// This code is in the public domain -- castanyo@yahoo.es #pragma once #ifndef NV_MATH_MATRIX_INL #define NV_MATH_MATRIX_INL #include "matrix.h" namespace nv { inline Matrix3::Matrix3() {} inline Matrix3::Matrix3(float f) { for(int i = 0; i < 9; i++) { m_data[i] = f; } } inline Matrix3::Matrix3(identity_t) { for(int i = 0; i < 3; i++) { for(int j = 0; j < 3; j++) { m_data[3*j+i] = (i == j) ? 1.0f : 0.0f; } } } inline Matrix3::Matrix3(const Matrix3 & m) { for(int i = 0; i < 9; i++) { m_data[i] = m.m_data[i]; } } inline Matrix3::Matrix3(Vector3::Arg v0, Vector3::Arg v1, Vector3::Arg v2) { m_data[0] = v0.x; m_data[1] = v0.y; m_data[2] = v0.z; m_data[3] = v1.x; m_data[4] = v1.y; m_data[5] = v1.z; m_data[6] = v2.x; m_data[7] = v2.y; m_data[8] = v2.z; } inline float Matrix3::data(uint idx) const { nvDebugCheck(idx < 9); return m_data[idx]; } inline float & Matrix3::data(uint idx) { nvDebugCheck(idx < 9); return m_data[idx]; } inline float Matrix3::get(uint row, uint col) const { nvDebugCheck(row < 3 && col < 3); return m_data[col * 3 + row]; } inline float Matrix3::operator()(uint row, uint col) const { nvDebugCheck(row < 3 && col < 3); return m_data[col * 3 + row]; } inline float & Matrix3::operator()(uint row, uint col) { nvDebugCheck(row < 3 && col < 3); return m_data[col * 3 + row]; } inline Vector3 Matrix3::row(uint i) const { nvDebugCheck(i < 3); return Vector3(get(i, 0), get(i, 1), get(i, 2)); } inline Vector3 Matrix3::column(uint i) const { nvDebugCheck(i < 3); return Vector3(get(0, i), get(1, i), get(2, i)); } inline void Matrix3::operator*=(float s) { for(int i = 0; i < 9; i++) { m_data[i] *= s; } } inline void Matrix3::operator/=(float s) { float is = 1.0f /s; for(int i = 0; i < 9; i++) { m_data[i] *= is; } } inline void Matrix3::operator+=(const Matrix3 & m) { for(int i = 0; i < 9; i++) { m_data[i] += m.m_data[i]; } } inline void Matrix3::operator-=(const Matrix3 & m) { for(int i = 0; i < 9; i++) { m_data[i] -= m.m_data[i]; } } inline Matrix3 operator+(const Matrix3 & a, const Matrix3 & b) { Matrix3 m = a; m += b; return m; } inline Matrix3 operator-(const Matrix3 & a, const Matrix3 & b) { Matrix3 m = a; m -= b; return m; } inline Matrix3 operator*(const Matrix3 & a, float s) { Matrix3 m = a; m *= s; return m; } inline Matrix3 operator*(float s, const Matrix3 & a) { Matrix3 m = a; m *= s; return m; } inline Matrix3 operator/(const Matrix3 & a, float s) { Matrix3 m = a; m /= s; return m; } inline Matrix3 mul(const Matrix3 & a, const Matrix3 & b) { Matrix3 m; for(int i = 0; i < 3; i++) { const float ai0 = a(i,0), ai1 = a(i,1), ai2 = a(i,2); m(i, 0) = ai0 * b(0,0) + ai1 * b(1,0) + ai2 * b(2,0); m(i, 1) = ai0 * b(0,1) + ai1 * b(1,1) + ai2 * b(2,1); m(i, 2) = ai0 * b(0,2) + ai1 * b(1,2) + ai2 * b(2,2); } return m; } inline Matrix3 operator*(const Matrix3 & a, const Matrix3 & b) { return mul(a, b); } // Transform the given 3d vector with the given matrix. inline Vector3 transform(const Matrix3 & m, const Vector3 & p) { return Vector3( p.x * m(0,0) + p.y * m(0,1) + p.z * m(0,2), p.x * m(1,0) + p.y * m(1,1) + p.z * m(1,2), p.x * m(2,0) + p.y * m(2,1) + p.z * m(2,2)); } inline void Matrix3::scale(float s) { for (int i = 0; i < 9; i++) { m_data[i] *= s; } } inline void Matrix3::scale(Vector3::Arg s) { m_data[0] *= s.x; m_data[1] *= s.x; m_data[2] *= s.x; m_data[3] *= s.y; m_data[4] *= s.y; m_data[5] *= s.y; m_data[6] *= s.z; m_data[7] *= s.z; m_data[8] *= s.z; } inline float Matrix3::determinant() const { return get(0,0) * get(1,1) * get(2,2) + get(0,1) * get(1,2) * get(2,0) + get(0,2) * get(1,0) * get(2,1) - get(0,2) * get(1,1) * get(2,0) - get(0,1) * get(1,0) * get(2,2) - get(0,0) * get(1,2) * get(2,1); } // Inverse using Cramer's rule. inline Matrix3 inverseCramer(const Matrix3 & m) { const float det = m.determinant(); if (equal(det, 0.0f, 0.0f)) { return Matrix3(0); } Matrix3 r; r.data(0) = - m.data(5) * m.data(7) + m.data(4) * m.data(8); r.data(1) = + m.data(5) * m.data(6) - m.data(3) * m.data(8); r.data(2) = - m.data(4) * m.data(6) + m.data(3) * m.data(7); r.data(3) = + m.data(2) * m.data(7) - m.data(1) * m.data(8); r.data(4) = - m.data(2) * m.data(6) + m.data(0) * m.data(8); r.data(5) = + m.data(1) * m.data(6) - m.data(0) * m.data(7); r.data(6) = - m.data(2) * m.data(4) + m.data(1) * m.data(5); r.data(7) = + m.data(2) * m.data(3) - m.data(0) * m.data(5); r.data(8) = - m.data(1) * m.data(3) + m.data(0) * m.data(4); r.scale(1.0f / det); return r; } inline Matrix::Matrix() { } inline Matrix::Matrix(float f) { for(int i = 0; i < 16; i++) { m_data[i] = 0.0f; } } inline Matrix::Matrix(identity_t) { for(int i = 0; i < 4; i++) { for(int j = 0; j < 4; j++) { m_data[4*j+i] = (i == j) ? 