the handshake data from the browser // Not really sure how to do this any better, as the termination requirement is \r\n\r\n while (buffer_ptr - buffer < buffer_len) { rmtError error = TCPSocket_Receive(tcp_socket, buffer_ptr, 1, 20); if (error == RMT_ERROR_SOCKET_RECV_FAILED) return error; // If there's a stall receiving the data, check for a handshake timeout if (error == RMT_ERROR_SOCKET_RECV_NO_DATA || error == RMT_ERROR_SOCKET_RECV_TIMEOUT) { now_ms = msTimer_Get(); if (now_ms - start_ms > 1000) return RMT_ERROR_SOCKET_RECV_TIMEOUT; continue; } // Just in case new enums are added... assert(error == RMT_ERROR_NONE); if (buffer_ptr - buffer >= 4) { if (*(buffer_ptr - 3) == '\r' && *(buffer_ptr - 2) == '\n' && *(buffer_ptr - 1) == '\r' && *(buffer_ptr - 0) == '\n') break; } buffer_ptr++; } *buffer_ptr = 0; // HTTP GET instruction if (memcmp(buffer, "GET", 3) != 0) return RMT_ERROR_WEBSOCKET_HANDSHAKE_NOT_GET; // Look for the version number and verify that it's supported version = GetField(buffer, buffer_len, "Sec-WebSocket-Version:"); if (version == NULL) return RMT_ERROR_WEBSOCKET_HANDSHAKE_NO_VERSION; if (buffer_end - version < 2 || (version[0] != '8' && (version[0] != '1' || version[1] != '3'))) return RMT_ERROR_WEBSOCKET_HANDSHAKE_BAD_VERSION; // Make sure this connection comes from a known host host = GetField(buffer, buffer_len, "Host:"); if (host == NULL) return RMT_ERROR_WEBSOCKET_HANDSHAKE_NO_HOST; if (limit_host != NULL) { rsize_t limit_host_len = strnlen_s(limit_host, 128); char* found = NULL; if (strstr_s(host, buffer_end - host, limit_host, limit_host_len, &found) != EOK) return RMT_ERROR_WEBSOCKET_HANDSHAKE_BAD_HOST; } // Look for the key start and null-terminate it within the receive buffer key = GetField(buffer, buffer_len, "Sec-WebSocket-Key:"); if (key == NULL) return RMT_ERROR_WEBSOCKET_HANDSHAKE_NO_KEY; if (strstr_s(key, buffer_end - key, "\r\n", 2, &key_end) != EOK) return RMT_ERROR_WEBSOCKET_HANDSHAKE_BAD_KEY; *key_end = 0; // Concatenate the browser's key with the WebSocket Protocol GUID and base64 encode // the hash, to prove to the browser that this is a bonafide WebSocket server buffer[0] = 0; if (strncat_s(buffer, buffer_len, key, key_end - key) != EOK) return RMT_ERROR_WEBSOCKET_HANDSHAKE_STRING_FAIL; if (strncat_s(buffer, buffer_len, websocket_guid, sizeof(websocket_guid)) != EOK) return RMT_ERROR_WEBSOCKET_HANDSHAKE_STRING_FAIL; hash = SHA1_Calculate(buffer, (rmtU32)strnlen_s(buffer, buffer_len)); Base64_Encode(hash.data, sizeof(hash.data), (rmtU8*)buffer); // Send the response back to the server with a longer timeout than usual response_buffer[0] = 0; if (strncat_s(response_buffer, response_buffer_len, websocket_response, sizeof(websocket_response)) != EOK) return RMT_ERROR_WEBSOCKET_HANDSHAKE_STRING_FAIL; if (strncat_s(response_buffer, response_buffer_len, buffer, buffer_len) != EOK) return RMT_ERROR_WEBSOCKET_HANDSHAKE_STRING_FAIL; if (strncat_s(response_buffer, response_buffer_len, "\r\n\r\n", 4) != EOK) return RMT_ERROR_WEBSOCKET_HANDSHAKE_STRING_FAIL; return TCPSocket_Send(tcp_socket, response_buffer, (rmtU32)strnlen_s(response_buffer, response_buffer_len), 1000); } static rmtError WebSocket_Constructor(WebSocket* web_socket, TCPSocket* tcp_socket) { rmtError error = RMT_ERROR_NONE; assert(web_socket != NULL); web_socket->tcp_socket = tcp_socket; web_socket->mode = WEBSOCKET_NONE; web_socket->frame_bytes_remaining = 0; web_socket->mask_offset = 0; web_socket->data_mask[0] = 0; web_socket->data_mask[1] = 0; web_socket->data_mask[2] = 0; web_socket->data_mask[3] = 0; // Caller can optionally specify which TCP socket to use if (web_socket->tcp_socket == NULL) New_0(TCPSocket, web_socket->tcp_socket); return error; } static void WebSocket_Destructor(WebSocket* web_socket) { WebSocket_Close(web_socket); } static rmtError WebSocket_RunServer(WebSocket* web_socket, rmtU32 port, enum WebSocketMode mode) { // Create the server's listening socket assert(web_socket != NULL); web_socket->mode = mode; return TCPSocket_RunServer(web_socket->tcp_socket, (rmtU16)port); } static void WebSocket_Close(WebSocket* web_socket) { assert(web_socket != NULL); Delete(TCPSocket, web_socket->tcp_socket); } static SocketStatus WebSocket_PollStatus(WebSocket* web_socket) { assert(web_socket != NULL); return TCPSocket_PollStatus(web_socket->tcp_socket); } static rmtError WebSocket_AcceptConnection(WebSocket* web_socket, WebSocket** client_socket) { TCPSocket* tcp_socket = NULL; rmtError error; // Is there a waiting connection? assert(web_socket != NULL); error = TCPSocket_AcceptConnection(web_socket->tcp_socket, &tcp_socket); if (error != RMT_ERROR_NONE || tcp_socket == NULL) return error; // Need a successful handshake between client/server before allowing the connection // TODO: Specify limit_host error = WebSocketHandshake(tcp_socket, NULL); if (error != RMT_ERROR_NONE) return error; // Allocate and return a new client socket assert(client_socket != NULL); New_1(WebSocket, *client_socket, tcp_socket); if (error != RMT_ERROR_NONE) return error; (*client_socket)->mode = web_socket->mode; return RMT_ERROR_NONE; } static void WriteSize(rmtU32 size, rmtU8* dest, rmtU32 dest_size, rmtU32 dest_offset) { int size_size = dest_size - dest_offset; rmtU32 i; for (i = 0; i < dest_size; i++) { int j = i - dest_offset; dest[i] = (j < 0) ? 0 : (size >> ((size_size - j - 1) * 8)) & 0xFF; } } static rmtError WebSocket_Send(WebSocket* web_socket, const void* data, rmtU32 length, rmtU32 timeout_ms) { rmtError error; SocketStatus status; rmtU8 final_fragment, frame_type, frame_header[10]; rmtU32 frame_header_size; assert(web_socket != NULL); // Can't send if there are socket errors status = WebSocket_PollStatus(web_socket); if (status.error_state != RMT_ERROR_NONE) return status.error_state; final_fragment = 0x1 << 7; frame_type = (rmtU8)web_socket->mode; frame_header[0] = final_fragment | frame_type; // Construct the frame header, correctly applying the narrowest size frame_header_size = 0; if (length <= 125) { frame_header_size = 2; frame_header[1] = (rmtU8)length; } else if (length <= 65535) { frame_header_size = 2 + 2; frame_header[1] = 126; WriteSize(length, frame_header + 2, 2, 0); } else { frame_header_size = 2 + 8; frame_header[1] = 127; WriteSize(length, frame_header + 2, 8, 4); } // Send frame header assert(data != NULL); error = TCPSocket_Send(web_socket->tcp_socket, frame_header, frame_header_size, timeout_ms); if (error != RMT_ERROR_NONE) return error; // Send frame data separately so that we don't have to allocate memory or memcpy it into // the same buffer as the header. // If this step times out then the frame data will be discarded and the browser will receive // an invalid frame without its data, forcing a disconnect error. // Before things get that far, flag this as a send fail and let the server schedule a graceful // disconnect. error = TCPSocket_Send(web_socket->tcp_socket, data, length, timeout_ms); if (error == RMT_ERROR_SOCKET_SEND_TIMEOUT) error = RMT_ERROR_SOCKET_SEND_FAIL; return error; } static rmtError ReceiveFrameHeader(WebSocket* web_socket) { // TODO: Specify infinite timeout? rmtError error; rmtU8 msg_header[2] = { 0, 0 }; int msg_length, size_bytes_remaining, i; rmtBool mask_present; assert(web_socket != NULL); // Get message header error = TCPSocket_Receive(web_socket->tcp_socket, msg_header, 2, 20); if (error != RMT_ERROR_NONE) return error; // Check for WebSocket Protocol disconnect if (msg_header[0] == 0x88) return RMT_ERROR_WEBSOCKET_DISCONNECTED; // Check that the client isn't sending messages we don't understand if (msg_header[0] != 0x81 && msg_header[0] != 0x82) return RMT_ERROR_WEBSOCKET_BAD_FRAME_HEADER; // Get message length and check to see if it's a marker for a wider length msg_length = msg_header[1] & 0x7F; size_bytes_remaining = 0; switch (msg_length) { case 126: size_bytes_remaining = 2; break; case 127: size_bytes_remaining = 8; break; } if (size_bytes_remaining > 0) { // Receive the wider bytes of the length rmtU8 size_bytes[4]; error = TCPSocket_Receive(web_socket->tcp_socket, size_bytes, size_bytes_remaining, 20); if (error != RMT_ERROR_NONE) return RMT_ERROR_WEBSOCKET_BAD_FRAME_HEADER_SIZE; // Calculate new length, MSB first msg_length = 0; for (i = 0; i < size_bytes_remaining; i++) msg_length |= size_bytes[i] << ((size_bytes_remaining - 1 - i) * 8); } // Receive any message data masks mask_present = (msg_header[1] & 0x80) != 0 ? RMT_TRUE : RMT_FALSE; if (mask_present) { error = TCPSocket_Receive(web_socket->tcp_socket, web_socket->data_mask, 4, 20); if (error != RMT_ERROR_NONE) return error; } web_socket->frame_bytes_remaining = msg_length; web_socket->mask_offset = 0; return RMT_ERROR_NONE; } static rmtError WebSocket_Receive(WebSocket* web_socket, void* data, rmtU32* msg_len, rmtU32 length, rmtU32 timeout_ms) { SocketStatus status; char* cur_data; char* end_data; rmtU32 start_ms, now_ms; rmtU32 bytes_to_read; rmtError error; assert(web_socket != NULL); // Can't read with any socket errors status = WebSocket_PollStatus(web_socket); if (status.error_state != RMT_ERROR_NONE) return status.error_state; cur_data = (char*)data; end_data = cur_data + length; start_ms = msTimer_Get(); while (cur_data < end_data) { // Get next WebSocket frame if we've run out of data to read from the socket if (web_socket->frame_bytes_remaining == 0) { error = ReceiveFrameHeader(web_socket); if (error != RMT_ERROR_NONE) return error; // Set output message length only on initial receive if (msg_len != NULL) *msg_len = web_socket->frame_bytes_remaining; } // Read as much required data as possible bytes_to_read = web_socket->frame_bytes_remaining < length ? web_socket->frame_bytes_remaining : length; error = TCPSocket_Receive(web_socket->tcp_socket, cur_data, bytes_to_read, 20); if (error == RMT_ERROR_SOCKET_RECV_FAILED) return error; // If there's a stall receiving the data, check for timeout if (error == RMT_ERROR_SOCKET_RECV_NO_DATA || error == RMT_ERROR_SOCKET_RECV_TIMEOUT) { now_ms = msTimer_Get(); if (now_ms - start_ms > timeout_ms) return RMT_ERROR_SOCKET_RECV_TIMEOUT; continue; } // Apply data mask if (web_socket->data_mask_u32 != 0) { rmtU32 i; for (i = 0; i < bytes_to_read; i++) { *((rmtU8*)cur_data + i) ^= web_socket->data_mask[web_socket->mask_offset & 3]; web_socket->mask_offset++; } } cur_data += bytes_to_read; web_socket->frame_bytes_remaining -= bytes_to_read; } return RMT_ERROR_NONE; } /* ------------------------------------------------------------------------------------------------------------------------ ------------------------------------------------------------------------------------------------------------------------ @MESSAGEQ: Multiple producer, single consumer message queue ------------------------------------------------------------------------------------------------------------------------ ------------------------------------------------------------------------------------------------------------------------ */ typedef enum MessageID { MsgID_NotReady, MsgID_LogText, MsgID_SampleTree, } MessageID; typedef struct Message { MessageID id; rmtU32 payload_size; // For telling which thread the message came from in the debugger