/* * Copyright 2011-2014 Branimir Karadzic. All rights reserved. * License: http://www.opensource.org/licenses/BSD-2-Clause */ #include "bgfx_p.h" #include // powf, sqrtf #include "image.h" namespace bgfx { static const ImageBlockInfo s_imageBlockInfo[TextureFormat::Count] = { { 4, 4, 4, 8 }, // BC1 { 8, 4, 4, 16 }, // BC2 { 8, 4, 4, 16 }, // BC3 { 4, 4, 4, 8 }, // BC4 { 8, 4, 4, 16 }, // BC5 { 4, 4, 4, 8 }, // ETC1 { 4, 4, 4, 8 }, // ETC2 { 8, 4, 4, 16 }, // ETC2A { 4, 4, 4, 8 }, // ETC2A1 { 2, 8, 4, 8 }, // PTC12 { 4, 4, 4, 8 }, // PTC14 { 2, 8, 4, 8 }, // PTC12A { 4, 4, 4, 8 }, // PTC14A { 2, 8, 4, 8 }, // PTC22 { 4, 4, 4, 8 }, // PTC24 { 0, 0, 0, 0 }, // Unknown { 8, 1, 1, 1 }, // R8 { 16, 1, 1, 2 }, // R16 { 16, 1, 1, 2 }, // R16F { 32, 1, 1, 4 }, // BGRA8 { 64, 1, 1, 8 }, // RGBA16 { 64, 1, 1, 8 }, // RGBA16F { 16, 1, 1, 2 }, // R5G6B5 { 16, 1, 1, 2 }, // RGBA4 { 16, 1, 1, 2 }, // RGB5A1 { 32, 1, 1, 4 }, // RGB10A2 { 0, 0, 0, 0 }, // UnknownDepth { 16, 1, 1, 2 }, // D16 { 24, 1, 1, 3 }, // D24 { 32, 1, 1, 4 }, // D24S8 { 32, 1, 1, 4 }, // D32 { 16, 1, 1, 2 }, // D16F { 24, 1, 1, 3 }, // D24F { 32, 1, 1, 4 }, // D32F { 8, 1, 1, 1 }, // D0S8 }; static const char* s_textureFormatName[TextureFormat::Count] = { "BC1", // BC1 "BC2", // BC2 "BC3", // BC3 "BC4", // BC4 "BC5", // BC5 "ETC1", // ETC1 "ETC2", // ETC2 "ETC2A", // ETC2A "ETC2A1", // ETC2A1 "PTC12", // PTC12 "PTC14", // PTC14 "PTC12A", // PTC12A "PTC14A", // PTC14A "PTC22", // PTC22 "PTC24", // PTC24 "", // Unknown "R8", // R8 "R16", // R16 "R16F", // R16F "BGRA8", // BGRA8 "RGBA16", // RGBA16 "RGBA16F", // RGBA16F "R5G6B5", // R5G6B5 "RGBA4", // RGBA4 "RGB5A1", // RGB5A1 "RGB10A2", // RGB10A2 "", // UnknownDepth "D16", // D16 "D24", // D24 "D24S8", // D24S8 "D32", // D32 "D16F", // D16F "D24F", // D24F "D32F", // D32F "D0S8", // D0S8 }; bool isCompressed(TextureFormat::Enum _format) { return _format < TextureFormat::Unknown; } bool isColor(TextureFormat::Enum _format) { return _format > TextureFormat::Unknown && _format < TextureFormat::UnknownDepth ; } bool isDepth(TextureFormat::Enum _format) { return _format > TextureFormat::UnknownDepth && _format < TextureFormat::Count ; } uint8_t getBitsPerPixel(TextureFormat::Enum _format) { return s_imageBlockInfo[_format].bitsPerPixel; } const ImageBlockInfo& getBlockInfo(TextureFormat::Enum _format) { return s_imageBlockInfo[_format]; } uint8_t getBlockSize(TextureFormat::Enum _format) { return s_imageBlockInfo[_format].blockSize; } const char* getName(TextureFormat::Enum _format) { return s_textureFormatName[_format]; } void imageSolid(uint32_t _width, uint32_t _height, uint32_t _solid, void* _dst) { uint32_t* dst = (uint32_t*)_dst; for (uint32_t ii = 0, num = _width*_height; ii < num; ++ii) { *dst++ = _solid; } } void imageCheckerboard(uint32_t _width, uint32_t _height, uint32_t _step, uint32_t _0, uint32_t _1, void* _dst) { uint32_t* dst = (uint32_t*)_dst; for (uint32_t yy = 0; yy < _height; ++yy) { for (uint32_t xx = 0; xx < _width; ++xx) { uint32_t abgr = ( (xx/_step)&1) ^ ( (yy/_step)&1) ? _1 : _0; *dst++ = abgr; } } } void imageRgba8Downsample2x2Ref(uint32_t _width, uint32_t _height, uint32_t _srcPitch, const void* _src, void* _dst) { const uint32_t dstwidth = _width/2; const uint32_t dstheight = _height/2; if (0 == dstwidth || 0 == dstheight) { return; } uint8_t* dst = (uint8_t*)_dst; const uint8_t* src = (const uint8_t*)_src; for (uint32_t yy = 0, ystep = _srcPitch*2; yy < dstheight; ++yy, src += ystep) { const uint8_t* rgba = src; for (uint32_t xx = 0; xx < dstwidth; ++xx, rgba += 8, dst += 4) { float rr = powf(rgba[ 0], 2.2f); float gg = powf(rgba[ 1], 2.2f); float bb = powf(rgba[ 2], 2.2f); float aa = rgba[ 3]; rr += powf(rgba[ 4], 2.2f); gg += powf(rgba[ 5], 2.2f); bb += powf(rgba[ 6], 2.2f); aa += rgba[ 7]; rr += powf(rgba[_srcPitch+0], 2.2f); gg += powf(rgba[_srcPitch+1], 2.2f); bb += powf(rgba[_srcPitch+2], 2.2f); aa += rgba[_srcPitch+3]; rr += powf(rgba[_srcPitch+4], 2.2f); gg += powf(rgba[_srcPitch+5], 2.2f); bb += powf(rgba[_srcPitch+6], 2.2f); aa += rgba[_srcPitch+7]; rr *= 0.25f; gg *= 0.25f; bb *= 0.25f; aa *= 0.25f; rr = powf(rr, 1.0f/2.2f); gg = powf(gg, 1.0f/2.2f); bb = powf(bb, 1.0f/2.2f); dst[0] = (uint8_t)rr; dst[1] = (uint8_t)gg; dst[2] = (uint8_t)bb; dst[3] = (uint8_t)aa; } } } void imageRgba8Downsample2x2(uint32_t _width, uint32_t _height, uint32_t _srcPitch, const void* _src, void* _dst) { const uint32_t dstwidth = _width/2; const uint32_t dstheight = _height/2; if (0 == dstwidth || 0 == dstheight) { return; } uint8_t* dst = (uint8_t*)_dst; const uint8_t* src = (const uint8_t*)_src; using namespace bx; const float4_t unpack = float4_ld(1.0f, 1.0f/256.0f, 1.0f/65536.0f, 1.0f/16777216.0f); const float4_t pack = float4_ld(1.0f, 256.0f*0.5f, 65536.0f, 16777216.0f*0.5f); const float4_t umask = float4_ild(0xff, 0xff00, 0xff0000, 0xff000000); const float4_t pmask = float4_ild(0xff, 0x7f80, 0xff0000, 0x7f800000); const float4_t wflip = float4_ild(0, 0, 0, 0x80000000); const float4_t wadd = float4_ld(0.0f, 0.0f, 0.0f, 32768.0f*65536.0f); const float4_t gamma = float4_ld(1.0f/2.2f, 1.0f/2.2f, 1.0f/2.2f, 1.0f); const float4_t linear = float4_ld(2.2f, 2.2f, 2.2f, 1.0f); const float4_t quater = float4_splat(0.25f); for (uint32_t yy = 0, ystep = _srcPitch*2; yy < dstheight; ++yy, src += ystep) { const uint8_t* rgba = src; for (uint32_t xx = 0; xx < dstwidth; ++xx, rgba += 8, dst += 4) { const float4_t abgr0 = float4_splat(rgba); const float4_t abgr1 = float4_splat(rgba+4); const float4_t abgr2 = float4_splat(rgba+_srcPitch); const float4_t abgr3 = float4_splat(rgba+_srcPitch+4); const float4_t abgr0m = float4_and(abgr0, umask); const float4_t abgr1m = float4_and(abgr1, umask); const float4_t abgr2m = float4_and(abgr2, umask); const float4_t abgr3m = float4_and(abgr3, umask); const float4_t abgr0x = float4_xor(abgr0m, wflip); const float4_t abgr1x = float4_xor(abgr1m, wflip); const