/* Copyright 2013 Jeremie Roy. All rights reserved. * License: http://www.opensource.org/licenses/BSD-2-Clause */ #pragma once #include #include #include #include "cube_atlas.h" namespace bgfx { //********** Rectangle packer implementation ************ class RectanglePacker { public: RectanglePacker(); RectanglePacker(uint32_t width, uint32_t height); /// non constructor initialization void init(uint32_t width, uint32_t height); /// find a suitable position for the given rectangle /// @return true if the rectangle can be added, false otherwise bool addRectangle(uint16_t width, uint16_t height, uint16_t& outX, uint16_t& outY ); /// return the used surface in squared unit uint32_t getUsedSurface() { return m_usedSpace; } /// return the total available surface in squared unit uint32_t getTotalSurface() { return m_width*m_height; } /// return the usage ratio of the available surface [0:1] float getUsageRatio(); /// reset to initial state void clear(); private: int32_t fit(uint32_t skylineNodeIndex, uint16_t width, uint16_t height); /// Merges all skyline nodes that are at the same level. void merge(); struct Node { Node(int16_t _x, int16_t _y, int16_t _width):x(_x), y(_y), width(_width) {} /// The starting x-coordinate (leftmost). int16_t x; /// The y-coordinate of the skyline level line. int16_t y; /// The line width. The ending coordinate (inclusive) will be x+width-1. int32_t width; //32bit to avoid padding }; /// Width (in pixels) of the underlying texture uint32_t m_width; /// Height (in pixels) of the underlying texture uint32_t m_height; /// Surface used in squared pixel uint32_t m_usedSpace; /// node of the skyline algorithm std::vector m_skyline; }; RectanglePacker::RectanglePacker(): m_width(0), m_height(0), m_usedSpace(0) { } RectanglePacker::RectanglePacker(uint32_t width, uint32_t height):m_width(width), m_height(height), m_usedSpace(0) { // We want a one pixel border around the whole atlas to avoid any artefact when // sampling texture m_skyline.push_back(Node(1,1, width-2)); } void RectanglePacker::init(uint32_t width, uint32_t height) { assert(width > 2); assert(height > 2); m_width = width; m_height = height; m_usedSpace = 0; m_skyline.clear(); // We want a one pixel border around the whole atlas to avoid any artifact when // sampling texture m_skyline.push_back(Node(1,1, width-2)); } bool RectanglePacker::addRectangle(uint16_t width, uint16_t height, uint16_t& outX, uint16_t& outY) { int y, best_height, best_index; int32_t best_width; Node* node; Node* prev; outX = 0; outY = 0; size_t i; best_height = INT_MAX; best_index = -1; best_width = INT_MAX; for( i = 0; i < m_skyline.size(); ++i ) { y = fit( i, width, height ); if( y >= 0 ) { node = &m_skyline[i]; if( ( (y + height) < best_height ) || ( ((y + height) == best_height) && (node->width < best_width)) ) { best_height = y + height; best_index = i; best_width = node->width; outX = node->x; outY = y; } } } if( best_index == -1 ) { return false; } Node newNode(outX,outY + height, width); m_skyline.insert(m_skyline.begin() + best_index, newNode); for(i = best_index+1; i < m_skyline.size(); ++i) { node = &m_skyline[i]; prev = &m_skyline[i-1]; if (node->x < (prev->x + prev->width) ) { int shrink = prev->x + prev->width - node->x; node->x += shrink; node->width -= shrink; if (node->width <= 0) { m_skyline.erase(m_skyline.begin() + i); --i; } else { break; } } else { break; } } merge(); m_usedSpace += width * height; return true; } float RectanglePacker::getUsageRatio() { uint32_t total = m_width*m_height; if(total > 0) return (float) m_usedSpace / (float) total; else return 0.0f; } void RectanglePacker::clear() { m_skyline.clear(); m_usedSpace = 0; // We want a one pixel border around the whole atlas to avoid any artefact when // sampling texture m_skyline.push_back(Node(1,1, m_width-2)); } int32_t RectanglePacker::fit(uint32_t skylineNodeIndex, uint16_t _width, uint16_t _height) { int32_t width = _width; int32_t height = _height; const Node& baseNode = m_skyline[skylineNodeIndex]; int32_t x = baseNode.x, y; int32_t width_left = width; int32_t i = skylineNodeIndex; if ( (x + width) > (int32_t)(m_width-1) ) { return -1; } y = baseNode.y; while( width_left > 0 ) { const Node& node = m_skyline[i]; if( node.y > y ) { y = node.y; } if( (y + height) > (int32_t)(m_height-1) ) { return -1; } width_left -= node.width; ++i; } return y; } void RectanglePacker::merge() { Node* node; Node* next; uint32_t i; for( i=0; i < m_skyline.size()-1; ++i ) { node = (Node *) &m_skyline[i]; next = (Node *) &m_skyline[i+1]; if( node->y == next->y ) { node->width += next->width; m_skyline.erase(m_skyline.begin() + i + 1); --i; } } } //********** Cube Atlas implementation ************ struct Atlas::PackedLayer { RectanglePacker packer; AtlasRegion faceRegion; }; Atlas::Atlas(uint16_t textureSize, uint16_t maxRegionsCount ) { assert(textureSize >= 64 && textureSize <= 4096 && "suspicious texture size" ); assert(maxRegionsCount >= 64 && maxRegionsCount <= 32000 && "suspicious regions count" ); m_layers = new PackedLayer[24]; for(int i=0; i<24;++i) { m_layers[i].packer.init(textureSize, textureSize); } m_usedLayers = 0; m_usedFaces = 0; m_textureSize = textureSize; m_regionCount = 0; m_maxRegionCount = maxRegionsCount; m_regions = new AtlasRegion[maxRegionsCount]; m_textureBuffer = new uint8_t[ textureSize * textureSize * 6 * 4 ]; memset(m_textureBuffer, 0, textureSize * textureSize * 6 * 4); //BGFX_TEXTURE_MIN_POINT|BGFX_TEXTURE_MAG_POINT|BGFX_TEXTURE_MIP_POINT; //BGFX_TEXTURE_MIN_ANISOTROPIC|BGFX_TEXTURE_MAG_ANISOTROPIC|BGFX_TEXTURE_MIP_POINT //BGFX_TEXTURE_U_CLAMP|BGFX_TEXTURE_V_CLAMP uint32_t flags = 0;// BGFX_TEXTURE_MIN_ANISOTROPIC|BGFX_TEXTURE_MAG_ANISOTROPIC|BGFX_TEXTURE_MIP_POINT; //Uncomment this to debug atlas //const bgfx::Memory* mem = bgfx::alloc(textureSize*textureSize * 6 * 4); //memset(mem->data, 255, mem->size); const bgfx::Memory* mem = NULL; m_textureHandle = bgfx::createTextureCube(6 , textureSize , 1 , bgfx::TextureFormat::BGRA8 , flags ,mem ); } Atlas::Atlas(uint16_t textureSize, const uint8_t* textureBuffer , uint16_t regionCount, const uint8_t* regionBuffer, uint16_t maxRegionsCount) { assert(regionCount <= 64 && maxRegionsCount <= 4096); //layers are frozen m_usedLayers = 24; m_usedFaces = 6; m_textureSize = textureSize; m_regionCount = regionCount; //regions are frozen m_maxRegionCount = regionCount; m_regions = new AtlasRegion[regionCount]; m_textureBuffer = new uint8_t[getTextureBufferSize()]; //BGFX_TEXTURE_MIN_POINT|BGFX_TEXTURE_MAG_POINT|BGFX_TEXTURE_MIP_POINT; //BGFX_TEXTURE_MIN_ANISOTROPIC|BGFX_TEXTURE_MAG_ANISOTROPIC|BGFX_TEXTURE_MIP_POINT //BGFX_TEXTURE_U_CLAMP|BGFX_TEXTURE_V_CLAMP uint32_t flags = 0;//BGFX_TEXTURE_MIN_ANISOTROPIC|BGFX_TEXTURE_MAG_ANISOTROPIC|BGFX_TEXTURE_MIP_POINT; memcpy(m_regions, regionBuffer, regionCount * sizeof(AtlasRegion)); memcpy(m_textureBuffer, textureBuffer, getTextureBufferSize()); m_textureHandle = bgfx::createTextureCube(6 , textureSize , 1 , bgfx::TextureFormat::BGRA8 , flags , bgfx::makeRef(m_textureBuffer, getTextureBufferSize()) ); } Atlas::~Atlas() { delete[] m_layers; delete[] m_regions; delete[] m_textureBuffer; } uint16_t Atlas::addRegion(uint16_t width, uint16_t height, const uint8_t* bitmapBuffer, AtlasRegion::Type type) { if (m_regionCount >= m_maxRegionCount) { return UINT16_MAX; } uint16_t x,y; // We want each bitmap to be separated by at least one black pixel // TODO manage mipmaps uint32_t idx = 0; while(idx= m_usedLayers) { //do we have still room to add layers ? if( (idx + type) > 24 || m_usedFaces>=6) { return UINT16_MAX; } //create new layers for(int i=0; i < type;++i) { m_layers[idx+i].faceRegion.setMask(type, m_usedFaces, i); } m_usedLayers += type; m_usedFaces++; //add it to the created layer if(!m_layers[idx].packer.addRectangle(width+1,height+1,x,y)) { return UINT16_MAX; } } AtlasRegion& region = m_regions[m_regionCount]; region.x = x; region.y = y; region.width = width; region.height = height; region.mask = m_layers[idx].faceRegion.mask; updateRegion(region, bitmapBuffer); return