1.0f : 0.0f; } } } inline Matrix::Matrix(const Matrix & m) { for(int i = 0; i < 16; i++) { m_data[i] = m.m_data[i]; } } inline Matrix::Matrix(const Matrix3 & m) { for(int i = 0; i < 3; i++) { for(int j = 0; j < 3; j++) { operator()(i, j) = m.get(i, j); } } for(int i = 0; i < 4; i++) { operator()(3, i) = 0; operator()(i, 3) = 0; } } inline Matrix::Matrix(Vector4::Arg v0, Vector4::Arg v1, Vector4::Arg v2, Vector4::Arg v3) { m_data[ 0] = v0.x; m_data[ 1] = v0.y; m_data[ 2] = v0.z; m_data[ 3] = v0.w; m_data[ 4] = v1.x; m_data[ 5] = v1.y; m_data[ 6] = v1.z; m_data[ 7] = v1.w; m_data[ 8] = v2.x; m_data[ 9] = v2.y; m_data[10] = v2.z; m_data[11] = v2.w; m_data[12] = v3.x; m_data[13] = v3.y; m_data[14] = v3.z; m_data[15] = v3.w; } /*inline Matrix::Matrix(const float m[]) { for(int i = 0; i < 16; i++) { m_data[i] = m[i]; } }*/ // Accessors inline float Matrix::data(uint idx) const { nvDebugCheck(idx < 16); return m_data[idx]; } inline float & Matrix::data(uint idx) { nvDebugCheck(idx < 16); return m_data[idx]; } inline float Matrix::get(uint row, uint col) const { nvDebugCheck(row < 4 && col < 4); return m_data[col * 4 + row]; } inline float Matrix::operator()(uint row, uint col) const { nvDebugCheck(row < 4 && col < 4); return m_data[col * 4 + row]; } inline float & Matrix::operator()(uint row, uint col) { nvDebugCheck(row < 4 && col < 4); return m_data[col * 4 + row]; } inline const float * Matrix::ptr() const { return m_data; } inline Vector4 Matrix::row(uint i) const { nvDebugCheck(i < 4); return Vector4(get(i, 0), get(i, 1), get(i, 2), get(i, 3)); } inline Vector4 Matrix::column(uint i) const { nvDebugCheck(i < 4); return Vector4(get(0, i), get(1, i), get(2, i), get(3, i)); } inline void Matrix::zero() { m_data[0] = 0; m_data[1] = 0; m_data[2] = 0; m_data[3] = 0; m_data[4] = 0; m_data[5] = 0; m_data[6] = 0; m_data[7] = 0; m_data[8] = 0; m_data[9] = 0; m_data[10] = 0; m_data[11] = 0; m_data[12] = 0; m_data[13] = 0; m_data[14] = 0; m_data[15] = 0; } inline void Matrix::identity() { m_data[0] = 1; m_data[1] = 0; m_data[2] = 0; m_data[3] = 0; m_data[4] = 0; m_data[5] = 1; m_data[6] = 0; m_data[7] = 0; m_data[8] = 0; m_data[9] = 0; m_data[10] = 1; m_data[11] = 0; m_data[12] = 0; m_data[13] = 0; m_data[14] = 0; m_data[15] = 1; } // Apply scale. inline void Matrix::scale(float s) { m_data[0] *= s; m_data[1] *= s; m_data[2] *= s; m_data[3] *= s; m_data[4] *= s; m_data[5] *= s; m_data[6] *= s; m_data[7] *= s; m_data[8] *= s; m_data[9] *= s; m_data[10] *= s; m_data[11] *= s; m_data[12] *= s; m_data[13] *= s; m_data[14] *= s; m_data[15] *= s; } // Apply scale. inline void Matrix::scale(Vector3::Arg s) { m_data[0] *= s.x; m_data[1] *= s.x; m_data[2] *= s.x; m_data[3] *= s.x; m_data[4] *= s.y; m_data[5] *= s.y; m_data[6] *= s.y; m_data[7] *= s.y; m_data[8] *= s.z; m_data[9] *= s.z; m_data[10] *= s.z; m_data[11] *= s.z; } // Apply translation. inline void Matrix::translate(Vector3::Arg t) { m_data[12] = m_data[0] * t.x + m_data[4] * t.y + m_data[8] * t.z + m_data[12]; m_data[13] = m_data[1] * t.x + m_data[5] * t.y + m_data[9] * t.z + m_data[13]; m_data[14] = m_data[2] * t.x + m_data[6] * t.y + m_data[10] * t.z + m_data[14]; m_data[15] = m_data[3] * t.x + m_data[7] * t.y + m_data[11] * t.z + m_data[15]; } Matrix rotation(float theta, float v0, float v1, float v2); // Apply rotation. inline void Matrix::rotate(float theta, float v0, float v1, float v2) { Matrix R(rotation(theta, v0, v1, v2)); apply(R); } // Apply transform. inline void Matrix::apply(Matrix::Arg m) { nvDebugCheck(this != &m); for(int i = 0; i < 4; i++) { const float ai0 = get(i,0), ai1 = get(i,1), ai2 = get(i,2), ai3 = get(i,3); m_data[0 + i] = ai0 * m(0,0) + ai1 * m(1,0) + ai2 * m(2,0) + ai3 * m(3,0); m_data[4 + i] = ai0 * m(0,1) + ai1 * m(1,1) + ai2 * m(2,1) + ai3 * m(3,1); m_data[8 + i] = ai0 * m(0,2) + ai1 * m(1,2) + ai2 * m(2,2) + ai3 * m(3,2); m_data[12+ i] = ai0 * m(0,3) + ai1 * m(1,3) + ai2 * m(2,3) + ai3 * m(3,3); } } // Get scale matrix. inline Matrix scale(Vector3::Arg s) { Matrix m(identity); m(0,0) = s.x; m(1,1) = s.y; m(2,2) = s.z; return m; } // Get scale matrix. inline Matrix scale(float s) { Matrix m(identity); m(0,0) = m(1,1) = m(2,2) = s; return m; } // Get translation matrix. inline Matrix translation(Vector3::Arg t) { Matrix m(identity); m(0,3) = t.x; m(1,3) = t.y; m(2,3) = t.z; return m; } // Get rotation matrix. inline Matrix rotation(float theta, float v0, float v1, float v2) { float cost = cosf(theta); float sint = sinf(theta); Matrix m(identity); if( 1 == v0 && 0 == v1 && 0 == v2 ) { m(1,1) = cost; m(2,1) = -sint; m(1,2) = sint; m(2,2) = cost; } else if( 0 == v0 && 1 == v1 && 0 == v2 ) { m(0,0) = cost; m(2,0) = sint; m(1,2) = -sint; m(2,2) = cost; } else if( 0 == v0 && 0 == v1 && 1 == v2 ) { m(0,0) = cost; m(1,0) = -sint; m(0,1) = sint; m(1,1) = cost; } else { float a2, b2, c2; a2 = v0 * v0; b2 = v1 * v1; c2 = v2 * v2; float iscale = 1.0f / sqrtf(a2 + b2 + c2); v0 *= iscale; v1 *= iscale; v2 *= iscale; float abm, acm, bcm; float mcos, asin, bsin, csin; mcos = 1.0f - cost; abm = v0 * v1 * mcos; acm = v0 * v2 * mcos; bcm = v1 * v2 * mcos; asin = v0 * sint; bsin = v1 * sint; csin = v2 * sint; m(0,0) = a2 * mcos + cost; m(1,0) = abm - csin; m(2,0) = acm + bsin; m(3,0) = abm + csin; m(1,1) = b2 * mcos + cost; m(2,1) = bcm - asin; m(3,1) = acm - bsin; m(1,2) = bcm + asin; m(2,2) = c2 * mcos + cost; } return m; } //Matrix rotation(float yaw, float pitch, float roll); //Matrix skew(float angle, Vector3::Arg v1, Vector3::Arg v2); // Get frustum matrix. inline Matrix frustum(float xmin, float xmax, float ymin, float ymax, float zNear, float zFar) { Matrix m(0.0f); float doubleznear = 2.0f * zNear; float one_deltax = 1.0f / (xmax - xmin); float one_deltay = 1.0f / (ymax - ymin); float one_deltaz = 1.0f / (zFar - zNear); m(0,0) = doubleznear * one_deltax; m(1,1) = doubleznear * one_deltay; m(0,2) = (xmax + xmin) * one_deltax; m(1,2) = (ymax + ymin) * one_deltay; m(2,2) = -(zFar + zNear) * one_deltaz; m(3,2) = -1.0f; m(2,3) = -(zFar * doubleznear) * one_deltaz; return m; } // Get inverse frustum matrix. inline Matrix frustumInverse(float xmin, float xmax, float ymin, float ymax, float zNear, float zFar) { Matrix m(0.0f); float one_doubleznear = 1.0f / (2.0f * zNear); float one_doubleznearzfar = 1.0f / (2.0f * zNear * zFar); m(0,0) = (xmax - xmin) * one_doubleznear; m(0,3) = (xmax + xmin) * one_doubleznear; m(1,1) = (ymax - ymin) * one_doubleznear; m(1,3) = (ymax + ymin) * one_doubleznear; m(2,3) = -1; m(3,2) = -(zFar - zNear) * one_doubleznearzfar; m(3,3) = (zFar + zNear) * one_doubleznearzfar; return m; } // Get infinite frustum matrix. inline Matrix frustum(float xmin, float xmax, float ymin, float ymax, float zNear) { Matrix m(0.0f); float doubleznear = 2.0f * zNear; float one_deltax = 1.0f / (xmax - xmin); float one_deltay = 1.0f / (ymax - ymin); float nudge = 1.0; // 0.999; m(0,0) = doubleznear * one_deltax; m(1,1) = doubleznear * one_deltay; m(0,2) = (xmax + xmin) * one_deltax; m(1,2) = (ymax + ymin) * one_deltay; m(2,2) = -1.0f * nudge; m(3,2) = -1.0f; m(2,3) = -doubleznear * nudge; return m; } // Get perspective matrix. inline Matrix perspective(float fovy, float aspect, float zNear, float zFar) { float xmax = zNear * tanf(fovy / 2); float xmin = -xmax; float ymax = xmax / aspect; float ymin = -ymax; return frustum(xmin, xmax, ymin, ymax, zNear, zFar); } // Get inverse perspective matrix. inline Matrix perspectiveInverse(float fovy, float aspect, float zNear, float zFar) { float xmax = zNear * tanf(fovy / 2); float xmin = -xmax; float ymax = xmax / aspect; float ymin = -ymax; return frustumInverse(xmin, xmax, ymin, ymax, zNear, zFar); } // Get infinite perspective matrix. inline Matrix perspective(float fovy, float aspect, float zNear) { float x = zNear * tanf(fovy / 2); float y = x / aspect; return frustum( -x, x, -y, y, zNear ); } // Get matrix determinant. inline float Matrix::determinant() const { return m_data[3] * m_data[6] * m_data[ 9] * m_data[12] - m_data[2] * m_data[7] * m_data[ 9] * m_data[12] - m_data[3] * m_data[5] * m_data[10] * m_data[12] + m_data[1] * m_data[7] * m_data[10] * m_data[12] + m_data[2] * m_data[5] * m_data[11] * m_data[12] - m_data[1] * m_data[6] * m_data[11] * m_data[12] - m_data[3] * m_data[6] * m_data[ 8] * m_data[13] + m_data[2] * m_data[7] * m_data[ 8] * m_data[13] + m_data[3] * m_data[4] * m_data[10] * m_data[13] - m_data[0] * m_data[7] * m_data[10] * m_data[13] - m_data[2] * m_data[4] * m_data[11] * m_data[13] + m_data[0] * m_data[6] * m_data[11] * m_data[13] + m_data[3] * m_data[5] * m_data[ 8] * m_data[14] - m_data[1] * m_data[7] * m_data[ 8] * m_data[14] - m_data[3] * m_data[4] * m_data[ 9] * m_data[14] + m_data[0] * m_data[7] * m_data[ 9] * m_data[14] + m_data[1] * m_data[4] * m_data[11] * m_data[14] - m_data[0] * m_data[5] * m_data[11] * m_data[14] - m_data[2] * m_data[5] * m_data[ 8] * m_data[15] + m_data[1] * m_data[6] * m_data[ 8] * m_data[15] + m_data[2] * m_data[4] * m_data[ 9] * m_data[15] - m_data[0] * m_data[6] * m_data[ 9] * m_data[15] - m_data[1] * m_data[4] * m_data[10] * m_data[15] + m_data[0] * m_data[5] * m_data[10] * m_data[15]; } inline Matrix transpose(Matrix::Arg m) { Matrix r; for (int i = 0; i < 4; i++) { for (int j = 0; j < 4; j++) { r(i, j) = m(j, i); } } return r; } // Inverse using Cramer's rule. inline Matrix inverseCramer(Matrix::Arg m) { Matrix r; r.data( 