float4_t abgr2x = float4_xor(abgr2m, wflip); const float4_t abgr3x = float4_xor(abgr3m, wflip); const float4_t abgr0f = float4_itof(abgr0x); const float4_t abgr1f = float4_itof(abgr1x); const float4_t abgr2f = float4_itof(abgr2x); const float4_t abgr3f = float4_itof(abgr3x); const float4_t abgr0c = float4_add(abgr0f, wadd); const float4_t abgr1c = float4_add(abgr1f, wadd); const float4_t abgr2c = float4_add(abgr2f, wadd); const float4_t abgr3c = float4_add(abgr3f, wadd); const float4_t abgr0n = float4_mul(abgr0c, unpack); const float4_t abgr1n = float4_mul(abgr1c, unpack); const float4_t abgr2n = float4_mul(abgr2c, unpack); const float4_t abgr3n = float4_mul(abgr3c, unpack); const float4_t abgr0l = float4_pow(abgr0n, linear); const float4_t abgr1l = float4_pow(abgr1n, linear); const float4_t abgr2l = float4_pow(abgr2n, linear); const float4_t abgr3l = float4_pow(abgr3n, linear); const float4_t sum0 = float4_add(abgr0l, abgr1l); const float4_t sum1 = float4_add(abgr2l, abgr3l); const float4_t sum2 = float4_add(sum0, sum1); const float4_t avg0 = float4_mul(sum2, quater); const float4_t avg1 = float4_pow(avg0, gamma); const float4_t avg2 = float4_mul(avg1, pack); const float4_t ftoi0 = float4_ftoi(avg2); const float4_t ftoi1 = float4_and(ftoi0, pmask); const float4_t zwxy = float4_swiz_zwxy(ftoi1); const float4_t tmp0 = float4_or(ftoi1, zwxy); const float4_t yyyy = float4_swiz_yyyy(tmp0); const float4_t tmp1 = float4_iadd(yyyy, yyyy); const float4_t result = float4_or(tmp0, tmp1); float4_stx(dst, result); } } } void imageSwizzleBgra8Ref(uint32_t _width, uint32_t _height, uint32_t _srcPitch, const void* _src, void* _dst) { const uint8_t* src = (uint8_t*) _src; const uint8_t* next = src + _srcPitch; uint8_t* dst = (uint8_t*)_dst; for (uint32_t yy = 0; yy < _height; ++yy, src = next, next += _srcPitch) { for (uint32_t xx = 0; xx < _width; ++xx, src += 4, dst += 4) { uint8_t rr = src[0]; uint8_t gg = src[1]; uint8_t bb = src[2]; uint8_t aa = src[3]; dst[0] = bb; dst[1] = gg; dst[2] = rr; dst[3] = aa; } } } void imageSwizzleBgra8(uint32_t _width, uint32_t _height, uint32_t _srcPitch, const void* _src, void* _dst) { // Test can we do four 4-byte pixels at the time. if (0 != (_width&0x3) || _width < 4 || !bx::isPtrAligned(_src, 16) || !bx::isPtrAligned(_dst, 16) ) { BX_WARN(false, "Image swizzle is taking slow path."); BX_WARN(bx::isPtrAligned(_src, 16), "Source %p is not 16-byte aligned.", _src); BX_WARN(bx::isPtrAligned(_dst, 16), "Destination %p is not 16-byte aligned.", _dst); BX_WARN(_width < 4, "Image width must be multiple of 4 (width %d).", _width); imageSwizzleBgra8Ref(_width, _height, _srcPitch, _src, _dst); return; } using namespace bx; const float4_t mf0f0 = float4_isplat(0xff00ff00); const float4_t m0f0f = float4_isplat(0x00ff00ff); const uint8_t* src = (uint8_t*) _src; const uint8_t* next = src + _srcPitch; uint8_t* dst = (uint8_t*)_dst; const uint32_t width = _width/4; for (uint32_t yy = 0; yy < _height; ++yy, src = next, next += _srcPitch) { for (uint32_t xx = 0; xx < width; ++xx, src += 16, dst += 16) { const float4_t tabgr = float4_ld(src); const float4_t t00ab = float4_srl(tabgr, 16); const float4_t tgr00 = float4_sll(tabgr, 16); const float4_t tgrab = float4_or(t00ab, tgr00); const float4_t ta0g0 = float4_and(tabgr, mf0f0); const float4_t t0r0b = float4_and(tgrab, m0f0f); const float4_t targb = float4_or(ta0g0, t0r0b); float4_st(dst, targb); } } } void imageCopy(uint32_t _width, uint32_t _height, uint32_t _bpp, uint32_t _srcPitch, const void* _src, void* _dst) { const uint32_t pitch = _width*_bpp/8; const uint8_t* src = (uint8_t*) _src; const uint8_t* next = src + _srcPitch; uint8_t* dst = (uint8_t*)_dst; for (uint32_t yy = 0; yy < _height; ++yy, src = next, next += _srcPitch, dst += pitch) { memcpy(dst, src, pitch); } } void imageWriteTga(bx::WriterI* _writer, uint32_t _width, uint32_t _height, uint32_t _srcPitch, const void* _src, bool _grayscale, bool _yflip) { uint8_t type = _grayscale ? 3 : 2; uint8_t bpp = _grayscale ? 8 : 32; uint8_t header[18] = {}; header[2] = type; header[12] = _width&0xff; header[13] = (_width>>8)&0xff; header[14] = _height&0xff; header[15] = (_height>>8)&0xff; header[16] = bpp; header[17] = 32; bx::write(_writer, header, sizeof(header) ); uint32_t dstPitch = _width*bpp/8; if (_yflip) { uint8_t* data = (uint8_t*)_src + _srcPitch*_height - _srcPitch; for (uint32_t yy = 0; yy < _height; ++yy) { bx::write(_writer, data, dstPitch); data -= _srcPitch; } } else if (_srcPitch == dstPitch) { bx::write(_writer, _src, _height*_srcPitch); } else { uint8_t* data = (uint8_t*)_src; for (uint32_t yy = 0; yy < _height; ++yy) { bx::write(_writer, data, dstPitch); data += _srcPitch; } } } uint32_t bitRangeConvert(uint32_t _in, uint32_t _from, uint32_t _to) { using namespace bx; uint32_t tmp0 = uint32_sll(1, _to); uint32_t tmp1 = uint32_sll(1, _from); uint32_t tmp2 = uint32_dec(tmp0); uint32_t tmp3 = uint32_dec(tmp1); uint32_t tmp4 = uint32_mul(_in, tmp2); uint32_t tmp5 = uint32_add(tmp3, tmp4); uint32_t tmp6 = uint32_srl(tmp5, _from); uint32_t tmp7 = uint32_add(tmp5, tmp6); uint32_t result = uint32_srl(tmp7, _from); return result; } void decodeBlockDxt(uint8_t _dst[16*4], const uint8_t _src[8]) { uint8_t colors[4*3]; uint32_t c0 = _src[0] | (_src[1] << 8); colors[0] = bitRangeConvert( (c0>> 0)&0x1f, 5, 8); colors[1] = bitRangeConvert( (c0>> 5)&0x3f, 6, 8); colors[2] = bitRangeConvert( (c0>>11)&0x1f, 5, 8); uint32_t c1 = _src[2] | (_src[3] << 8); colors[3] = bitRangeConvert( (c1>> 0)&0x1f, 5, 8); colors[4] = bitRangeConvert( (c1>> 5)&0x3f, 6, 8); colors[5] = bitRangeConvert( (c1>>11)&0x1f, 5, 8); colors[6] = (2*colors[0] + colors[3]) / 3; colors[7] = (2*colors[1] + colors[4]) / 3; colors[8] = (2*colors[2] + colors[5]) / 3; colors[ 9] = (colors[0] + 2*colors[3]) / 3; colors[10] = (colors[1] + 2*colors[4]) / 3; colors[11] = (colors[2] + 2*colors[5]) / 3; for (uint32_t ii = 0, next = 