struct ThreadSampler* thread_sampler; rmtU8 payload[1]; } Message; // Multiple producer, single consumer message queue that uses its own data buffer // to store the message data. typedef struct MessageQueue { rmtU32 size; // The physical address of this data buffer is pointed to by two sequential // virtual memory pages, allowing automatic wrap-around of any reads or writes // that exceed the limits of the buffer. VirtualMirrorBuffer* data; // Read/write position never wrap allowing trivial overflow checks // with easier debugging rmtU32 read_pos; rmtU32 write_pos; } MessageQueue; static rmtError MessageQueue_Constructor(MessageQueue* queue, rmtU32 size) { rmtError error; assert(queue != NULL); // Set defaults queue->size = 0; queue->data = NULL; queue->read_pos = 0; queue->write_pos = 0; New_2(VirtualMirrorBuffer, queue->data, size, 10); if (error != RMT_ERROR_NONE) return error; // The mirror buffer needs to be page-aligned and will change the requested // size to match that. queue->size = queue->data->size; // Set the entire buffer to not ready message memset(queue->data->ptr, MsgID_NotReady, queue->size); return RMT_ERROR_NONE; } static void MessageQueue_Destructor(MessageQueue* queue) { assert(queue != NULL); Delete(VirtualMirrorBuffer, queue->data); } static Message* MessageQueue_AllocMessage(MessageQueue* queue, rmtU32 payload_size, struct ThreadSampler* thread_sampler) { Message* msg; rmtU32 write_size = sizeof(Message) + payload_size; assert(queue != NULL); for (;;) { // Check for potential overflow rmtU32 s = queue->size; rmtU32 r = queue->read_pos; rmtU32 w = queue->write_pos; if ((int)(w - r) > ((int)(s - write_size))) return NULL; // Point to the newly allocated space msg = (Message*)(queue->data->ptr + (w & (s - 1))); // Increment the write position, leaving the loop if this is the thread that succeeded if (AtomicCompareAndSwap(&queue->write_pos, w, w + write_size) == RMT_TRUE) { // Safe to set payload size after thread claims ownership of this allocated range msg->payload_size = payload_size; msg->thread_sampler = thread_sampler; break; } } return msg; } static void MessageQueue_CommitMessage(MessageQueue* queue, Message* message, MessageID id) { assert(queue != NULL); assert(message != NULL); // Ensure message writes complete before commit WriteFence(); // Setting the message ID signals to the consumer that the message is ready assert(message->id == MsgID_NotReady); message->id = id; RMT_UNREFERENCED_PARAMETER(queue); } Message* MessageQueue_PeekNextMessage(MessageQueue* queue) { Message* ptr; rmtU32 r; assert(queue != NULL); // First check that there are bytes queued if (queue->write_pos - queue->read_pos == 0) return NULL; // Messages are in the queue but may not have been commit yet // Messages behind this one may have been commit but it's not reachable until // the next one in the queue is ready. r = queue->read_pos & (queue->size - 1); ptr = (Message*)(queue->data->ptr + r); if (ptr->id != MsgID_NotReady) return ptr; return NULL; } static void MessageQueue_ConsumeNextMessage(MessageQueue* queue, Message* message) { rmtU32 message_size; assert(queue != NULL); assert(message != NULL); // Setting the message ID to "not ready" serves as a marker to the consumer that even though // space has been allocated for a message, the message isn't ready to be consumed // yet. // // We can't do that when allocating the message because multiple threads will be fighting for // the same location. Instead, clear out any messages just read by the consumer before advancing // the read position so that a winning thread's allocation will inherit the "not ready" state. // // This costs some write bandwidth and has the potential to flush cache to other cores. message_size = sizeof(Message) + message->payload_size; memset(message, MsgID_NotReady, message_size); // Ensure clear completes before advancing the read position WriteFence(); queue->read_pos += message_size; } /* ------------------------------------------------------------------------------------------------------------------------ ------------------------------------------------------------------------------------------------------------------------ @NETWORK: Network Server ------------------------------------------------------------------------------------------------------------------------ ------------------------------------------------------------------------------------------------------------------------ */ typedef struct { WebSocket* listen_socket; WebSocket* client_socket; rmtU32 last_ping_time; rmtU16 port; } Server; static rmtError Server_CreateListenSocket(Server* server, rmtU16 port) { rmtError error = RMT_ERROR_NONE; New_1(WebSocket, server->listen_socket, NULL); if (error == RMT_ERROR_NONE) error = WebSocket_RunServer(server->listen_socket, port, WEBSOCKET_TEXT); return error; } static rmtError Server_Constructor(Server* server, rmtU16 port) { assert(server != NULL); server->listen_socket = NULL; server->client_socket = NULL; server->last_ping_time = 0; server->port = port; // Create the listening WebSocket return Server_CreateListenSocket(server, port); } static void Server_Destructor(Server* server) { assert(server != NULL); Delete(WebSocket, server->client_socket); Delete(WebSocket, server->listen_socket); } static rmtBool Server_IsClientConnected(Server* server) { assert(server != NULL); return server->client_socket != NULL ? RMT_TRUE : RMT_FALSE; } static void Server_DisconnectClient(Server* server) { WebSocket* client_socket; assert(server != NULL); // NULL the variable before destroying the socket client_socket = server->client_socket; server->client_socket = NULL; WriteFence(); Delete(WebSocket, client_socket); } static rmtError Server_Send(Server* server, const void* data, rmtU32 length, rmtU32 timeout) { assert(server != NULL); if (Server_IsClientConnected(server)) { rmtError error = WebSocket_Send(server->client_socket, data, length, timeout); if (error == RMT_ERROR_SOCKET_SEND_FAIL) Server_DisconnectClient(server); return error; } return RMT_ERROR_NONE; } static rmtError Server_ReceiveMessage(Server* server, char message_first_byte, rmtU32 message_length) { char message_data[1024]; rmtError error; // Check for potential message data overflow if (message_length >= sizeof(message_data) - 1) { rmt_LogText("Ignoring console input bigger than internal receive buffer (1024 bytes)"); return RMT_ERROR_NONE; } // Receive the rest of the message message_data[0] = message_first_byte; error = WebSocket_Receive(server->client_socket, message_data + 1, NULL, message_length - 1, 100); if (error != RMT_ERROR_NONE) return error; message_data[message_length] = 0; // Each message must have a descriptive 4 byte header if (message_length < 4) return RMT_ERROR_NONE; // Silly check for console input message ('CONI') // (don't want to add safe strcmp to lib yet) if (message_data[0] == 'C' && message_data[1] == 'O' && message_data[2] == 'N' && message_data[3] == 'I') { // Pass on to any registered handler if (g_Settings.input_handler != NULL) g_Settings.input_handler(message_data + 4, g_Settings.input_handler_context); rmt_LogText("Console message received..."); rmt_LogText(message_data + 4); } return RMT_ERROR_NONE; } static void Server_Update(Server* server) { rmtU32 cur_time; assert(server != NULL); // Recreate the listening socket if it's been destroyed earlier if (server->listen_socket == NULL) Server_CreateListenSocket(server, server->port); if (server->listen_socket != NULL && server->client_socket == NULL) { // Accept connections as long as there is no client connected WebSocket* client_socket = NULL; rmtError error = WebSocket_AcceptConnection(server->listen_socket, &client_socket); if (error == RMT_ERROR_NONE) { server->client_socket = client_socket; } else { // Destroy the listen socket on failure to accept // It will get recreated in another update Delete(WebSocket, server->listen_socket); } } else { // Check for any incoming messages char message_first_byte; rmtU32 message_length; rmtError error = WebSocket_Receive(server->client_socket, &message_first_byte, &message_length, 1, 0); if (error == RMT_ERROR_NONE) { // Parse remaining message error = Server_ReceiveMessage(server, message_first_byte, message_length); if (error != RMT_ERROR_NONE) Server_DisconnectClient(server); } else if (error == RMT_ERROR_SOCKET_RECV_NO_DATA) { // no data available } else if (error == RMT_ERROR_SOCKET_RECV_TIMEOUT) { // data not available yet, can afford to ignore as we're only reading the first byte } else { // Anything else is an error that may have closed the connection Server_DisconnectClient(server); } } // Send pings to the client every second cur_time = msTimer_Get(); if (cur_time - server->last_ping_time > 1000) { rmtPStr ping_message = "{ \"id\": \"PING\" }"; Server_Send(server, ping_message, (rmtU32)strlen(ping_message), 20); server->last_ping_time = cur_time; } } /* ------------------------------------------------------------------------------------------------------------------------ ------------------------------------------------------------------------------------------------------------------------ @JSON: Basic, text-based JSON serialisation ------------------------------------------------------------------------------------------------------------------------ ------------------------------------------------------------------------------------------------------------------------ */ // // Simple macro for hopefully making the serialisation a little clearer by hiding the error handling // #define JSON_ERROR_CHECK(stmt) { error = stmt; if (error != RMT_ERROR_NONE) return error; } static rmtError json_OpenObject(Buffer* buffer) { return Buffer_Write(buffer, (void*)"{", 1); } static rmtError json_CloseObject(Buffer* buffer) { return Buffer_Write(buffer, (void*)"}", 1); } static rmtError json_Comma(Buffer* buffer) { return Buffer_Write(buffer, (void*)",", 1); } static rmtError json_Colon(Buffer* buffer) { return Buffer_Write(buffer, (void*)":", 1); } static rmtError json_String(Buffer* buffer, rmtPStr string) { rmtError error; JSON_ERROR_CHECK(Buffer_Write(buffer, (void*)"\"", 1)); JSON_ERROR_CHECK(Buffer_WriteString(buffer, string)); return Buffer_Write(buffer, (void*)"\"", 1); } static rmtError json_FieldStr(Buffer* buffer, rmtPStr name, rmtPStr value) { rmtError error; JSON_ERROR_CHECK(json_String(buffer, name)); JSON_ERROR_CHECK(json_Colon(buffer)); return json_String(buffer, value); } static rmtError json_FieldU64(Buffer* buffer, rmtPStr name, rmtU64 value) { static char temp_buf[32]; char* end; char* tptr; json_String(buffer, name); json_Colon(buffer); if (value == 0) return Buffer_Write(buffer, (void*)"0", 1); // Null terminate and start at the end end = temp_buf + sizeof(temp_buf) - 1; *end = 0; tptr = end; // Loop through the value with radix 10 do { rmtU64 next_value = value / 10; *--tptr = (char)('0' + (value - next_value * 10)); value = next_value; } while (value); return Buffer_Write(buffer, tptr, (rmtU32)(end - tptr)); } static rmtError json_OpenArray(Buffer* buffer, rmtPStr name) { rmtError error; JSON_ERROR_CHECK(json_String(buffer, name)); JSON_ERROR_CHECK(json_Colon(buffer)); return