m_regionCount++; } void Atlas::updateRegion(const AtlasRegion& region, const uint8_t* bitmapBuffer) { const bgfx::Memory* mem = bgfx::alloc(region.width * region.height * 4); //BAD! memset(mem->data,0, mem->size); if(region.getType() == AtlasRegion::TYPE_BGRA8) { const uint8_t* inLineBuffer = bitmapBuffer; uint8_t* outLineBuffer = m_textureBuffer + region.getFaceIndex() * (m_textureSize*m_textureSize*4) + (((region.y *m_textureSize)+region.x)*4); //update the cpu buffer for(int y = 0; y < region.height; ++y) { memcpy(outLineBuffer, inLineBuffer, region.width * 4); inLineBuffer += region.width*4; outLineBuffer += m_textureSize*4; } //update the GPU buffer memcpy(mem->data, bitmapBuffer, mem->size); }else { uint32_t layer = region.getComponentIndex(); uint32_t face = region.getFaceIndex(); const uint8_t* inLineBuffer = bitmapBuffer; uint8_t* outLineBuffer = (m_textureBuffer + region.getFaceIndex() * (m_textureSize*m_textureSize*4) + (((region.y *m_textureSize)+region.x)*4)); //update the cpu buffer for(int y = 0; ydata + y*region.width*4, outLineBuffer, region.width*4); inLineBuffer += region.width; outLineBuffer += m_textureSize*4; } } bgfx::updateTextureCube(m_textureHandle, (uint8_t)region.getFaceIndex(), 0, region.x, region.y, region.width, region.height, mem); } void Atlas::packFaceLayerUV(uint32_t idx, uint8_t* vertexBuffer, uint32_t offset, uint32_t stride ) { packUV(m_layers[idx].faceRegion, vertexBuffer, offset, stride); } void Atlas::packUV( uint16_t handle, uint8_t* vertexBuffer, uint32_t offset, uint32_t stride ) { const AtlasRegion& region = m_regions[handle]; packUV(region, vertexBuffer, offset, stride); } void Atlas::packUV( const AtlasRegion& region, uint8_t* vertexBuffer, uint32_t offset, uint32_t stride ) { float texMult = 65535.0f / ((float)(m_textureSize)); static const int16_t minVal = -32768; static const int16_t maxVal = 32767; int16_t x0 = (int16_t)(region.x * texMult)-32768; int16_t y0 = (int16_t)(region.y * texMult)-32768; int16_t x1 = (int16_t)((region.x + region.width)* texMult)-32768; int16_t y1 = (int16_t)((region.y + region.height)* texMult)-32768; int16_t w = (int16_t) ((32767.0f/4.0f) * region.getComponentIndex()); vertexBuffer+=offset; switch(region.getFaceIndex()) { case 0: // +X x0= -x0; x1= -x1; y0= -y0; y1= -y1; writeUV(vertexBuffer, maxVal, y0, x0, w); vertexBuffer+=stride; writeUV(vertexBuffer, maxVal, y1, x0, w); vertexBuffer+=stride; writeUV(vertexBuffer, maxVal, y1, x1, w); vertexBuffer+=stride; writeUV(vertexBuffer, maxVal, y0, x1, w); vertexBuffer+=stride; break; case 1: // -X y0= -y0; y1= -y1; writeUV(vertexBuffer, minVal, y0, x0, w); vertexBuffer+=stride; writeUV(vertexBuffer, minVal, y1, x0, w); vertexBuffer+=stride; writeUV(vertexBuffer, minVal, y1, x1, w); vertexBuffer+=stride; writeUV(vertexBuffer, minVal, y0, x1, w); vertexBuffer+=stride; break; case 2: // +Y writeUV(vertexBuffer, x0, maxVal, y0, w); vertexBuffer+=stride; writeUV(vertexBuffer, x0, maxVal, y1, w); vertexBuffer+=stride; writeUV(vertexBuffer, x1, maxVal, y1, w); vertexBuffer+=stride; writeUV(vertexBuffer, x1, maxVal, y0, w); vertexBuffer+=stride; break; case 3: // -Y y0= -y0; y1= -y1; writeUV(vertexBuffer, x0, minVal, y0, w); vertexBuffer+=stride; writeUV(vertexBuffer, x0, minVal, y1, w); vertexBuffer+=stride; writeUV(vertexBuffer, x1, minVal, y1, w); vertexBuffer+=stride; writeUV(vertexBuffer, x1, minVal, y0, w); vertexBuffer+=stride; break; case 4: // +Z y0= -y0; y1= -y1; writeUV(vertexBuffer, x0, y0, maxVal, w); vertexBuffer+=stride; writeUV(vertexBuffer, x0, y1, maxVal, w); vertexBuffer+=stride; writeUV(vertexBuffer, x1, y1, maxVal, w); vertexBuffer+=stride; writeUV(vertexBuffer, x1, y0, maxVal, w); vertexBuffer+=stride; break; case 5: // -Z x0= -x0; x1= -x1; y0= -y0; y1= -y1; writeUV(vertexBuffer, x0, y0, minVal, w); vertexBuffer+=stride; writeUV(vertexBuffer, x0, y1, minVal, w); vertexBuffer+=stride; writeUV(vertexBuffer, x1, y1, minVal, w); vertexBuffer+=stride; writeUV(vertexBuffer, x1, y0, minVal, w); vertexBuffer+=stride; break; } } }