0) = m.data(6)*m.data(11)*m.data(13) - m.data(7)*m.data(10)*m.data(13) + m.data(7)*m.data(9)*m.data(14) - m.data(5)*m.data(11)*m.data(14) - m.data(6)*m.data(9)*m.data(15) + m.data(5)*m.data(10)*m.data(15); r.data( 1) = m.data(3)*m.data(10)*m.data(13) - m.data(2)*m.data(11)*m.data(13) - m.data(3)*m.data(9)*m.data(14) + m.data(1)*m.data(11)*m.data(14) + m.data(2)*m.data(9)*m.data(15) - m.data(1)*m.data(10)*m.data(15); r.data( 2) = m.data(2)*m.data( 7)*m.data(13) - m.data(3)*m.data( 6)*m.data(13) + m.data(3)*m.data(5)*m.data(14) - m.data(1)*m.data( 7)*m.data(14) - m.data(2)*m.data(5)*m.data(15) + m.data(1)*m.data( 6)*m.data(15); r.data( 3) = m.data(3)*m.data( 6)*m.data( 9) - m.data(2)*m.data( 7)*m.data( 9) - m.data(3)*m.data(5)*m.data(10) + m.data(1)*m.data( 7)*m.data(10) + m.data(2)*m.data(5)*m.data(11) - m.data(1)*m.data( 6)*m.data(11); r.data( 4) = m.data(7)*m.data(10)*m.data(12) - m.data(6)*m.data(11)*m.data(12) - m.data(7)*m.data(8)*m.data(14) + m.data(4)*m.data(11)*m.data(14) + m.data(6)*m.data(8)*m.data(15) - m.data(4)*m.data(10)*m.data(15); r.data( 5) = m.data(2)*m.data(11)*m.data(12) - m.data(3)*m.data(10)*m.data(12) + m.data(3)*m.data(8)*m.data(14) - m.data(0)*m.data(11)*m.data(14) - m.data(2)*m.data(8)*m.data(15) + m.data(0)*m.data(10)*m.data(15); r.data( 6) = m.data(3)*m.data( 6)*m.data(12) - m.data(2)*m.data( 7)*m.data(12) - m.data(3)*m.data(4)*m.data(14) + m.data(0)*m.data( 7)*m.data(14) + m.data(2)*m.data(4)*m.data(15) - m.data(0)*m.data( 6)*m.data(15); r.data( 7) = m.data(2)*m.data( 7)*m.data( 8) - m.data(3)*m.data( 6)*m.data( 8) + m.data(3)*m.data(4)*m.data(10) - m.data(0)*m.data( 7)*m.data(10) - m.data(2)*m.data(4)*m.data(11) + m.data(0)*m.data( 6)*m.data(11); r.data( 8) = m.data(5)*m.data(11)*m.data(12) - m.data(7)*m.data( 9)*m.data(12) + m.data(7)*m.data(8)*m.data(13) - m.data(4)*m.data(11)*m.data(13) - m.data(5)*m.data(8)*m.data(15) + m.data(4)*m.data( 9)*m.data(15); r.data( 9) = m.data(3)*m.data( 9)*m.data(12) - m.data(1)*m.data(11)*m.data(12) - m.data(3)*m.data(8)*m.data(13) + m.data(0)*m.data(11)*m.data(13) + m.data(1)*m.data(8)*m.data(15) - m.data(0)*m.data( 9)*m.data(15); r.data(10) = m.data(1)*m.data( 7)*m.data(12) - m.data(3)*m.data( 5)*m.data(12) + m.data(3)*m.data(4)*m.data(13) - m.data(0)*m.data( 7)*m.data(13) - m.data(1)*m.data(4)*m.data(15) + m.data(0)*m.data( 5)*m.data(15); r.data(11) = m.data(3)*m.data( 5)*m.data( 8) - m.data(1)*m.data( 7)*m.data( 8) - m.data(3)*m.data(4)*m.data( 9) + m.data(0)*m.data( 7)*m.data( 9) + m.data(1)*m.data(4)*m.data(11) - m.data(0)*m.data( 5)*m.data(11); r.data(12) = m.data(6)*m.data( 9)*m.data(12) - m.data(5)*m.data(10)*m.data(12) - m.data(6)*m.data(8)*m.data(13) + m.data(4)*m.data(10)*m.data(13) + m.data(5)*m.data(8)*m.data(14) - m.data(4)*m.data( 9)*m.data(14); r.data(13) = m.data(1)*m.data(10)*m.data(12) - m.data(2)*m.data( 9)*m.data(12) + m.data(2)*m.data(8)*m.data(13) - m.data(0)*m.data(10)*m.data(13) - m.data(1)*m.data(8)*m.data(14) + m.data(0)*m.data( 9)*m.data(14); r.data(14) = m.data(2)*m.data( 5)*m.data(12) - m.data(1)*m.data( 6)*m.data(12) - m.data(2)*m.data(4)*m.data(13) + m.data(0)*m.data( 6)*m.data(13) + m.data(1)*m.data(4)*m.data(14) - m.data(0)*m.data( 5)*m.data(14); r.data(15) = m.data(1)*m.data( 6)*m.data( 8) - m.data(2)*m.data( 5)*m.data( 8) + m.data(2)*m.data(4)*m.data( 9) - m.data(0)*m.data( 6)*m.data( 9) - m.data(1)*m.data(4)*m.data(10) + m.data(0)*m.data( 5)*m.data(10); r.scale(1.0f / m.determinant()); return r; } inline Matrix isometryInverse(Matrix::Arg m) { Matrix r(identity); // transposed 3x3 upper left matrix for (int i = 0; i < 3; i++) { for (int j = 0; j < 3; j++) { r(i, j) = m(j, i); } } // translate by the negative offsets r.translate(-Vector3(m.data(12), m.data(13), m.data(14))); return r; } // Transform the given 3d point with the given matrix. inline Vector3 transformPoint(Matrix::Arg m, Vector3::Arg p) { return Vector3( p.x * m(0,0) + p.y * m(0,1) + p.z * m(0,2) + m(0,3), p.x * m(1,0) + p.y * m(1,1) + p.z * m(1,2) + m(1,3), p.x * m(2,0) + p.y * m(2,1) + p.z * m(2,2) + m(2,3)); } // Transform the given 3d vector with the given matrix. inline Vector3 transformVector(Matrix::Arg m, Vector3::Arg p) { return Vector3( p.x * m(0,0) + p.y * m(0,1) + p.z * m(0,2), p.x * m(1,0) + p.y * m(1,1) + p.z * m(1,2), p.x * m(2,0) + p.y * m(2,1) + p.z * m(2,2)); } // Transform the given 4d vector with the given matrix. inline Vector4 transform(Matrix::Arg m, Vector4::Arg p) { return Vector4( p.x * m(0,0) + p.y * m(0,1) + p.z * m(0,2) + p.w * m(0,3), p.x * m(1,0) + p.y * m(1,1) + p.z * m(1,2) + p.w * m(1,3), p.x * m(2,0) + p.y * m(2,1) + p.z * m(2,2) + p.w * m(2,3), p.x * m(3,0) + p.y * m(3,1) + p.z * m(3,2) + p.w * m(3,3)); } inline Matrix mul(Matrix::Arg a, Matrix::Arg b) { // @@ Is this the right