Buffer_Write(buffer, (void*)"[", 1); } static rmtError json_CloseArray(Buffer* buffer) { return Buffer_Write(buffer, (void*)"]", 1); } /* ------------------------------------------------------------------------------------------------------------------------ ------------------------------------------------------------------------------------------------------------------------ @SAMPLE: Base Sample Description for CPU by default ------------------------------------------------------------------------------------------------------------------------ ------------------------------------------------------------------------------------------------------------------------ */ enum SampleType { SampleType_CPU, SampleType_CUDA, SampleType_D3D11, SampleType_OpenGL, SampleType_Count, }; typedef struct Sample { // Inherit so that samples can be quickly allocated ObjectLink Link; enum SampleType type; // Used to anonymously copy sample data without knowning its type rmtU32 size_bytes; // Sample name and unique hash rmtPStr name; rmtU32 name_hash; // Unique, persistent ID among all samples rmtU32 unique_id; // Null-terminated string storing the hash-prefixed 6-digit colour rmtU8 unique_id_html_colour[8]; // Links to related samples in the tree struct Sample* parent; struct Sample* first_child; struct Sample* last_child; struct Sample* next_sibling; // Keep track of child count to distinguish from repeated calls to the same function at the same stack level // This is also mixed with the callstack hash to allow consistent addressing of any point in the tree rmtU32 nb_children; // Start and end of the sample in microseconds rmtU64 us_start; rmtU64 us_end; } Sample; static rmtError Sample_Constructor(Sample* sample) { assert(sample != NULL); ObjectLink_Constructor((ObjectLink*)sample); sample->type = SampleType_CPU; sample->size_bytes = sizeof(Sample); sample->name = NULL; sample->name_hash = 0; sample->unique_id = 0; sample->unique_id_html_colour[0] = '#'; sample->unique_id_html_colour[1] = 0; sample->unique_id_html_colour[7] = 0; sample->parent = NULL; sample->first_child = NULL; sample->last_child = NULL; sample->next_sibling = NULL; sample->nb_children = 0; sample->us_start = 0; sample->us_end = 0; return RMT_ERROR_NONE; } static void Sample_Destructor(Sample* sample) { RMT_UNREFERENCED_PARAMETER(sample); } static void Sample_Prepare(Sample* sample, rmtPStr name, rmtU32 name_hash, Sample* parent) { sample->name = name; sample->name_hash = name_hash; sample->unique_id = 0; sample->parent = parent; sample->first_child = NULL; sample->last_child = NULL; sample->next_sibling = NULL; sample->nb_children = 0; sample->us_start = 0; sample->us_end = 0; } static rmtError json_SampleArray(Buffer* buffer, Sample* first_sample, rmtPStr name); static rmtError json_Sample(Buffer* buffer, Sample* sample) { rmtError error; assert(sample != NULL); JSON_ERROR_CHECK(json_OpenObject(buffer)); JSON_ERROR_CHECK(json_FieldStr(buffer, "name", sample->name)); JSON_ERROR_CHECK(json_Comma(buffer)); JSON_ERROR_CHECK(json_FieldU64(buffer, "id", sample->unique_id)); JSON_ERROR_CHECK(json_Comma(buffer)); JSON_ERROR_CHECK(json_FieldStr(buffer, "colour", (rmtPStr)sample->unique_id_html_colour)); JSON_ERROR_CHECK(json_Comma(buffer)); JSON_ERROR_CHECK(json_FieldU64(buffer, "us_start", sample->us_start)); JSON_ERROR_CHECK(json_Comma(buffer)); JSON_ERROR_CHECK(json_FieldU64(buffer, "us_length", maxS64(sample->us_end - sample->us_start, 0))); if (sample->first_child != NULL) { JSON_ERROR_CHECK(json_Comma(buffer)); JSON_ERROR_CHECK(json_SampleArray(buffer, sample->first_child, "children")); } return json_CloseObject(buffer); } static rmtError json_SampleArray(Buffer* buffer, Sample* first_sample, rmtPStr name) { rmtError error; Sample* sample; JSON_ERROR_CHECK(json_OpenArray(buffer, name)); for (sample = first_sample; sample != NULL; sample = sample->next_sibling) { JSON_ERROR_CHECK(json_Sample(buffer, sample)); if (sample->next_sibling != NULL) JSON_ERROR_CHECK(json_Comma(buffer)); } return json_CloseArray(buffer); } /* ------------------------------------------------------------------------------------------------------------------------ ------------------------------------------------------------------------------------------------------------------------ @SAMPLETREE: A tree of samples with their allocator ------------------------------------------------------------------------------------------------------------------------ ------------------------------------------------------------------------------------------------------------------------ */ typedef struct SampleTree { // Allocator for all samples ObjectAllocator* allocator; // Root sample for all samples created by this thread Sample* root; // Most recently pushed sample Sample* current_parent; } SampleTree; static rmtError SampleTree_Constructor(SampleTree* tree, rmtU32 sample_size, ObjConstructor constructor, ObjDestructor destructor) { rmtError error; assert(tree != NULL); tree->allocator = NULL; tree->root = NULL; tree->current_parent = NULL; // Create the sample allocator New_3(ObjectAllocator, tree->allocator, sample_size, constructor, destructor); if (error != RMT_ERROR_NONE) return error; // Create a root sample that's around for the lifetime of the thread error = ObjectAllocator_Alloc(tree->allocator, (void**)&tree->root); if (error != RMT_ERROR_NONE) return error; Sample_Prepare(tree->root, "", 0, NULL); tree->current_parent = tree->root; return RMT_ERROR_NONE; } static void SampleTree_Destructor(SampleTree* tree) { assert(tree != NULL); if (tree->root != NULL) { ObjectAllocator_Free(tree->allocator, tree->root); tree->root = NULL; } Delete(ObjectAllocator, tree->allocator); } static rmtU32 HashCombine(rmtU32 hash_a, rmtU32 hash_b) { // A sequence of 32 uniformly random bits so that each bit of the combined hash is changed on application // Derived from the golden ratio: UINT_MAX / ((1 + sqrt(5)) / 2) // In reality it's just an arbitrary value which happens to work well, avoiding mapping all zeros to zeros. // http://burtleburtle.net/bob/hash/doobs.html static rmtU32 random_bits = 0x9E3779B9; hash_a ^= hash_b + random_bits + (hash_a << 6) + (hash_a >> 2); return hash_a; } static rmtError SampleTree_Push(SampleTree* tree, rmtPStr name, rmtU32 name_hash, Sample** sample) { Sample* parent; rmtError error; rmtU32 unique_id; // As each tree has a root sample node allocated, a parent must always be present assert(tree != NULL); assert(tree->current_parent != NULL); parent = tree->current_parent; if (parent->last_child != NULL && parent->last_child->name_hash == name_hash) { // TODO: Collapse siblings with flag exception? // Note that above check is not enough - requires a linear search } if (parent->name_hash == name_hash) { // TODO: Collapse recursion on flag? } // Allocate a new sample error = ObjectAllocator_Alloc(tree->allocator, (void**)sample); if (error != RMT_ERROR_NONE) return error; Sample_Prepare(*sample, name, name_hash, parent); // Generate a unique ID for this sample in the tree unique_id = parent->unique_id; unique_id = HashCombine(unique_id, (*sample)->name_hash); unique_id = HashCombine(unique_id, parent->nb_children); (*sample)->unique_id = unique_id; // Add sample to its parent parent->nb_children++; if (parent->first_child == NULL) { parent->first_child = *sample; parent->last_child = *sample; } else { assert(parent->last_child != NULL); parent->last_child->next_sibling = *sample; parent->last_child = *sample; } // Make this sample the new parent of any newly created samples tree->current_parent = *sample; return RMT_ERROR_NONE; } static void SampleTree_Pop(SampleTree* tree, Sample* sample) { assert(tree != NULL); assert(sample != NULL); assert(sample != tree->root); tree->current_parent = sample->parent; } static ObjectLink* FlattenSampleTree(Sample* sample, rmtU32* nb_samples) { Sample* child; ObjectLink* cur_link = &sample->Link; assert(sample != NULL); assert(nb_samples != NULL); *nb_samples += 1; sample->Link.next = (ObjectLink*)sample->first_child; // Link all children together for (child = sample->first_child; child != NULL; child = child->next_sibling) { ObjectLink* last_link = FlattenSampleTree(child, nb_samples); last_link->next = (ObjectLink*)child->next_sibling; cur_link = last_link; } // Clear child info sample->first_child = NULL; sample->last_child = NULL; sample->nb_children = 0; return cur_link; } static void FreeSampleTree(Sample* sample, ObjectAllocator* allocator) { // Chain all samples together in a flat list rmtU32 nb_cleared_samples = 0; ObjectLink* last_link = FlattenSampleTree(sample, &nb_cleared_samples); // Release the complete sample memory range if (sample->Link.next != NULL) ObjectAllocator_FreeRange(allocator, sample, last_link, nb_cleared_samples); else ObjectAllocator_Free(allocator, sample); } typedef struct Msg_SampleTree { Sample* root_sample; ObjectAllocator* allocator; rmtPStr thread_name; } Msg_SampleTree; static void AddSampleTreeMessage(MessageQueue* queue, Sample* sample, ObjectAllocator* allocator, rmtPStr thread_name, struct ThreadSampler* thread_sampler) { Msg_SampleTree* payload; // Attempt to allocate a message for sending the tree to the viewer Message* message = MessageQueue_AllocMessage(queue, sizeof(Msg_SampleTree), thread_sampler); if (message == NULL) { // Discard the tree on failure FreeSampleTree(sample, allocator); return; } // Populate and commit payload = (Msg_SampleTree*)message->payload; payload->root_sample = sample; payload->allocator = allocator; payload->thread_name = thread_name; MessageQueue_CommitMessage(queue, message, MsgID_SampleTree); } /* ------------------------------------------------------------------------------------------------------------------------ ------------------------------------------------------------------------------------------------------------------------ @TSAMPLER: Per-Thread Sampler ------------------------------------------------------------------------------------------------------------------------ ------------------------------------------------------------------------------------------------------------------------ */ typedef struct ThreadSampler { // Name to assign to the thread in the viewer rmtS8 name[64]; // Store a unique sample tree for each type SampleTree* sample_trees[SampleType_Count]; // Next in the global list of active thread samplers struct ThreadSampler* volatile next; } ThreadSampler; static rmtS32 countThreads = 0; static rmtError ThreadSampler_Constructor(ThreadSampler* thread_sampler) { rmtError error; int i; assert(thread_sampler != NULL); // Set defaults for (i = 0; i < SampleType_Count; i++) thread_sampler->sample_trees[i] = NULL; thread_sampler->next = NULL; // Set the initial name to Thread0 etc. thread_sampler->name[0] = 0; strncat_s(thread_sampler->name, sizeof(thread_sampler->name), "Thread", 6); itoahex_s(thread_sampler->name + 6, sizeof(thread_sampler->name) - 6, AtomicAdd(&countThreads, 1)); // Create the CPU sample tree only - the rest are created on-demand as they need // extra context information to function correctly. New_3(SampleTree, thread_sampler->sample_trees[SampleType_CPU], sizeof(Sample), (ObjConstructor)Sample_Constructor, (ObjDestructor)Sample_Destructor); if (error != RMT_ERROR_NONE) return error; return RMT_ERROR_NONE; } static void ThreadSampler_Destructor(ThreadSampler* ts) { int i; assert(ts != NULL); for (i = 0; i < SampleType_Count; i++) Delete(SampleTree, ts->sample_trees[i]); } static rmtError ThreadSampler_Push(ThreadSampler* ts, SampleTree* tree, rmtPStr name, rmtU32 name_hash, Sample** sample) { RMT_UNREFERENCED_PARAMETER(ts); return SampleTree_Push(tree, name, name_hash, sample); } static rmtBool ThreadSampler_Pop(ThreadSampler* ts, MessageQueue* queue, Sample* sample) { SampleTree* tree = ts->sample_trees[sample->type]; SampleTree_Pop(tree, sample); // Are we back at the root? if (tree->current_parent == tree->root) { // Disconnect all samples from the root and pack in the chosen message queue Sample* root = tree->root; root->first_child = NULL; root->last_child = NULL; root->nb_children = 0; AddSampleTreeMessage(queue, sample, tree->allocator, ts->name, ts); return RMT_TRUE; } return RMT_FALSE; } /* ------------------------------------------------------------------------------------------------------------------------ ------------------------------------------------------------------------------------------------------------------------ @REMOTERY: Remotery ------------------------------------------------------------------------------------------------------------------------ ------------------------------------------------------------------------------------------------------------------------ */ #if RMT_USE_D3D11 typedef struct D3D11 D3D11; static rmtError D3D11_Create(D3D11** d3d11); static void D3D11_Destructor(D3D11* d3d11); #endif #if RMT_USE_OPENGL typedef struct OpenGL OpenGL; static rmtError OpenGL_Create(OpenGL** opengl); static void OpenGL_Destructor(OpenGL* opengl); #endif struct Remotery { Server* server; // Microsecond accuracy timer for CPU timestamps usTimer timer; rmtTLS thread_sampler_tls_handle; // Linked list of all known threads being sampled ThreadSampler* volatile first_thread_sampler; // Queue between clients and main remotery thread MessageQueue* mq_to_rmt_thread; // A dynamically-sized buffer used for encoding the sample tree as JSON and sending to the client Buffer* json_buf; // The main server thread Thread* thread; #if RMT_USE_CUDA rmtCUDABind cuda; #endif #if RMT_USE_D3D11 D3D11* d3d11; #endif #if RMT_USE_OPENGL OpenGL* opengl; #endif }; // // Global remotery context // static Remotery* g_Remotery = NULL; // // This flag marks the EXE/DLL that created the global remotery instance. We want to allow // only the creating EXE/DLL to destroy the remotery instance. // static rmtBool g_RemoteryCreated = RMT_FALSE; static void Remotery_DestroyThreadSamplers(Remotery* rmt); static const rmtU8 g_DecimalToHex[17] = "0123456789abcdef"; static void GetSampleDigest(Sample* sample, rmtU32* digest_hash, rmtU32* nb_samples) { Sample* child; assert(sample != NULL); assert(digest_hash != NULL); assert(nb_samples != NULL); // Concatenate this sample (*nb_samples)++; *digest_hash = MurmurHash3_x86_32(&sample->unique_id, sizeof(sample->unique_id), *digest_hash); { rmtU8 shift = 4; // Get 6 nibbles for lower 3 bytes of the unique sample ID rmtU8* sample_id = (rmtU8*)&sample->unique_id; rmtU8 hex_sample_id[6]; hex_sample_id[0] = sample_id[0] & 15; hex_sample_id[1] = sample_id[0] >> 4; hex_sample_id[2] = sample_id[1] & 15; hex_sample_id[3] = sample_id[1] >> 4; hex_sample_id[4] = sample_id[2] & 15; hex_sample_id[5] = sample_id[2] >> 4; // As the nibbles will be used as hex colour digits, shift them up to make pastel colours hex_sample_id[0] = minU8(hex_sample_id[0] + shift, 15); hex_sample_id[1] = minU8(hex_sample_id[1] + shift, 15); hex_sample_id[2] = minU8(hex_sample_id[2] + shift, 15); hex_sample_id[3] = minU8(hex_sample_id[3] + shift, 15); hex_sample_id[4] = minU8(hex_sample_id[4] + shift, 15); hex_sample_id[5] = minU8(hex_sample_id[5] + shift, 15); // Convert the nibbles to hex for the final colour sample->unique_id_html_colour[1] = g_DecimalToHex[hex_sample_id[0]]; sample->unique_id_html_colour[2] = g_DecimalToHex[hex_sample_id[1]]; sample->unique_id_html_colour[3] = g_DecimalToHex[hex_sample_id[2]]; sample->unique_id_html_colour[4] = g_DecimalToHex[hex_sample_id[3]]; sample->unique_id_html_colour[5] = g_DecimalToHex[hex_sample_id[4]]; sample->unique_id_html_colour[6] = g_DecimalToHex[hex_sample_id[5]]; } // Concatenate children for (child = sample->first_child; child != NULL; child = child->next_sibling) GetSampleDigest(child, digest_hash, nb_samples); } static rmtError Remotery_SendLogTextMessage(Remotery* rmt, Message* message) { assert(rmt != NULL); assert(message != NULL); return Server_Send(rmt->server, message->payload, message->payload_size, 20); } static rmtError json_SampleTree(Buffer* buffer, Msg_SampleTree* msg) { Sample* root_sample; char thread_name[64]; rmtU32 digest_hash = 0, nb_samples = 0; rmtError error; assert(buffer != NULL); assert(msg != NULL); // Get the message root sample root_sample = msg->root_sample; assert(root_sample != NULL); // Reset the buffer position to the start buffer->bytes_used = 0; // Add any sample types as a thread name post-fix to ensure they get their own viewer thread_name[0] = 0; strncat_s(thread_name, sizeof(thread_name), msg->thread_name, strnlen_s(msg->thread_name, 64)); if (root_sample->type == SampleType_CUDA) strncat_s(thread_name, sizeof(thread_name), " (CUDA)", 7); if (root_sample->type == SampleType_D3D11) strncat_s(thread_name, sizeof(thread_name), " (D3D11)", 8); if (root_sample->type == SampleType_OpenGL) strncat_s(thread_name, sizeof(thread_name), " (OpenGL)", 9); // Get digest hash of samples so that viewer can efficiently rebuild its tables GetSampleDigest(root_sample, &digest_hash, &nb_samples); // Build the sample data JSON_ERROR_CHECK(json_OpenObject(buffer)); JSON_ERROR_CHECK(json_FieldStr(buffer, "id", "SAMPLES")); JSON_ERROR_CHECK(json_Comma(buffer)); JSON_ERROR_CHECK(json_FieldStr(buffer, "thread_name", thread_name)); JSON_ERROR_CHECK(json_Comma(buffer)); JSON_ERROR_CHECK(json_FieldU64(buffer, "nb_samples", nb_samples)); JSON_ERROR_CHECK(json_Comma(buffer)); JSON_ERROR_CHECK(json_FieldU64(buffer, "sample_digest", digest_hash)); JSON_ERROR_CHECK(json_Comma(buffer)); JSON_ERROR_CHECK(json_SampleArray(buffer, root_sample, "samples")); JSON_ERROR_CHECK(json_CloseObject(buffer)); return RMT_ERROR_NONE; } #if RMT_USE_CUDA static rmtBool AreCUDASamplesReady(Sample* sample); static rmtBool GetCUDASampleTimes(Sample* root_sample, Sample* sample); #endif static rmtError Remotery_SendSampleTreeMessage(Remotery* rmt, Message* message) { Msg_SampleTree* sample_tree; rmtError error = RMT_ERROR_NONE; Sample* sample; assert(rmt != NULL); assert(message != NULL); // Get the message root sample sample_tree = (Msg_SampleTree*)message->payload; sample = sample_tree->root_sample; assert(sample != NULL); #if RMT_USE_CUDA if (sample->type == SampleType_CUDA) { // If these CUDA samples aren't ready yet, stick them to the back of the queue and continue rmtBool are_samples_ready; rmt_BeginCPUSample(AreCUDASamplesReady); are_samples_ready = AreCUDASamplesReady(sample); rmt_EndCPUSample(); if (!are_samples_ready) { AddSampleTreeMessage(rmt->mq_to_rmt_thread, sample, sample_tree->allocator, sample_tree->thread_name, message->thread_sampler); return RMT_ERROR_NONE; } // Retrieve timing of all CUDA samples rmt_BeginCPUSample(GetCUDASampleTimes); GetCUDASampleTimes(sample->parent, sample); rmt_EndCPUSample(); } #endif // Serialise the sample tree and send to the viewer with a reasonably long timeout as the size // of the sample data may be large error = json_SampleTree(rmt->json_buf, sample_tree); if (error == RMT_ERROR_NONE) error = Server_Send(rmt->server, rmt->json_buf->data, rmt->json_buf->bytes_used, 5000); // Release the sample tree back to its allocator FreeSampleTree(sample, sample_tree->allocator); return error; } static rmtError Remotery_ConsumeMessageQueue(Remotery* rmt) { rmtU32 nb_messages_sent = 0; const rmtU32 maxNbMessagesPerUpdate = g_Settings.maxNbMessagesPerUpdate; assert(rmt != NULL); // Absorb as many messages in the queue while disconnected if (Server_IsClientConnected(rmt->server) == RMT_FALSE) return RMT_ERROR_NONE; // Loop reading the max number of messages for this update while( nb_messages_sent++ < maxNbMessagesPerUpdate ) { rmtError error = RMT_ERROR_NONE; Message* message = MessageQueue_PeekNextMessage(rmt->mq_to_rmt_thread); if (message == NULL) break; switch (message->id) { // This shouldn't be possible case MsgID_NotReady: assert(RMT_FALSE); break; // Dispatch to message handler case MsgID_LogText: error = Remotery_SendLogTextMessage(rmt, message); break; case MsgID_SampleTree: error = Remotery_SendSampleTreeMessage(rmt, message); break; } // Consume the message before reacting to any errors MessageQueue_ConsumeNextMessage(rmt->mq_to_rmt_thread, message); if (error != RMT_ERROR_NONE) return error; } return RMT_ERROR_NONE; } static void Remotery_FlushMessageQueue(Remotery* rmt) { assert(rmt != NULL); // Loop reading all remaining messages for (;;) { Message* message = MessageQueue_PeekNextMessage(rmt->mq_to_rmt_thread); if (message == NULL) break; switch (message->id) { // These can be safely ignored case MsgID_NotReady: case MsgID_LogText: break; // Release all samples back to their allocators case MsgID_SampleTree: { Msg_SampleTree* sample_tree = (Msg_SampleTree*)message->payload; FreeSampleTree(sample_tree->root_sample, sample_tree->allocator); break; } } MessageQueue_ConsumeNextMessage(rmt->mq_to_rmt_thread, message); } } static rmtError Remotery_ThreadMain(Thread* thread) { Remotery* rmt = (Remotery*)thread->param; assert(rmt != NULL); rmt_SetCurrentThreadName("Remotery"); while (thread->request_exit == RMT_FALSE) { rmt_BeginCPUSample(Wakeup); rmt_BeginCPUSample(ServerUpdate); Server_Update(rmt->server); rmt_EndCPUSample(); rmt_BeginCPUSample(ConsumeMessageQueue); Remotery_ConsumeMessageQueue(rmt); rmt_EndCPUSample(); rmt_EndCPUSample(); // // [NOTE-A] // // Possible sequence of user events at this point: // // 1. Add samples to the queue. // 2. Shutdown remotery. // // This loop will exit with unrelease samples. // msSleep(g_Settings.msSleepBetweenServerUpdates); } // Release all samples to their allocators as a consequence of [NOTE-A] Remotery_FlushMessageQueue(rmt); return RMT_ERROR_NONE; } static rmtError Remotery_Constructor(Remotery* rmt) { rmtError error; assert(rmt != NULL); // Set default state rmt->server = NULL; rmt->thread_sampler_tls_handle = TLS_INVALID_HANDLE; rmt->first_thread_sampler = NULL; rmt->mq_to_rmt_thread = NULL; rmt->json_buf = NULL; rmt->thread = NULL; // Kick-off the timer usTimer_Init(&rmt->timer); // Allocate a TLS handle for the thread sampler error = tlsAlloc(&rmt->thread_sampler_tls_handle); if (error != RMT_ERROR_NONE) return error; // Create the server New_1( Server, rmt->server, g_Settings.port ); if (error != RMT_ERROR_NONE) return error; // Create the main message thread with only one page New_1(MessageQueue, rmt->mq_to_rmt_thread, g_Settings.messageQueueSizeInBytes); if (error != RMT_ERROR_NONE) return error; // Create the JSON serialisation