/* Copyright 2013 Jeremie Roy. All rights reserved. * License: http://www.opensource.org/licenses/BSD-2-Clause */ #pragma once #include "cube_atlas.h" #include #include #include //********** Rectangle packer implementation ************ class RectanglePacker { public: RectanglePacker(); RectanglePacker(uint32_t _width, uint32_t _height); /// non constructor initialization void init(uint32_t _width, uint32_t _height); /// find a suitable position for the given rectangle /// @return true if the rectangle can be added, false otherwise bool addRectangle(uint16_t _width, uint16_t _height, uint16_t& _outX, uint16_t& _outY ); /// return the used surface in squared unit uint32_t getUsedSurface() { return m_usedSpace; } /// return the total available surface in squared unit uint32_t getTotalSurface() { return m_width*m_height; } /// return the usage ratio of the available surface [0:1] float getUsageRatio(); /// reset to initial state void clear(); private: int32_t fit(uint32_t _skylineNodeIndex, uint16_t _width, uint16_t _height); /// Merges all skyline nodes that are at the same level. void merge(); struct Node { Node(int16_t _x, int16_t _y, int16_t _width):m_x(_x), m_y(_y), m_width(_width) {} /// The starting x-coordinate (leftmost). int16_t m_x; /// The y-coordinate of the skyline level line. int16_t m_y; /// The line _width. The ending coordinate (inclusive) will be x+width-1. int32_t m_width; //32bit to avoid padding }; /// width (in pixels) of the underlying texture uint32_t m_width; /// height (in pixels) of the underlying texture uint32_t m_height; /// Surface used in squared pixel uint32_t m_usedSpace; /// node of the skyline algorithm std::vector m_skyline; }; RectanglePacker::RectanglePacker(): m_width(0), m_height(0), m_usedSpace(0) { } RectanglePacker::RectanglePacker(uint32_t _width, uint32_t _height):m_width(_width), m_height(_height), m_usedSpace(0) { // We want a one pixel border around the whole atlas to avoid any artefact when // sampling texture m_skyline.push_back(Node(1,1, _width-2)); } void RectanglePacker::init(uint32_t _width, uint32_t _height) { BX_CHECK(_width > 2, "_width must be > 2"); BX_CHECK(_height > 2, "_height must be > 2"); m_width = _width; m_height = _height; m_usedSpace = 0; m_skyline.clear(); // We want a one pixel border around the whole atlas to avoid any artifact when // sampling texture m_skyline.push_back(Node(1,1, _width-2)); } bool RectanglePacker::addRectangle(uint16_t _width, uint16_t _height, uint16_t& _outX, uint16_t& _outY) { int y, best_height, best_index; int32_t best_width; Node* node; Node* prev; _outX = 0; _outY = 0; uint32_t ii; best_height = INT_MAX; best_index = -1; best_width = INT_MAX; for( ii = 0; ii < m_skyline.size(); ++ii ) { y = fit( ii, _width, _height ); if( y >= 0 ) { node = &m_skyline[ii]; if( ( (y + _height) < best_height ) || ( ((y + _height) == best_height) && (node->m_width < best_width)) ) { best_height = y + _height; best_index = ii; best_width = node->m_width; _outX = node->m_x; _outY = y; } } } if( best_index == -1 ) { return false; } Node newNode(_outX, _outY + _height, _width); m_skyline.insert(m_skyline.begin() + best_index, newNode); for(ii = best_index+1; ii < m_skyline.size(); ++ii) { node = &m_skyline[ii]; prev = &m_skyline[ii-1]; if (node->m_x < (prev->m_x + prev->m_width) ) { int shrink = prev->m_x + prev->m_width - node->m_x; node->m_x += shrink; node->m_width -= shrink; if (node->m_width <= 0) { m_skyline.erase(m_skyline.begin() + ii); --ii; } else { break; } } else { break; } } merge(); m_usedSpace += _width * _height; return true; } float RectanglePacker::getUsageRatio() { uint32_t total = m_width*m_height; if(total > 0) return (float) m_usedSpace / (float) total; else return 0.0f; } void RectanglePacker::clear() { m_skyline.clear(); m_usedSpace = 0; // We want a one pixel border around the whole atlas to avoid any artefact when // sampling texture m_skyline.push_back(Node(1,1, m_width-2)); } int32_t RectanglePacker::fit(uint32_t _skylineNodeIndex, uint16_t _width, uint16_t _height) { int32_t width = _width; int32_t height = _height; const Node& baseNode = m_skyline[_skylineNodeIndex]; int32_t x = baseNode.m_x, y; int32_t _width_left = width; int32_t i = _skylineNodeIndex; if ( (x + width) > (int32_t)(m_width-1) ) { return -1; } y = baseNode.m_y; while( _width_left > 0 ) { const Node& node = m_skyline[i]; if( node.m_y > y ) { y = node.m_y; } if( (y + height) > (int32_t)(m_height-1) ) { return -1; } _width_left -= node.m_width; ++i; } return y; } void RectanglePacker::merge() { Node* node; Node* next; uint32_t ii; for( ii=0; ii < m_skyline.size()-1; ++ii ) { node = (Node *) &m_skyline[ii]; next = (Node *) &m_skyline[ii+1]; if( node->m_y == next->m_y ) { node->m_width += next->m_width; m_skyline.erase(m_skyline.begin() + ii + 1); --ii; } } } //********** Cube Atlas implementation ************ struct Atlas::PackedLayer { RectanglePacker packer; AtlasRegion faceRegion; }; Atlas::Atlas(uint16_t _textureSize, uint16_t _maxRegionsCount ) { BX_CHECK(_textureSize >= 64 && _textureSize <= 4096, "suspicious texture size" ); BX_CHECK(_maxRegionsCount >= 64 && _maxRegionsCount <= 32000, "suspicious _regions count" ); m_layers = new PackedLayer[24]; for(int ii=0; ii<24;++ii) { m_layers[ii].packer.init(_textureSize, _textureSize); } m_usedLayers = 0; m_usedFaces = 0; m_textureSize = _textureSize; m_regionCount = 0; m_maxRegionCount = _maxRegionsCount; m_regions = new AtlasRegion[_maxRegionsCount]; m_textureBuffer = new uint8_t[ _textureSize * _textureSize * 6 * 4 ]; memset(m_textureBuffer, 0, _textureSize * _textureSize * 6 * 4); //BGFX_TEXTURE_MIN_POINT|BGFX_TEXTURE_MAG_POINT|BGFX_TEXTURE_MIP_POINT; //BGFX_TEXTURE_MIN_ANISOTROPIC|BGFX_TEXTURE_MAG_ANISOTROPIC|BGFX_TEXTURE_MIP_POINT //BGFX_TEXTURE_U_CLAMP|BGFX_TEXTURE_V_CLAMP uint32_t flags = 0;// BGFX_TEXTURE_MIN_ANISOTROPIC|BGFX_TEXTURE_MAG_ANISOTROPIC|BGFX_TEXTURE_MIP_POINT; //Uncomment this to debug atlas //const bgfx::Memory* mem = bgfx::alloc(textureSize*textureSize * 6 * 4); //memset(mem->data, 255, mem->size); const bgfx::Memory* mem = NULL; m_textureHandle = bgfx::createTextureCube(6 , _textureSize , 1 , bgfx::TextureFormat::BGRA8 , flags ,mem ); } Atlas::Atlas(uint16_t _textureSize, const uint8_t* _textureBuffer , uint16_t _regionCount, const uint8_t* _regionBuffer, uint16_t _maxRegionsCount) { BX_CHECK(_regionCount <= 64 && _maxRegionsCount <= 4096, "suspicious initialization"); //layers are frozen m_usedLayers = 24; m_usedFaces = 6; m_textureSize = _textureSize; m_regionCount = _regionCount; //regions are frozen if(_regionCount < _maxRegionsCount) m_maxRegionCount = _regionCount; else m_maxRegionCount = _maxRegionsCount; m_regions = new AtlasRegion[_regionCount]; m_textureBuffer = new uint8_t[getTextureBufferSize()]; //BGFX_TEXTURE_MIN_POINT|BGFX_TEXTURE_MAG_POINT|BGFX_TEXTURE_MIP_POINT; //BGFX_TEXTURE_MIN_ANISOTROPIC|BGFX_TEXTURE_MAG_ANISOTROPIC|BGFX_TEXTURE_MIP_POINT //BGFX_TEXTURE_U_CLAMP|BGFX_TEXTURE_V_CLAMP uint32_t flags = 0;//BGFX_TEXTURE_MIN_ANISOTROPIC|BGFX_TEXTURE_MAG_ANISOTROPIC|BGFX_TEXTURE_MIP_POINT; memcpy(m_regions, _regionBuffer, _regionCount * sizeof(AtlasRegion)); memcpy(m_textureBuffer, _textureBuffer, getTextureBufferSize()); m_textureHandle = bgfx::createTextureCube(6 , _textureSize , 1 , bgfx::TextureFormat::BGRA8 , flags , bgfx::makeRef(m_textureBuffer, getTextureBufferSize()) ); } Atlas::~Atlas() { delete[] m_layers; delete[] m_regions; delete[] m_textureBuffer; } uint16_t Atlas::addRegion(uint16_t _width, uint16_t _height, const uint8_t* _bitmapBuffer, AtlasRegion::Type _type) { if (m_regionCount >= m_maxRegionCount) { return UINT16_MAX; } uint16_t x=0,y=0; // We want each bitmap to be separated by at least one black pixel // TODO manage mipmaps uint32_t idx = 0; while(idx= m_usedLayers) { //do we have still room to add layers ? if( (idx + _type) > 24 || m_usedFaces>=6) { return UINT16_MAX; } //create new layers for(int ii=0; ii < _type; ++ii) { m_layers[idx+ii].faceRegion.setMask(_type, m_usedFaces, ii); } m_usedLayers += _type; m_usedFaces++; //add it to the created layer if(!m_layers[idx].packer.addRectangle(_width+1, _height+1, x, y)) { return UINT16_MAX; } } AtlasRegion& region = m_regions[m_regionCount]; region.m_x = x; region.m_y = y; region.m_width = _width; region.m_height = _height; region.m_mask = m_layers[idx].faceRegion.m_mask; updateRegion(region, _bitmapBuffer); return m_regionCount++; } void Atlas::updateRegion(const AtlasRegion& _region, const uint8_t* _bitmapBuffer) { const bgfx::Memory* mem = bgfx::alloc(_region.m_width * _region.m_height * 4); //BAD! memset(mem->data,0, mem->size); if(_region.getType() == AtlasRegion::TYPE_BGRA8) { const uint8_t* inLineBuffer = _bitmapBuffer; uint8_t* outLineBuffer = m_textureBuffer + _region.getFaceIndex() * (m_textureSize*m_textureSize*4) + (((_region.m_y *m_textureSize)+_region.m_x)*4); //update the cpu buffer for(int yy = 0; yy < _region.m_height; ++yy) { memcpy(outLineBuffer, inLineBuffer, _region.m_width * 4); inLineBuffer += _region.m_width*4; outLineBuffer += m_textureSize*4; } //update the GPU buffer memcpy(mem->data, _bitmapBuffer, mem->size); }else { uint32_t layer = _region.getComponentIndex(); //uint32_t face = _region.getFaceIndex(); const uint8_t* inLineBuffer = _bitmapBuffer; uint8_t* outLineBuffer = (m_textureBuffer + _region.getFaceIndex() * (m_textureSize*m_textureSize*4) + (((_region.m_y *m_textureSize)+_region.m_x)*4)); //update the cpu buffer for(int yy = 0; yy<_region.m_height; ++yy) { for(int xx = 0; xx<_region.m_width; ++xx) { outLineBuffer[(xx*4) + layer] = inLineBuffer[xx]; } //update