order? mul(a, b) = b * a Matrix m = a; m.apply(b); return m; } inline void Matrix::operator+=(const Matrix & m) { for(int i = 0; i < 16; i++) { m_data[i] += m.m_data[i]; } } inline void Matrix::operator-=(const Matrix & m) { for(int i = 0; i < 16; i++) { m_data[i] -= m.m_data[i]; } } inline Matrix operator+(const Matrix & a, const Matrix & b) { Matrix m = a; m += b; return m; } inline Matrix operator-(const Matrix & a, const Matrix & b) { Matrix m = a; m -= b; return m; } } // nv namespace #if 0 // old code. /** @name Special matrices. */ //@{ /** Generate a translation matrix. */ void TranslationMatrix(const Vec3 & v) { data[0] = 1; data[1] = 0; data[2] = 0; data[3] = 0; data[4] = 0; data[5] = 1; data[6] = 0; data[7] = 0; data[8] = 0; data[9] = 0; data[10] = 1; data[11] = 0; data[12] = v.x; data[13] = v.y; data[14] = v.z; data[15] = 1; } /** Rotate theta degrees around v. */ void RotationMatrix( float theta, float v0, float v1, float v2 ) { float cost = cos(theta); float sint = sin(theta); if( 1 == v0 && 0 == v1 && 0 == v2 ) { data[0] = 1.0f; data[1] = 0.0f; data[2] = 0.0f; data[3] = 0.0f; data[4] = 0.0f; data[5] = cost; data[6] = -sint;data[7] = 0.0f; data[8] = 0.0f; data[9] = sint; data[10] = cost;data[11] = 0.0f; data[12] = 0.0f;data[13] = 0.0f;data[14] = 0.0f;data[15] = 1.0f; } else if( 0 == v0 && 1 == v1 && 0 == v2 ) { data[0] = cost; data[1] = 0.0f; data[2] = sint; data[3] = 0.0f; data[4] = 0.0f; data[5] = 1.0f; data[6] = 0.0f; data[7] = 0.0f; data[8] = -sint;data[9] = 0.0f;data[10] = cost; data[11] = 0.0f; data[12] = 0.0f;data[13] = 0.0f;data[14] = 0.0f;data[15] = 1.0f; } else if( 0 == v0 && 0 == v1 && 1 == v2 ) { data[0] = cost; data[1] = -sint;data[2] = 0.0f; data[3] = 0.0f; data[4] = sint; data[5] = cost; data[6] = 0.0f; data[7] = 0.0f; data[8] = 0.0f; data[9] = 0.0f; data[10] = 1.0f;data[11] = 0.0f; data[12] = 0.0f;data[13] = 0.0f;data[14] = 0.0f;data[15] = 1.0f; } else { //we need scale a,b,c to unit length. float a2, b2, c2; a2 = v0 * v0; b2 = v1 * v1; c2 = v2 * v2; float iscale = 1.0f / sqrtf(a2 + b2 + c2); v0 *= iscale; v1 *= iscale; v2 *= iscale; float abm, acm, bcm; float mcos, asin, bsin, csin; mcos = 1.0f - cost; abm = v0 * v1 * mcos; acm = v0 * v2 * mcos; bcm = v1 * v2 * mcos; asin = v0 * sint; bsin = v1 * sint; csin = v2 * sint; data[0] = a2 * mcos + cost; data[1] = abm - csin; data[2] = acm + bsin; data[3] = abm + csin; data[4] = 0.0f; data[5] = b2 * mcos + cost; data[6] = bcm - asin; data[7] = acm - bsin; data[8] = 0.0f; data[9] = bcm + asin; data[10] = c2 * mcos + cost; data[11] = 0.0f; data[12] = 0.0f; data[13] = 0.0f; data[14] = 0.0f; data[15] = 1.0f; } } /* void SkewMatrix(float angle, const Vec3 & v1, const Vec3 & v2) { v1.Normalize(); v2.Normalize(); Vec3 v3; v3.Cross(v1, v2); v3.Normalize(); // Get skew factor. float costheta = Vec3DotProduct(v1, v2); float sintheta = Real.Sqrt(1 - costheta * costheta); float skew = tan(Trig.DegreesToRadians(angle) + acos(sintheta)) * sintheta - costheta; // Build orthonormal matrix. v1 = FXVector3.Cross(v3, v2); v1.Normalize(); Matrix R = Matrix::Identity; R[0, 0] = v3.X; // Not sure this is in the correct order... R[1, 0] = v3.Y; R[2, 0] = v3.Z; R[0, 1] = v1.X; R[1, 1] = v1.Y; R[2, 1] = v1.Z; R[0, 2] = v2.X; R[1, 2] = v2.Y; R[2, 2] = v2.Z; // Build skew matrix. Matrix S = Matrix::Identity; S[2, 1] = -skew; // Return skew transform. return R * S * R.Transpose; // Not sure this is in the correct order... } */ /** * Generate rotation matrix for the euler angles. This is the same as computing * 3 rotation matrices and multiplying them together in our custom order. * * @todo Have to recompute this code for our new convention. **/ void RotationMatrix( float yaw, float pitch, float roll ) { float sy = sin(yaw+ToRadian(90)); float cy = cos(yaw+ToRadian(90)); float sp = sin(pitch-ToRadian(90)); float cp = cos(pitch-ToRadian(90)); float sr = sin(roll); float cr = cos(roll); data[0] = cr*cy + sr*sp*sy; data[1] = cp*sy; data[2] = -sr*cy + cr*sp*sy; data[3] = 0; data[4] = -cr*sy + sr*sp*cy; data[5] = cp*cy; data[6] = sr*sy + cr*sp*cy; data[7] = 0; data[8] = sr*cp; data[9] = -sp; data[10] = cr*cp; data[11] = 0; data[12] = 0; data[13] = 0; data[14] = 0; data[15] = 1; } /** Create a frustum matrix with the far plane at the infinity. */ void Frustum( float xmin, float xmax, float ymin, float ymax, float zNear, float zFar ) { float one_deltax, one_deltay, one_deltaz, doubleznear; doubleznear = 2.0f * zNear; one_deltax = 1.0f / (xmax - xmin); one_deltay = 1.0f / (ymax - ymin); one_deltaz = 1.0f / (zFar - zNear); data[0] = (float)(doubleznear * one_deltax); data[1] = 0.0f; data[2] = 0.0f; data[3] = 0.0f; data[4] = 0.0f; data[5] = (float)(doubleznear * one_deltay); data[6] = 