buffer New_1(Buffer, rmt->json_buf, 4096); if (error != RMT_ERROR_NONE) return error; #if RMT_USE_CUDA rmt->cuda.CtxSetCurrent = NULL; rmt->cuda.EventCreate = NULL; rmt->cuda.EventDestroy = NULL; rmt->cuda.EventElapsedTime = NULL; rmt->cuda.EventQuery = NULL; rmt->cuda.EventRecord = NULL; #endif #if RMT_USE_D3D11 rmt->d3d11 = NULL; error = D3D11_Create(&rmt->d3d11); if (error != RMT_ERROR_NONE) return error; #endif #if RMT_USE_OPENGL rmt->opengl = NULL; error = OpenGL_Create(&rmt->opengl); if (error != RMT_ERROR_NONE) return error; #endif // Set as the global instance before creating any threads that uses it for sampling itself assert(g_Remotery == NULL); g_Remotery = rmt; g_RemoteryCreated = RMT_TRUE; // Ensure global instance writes complete before other threads get a chance to use it WriteFence(); // Create the main update thread once everything has been defined for the global remotery object New_2(Thread, rmt->thread, Remotery_ThreadMain, rmt); return error; } static void Remotery_Destructor(Remotery* rmt) { assert(rmt != NULL); // Join the remotery thread before clearing the global object as the thread is profiling itself Delete(Thread, rmt->thread); // Ensure this is the module that created it assert(g_RemoteryCreated == RMT_TRUE); assert(g_Remotery == rmt); g_Remotery = NULL; g_RemoteryCreated = RMT_FALSE; #if RMT_USE_D3D11 Delete(D3D11, rmt->d3d11); #endif #if RMT_USE_OPENGL Delete(OpenGL, rmt->opengl); #endif Delete(Buffer, rmt->json_buf); Delete(MessageQueue, rmt->mq_to_rmt_thread); Remotery_DestroyThreadSamplers(rmt); Delete(Server, rmt->server); if (rmt->thread_sampler_tls_handle != TLS_INVALID_HANDLE) { tlsFree(rmt->thread_sampler_tls_handle); rmt->thread_sampler_tls_handle = 0; } } static rmtError Remotery_GetThreadSampler(Remotery* rmt, ThreadSampler** thread_sampler) { ThreadSampler* ts; // Is there a thread sampler associated with this thread yet? assert(rmt != NULL); ts = (ThreadSampler*)tlsGet(rmt->thread_sampler_tls_handle); if (ts == NULL) { // Allocate on-demand rmtError error; New_0(ThreadSampler, *thread_sampler); if (error != RMT_ERROR_NONE) return error; ts = *thread_sampler; // Add to the beginning of the global linked list of thread samplers for (;;) { ThreadSampler* old_ts = rmt->first_thread_sampler; ts->next = old_ts; // If the old value is what we expect it to be then no other thread has // changed it since this thread sampler was used as a candidate first list item if (AtomicCompareAndSwapPointer((long* volatile*)&rmt->first_thread_sampler, (long*)old_ts, (long*)ts) == RMT_TRUE) break; } tlsSet(rmt->thread_sampler_tls_handle, ts); } assert(thread_sampler != NULL); *thread_sampler = ts; return RMT_ERROR_NONE; } static void Remotery_DestroyThreadSamplers(Remotery* rmt) { // If the handle failed to create in the first place then it shouldn't be possible to create thread samplers assert(rmt != NULL); if (rmt->thread_sampler_tls_handle == TLS_INVALID_HANDLE) { assert(rmt->first_thread_sampler == NULL); return; } // Keep popping thread samplers off the linked list until they're all gone // This does not make any assumptions, making it possible for thread samplers to be created while they're all // deleted. While this is erroneous calling code, this will prevent a confusing crash. while (rmt->first_thread_sampler != NULL) { ThreadSampler* ts; for (;;) { ThreadSampler* old_ts = rmt->first_thread_sampler; ThreadSampler* next_ts = old_ts->next; if (AtomicCompareAndSwapPointer((long* volatile*)&rmt->first_thread_sampler, (long*)old_ts, (long*)next_ts) == RMT_TRUE) { ts = old_ts; break; } } Delete(ThreadSampler, ts); } } static void* CRTMalloc(void* mm_context, rmtU32 size) { RMT_UNREFERENCED_PARAMETER(mm_context); return malloc((size_t)size); } static void CRTFree(void* mm_context, void* ptr) { RMT_UNREFERENCED_PARAMETER(mm_context); free(ptr); } static void* CRTRealloc(void* mm_context, void* ptr, rmtU32 size) { RMT_UNREFERENCED_PARAMETER(mm_context); return realloc(ptr, size); } RMT_API rmtSettings* _rmt_Settings(void) { // Default-initialize on first call if( g_SettingsInitialized == RMT_FALSE ) { g_Settings.port = 0x4597; g_Settings.msSleepBetweenServerUpdates = 10; g_Settings.messageQueueSizeInBytes = 64 * 1024; g_Settings.maxNbMessagesPerUpdate = 100; g_Settings.malloc = CRTMalloc; g_Settings.free = CRTFree; g_Settings.realloc = CRTRealloc; g_Settings.input_handler = NULL; g_Settings.input_handler_context = NULL; g_Settings.logFilename = "rmtLog.txt"; g_SettingsInitialized = RMT_TRUE; } return &g_Settings; } RMT_API rmtError _rmt_CreateGlobalInstance(Remotery** remotery) { rmtError error; // Default-initialise if user has not set values rmt_Settings(); // Creating the Remotery instance also records it as the global instance assert(remotery != NULL); New_0(Remotery, *remotery); return error; } RMT_API void _rmt_DestroyGlobalInstance(Remotery* remotery) { Delete(Remotery, remotery); } RMT_API void _rmt_SetGlobalInstance(Remotery* remotery) { // Default-initialise if user has not set values rmt_Settings(); g_Remotery = remotery; } RMT_API Remotery* _rmt_GetGlobalInstance(void) { return g_Remotery; } #ifdef RMT_PLATFORM_WINDOWS #pragma pack(push,8) typedef struct tagTHREADNAME_INFO { DWORD dwType; // Must be 0x1000. LPCSTR szName; // Pointer to name (in user addr space). DWORD dwThreadID; // Thread ID (-1=caller thread). DWORD dwFlags; // Reserved for future use, must be zero. } THREADNAME_INFO; #pragma pack(pop) #endif static void SetDebuggerThreadName(const char* name) { #ifdef RMT_PLATFORM_WINDOWS THREADNAME_INFO info; info.dwType = 0x1000; info.szName = name; info.dwThreadID = (DWORD)-1; info.dwFlags = 0; #ifndef __MINGW32__ __try { RaiseException(0x406D1388, 0, sizeof(info)/sizeof(ULONG_PTR), (ULONG_PTR*)&info); } __except(1 /* EXCEPTION_EXECUTE_HANDLER */) { } #endif #else RMT_UNREFERENCED_PARAMETER(name); #endif } RMT_API void _rmt_SetCurrentThreadName(rmtPStr thread_name) { ThreadSampler* ts; rsize_t slen; if (g_Remotery == NULL) return; // Get data for this thread if (Remotery_GetThreadSampler(g_Remotery, &ts) != RMT_ERROR_NONE) return; // Use strcat to strcpy the thread name over slen = strnlen_s(thread_name, sizeof(ts->name)); ts->name[0] = 0; strncat_s(ts->name, sizeof(ts->name), thread_name, slen); // Apply to the debugger SetDebuggerThreadName(thread_name); } static rmtBool QueueLine(MessageQueue* queue, char* text, rmtU32 size, struct ThreadSampler* thread_sampler) { Message* message; assert(queue != NULL); // String/JSON block/null terminate text[size++] = '\"'; text[size++] = '}'; text[size] = 0; // Allocate some space for the line message = MessageQueue_AllocMessage(queue, size, thread_sampler); if (message == NULL) return RMT_FALSE; // Copy the text and commit the message memcpy(message->payload, text, size); MessageQueue_CommitMessage(queue, message, MsgID_LogText); return RMT_TRUE; } static const char log_message[] = "{ \"id\": \"LOG\", \"text\": \""; RMT_API void _rmt_LogText(rmtPStr text) { int start_offset, prev_offset, i; char line_buffer[1024] = { 0 }; ThreadSampler* ts; if (g_Remotery == NULL) return; Remotery_GetThreadSampler(g_Remotery, &ts); // Start the line buffer off with the JSON message markup strncat_s(line_buffer, sizeof(line_buffer), log_message, sizeof(log_message)); start_offset = (int)strnlen_s(line_buffer, sizeof(line_buffer) - 1); // There might be newlines in the buffer, so split them into multiple network calls prev_offset = start_offset; for (i = 0; text[i] != 0; i++) { char c = text[i]; // Line wrap when too long or newline encountered if (prev_offset == sizeof(line_buffer) - 3 || c == '\n') { if (QueueLine(g_Remotery->mq_to_rmt_thread, line_buffer, prev_offset, ts) == RMT_FALSE) return; // Restart line prev_offset = start_offset; } // Safe to insert 2 characters here as previous check would split lines if not enough space left switch (c) { // Skip newline, dealt with above case '\n': break; // Escape these case '\\': line_buffer[prev_offset++] = '\\'; line_buffer[prev_offset++] = '\\'; break; case '\"': line_buffer[prev_offset++] = '\\'; line_buffer[prev_offset++] = '\"'; break; // Add the rest default: line_buffer[prev_offset++] = c; break; } } // Send the last line if (prev_offset > start_offset) { assert(prev_offset < ((int)sizeof(line_buffer) - 3)); QueueLine(g_Remotery->mq_to_rmt_thread, line_buffer, prev_offset, ts); } } static rmtU32 GetNameHash(rmtPStr name, rmtU32* hash_cache) { // Hash cache provided? if (hash_cache != NULL) { // Calculate the hash first time round only if (*hash_cache == 0) { assert(name != NULL); *hash_cache = MurmurHash3_x86_32(name, (int)strnlen_s(name, 256), 0); } return *hash_cache; } // Have to recalculate every time when no cache storage exists return MurmurHash3_x86_32(name, (int)strnlen_s(name, 256), 0); } RMT_API void _rmt_BeginCPUSample(rmtPStr name, rmtU32* hash_cache) { // 'hash_cache' stores a pointer to a sample name's hash value. Internally this is used to identify unique callstacks and it // would be ideal that it's not recalculated each time the sample is used. This can be statically cached at the point // of call or stored elsewhere when dynamic names are required. // // If 'hash_cache' is NULL then this call becomes more expensive, as it has to recalculate the hash of the name. ThreadSampler* ts; if (g_Remotery == NULL) return; // TODO: Time how long the bits outside here cost and subtract them from the parent if (Remotery_GetThreadSampler(g_Remotery, &ts) == RMT_ERROR_NONE) { Sample* sample; rmtU32 name_hash = GetNameHash(name, hash_cache); if (ThreadSampler_Push(ts, ts->sample_trees[SampleType_CPU], name, name_hash, &sample) == RMT_ERROR_NONE) sample->us_start = usTimer_Get(&g_Remotery->timer); } } RMT_API void _rmt_EndCPUSample(void) { ThreadSampler* ts; if (g_Remotery == NULL) return; if (Remotery_GetThreadSampler(g_Remotery, &ts) == RMT_ERROR_NONE) { Sample* sample = ts->sample_trees[SampleType_CPU]->current_parent; sample->us_end = usTimer_Get(&g_Remotery->timer); ThreadSampler_Pop(ts, g_Remotery->mq_to_rmt_thread, sample); } } /* ------------------------------------------------------------------------------------------------------------------------ ------------------------------------------------------------------------------------------------------------------------ @CUDA: CUDA event sampling ------------------------------------------------------------------------------------------------------------------------ ------------------------------------------------------------------------------------------------------------------------ */ #if RMT_USE_CUDA typedef struct CUDASample { // IS-A inheritance relationship Sample Sample; // Pair of events that wrap the sample CUevent event_start; CUevent event_end; } CUDASample; static rmtError MapCUDAResult(CUresult result) { switch (result) { case CUDA_SUCCESS: return RMT_ERROR_NONE; case CUDA_ERROR_DEINITIALIZED: return RMT_ERROR_CUDA_DEINITIALIZED; case CUDA_ERROR_NOT_INITIALIZED: return RMT_ERROR_CUDA_NOT_INITIALIZED; case CUDA_ERROR_INVALID_CONTEXT: return RMT_ERROR_CUDA_INVALID_CONTEXT; case CUDA_ERROR_INVALID_VALUE: return RMT_ERROR_CUDA_INVALID_VALUE; case CUDA_ERROR_INVALID_HANDLE: return