the GPU buffer memcpy(mem->data + yy*_region.m_width*4, outLineBuffer, _region.m_width*4); inLineBuffer += _region.m_width; outLineBuffer += m_textureSize*4; } } bgfx::updateTextureCube(m_textureHandle, (uint8_t)_region.getFaceIndex(), 0, _region.m_x, _region.m_y, _region.m_width, _region.m_height, mem); } void Atlas::packFaceLayerUV(uint32_t _idx, uint8_t* _vertexBuffer, uint32_t _offset, uint32_t _stride ) { packUV(m_layers[_idx].faceRegion, _vertexBuffer, _offset, _stride); } void Atlas::packUV( uint16_t handle, uint8_t* _vertexBuffer, uint32_t _offset, uint32_t _stride ) { const AtlasRegion& region = m_regions[handle]; packUV(region, _vertexBuffer, _offset, _stride); } void Atlas::packUV( const AtlasRegion& _region, uint8_t* _vertexBuffer, uint32_t _offset, uint32_t _stride ) { float texMult = 65535.0f / ((float)(m_textureSize)); static const int16_t minVal = -32768; static const int16_t maxVal = 32767; int16_t x0 = (int16_t)(_region.m_x * texMult)-32768; int16_t y0 = (int16_t)(_region.m_y * texMult)-32768; int16_t x1 = (int16_t)((_region.m_x + _region.m_width)* texMult)-32768; int16_t y1 = (int16_t)((_region.m_y + _region.m_height)* texMult)-32768; int16_t w = (int16_t) ((32767.0f/4.0f) * _region.getComponentIndex()); _vertexBuffer+=_offset; switch(_region.getFaceIndex()) { case 0: // +X x0= -x0; x1= -x1; y0= -y0; y1= -y1; writeUV(_vertexBuffer, maxVal, y0, x0, w); _vertexBuffer+=_stride; writeUV(_vertexBuffer, maxVal, y1, x0, w); _vertexBuffer+=_stride; writeUV(_vertexBuffer, maxVal, y1, x1, w); _vertexBuffer+=_stride; writeUV(_vertexBuffer, maxVal, y0, x1, w); _vertexBuffer+=_stride; break; case 1: // -X y0= -y0; y1= -y1; writeUV(_vertexBuffer, minVal, y0, x0, w); _vertexBuffer+=_stride; writeUV(_vertexBuffer, minVal, y1, x0, w); _vertexBuffer+=_stride; writeUV(_vertexBuffer, minVal, y1, x1, w); _vertexBuffer+=_stride; writeUV(_vertexBuffer, minVal, y0, x1, w); _vertexBuffer+=_stride; break; case 2: // +Y writeUV(_vertexBuffer, x0, maxVal, y0, w); _vertexBuffer+=_stride; writeUV(_vertexBuffer, x0, maxVal, y1, w); _vertexBuffer+=_stride; writeUV(_vertexBuffer, x1, maxVal, y1, w); _vertexBuffer+=_stride; writeUV(_vertexBuffer, x1, maxVal, y0, w); _vertexBuffer+=_stride; break; case 3: // -Y y0= -y0; y1= -y1; writeUV(_vertexBuffer, x0, minVal, y0, w); _vertexBuffer+=_stride; writeUV(_vertexBuffer, x0, minVal, y1, w); _vertexBuffer+=_stride; writeUV(_vertexBuffer, x1, minVal, y1, w); _vertexBuffer+=_stride; writeUV(_vertexBuffer, x1, minVal, y0, w); _vertexBuffer+=_stride; break; case 4: // +Z y0= -y0; y1= -y1; writeUV(_vertexBuffer, x0, y0, maxVal, w); _vertexBuffer+=_stride; writeUV(_vertexBuffer, x0, y1, maxVal, w); _vertexBuffer+=_stride; writeUV(_vertexBuffer, x1, y1, maxVal, w); _vertexBuffer+=_stride; writeUV(_vertexBuffer, x1, y0, maxVal, w); _vertexBuffer+=_stride; break; case 5: // -Z x0= -x0; x1= -x1; y0= -y0; y1= -y1; writeUV(_vertexBuffer, x0, y0, minVal, w); _vertexBuffer+=_stride; writeUV(_vertexBuffer, x0, y1, minVal, w); _vertexBuffer+=_stride; writeUV(_vertexBuffer, x1, y1, minVal, w); _vertexBuffer+=_stride; writeUV(_vertexBuffer, x1, y0, minVal, w); _vertexBuffer+=_stride; break; } }