0.f; data[7] = 0.f; data[8] = (float)((xmax + xmin) * one_deltax); data[9] = (float)((ymax + ymin) * one_deltay); data[10] = (float)(-(zFar + zNear) * one_deltaz); data[11] = -1.f; data[12] = 0.f; data[13] = 0.f; data[14] = (float)(-(zFar * doubleznear) * one_deltaz); data[15] = 0.f; } /** Create a frustum matrix with the far plane at the infinity. */ void FrustumInf( float xmin, float xmax, float ymin, float ymax, float zNear ) { float one_deltax, one_deltay, doubleznear, nudge; doubleznear = 2.0f * zNear; one_deltax = 1.0f / (xmax - xmin); one_deltay = 1.0f / (ymax - ymin); nudge = 1.0; // 0.999; data[0] = doubleznear * one_deltax; data[1] = 0.0f; data[2] = 0.0f; data[3] = 0.0f; data[4] = 0.0f; data[5] = doubleznear * one_deltay; data[6] = 0.f; data[7] = 0.f; data[8] = (xmax + xmin) * one_deltax; data[9] = (ymax + ymin) * one_deltay; data[10] = -1.0f * nudge; data[11] = -1.0f; data[12] = 0.f; data[13] = 0.f; data[14] = -doubleznear * nudge; data[15] = 0.f; } /** Create an inverse frustum matrix with the far plane at the infinity. */ void FrustumInfInv( float left, float right, float bottom, float top, float zNear ) { // this matrix is wrong (not tested floatly) I think it should be transposed. data[0] = (right - left) / (2 * zNear); data[1] = 0; data[2] = 0; data[3] = (right + left) / (2 * zNear); data[4] = 0; data[5] = (top - bottom) / (2 * zNear); data[6] = 0; data[7] = (top + bottom) / (2 * zNear); data[8] = 0; data[9] = 0; data[10] = 0; data[11] = -1; data[12] = 0; data[13] = 0; data[14] = -1 / (2 * zNear); data[15] = 1 / (2 * zNear); } /** Create an homogeneous projection matrix. */ void Perspective( float fov, float aspect, float zNear, float zFar ) { float xmin, xmax, ymin, ymax; xmax = zNear * tan( fov/2 ); xmin = -xmax; ymax = xmax / aspect; ymin = -ymax; Frustum(xmin, xmax, ymin, ymax, zNear, zFar); } /** Create a projection matrix with the far plane at the infinity. */ void PerspectiveInf( float fov, float aspect, float zNear ) { float x = zNear * tan( fov/2 ); float y = x / aspect; FrustumInf( -x, x, -y, y, zNear ); } /** Create an inverse projection matrix with far plane at the infinity. */ void PerspectiveInfInv( float fov, float aspect, float zNear ) { float x = zNear * tan( fov/2 ); float y = x / aspect; FrustumInfInv( -x, x, -y, y, zNear ); } /** Build bone matrix from quatertion and offset. */ void BoneMatrix(const Quat & q, const Vec3 & offset) { float x2, y2, z2, xx, xy, xz, yy, yz, zz, wx, wy, wz; // calculate coefficients x2 = q.x + q.x; y2 = q.y + q.y; z2 = q.z + q.z; xx = q.x * x2; xy = q.x * y2; xz = q.x * z2; yy = q.y * y2; yz = q.y * z2; zz = q.z * z2; wx = q.w * x2; wy = q.w * y2; wz = q.w * z2; data[0] = 1.0f - (yy + zz); data[1] = xy - wz; data[2] = xz + wy; data[3] = 0.0f; data[4] = xy + wz; data[5] = 1.0f - (xx + zz); data[6] = yz - wx; data[7] = 0.0f; data[8] = xz - wy; data[9] = yz + wx; data[10] = 1.0f - (xx + yy); data[11] = 0.0f; data[12] = offset.x; data[13] = offset.y; data[14] = offset.z; data[15] = 1.0f; } //@} /** @name Transformations: */ //@{ /** Apply a general scale. */ void Scale( float x, float y, float z ) { data[0] *= x; data[4] *= y; data[8] *= z; data[1] *= x; data[5] *= y; data[9] *= z; data[2] *= x; data[6] *= y; data[10] *= z; data[3] *= x; data[7] *= y; data[11] *= z; } /** Apply a rotation of theta degrees around the axis v*/ void Rotate( float theta, const Vec3 & v ) { Matrix b; b.RotationMatrix( theta, v[0], v[1], v[2] ); Multiply4x3( b ); } /** Apply a rotation of theta degrees around the axis v*/ void Rotate( float theta, float v0, float v1, float v2 ) { Matrix b; b.RotationMatrix( theta, v0, v1, v2 ); Multiply4x3( b ); } /** * Translate the matrix by t. This is the same as multiplying by a * translation matrix with the given offset. * this = T * this */ void Translate( const Vec3 &t ) { data[12] = data[0] * t.x + data[4] * t.y + data[8] * t.z + data[12]; data[13] = data[1] * t.x + data[5] * t.y + data[9] * t.z + data[13]; data[14] = data[2] * t.x + data[6] * t.y + data[10] * t.z + data[14]; data[15] = data[3] * t.x + data[7] * t.y + data[11] * t.z + data[15]; } /** * Translate the matrix by x, y, z. This is the same as multiplying by a * translation matrix with the given offsets. */ void Translate( float x, float y, float z ) { data[12] = data[0] * x + data[4] * y + data[8] * z + data[12]; data[13] = data[1] * x + data[5] * y + data[9] * z + data[13]; data[14] = data[2] * x + data[6] * y + data[10] * z + data[14]; data[15] = data[3] * x + data[7] * y + data[11] * z + data[15]; } /** Compute the transposed matrix. */ void Transpose() { piSwap(data[1], data[4]); piSwap(data[2], data[8]); piSwap(data[6], data[9]); piSwap(data[3], data[12]); piSwap(data[7], data[13]); piSwap(data[11], data[14]); } /** Compute