RMT_ERROR_CUDA_INVALID_HANDLE; case CUDA_ERROR_OUT_OF_MEMORY: return RMT_ERROR_CUDA_OUT_OF_MEMORY; case CUDA_ERROR_NOT_READY: return RMT_ERROR_ERROR_NOT_READY; default: return RMT_ERROR_CUDA_UNKNOWN; } } #define CUDA_MAKE_FUNCTION(name, params) \ typedef CUresult (CUDAAPI *name##Ptr) params; \ name##Ptr name = (name##Ptr)g_Remotery->cuda.name; #define CUDA_GUARD(call) \ { \ rmtError error = call; \ if (error != RMT_ERROR_NONE) \ return error; \ } // Wrappers around CUDA driver functions that manage the active context. static rmtError CUDASetContext(void* context) { CUDA_MAKE_FUNCTION(CtxSetCurrent, (CUcontext ctx)); assert(CtxSetCurrent != NULL); return MapCUDAResult(CtxSetCurrent((CUcontext)context)); } static rmtError CUDAGetContext(void** context) { CUDA_MAKE_FUNCTION(CtxGetCurrent, (CUcontext* ctx)); assert(CtxGetCurrent != NULL); return MapCUDAResult(CtxGetCurrent((CUcontext*)context)); } static rmtError CUDAEnsureContext() { void* current_context; CUDA_GUARD(CUDAGetContext(¤t_context)); assert(g_Remotery != NULL); if (current_context != g_Remotery->cuda.context) CUDA_GUARD(CUDASetContext(g_Remotery->cuda.context)); return RMT_ERROR_NONE; } // Wrappers around CUDA driver functions that manage events static rmtError CUDAEventCreate(CUevent* phEvent, unsigned int Flags) { CUDA_MAKE_FUNCTION(EventCreate, (CUevent *phEvent, unsigned int Flags)); CUDA_GUARD(CUDAEnsureContext()); return MapCUDAResult(EventCreate(phEvent, Flags)); } static rmtError CUDAEventDestroy(CUevent hEvent) { CUDA_MAKE_FUNCTION(EventDestroy, (CUevent hEvent)); CUDA_GUARD(CUDAEnsureContext()); return MapCUDAResult(EventDestroy(hEvent)); } static rmtError CUDAEventRecord(CUevent hEvent, void* hStream) { CUDA_MAKE_FUNCTION(EventRecord, (CUevent hEvent, CUstream hStream)); CUDA_GUARD(CUDAEnsureContext()); return MapCUDAResult(EventRecord(hEvent, (CUstream)hStream)); } static rmtError CUDAEventQuery(CUevent hEvent) { CUDA_MAKE_FUNCTION(EventQuery, (CUevent hEvent)); CUDA_GUARD(CUDAEnsureContext()); return MapCUDAResult(EventQuery(hEvent)); } static rmtError CUDAEventElapsedTime(float* pMilliseconds, CUevent hStart, CUevent hEnd) { CUDA_MAKE_FUNCTION(EventElapsedTime, (float *pMilliseconds, CUevent hStart, CUevent hEnd)); CUDA_GUARD(CUDAEnsureContext()); return MapCUDAResult(EventElapsedTime(pMilliseconds, hStart, hEnd)); } static rmtError CUDASample_Constructor(CUDASample* sample) { rmtError error; assert(sample != NULL); // Chain to sample constructor Sample_Constructor((Sample*)sample); sample->Sample.type = SampleType_CUDA; sample->Sample.size_bytes = sizeof(CUDASample); sample->event_start = NULL; sample->event_end = NULL; // Create non-blocking events with timing assert(g_Remotery != NULL); error = CUDAEventCreate(&sample->event_start, CU_EVENT_DEFAULT); if (error == RMT_ERROR_NONE) error = CUDAEventCreate(&sample->event_end, CU_EVENT_DEFAULT); return error; } static void CUDASample_Destructor(CUDASample* sample) { assert(sample != NULL); // Destroy events if (sample->event_start != NULL) CUDAEventDestroy(sample->event_start); if (sample->event_end != NULL) CUDAEventDestroy(sample->event_end); Sample_Destructor((Sample*)sample); } static rmtBool AreCUDASamplesReady(Sample* sample) { rmtError error; Sample* child; CUDASample* cuda_sample = (CUDASample*)sample; assert(sample->type == SampleType_CUDA); // Check to see if both of the CUDA events have been processed error = CUDAEventQuery(cuda_sample->event_start); if (error != RMT_ERROR_NONE) return RMT_FALSE; error = CUDAEventQuery(cuda_sample->event_end); if (error != RMT_ERROR_NONE) return RMT_FALSE; // Check child sample events for (child = sample->first_child; child != NULL; child = child->next_sibling) { if (!AreCUDASamplesReady(child)) return RMT_FALSE; } return RMT_TRUE; } static rmtBool GetCUDASampleTimes(Sample* root_sample, Sample* sample) { Sample* child; CUDASample* cuda_root_sample = (CUDASample*)root_sample; CUDASample* cuda_sample = (CUDASample*)sample; float ms_start, ms_end; assert(root_sample != NULL); assert(sample != NULL); // Get millisecond timing of each sample event, relative to initial root sample if (CUDAEventElapsedTime(&ms_start, cuda_root_sample->event_start, cuda_sample->event_start) != RMT_ERROR_NONE) return RMT_FALSE; if (CUDAEventElapsedTime(&ms_end, cuda_root_sample->event_start, cuda_sample->event_end) != RMT_ERROR_NONE) return RMT_FALSE; // Convert to microseconds and add to the sample sample->us_start = (rmtU64)(ms_start * 1000); sample->us_end = (rmtU64)(ms_end * 1000); // Get child sample times for (child = sample->first_child; child != NULL; child = child->next_sibling) { if (!GetCUDASampleTimes(root_sample, child)) return RMT_FALSE; } return RMT_TRUE; } RMT_API void _rmt_BindCUDA(const rmtCUDABind* bind) { assert(bind != NULL); if (g_Remotery != NULL) g_Remotery->cuda = *bind; } RMT_API void _rmt_BeginCUDASample(rmtPStr name, rmtU32* hash_cache, void* stream) { ThreadSampler* ts; if (g_Remotery == NULL) return; if (Remotery_GetThreadSampler(g_Remotery, &ts) == RMT_ERROR_NONE) { rmtError error; Sample* sample; rmtU32 name_hash = GetNameHash(name, hash_cache); // Create the CUDA tree on-demand as the tree needs an up-front-created root. // This is not possible to create on initialisation as a CUDA binding is not yet available. SampleTree** cuda_tree = &ts->sample_trees[SampleType_CUDA]; if (*cuda_tree == NULL) { CUDASample* root_sample; New_3(SampleTree, *cuda_tree, sizeof(CUDASample), (ObjConstructor)CUDASample_Constructor, (ObjDestructor)CUDASample_Destructor); if (error != RMT_ERROR_NONE) return; // Record an event once on the root sample, used to measure absolute sample // times since this point root_sample = (CUDASample*)(*cuda_tree)->root; error = CUDAEventRecord(root_sample->event_start, stream); if (error != RMT_ERROR_NONE) return; } // Push the same and record its event if (ThreadSampler_Push(ts, *cuda_tree, name, name_hash, &sample) == RMT_ERROR_NONE) { CUDASample* cuda_sample = (CUDASample*)sample; CUDAEventRecord(cuda_sample->event_start, stream); } } } RMT_API void _rmt_EndCUDASample(void* stream) { ThreadSampler* ts; if (g_Remotery == NULL) return; if (Remotery_GetThreadSampler(g_Remotery, &ts) == RMT_ERROR_NONE) { CUDASample* sample = (CUDASample*)ts->sample_trees[SampleType_CUDA]->current_parent; CUDAEventRecord(sample->event_end, stream); ThreadSampler_Pop(ts, g_Remotery->mq_to_rmt_thread, (Sample*)sample); } } #endif // RMT_USE_CUDA /* ------------------------------------------------------------------------------------------------------------------------ ------------------------------------------------------------------------------------------------------------------------ @D3D11: Direct3D 11 event sampling ------------------------------------------------------------------------------------------------------------------------ ------------------------------------------------------------------------------------------------------------------------ */ #if RMT_USE_D3D11 // As clReflect has no way of disabling C++ compile mode, this forces C interfaces everywhere... #define CINTERFACE // ...unfortunately these C++ helpers aren't wrapped by the same macro but they can be disabled individually #define D3D11_NO_HELPERS // Allow use of the D3D11 helper macros for accessing the C-style vtable #define COBJMACROS #include typedef struct D3D11 { // Context set by user ID3D11Device* device; ID3D11DeviceContext* context; HRESULT last_error; // An allocator separate to the samples themselves so that D3D resource lifetime can be controlled // outside of the Remotery thread. ObjectAllocator* timestamp_allocator; // Queue to the D3D 11 main update thread // Given that BeginSample/EndSample need to be called from the same thread that does the update, there // is really no need for this to be a thread-safe queue. I'm using it for its convenience. MessageQueue* mq_to_d3d11_main; // Mark the first time so that remaining timestamps are offset from this rmtU64 first_timestamp; } D3D11; static rmtError D3D11_Create(D3D11** d3d11) { rmtError error; assert(d3d11 != NULL); // Allocate space for the D3D11 data *d3d11 = (D3D11*)rmtMalloc(sizeof(D3D11)); if (*d3d11 == NULL) return RMT_ERROR_MALLOC_FAIL; // Set defaults (*d3d11)->device = NULL; (*d3d11)->context = NULL; (*d3d11)->last_error = S_OK; (*d3d11)->timestamp_allocator = NULL; (*d3d11)->mq_to_d3d11_main = NULL; (*d3d11)->first_timestamp = 0; New_1(MessageQueue, (*d3d11)->mq_to_d3d11_main, g_Settings.messageQueueSizeInBytes); if (error != RMT_ERROR_NONE) { Delete(D3D11, *d3d11); return error; } return RMT_ERROR_NONE; } static void D3D11_Destructor(D3D11* d3d11) { assert(d3d11 != NULL); Delete(ObjectAllocator, d3d11->timestamp_allocator); Delete(MessageQueue, d3d11->mq_to_d3d11_main); } typedef struct D3D11Timestamp { // Inherit so that timestamps can be quickly allocated ObjectLink Link; // Pair of timestamp queries that wrap the sample ID3D11Query* query_start; ID3D11Query* query_end; // A disjoint to measure frequency/stability // TODO: Does *each* sample need one of these? ID3D11Query* query_disjoint; } D3D11Timestamp; static rmtError D3D11Timestamp_Constructor(D3D11Timestamp* stamp) { D3D11_QUERY_DESC timestamp_desc; D3D11_QUERY_DESC disjoint_desc; ID3D11Device* device; HRESULT* last_error; assert(stamp != NULL); ObjectLink_Constructor((ObjectLink*)stamp); // Set defaults stamp->query_start = NULL; stamp->query_end = NULL; stamp->query_disjoint = NULL; assert(g_Remotery != NULL); assert(g_Remotery->d3d11 != NULL); device = g_Remotery->d3d11->device; last_error = &g_Remotery->d3d11->last_error; // Create start/end timestamp queries timestamp_desc.Query = D3D11_QUERY_TIMESTAMP; timestamp_desc.MiscFlags = 0; *last_error = ID3D11Device_CreateQuery(device, ×tamp_desc, &stamp->query_start); if (*last_error != S_OK) return RMT_ERROR_D3D11_FAILED_TO_CREATE_QUERY; *last_error = ID3D11Device_CreateQuery(device, ×tamp_desc, &stamp->query_end); if (*last_error != S_OK) return RMT_ERROR_D3D11_FAILED_TO_CREATE_QUERY; // Create disjoint query disjoint_desc.Query = D3D11_QUERY_TIMESTAMP_DISJOINT; disjoint_desc.MiscFlags = 0; *last_error = ID3D11Device_CreateQuery(device, &disjoint_desc, &stamp->query_disjoint); if (*last_error != S_OK) return RMT_ERROR_D3D11_FAILED_TO_CREATE_QUERY; return RMT_ERROR_NONE; } static void D3D11Timestamp_Destructor(D3D11Timestamp* stamp) { assert(stamp != NULL); // Destroy queries if (stamp->query_disjoint != NULL) ID3D11Query_Release(stamp->query_disjoint); if (stamp->query_end != NULL) ID3D11Query_Release(stamp->query_end); if (stamp->query_start != NULL) ID3D11Query_Release(stamp->query_start); } static void D3D11Timestamp_Begin(D3D11Timestamp* stamp, ID3D11DeviceContext* context) { assert(stamp != NULL); // Start of disjoint and first query ID3D11DeviceContext_Begin(context, (ID3D11Asynchronous*)stamp->query_disjoint); ID3D11DeviceContext_End(context, (ID3D11Asynchronous*)stamp->query_start); } static void D3D11Timestamp_End(D3D11Timestamp* stamp, ID3D11DeviceContext* context) { assert(stamp != NULL); // End of disjoint and second query ID3D11DeviceContext_End(context, (ID3D11Asynchronous*)stamp->query_end); ID3D11DeviceContext_End(context, (ID3D11Asynchronous*)stamp->query_disjoint); } static HRESULT D3D11Timestamp_GetData(D3D11Timestamp* stamp, ID3D11DeviceContext* context, rmtU64* out_start, rmtU64* out_end, rmtU64* out_first_timestamp) { ID3D11Asynchronous* query_start; ID3D11Asynchronous* query_end; ID3D11Asynchronous* query_disjoint; HRESULT result; UINT64 start; UINT64 end; D3D11_QUERY_DATA_TIMESTAMP_DISJOINT disjoint; assert(stamp != NULL); query_start = (ID3D11Asynchronous*)stamp->query_start; query_end = (ID3D11Asynchronous*)stamp->query_end; query_disjoint = (ID3D11Asynchronous*)stamp->query_disjoint; // Check to see if all queries are ready // If any fail to arrive, wait until later result = ID3D11DeviceContext_GetData(context, query_start, &start, sizeof(start), D3D11_ASYNC_GETDATA_DONOTFLUSH); if (result != S_OK) return result; result = ID3D11DeviceContext_GetData(context, query_end, &end, sizeof(end), D3D11_ASYNC_GETDATA_DONOTFLUSH); if (result != S_OK) return result; result = ID3D11DeviceContext_GetData(context, query_disjoint, &disjoint, sizeof(disjoint), D3D11_ASYNC_GETDATA_DONOTFLUSH); if (result != S_OK) return result; if (disjoint.Disjoint == FALSE) { double frequency = disjoint.Frequency / 1000000.0; // Mark the first timestamp assert(out_first_timestamp != NULL); if (*out_first_timestamp == 0) *out_first_timestamp = start; // Calculate start and end timestamps from the disjoint info *out_start = (rmtU64)((start - *out_first_timestamp) / frequency); *out_end = (rmtU64)((end - *out_first_timestamp) / frequency); } return S_OK; } typedef struct D3D11Sample { // IS-A inheritance relationship Sample Sample; D3D11Timestamp* timestamp; } D3D11Sample; static rmtError D3D11Sample_Constructor(D3D11Sample* sample) { assert(sample != NULL); // Chain to sample constructor Sample_Constructor((Sample*)sample); sample->Sample.type = SampleType_D3D11; sample->Sample.size_bytes = sizeof(D3D11Sample); sample->timestamp = NULL; return RMT_ERROR_NONE; } static void D3D11Sample_Destructor(D3D11Sample* sample) { Sample_Destructor((Sample*)sample); } RMT_API void _rmt_BindD3D11(void* device, void* context) { if (g_Remotery != NULL) { assert(g_Remotery->d3d11 != NULL); assert(device != NULL); g_Remotery->d3d11->device = (ID3D11Device*)device; assert(context != NULL); g_Remotery->d3d11->context = (ID3D11DeviceContext*)context; } } static void FreeD3D11TimeStamps(Sample* sample) { Sample* child; D3D11Sample* d3d_sample = (D3D11Sample*)sample; assert(g_Remotery != NULL); assert(g_Remotery->d3d11 != NULL); assert(d3d_sample->timestamp != NULL); ObjectAllocator_Free(g_Remotery->d3d11->timestamp_allocator, (void*)d3d_sample->timestamp); d3d_sample->timestamp = NULL; for (child = sample->first_child; child != NULL; child = child->next_sibling) FreeD3D11TimeStamps(child); } RMT_API void _rmt_UnbindD3D11(void) { if (g_Remotery != NULL) { D3D11* d3d11 = g_Remotery->d3d11; assert(d3d11 != NULL); // Inform sampler to not add any more samples d3d11->device = NULL; d3d11->context = NULL; // Flush the main queue of allocated D3D timestamps for (;;) { Msg_SampleTree* sample_tree; Sample* sample; Message* message = MessageQueue_PeekNextMessage(d3d11->mq_to_d3d11_main); if (message == NULL) break; // There's only one valid message type in this queue assert(message->id == MsgID_SampleTree); sample_tree = (Msg_SampleTree*)message->payload; sample = sample_tree->root_sample; assert(sample->type == SampleType_D3D11); FreeD3D11TimeStamps(sample); FreeSampleTree(sample, sample_tree->allocator); MessageQueue_ConsumeNextMessage(d3d11->mq_to_d3d11_main, message); } // Free all allocated D3D resources Delete(ObjectAllocator, d3d11->timestamp_allocator); } } RMT_API void _rmt_BeginD3D11Sample(rmtPStr name, rmtU32* hash_cache) { ThreadSampler* ts; D3D11* d3d11; if (g_Remotery == NULL) return; // Has D3D11 been unbound? d3d11 = g_Remotery->d3d11; assert(d3d11 != NULL); if (d3d11->device == NULL || d3d11->context == NULL) return; if (Remotery_GetThreadSampler(g_Remotery, &ts) == RMT_ERROR_NONE) { rmtError error; Sample* sample; rmtU32 name_hash = GetNameHash(name, hash_cache); // Create the D3D11 tree on-demand as the tree needs an up-front-created root. // This is not possible to create on initialisation as a D3D11 binding is not yet available. SampleTree** d3d_tree = &ts->sample_trees[SampleType_D3D11]; if (*d3d_tree == NULL) { New_3(SampleTree, *d3d_tree, sizeof(D3D11Sample), (ObjConstructor)D3D11Sample_Constructor, (ObjDestructor)D3D11Sample_Destructor); if (error != RMT_ERROR_NONE) return; } // Also create the timestamp allocator on-demand to keep the D3D11 code localised to the same file section if (d3d11->timestamp_allocator == NULL) New_3(ObjectAllocator, d3d11->timestamp_allocator, sizeof(D3D11Timestamp), (ObjConstructor)D3D11Timestamp_Constructor, (ObjDestructor)D3D11Timestamp_Destructor); // Push the sample if (ThreadSampler_Push(ts, *d3d_tree, name, name_hash, &sample) == RMT_ERROR_NONE) { D3D11Sample* d3d_sample = (D3D11Sample*)sample; // Allocate a timestamp for the sample and activate it assert(d3d_sample->timestamp == NULL); error = ObjectAllocator_Alloc(d3d11->timestamp_allocator, (void**)&d3d_sample->timestamp); if (error == RMT_ERROR_NONE) D3D11Timestamp_Begin(d3d_sample->timestamp, d3d11->context); } } } static rmtBool GetD3D11SampleTimes(Sample* sample, rmtU64* out_first_timestamp) { Sample* child; D3D11Sample* d3d_sample = (D3D11Sample*)sample; assert(sample != NULL); if (d3d_sample->timestamp != NULL) { HRESULT result; D3D11* d3d11 = g_Remotery->d3d11; assert(d3d11 != NULL); result = D3D11Timestamp_GetData( d3d_sample->timestamp, d3d11->context, &sample->us_start, &sample->us_end, out_first_timestamp); if (result != S_OK) { d3d11->last_error = result; return RMT_FALSE; } } // Get child sample times for (child = sample->first_child; child != NULL; child = child->next_sibling) { if (!GetD3D11SampleTimes(child, out_first_timestamp)) return RMT_FALSE; } return RMT_TRUE; } static void UpdateD3D11Frame(void) { D3D11* d3d11; if (g_Remotery == NULL) return; d3d11 = g_Remotery->d3d11; assert(d3d11 != NULL); rmt_BeginCPUSample(rmt_UpdateD3D11Frame); // Process all messages in the D3D queue for (;;) { Msg_SampleTree* sample_tree; Sample* sample; Message* message = MessageQueue_PeekNextMessage(d3d11->mq_to_d3d11_main); if (message == NULL) break; // There's only one valid message type in this queue assert(message->id == MsgID_SampleTree); sample_tree = (Msg_SampleTree*)message->payload; sample = sample_tree->root_sample; assert(sample->type == SampleType_D3D11); // Retrieve timing of all D3D11 samples // If they aren't ready leave the message unconsumed, holding up later frames and maintaining order if (!GetD3D11SampleTimes(sample, &d3d11->first_timestamp)) break; // Pass samples onto the remotery thread for sending to the viewer FreeD3D11TimeStamps(sample); AddSampleTreeMessage(g_Remotery->mq_to_rmt_thread, sample, sample_tree->allocator, sample_tree->thread_name, message->thread_sampler); MessageQueue_ConsumeNextMessage(d3d11->mq_to_d3d11_main, message); } rmt_EndCPUSample(); } RMT_API void _rmt_EndD3D11Sample(void) { ThreadSampler* ts; D3D11* d3d11; if (g_Remotery == NULL) return; // Has D3D11 been unbound? d3d11 = g_Remotery->d3d11; assert(d3d11 != NULL); if (d3d11->device == NULL || d3d11->context == NULL) return; if (Remotery_GetThreadSampler(g_Remotery, &ts) == RMT_ERROR_NONE) { // Close the timestamp D3D11Sample* d3d_sample = (D3D11Sample*)ts->sample_trees[SampleType_D3D11]->current_parent; if (d3d_sample->timestamp != NULL) D3D11Timestamp_End(d3d_sample->timestamp, d3d11->context); // Send to the update loop for ready-polling if (ThreadSampler_Pop(ts, d3d11->mq_to_d3d11_main, (Sample*)d3d_sample)) // Perform ready-polling on popping of the root sample UpdateD3D11Frame(); } } #endif // RMT_USE_D3D11 /* ------------------------------------------------------------------------------------------------------------------------ ------------------------------------------------------------------------------------------------------------------------ @OpenGL: OpenGL event sampling ------------------------------------------------------------------------------------------------------------------------ ------------------------------------------------------------------------------------------------------------------------ */ #if RMT_USE_OPENGL #ifndef APIENTRY # if defined(__MINGW32__) || defined(__CYGWIN__) # define APIENTRY __stdcall # elif (_MSC_VER >= 800) || defined(_STDCALL_SUPPORTED) || defined(__BORLANDC__) # define APIENTRY __stdcall # else # define APIENTRY # endif #endif #ifndef GLAPI # if defined(__MINGW32__) || defined(__CYGWIN__) # define GLAPI extern # elif defined (_WIN32) # define GLAPI WINGDIAPI # else # define GLAPI extern # endif #endif #ifndef GLAPIENTRY #define GLAPIENTRY APIENTRY #endif typedef rmtU32 GLenum; typedef rmtU32 GLuint; typedef rmtS32 GLint; typedef rmtS32 GLsizei; typedef rmtU64 GLuint64; typedef rmtS64 GLint64; typedef unsigned char GLubyte; typedef void (GLAPIENTRY * PFNGLGENQUERIESPROC) (GLsizei n, GLuint* ids); typedef void (GLAPIENTRY * PFNGLDELETEQUERIESPROC) (GLsizei n, const GLuint* ids); typedef void (GLAPIENTRY * PFNGLBEGINQUERYPROC) (GLenum target, GLuint id); typedef void (GLAPIENTRY * PFNGLENDQUERYPROC) (GLenum target); typedef void (GLAPIENTRY * PFNGLGETQUERYOBJECTIVPROC) (GLuint id, GLenum pname, GLint* params); typedef void (GLAPIENTRY * PFNGLGETQUERYOBJECTUIVPROC) (GLuint id, GLenum pname, GLuint* params); typedef void (GLAPIENTRY * PFNGLGETQUERYOBJECTI64VPROC) (GLuint id, GLenum pname, GLint64* params); typedef void (GLAPIENTRY * PFNGLGETQUERYOBJECTUI64VPROC) (GLuint id, GLenum pname, GLuint64* params); typedef void (GLAPIENTRY * PFNGLQUERYCOUNTERPROC) (GLuint id, GLenum target); GLAPI GLenum GLAPIENTRY glGetError(void); #define GL_NO_ERROR 0 #define GL_QUERY_RESULT 0x8866 #define GL_QUERY_RESULT_AVAILABLE 0x8867 #define GL_TIME_ELAPSED 0x88BF #define GL_TIMESTAMP 0x8E28 // Not sure which platforms we need #if defined(_WIN32) # define rmtGetProcAddress(name) wglGetProcAddress((LPCSTR)name) #elif defined(__APPLE__) && !defined(GLEW_APPLE_GLX) # define rmtGetProcAddress(name) NSGLGetProcAddress(name) #elif defined(__sgi) || defined(__sun) # define rmtGetProcAddress(name) dlGetProcAddress(name) #elif defined(__ANDROID__) # define rmtGetProcAddress(name) NULL /* TODO */ #elif defined(__native_client__) # define rmtGetProcAddress(name) NULL /* TODO */ #else /* __linux */ extern void* glXGetProcAddressARB(const GLubyte*); # define rmtGetProcAddress(name) (*glXGetProcAddressARB)(name) #endif #define RMT_GL_GET_FUN(x) assert(g_Remotery->opengl->x != NULL), g_Remotery->opengl->x #define glGenQueries RMT_GL_GET_FUN(__glGenQueries) #define glDeleteQueries RMT_GL_GET_FUN(__glDeleteQueries) #define glBeginQuery RMT_GL_GET_FUN(__glBeginQuery) #define glEndQuery RMT_GL_GET_FUN(__glEndQuery) #define glGetQueryObjectiv RMT_GL_GET_FUN(__glGetQueryObjectiv) #define glGetQueryObjectuiv RMT_GL_GET_FUN(__glGetQueryObjectuiv) #define glGetQueryObjecti64v RMT_GL_GET_FUN(__glGetQueryObjecti64v) #define glGetQueryObjectui64v RMT_GL_GET_FUN(__glGetQueryObjectui64v) #define glQueryCounter RMT_GL_GET_FUN(__glQueryCounter) typedef