the inverse of a rigid-body/isometry/orthonormal matrix. */ void IsometryInverse() { // transposed 3x3 upper left matrix piSwap(data[1], data[4]); piSwap(data[2], data[8]); piSwap(data[6], data[9]); // translate by the negative offsets Vec3 v(-data[12], -data[13], -data[14]); data[12] = data[13] = data[14] = 0; Translate(v); } /** Compute the inverse of the affine portion of this matrix. */ void AffineInverse() { data[12] = data[13] = data[14] = 0; Transpose(); } //@} /** @name Matrix operations: */ //@{ /** Return the determinant of this matrix. */ float Determinant() const { return data[0] * data[5] * data[10] * data[15] + data[1] * data[6] * data[11] * data[12] + data[2] * data[7] * data[ 8] * data[13] + data[3] * data[4] * data[ 9] * data[14] - data[3] * data[6] * data[ 9] * data[12] - data[2] * data[5] * data[ 8] * data[15] - data[1] * data[4] * data[11] * data[14] - data[0] * data[7] * data[10] * data[12]; } /** Standard matrix product: this *= B. */ void Multiply4x4( const Matrix & restrict B ) { Multiply4x4(*this, B); } /** Standard matrix product: this = A * B. this != B*/ void Multiply4x4( const Matrix & A, const Matrix & restrict B ) { piDebugCheck(this != &B); for(int i = 0; i < 4; i++) { const float ai0 = A(i,0), ai1 = A(i,1), ai2 = A(i,2), ai3 = A(i,3); GetElem(i,0) = ai0 * B(0,0) + ai1 * B(1,0) + ai2 * B(2,0) + ai3 * B(3,0); GetElem(i,1) = ai0 * B(0,1) + ai1 * B(1,1) + ai2 * B(2,1) + ai3 * B(3,1); GetElem(i,2) = ai0 * B(0,2) + ai1 * B(1,2) + ai2 * B(2,2) + ai3 * B(3,2); GetElem(i,3) = ai0 * B(0,3) + ai1 * B(1,3) + ai2 * B(2,3) + ai3 * B(3,3); } /* Unrolled but does not allow this == A data[0] = A.data[0] * B.data[0] + A.data[4] * B.data[1] + A.data[8] * B.data[2] + A.data[12] * B.data[3]; data[1] = A.data[1] * B.data[0] + A.data[5] * B.data[1] + A.data[9] * B.data[2] + A.data[13] * B.data[3]; data[2] = A.data[2] * B.data[0] + A.data[6] * B.data[1] + A.data[10] * B.data[2] + A.data[14] * B.data[3]; data[3] = A.data[3] * B.data[0] + A.data[7] * B.data[1] + A.data[11] * B.data[2] + A.data[15] * B.data[3]; data[4] = A.data[0] * B.data[4] + A.data[4] * B.data[5] + A.data[8] * B.data[6] + A.data[12] * B.data[7]; data[5] = A.data[1] * B.data[4] + A.data[5] * B.data[5] + A.data[9] * B.data[6] + A.data[13] * B.data[7]; data[6] = A.data[2] * B.data[4] + A.data[6] * B.data[5] + A.data[10] * B.data[6] + A.data[14] * B.data[7]; data[7] = A.data[3] * B.data[4] + A.data[7] * B.data[5] + A.data[11] * B.data[6] + A.data[15] * B.data[7]; data[8] = A.data[0] * B.data[8] + A.data[4] * B.data[9] + A.data[8] * B.data[10] + A.data[12] * B.data[11]; data[9] = A.data[1] * B.data[8] + A.data[5] * B.data[9] + A.data[9] * B.data[10] + A.data[13] * B.data[11]; data[10]= A.data[2] * B.data[8] + A.data[6] * B.data[9] + A.data[10] * B.data[10] + A.data[14] * B.data[11]; data[11]= A.data[3] * B.data[8] + A.data[7] * B.data[9] + A.data[11] * B.data[10] + A.data[15] * B.data[11]; data[12]= A.data[0] * B.data[12] + A.data[4] * B.data[13] + A.data[8] * B.data[14] + A.data[12] * B.data[15]; data[13]= A.data[1] * B.data[12] + A.data[5] * B.data[13] + A.data[9] * B.data[14] + A.data[13] * B.data[15]; data[14]= A.data[2] * B.data[12] + A.data[6] * B.data[13] + A.data[10] * B.data[14] + A.data[14] * B.data[15]; data[15]= A.data[3] * B.data[12] + A.data[7] * B.data[13] + A.data[11] * B.data[14] + A.data[15] * B.data[15]; */ } /** Standard matrix product: this *= B. */ void Multiply4x3( const Matrix & restrict B ) { Multiply4x3(*this, B); } /** Standard product of matrices, where the last row is [0 0 0 1]. */ void Multiply4x3( const Matrix & A, const Matrix & restrict B ) { piDebugCheck(this != &B); for(int i = 0; i < 3; i++) { const float ai0 = A(i,0), ai1 = A(i,1), ai2 = A(i,2), ai3 = A(i,3); GetElem(i,0) = ai0 * B(0,0) + ai1 * B(1,0) + ai2 * B(2,0) + ai3 * B(3,0); GetElem(i,1) = ai0 * B(0,1) + ai1 * B(1,1) + ai2 * B(2,1) + ai3 * B(3,1); GetElem(i,2) = ai0 * B(0,2) + ai1 * B(1,2) + ai2 * B(2,2) + ai3 * B(3,2); GetElem(i,3) = ai0 * B(0,3) + ai1 * B(1,3) + ai2 * B(2,3) + ai3 * B(3,3); } data[3] = 0.0f; data[7] = 0.0f; data[11] = 0.0f; data[15] = 1.0f; /* Unrolled but does not allow this == A data[0] = a.data[0] * b.data[0] + a.data[4] * b.data[1] + a.data[8] * b.data[2] + a.data[12] * b.data[3]; data[1] = a.data[1] * b.data[0] + a.data[5] * b.data[1] + a.data[9] * b.data[2] + a.data[13] * b.data[3]; data[2] = a.data[2] * b.data[0] + a.data[6] * b.data[1] + a.data[10] * b.data[2] + a.data[14] * b.data[3]; data[3] = 0.0f; data[4] = a.data[0] * b.data[4] + a.data[4] * b.data[5] + a.data[8] * b.data[6] + a.data[12] * b.data[7]; data[5] = a.data[1] * b.data[4] + a.data[5] * b.data[5] + a.data[9] * b.data[6] + a.data[13] * b.data[7]; data[6] = a.data[2] * b.data[4] + a.data[6] * b.data[5] + a.data[10] * b.data[6] + a.data[14] * b.data[7]; data[7] = 