struct OpenGL { PFNGLGENQUERIESPROC __glGenQueries; PFNGLDELETEQUERIESPROC __glDeleteQueries; PFNGLBEGINQUERYPROC __glBeginQuery; PFNGLENDQUERYPROC __glEndQuery; PFNGLGETQUERYOBJECTIVPROC __glGetQueryObjectiv; PFNGLGETQUERYOBJECTUIVPROC __glGetQueryObjectuiv; PFNGLGETQUERYOBJECTI64VPROC __glGetQueryObjecti64v; PFNGLGETQUERYOBJECTUI64VPROC __glGetQueryObjectui64v; PFNGLQUERYCOUNTERPROC __glQueryCounter; // An allocator separate to the samples themselves so that OpenGL resource lifetime can be controlled // outside of the Remotery thread. ObjectAllocator* timestamp_allocator; // Queue to the OpenGL main update thread // Given that BeginSample/EndSample need to be called from the same thread that does the update, there // is really no need for this to be a thread-safe queue. I'm using it for its convenience. MessageQueue* mq_to_opengl_main; // Mark the first time so that remaining timestamps are offset from this rmtU64 first_timestamp; } OpenGL; static rmtError OpenGL_Create(OpenGL** opengl) { rmtError error; assert(opengl != NULL); *opengl = (OpenGL*)rmtMalloc(sizeof(OpenGL)); if (*opengl == NULL) return RMT_ERROR_MALLOC_FAIL; (*opengl)->__glGenQueries = NULL; (*opengl)->__glDeleteQueries = NULL; (*opengl)->__glBeginQuery = NULL; (*opengl)->__glEndQuery = NULL; (*opengl)->__glGetQueryObjectiv = NULL; (*opengl)->__glGetQueryObjectuiv = NULL; (*opengl)->__glGetQueryObjecti64v = NULL; (*opengl)->__glGetQueryObjectui64v = NULL; (*opengl)->__glQueryCounter = NULL; (*opengl)->timestamp_allocator = NULL; (*opengl)->mq_to_opengl_main = NULL; (*opengl)->first_timestamp = 0; New_1(MessageQueue, (*opengl)->mq_to_opengl_main, g_Settings.messageQueueSizeInBytes); return error; } static void OpenGL_Destructor(OpenGL* opengl) { assert(opengl != NULL); Delete(ObjectAllocator, opengl->timestamp_allocator); Delete(MessageQueue, opengl->mq_to_opengl_main); } typedef struct OpenGLTimestamp { // Inherit so that timestamps can be quickly allocated ObjectLink Link; // Pair of timestamp queries that wrap the sample GLuint queries[2]; } OpenGLTimestamp; static rmtError OpenGLTimestamp_Constructor(OpenGLTimestamp* stamp) { int error; assert(stamp != NULL); ObjectLink_Constructor((ObjectLink*)stamp); // Set defaults stamp->queries[0] = stamp->queries[1] = 0; // Create start/end timestamp queries assert(g_Remotery != NULL); glGenQueries(2, stamp->queries); error = glGetError(); if (error != GL_NO_ERROR) return RMT_ERROR_OPENGL_ERROR; return RMT_ERROR_NONE; } static void OpenGLTimestamp_Destructor(OpenGLTimestamp* stamp) { assert(stamp != NULL); // Destroy queries if (stamp->queries[0] != 0) { int error; glDeleteQueries(2, stamp->queries); error = glGetError(); assert(error == GL_NO_ERROR); } } static void OpenGLTimestamp_Begin(OpenGLTimestamp* stamp) { int error; assert(stamp != NULL); // Start of disjoint and first query assert(g_Remotery != NULL); glQueryCounter(stamp->queries[0], GL_TIMESTAMP); error = glGetError(); assert(error == GL_NO_ERROR); } static void OpenGLTimestamp_End(OpenGLTimestamp* stamp) { int error; assert(stamp != NULL); // End of disjoint and second query assert(g_Remotery != NULL); glQueryCounter(stamp->queries[1], GL_TIMESTAMP); error = glGetError(); assert(error == GL_NO_ERROR); } static rmtBool OpenGLTimestamp_GetData(OpenGLTimestamp* stamp, rmtU64* out_start, rmtU64* out_end, rmtU64* out_first_timestamp) { GLuint64 start = 0, end = 0; GLint startAvailable = 0, endAvailable = 0; int error; assert(g_Remotery != NULL); assert(stamp != NULL); assert(stamp->queries[0] != 0 && stamp->queries[1] != 0); // Check to see if all queries are ready // If any fail to arrive, wait until later glGetQueryObjectiv(stamp->queries[0], GL_QUERY_RESULT_AVAILABLE, &startAvailable); error = glGetError(); assert(error == GL_NO_ERROR); if (!startAvailable) return RMT_FALSE; glGetQueryObjectiv(stamp->queries[1], GL_QUERY_RESULT_AVAILABLE, &endAvailable); error = glGetError(); assert(error == GL_NO_ERROR); if (!endAvailable) return RMT_FALSE; glGetQueryObjectui64v(stamp->queries[0], GL_QUERY_RESULT, &start); error = glGetError(); assert(error == GL_NO_ERROR); glGetQueryObjectui64v(stamp->queries[1], GL_QUERY_RESULT, &end); error = glGetError(); assert(error == GL_NO_ERROR); // Mark the first timestamp assert(out_first_timestamp != NULL); if (*out_first_timestamp == 0) *out_first_timestamp = start; // Calculate start and end timestamps (we want us, the queries give us ns) *out_start = (rmtU64)(start - *out_first_timestamp) / 1000ULL; *out_end = (rmtU64)(end - *out_first_timestamp) / 1000ULL; return RMT_TRUE; } typedef struct OpenGLSample { // IS-A inheritance relationship Sample Sample; OpenGLTimestamp* timestamp; } OpenGLSample; static rmtError OpenGLSample_Constructor(OpenGLSample* sample) { assert(sample != NULL); // Chain to sample constructor Sample_Constructor((Sample*)sample); sample->Sample.type = SampleType_OpenGL; sample->Sample.size_bytes = sizeof(OpenGLSample); sample->timestamp = NULL; return RMT_ERROR_NONE; } static void OpenGLSample_Destructor(OpenGLSample* sample) { Sample_Destructor((Sample*)sample); } RMT_API void _rmt_BindOpenGL() { if (g_Remotery != NULL) { OpenGL* opengl = g_Remotery->opengl; assert(opengl != NULL); opengl->__glGenQueries = (PFNGLGENQUERIESPROC)rmtGetProcAddress((const GLubyte*)"glGenQueries"); opengl->__glDeleteQueries = (PFNGLDELETEQUERIESPROC)rmtGetProcAddress((const GLubyte*)"glDeleteQueries"); opengl->__glBeginQuery = (PFNGLBEGINQUERYPROC)rmtGetProcAddress((const GLubyte*)"glBeginQuery"); opengl->__glEndQuery = (PFNGLENDQUERYPROC)rmtGetProcAddress((const GLubyte*)"glEndQuery"); opengl->__glGetQueryObjectiv = (PFNGLGETQUERYOBJECTIVPROC)rmtGetProcAddress((const GLubyte*)"glGetQueryObjectiv"); opengl->__glGetQueryObjectuiv = (PFNGLGETQUERYOBJECTUIVPROC)rmtGetProcAddress((const GLubyte*)"glGetQueryObjectuiv"); opengl->__glGetQueryObjecti64v = (PFNGLGETQUERYOBJECTI64VPROC)rmtGetProcAddress((const GLubyte*)"glGetQueryObjecti64v"); opengl->__glGetQueryObjectui64v = (PFNGLGETQUERYOBJECTUI64VPROC)rmtGetProcAddress((const GLubyte*)"glGetQueryObjectui64v"); opengl->__glQueryCounter = (PFNGLQUERYCOUNTERPROC)rmtGetProcAddress((const GLubyte*)"glQueryCounter"); } } static void FreeOpenGLTimeStamps(Sample* sample) { Sample* child; OpenGLSample* ogl_sample = (OpenGLSample*)sample; assert(ogl_sample->timestamp != NULL); ObjectAllocator_Free(g_Remotery->opengl->timestamp_allocator, (void*)ogl_sample->timestamp); ogl_sample->timestamp = NULL; for (child = sample->first_child; child != NULL; child = child->next_sibling) FreeOpenGLTimeStamps(child); } RMT_API void _rmt_UnbindOpenGL(void) { if (g_Remotery != NULL) { OpenGL* opengl = g_Remotery->opengl; assert(opengl != NULL); // Flush the main queue of allocated OpenGL timestamps while (1) { Msg_SampleTree* sample_tree; Sample* sample; Message* message = MessageQueue_PeekNextMessage(opengl->mq_to_opengl_main); if (message == NULL) break; // There's only one valid message type in this queue assert(message->id == MsgID_SampleTree); sample_tree = (Msg_SampleTree*)message->payload; sample = sample_tree->root_sample; assert(sample->type == SampleType_OpenGL); FreeOpenGLTimeStamps(sample); FreeSampleTree(sample, sample_tree->allocator); MessageQueue_ConsumeNextMessage(opengl->mq_to_opengl_main, message); } // Free all allocated OpenGL resources Delete(ObjectAllocator, opengl->timestamp_allocator); } } RMT_API void _rmt_BeginOpenGLSample(rmtPStr name, rmtU32* hash_cache) { ThreadSampler* ts; if (g_Remotery == NULL) return; if (Remotery_GetThreadSampler(g_Remotery, &ts) == RMT_ERROR_NONE) { rmtError error; Sample* sample; rmtU32 name_hash = GetNameHash(name, hash_cache); OpenGL* opengl = g_Remotery->opengl; // Create the OpenGL tree on-demand as the tree needs an up-front-created root. // This is not possible to create on initialisation as a OpenGL binding is not yet available. SampleTree** ogl_tree = &ts->sample_trees[SampleType_OpenGL]; if (*ogl_tree == NULL) { New_3(SampleTree, *ogl_tree, sizeof(OpenGLSample), (ObjConstructor)OpenGLSample_Constructor, (ObjDestructor)OpenGLSample_Destructor); if (error != RMT_ERROR_NONE) return; } // Also create the timestamp allocator on-demand to keep the OpenGL code localised to the same file section assert(opengl != NULL); if (opengl->timestamp_allocator == NULL) New_3(ObjectAllocator, opengl->timestamp_allocator, sizeof(OpenGLTimestamp), (ObjConstructor)OpenGLTimestamp_Constructor, (ObjDestructor)OpenGLTimestamp_Destructor); // Push the sample if (ThreadSampler_Push(ts, *ogl_tree, name, name_hash, &sample) == RMT_ERROR_NONE) { OpenGLSample* ogl_sample = (OpenGLSample*)sample; // Allocate a timestamp for the sample and activate it assert(ogl_sample->timestamp == NULL); error = ObjectAllocator_Alloc(opengl->timestamp_allocator, (void**)&ogl_sample->timestamp); if (error == RMT_ERROR_NONE) OpenGLTimestamp_Begin(ogl_sample->timestamp); } } } static rmtBool GetOpenGLSampleTimes(Sample* sample, rmtU64* out_first_timestamp) { Sample* child; OpenGLSample* ogl_sample = (OpenGLSample*)sample; assert(sample != NULL); if (ogl_sample->timestamp != NULL) { if (!OpenGLTimestamp_GetData(ogl_sample->timestamp, &sample->us_start, &sample->us_end, out_first_timestamp)) return RMT_FALSE; } // Get child sample times for (child = sample->first_child; child != NULL; child = child->next_sibling) { if (!GetOpenGLSampleTimes(child, out_first_timestamp)) return RMT_FALSE; } return RMT_TRUE; } static void UpdateOpenGLFrame(void) { OpenGL* opengl; if (g_Remotery == NULL) return; opengl = g_Remotery->opengl; assert(opengl != NULL); rmt_BeginCPUSample(rmt_UpdateOpenGLFrame); // Process all messages in the OpenGL queue while (1) { Msg_SampleTree* sample_tree; Sample* sample; Message* message = MessageQueue_PeekNextMessage(opengl->mq_to_opengl_main); if (message == NULL) break; // There's only one valid message type in this queue assert(message->id == MsgID_SampleTree); sample_tree = (Msg_SampleTree*)message->payload; sample = sample_tree->root_sample; assert(sample->type == SampleType_OpenGL); // Retrieve timing of all OpenGL samples // If they aren't ready leave the message unconsumed, holding up later frames and maintaining order if (!GetOpenGLSampleTimes(sample, &opengl->first_timestamp)) break; // Pass samples onto the remotery thread for sending to the viewer FreeOpenGLTimeStamps(sample); AddSampleTreeMessage(g_Remotery->mq_to_rmt_thread, sample, sample_tree->allocator, sample_tree->thread_name, message->thread_sampler); MessageQueue_ConsumeNextMessage(opengl->mq_to_opengl_main, message); } rmt_EndCPUSample(); } RMT_API void _rmt_EndOpenGLSample(void) { ThreadSampler* ts; if (g_Remotery == NULL) return; if (Remotery_GetThreadSampler(g_Remotery, &ts) == RMT_ERROR_NONE) { // Close the timestamp OpenGLSample* ogl_sample = (OpenGLSample*)ts->sample_trees[SampleType_OpenGL]->current_parent; if (ogl_sample->timestamp != NULL) OpenGLTimestamp_End(ogl_sample->timestamp); // Send to the update loop for ready-polling if (ThreadSampler_Pop(ts, g_Remotery->opengl->mq_to_opengl_main, (Sample*)ogl_sample)) // Perform ready-polling on popping of the root sample UpdateOpenGLFrame(); } } #endif // RMT_USE_OPENGL #endif // RMT_ENABLED