0.0f; data[8] = a.data[0] * b.data[8] + a.data[4] * b.data[9] + a.data[8] * b.data[10] + a.data[12] * b.data[11]; data[9] = a.data[1] * b.data[8] + a.data[5] * b.data[9] + a.data[9] * b.data[10] + a.data[13] * b.data[11]; data[10]= a.data[2] * b.data[8] + a.data[6] * b.data[9] + a.data[10] * b.data[10] + a.data[14] * b.data[11]; data[11]= 0.0f; data[12]= a.data[0] * b.data[12] + a.data[4] * b.data[13] + a.data[8] * b.data[14] + a.data[12] * b.data[15]; data[13]= a.data[1] * b.data[12] + a.data[5] * b.data[13] + a.data[9] * b.data[14] + a.data[13] * b.data[15]; data[14]= a.data[2] * b.data[12] + a.data[6] * b.data[13] + a.data[10] * b.data[14] + a.data[14] * b.data[15]; data[15]= 1.0f; */ } //@} /** @name Vector operations: */ //@{ /** Transform 3d vector (w=0). */ void TransformVec3(const Vec3 & restrict orig, Vec3 * restrict dest) const { piDebugCheck(&orig != dest); dest->x = orig.x * data[0] + orig.y * data[4] + orig.z * data[8]; dest->y = orig.x * data[1] + orig.y * data[5] + orig.z * data[9]; dest->z = orig.x * data[2] + orig.y * data[6] + orig.z * data[10]; } /** Transform 3d vector by the transpose (w=0). */ void TransformVec3T(const Vec3 & restrict orig, Vec3 * restrict dest) const { piDebugCheck(&orig != dest); dest->x = orig.x * data[0] + orig.y * data[1] + orig.z * data[2]; dest->y = orig.x * data[4] + orig.y * data[5] + orig.z * data[6]; dest->z = orig.x * data[8] + orig.y * data[9] + orig.z * data[10]; } /** Transform a 3d homogeneous vector, where the fourth coordinate is assumed to be 1. */ void TransformPoint(const Vec3 & restrict orig, Vec3 * restrict dest) const { piDebugCheck(&orig != dest); dest->x = orig.x * data[0] + orig.y * data[4] + orig.z * data[8] + data[12]; dest->y = orig.x * data[1] + orig.y * data[5] + orig.z * data[9] + data[13]; dest->z = orig.x * data[2] + orig.y * data[6] + orig.z * data[10] + data[14]; } /** Transform a point, normalize it, and return w. */ float TransformPointAndNormalize(const Vec3 & restrict orig, Vec3 * restrict dest) const { piDebugCheck(&orig != dest); float w; dest->x = orig.x * data[0] + orig.y * data[4] + orig.z * data[8] + data[12]; dest->y = orig.x * data[1] + orig.y * data[5] + orig.z * data[9] + data[13]; dest->z = orig.x * data[2] + orig.y * data[6] + orig.z * data[10] + data[14]; w = 1 / (orig.x * data[3] + orig.y * data[7] + orig.z * data[11] + data[15]); *dest *= w; return w; } /** Transform a point and return w. */ float TransformPointReturnW(const Vec3 & restrict orig, Vec3 * restrict dest) const { piDebugCheck(&orig != dest); dest->x = orig.x * data[0] + orig.y * data[4] + orig.z * data[8] + data[12]; dest->y = orig.x * data[1] + orig.y * data[5] + orig.z * data[9] + data[13]; dest->z = orig.x * data[2] + orig.y * data[6] + orig.z * data[10] + data[14]; return orig.x * data[3] + orig.y * data[7] + orig.z * data[11] + data[15]; } /** Transform a normalized 3d point by a 4d matrix and return the resulting 4d vector. */ void TransformVec4(const Vec3 & orig, Vec4 * dest) const { dest->x = orig.x * data[0] + orig.y * data[4] + orig.z * data[8] + data[12]; dest->y = orig.x * data[1] + orig.y * data[5] + orig.z * data[9] + data[13]; dest->z = orig.x * data[2] + orig.y * data[6] + orig.z * data[10] + data[14]; dest->w = orig.x * data[3] + orig.y * data[7] + orig.z * data[11] + data[15]; } //@} /** @name Matrix analysis. */ //@{ /** Get the ZYZ euler angles from the matrix. Assumes the matrix is orthonormal. */ void GetEulerAnglesZYZ(float * s, float * t, float * r) const { if( GetElem(2,2) < 1.0f ) { if( GetElem(2,2) > -1.0f ) { // cs*ct*cr-ss*sr -ss*ct*cr-cs*sr st*cr // cs*ct*sr+ss*cr -ss*ct*sr+cs*cr st*sr // -cs*st ss*st ct *s = atan2(GetElem(1,2), -GetElem(0,2)); *t = acos(GetElem(2,2)); *r = atan2(GetElem(2,1), GetElem(2,0)); } else { // -c(s-r) s(s-r) 0 // s(s-r) c(s-r) 0 // 0 0 -1 *s = atan2(GetElem(0, 1), -GetElem(0, 0)); // = s-r *t = PI; *r = 0; } } else { // c(s+r) -s(s+r) 0 // s(s+r) c(s+r) 0 // 0 0 1 *s = atan2(GetElem(0, 1), GetElem(0, 0)); // = s+r *t = 0; *r = 0; } } //@} MATHLIB_API friend PiStream & operator<< ( PiStream & s, Matrix & m ); /** Print to debug output. */ void Print() const { piDebug( "[ %5.2f %5.2f %5.2f %5.2f ]\n", data[0], data[4], data[8], data[12] ); piDebug( "[ %5.2f %5.2f %5.2f %5.2f ]\n", data[1], data[5], data[9], data[13] ); piDebug( "[ %5.2f %5.2f %5.2f %5.2f ]\n", data[2], data[6], data[10], data[14] ); piDebug( "[ %5.2f %5.2f %5.2f %5.2f ]\n", data[3], data[7], data[11], data[15] ); } public: float data[16]; }; #endif #endif // NV_MATH_MATRIX_INL