8*4; ii < 16*4; ii += 4, next += 2) { int idx = ( (_src[next>>3] >> (next & 7) ) & 3) * 3; _dst[ii+0] = colors[idx+0]; _dst[ii+1] = colors[idx+1]; _dst[ii+2] = colors[idx+2]; } } void decodeBlockDxt1(uint8_t _dst[16*4], const uint8_t _src[8]) { uint8_t colors[4*4]; uint32_t c0 = _src[0] | (_src[1] << 8); colors[0] = bitRangeConvert( (c0>> 0)&0x1f, 5, 8); colors[1] = bitRangeConvert( (c0>> 5)&0x3f, 6, 8); colors[2] = bitRangeConvert( (c0>>11)&0x1f, 5, 8); colors[3] = 255; uint32_t c1 = _src[2] | (_src[3] << 8); colors[4] = bitRangeConvert( (c1>> 0)&0x1f, 5, 8); colors[5] = bitRangeConvert( (c1>> 5)&0x3f, 6, 8); colors[6] = bitRangeConvert( (c1>>11)&0x1f, 5, 8); colors[7] = 255; if (c0 > c1) { colors[ 8] = (2*colors[0] + colors[4]) / 3; colors[ 9] = (2*colors[1] + colors[5]) / 3; colors[10] = (2*colors[2] + colors[6]) / 3; colors[11] = 255; colors[12] = (colors[0] + 2*colors[4]) / 3; colors[13] = (colors[1] + 2*colors[5]) / 3; colors[14] = (colors[2] + 2*colors[6]) / 3; colors[15] = 255; } else { colors[ 8] = (colors[0] + colors[4]) / 2; colors[ 9] = (colors[1] + colors[5]) / 2; colors[10] = (colors[2] + colors[6]) / 2; colors[11] = 255; colors[12] = 0; colors[13] = 0; colors[14] = 0; colors[15] = 0; } for (uint32_t ii = 0, next = 8*4; ii < 16*4; ii += 4, next += 2) { int idx = ( (_src[next>>3] >> (next & 7) ) & 3) * 4; _dst[ii+0] = colors[idx+0]; _dst[ii+1] = colors[idx+1]; _dst[ii+2] = colors[idx+2]; _dst[ii+3] = colors[idx+3]; } } void decodeBlockDxt23A(uint8_t _dst[16*4], const uint8_t _src[8]) { for (uint32_t ii = 0, next = 0; ii < 16*4; ii += 4, next += 4) { uint32_t c0 = (_src[next>>3] >> (next&7) ) & 0xf; _dst[ii] = bitRangeConvert(c0, 4, 8); } } void decodeBlockDxt45A(uint8_t _dst[16*4], const uint8_t _src[8]) { uint8_t alpha[8]; alpha[0] = _src[0]; alpha[1] = _src[1]; if (alpha[0] > alpha[1]) { alpha[2] = (6*alpha[0] + 1*alpha[1]) / 7; alpha[3] = (5*alpha[0] + 2*alpha[1]) / 7; alpha[4] = (4*alpha[0] + 3*alpha[1]) / 7; alpha[5] = (3*alpha[0] + 4*alpha[1]) / 7; alpha[6] = (2*alpha[0] + 5*alpha[1]) / 7; alpha[7] = (1*alpha[0] + 6*alpha[1]) / 7; } else { alpha[2] = (4*alpha[0] + 1*alpha[1]) / 5; alpha[3] = (3*alpha[0] + 2*alpha[1]) / 5; alpha[4] = (2*alpha[0] + 3*alpha[1]) / 5; alpha[5] = (1*alpha[0] + 4*alpha[1]) / 5; alpha[6] = 0; alpha[7] = 255; } uint32_t idx0 = _src[2]; uint32_t idx1 = _src[5]; idx0 |= uint32_t(_src[3])<<8; idx1 |= uint32_t(_src[6])<<8; idx0 |= uint32_t(_src[4])<<16; idx1 |= uint32_t(_src[7])<<16; for (uint32_t ii = 0; ii < 8*4; ii += 4) { _dst[ii] = alpha[idx0&7]; _dst[ii+32] = alpha[idx1&7]; idx0 >>= 3; idx1 >>= 3; } } static const int32_t s_etc1Mod[8][4] = { { 2, 8, -2, -8}, { 5, 17, -5, -17}, { 9, 29, -9, -29}, { 13, 42, -13, -42}, { 18, 60, -18, -60}, { 24, 80, -24, -80}, { 33, 106, -33, -106}, { 47, 183, -47, -183}, }; static const uint8_t s_etc2Mod[8] = { 3, 6, 11, 16, 23, 32, 41, 64 }; uint8_t uint8_sat(int32_t _a) { using namespace bx; const uint32_t min = uint32_imin(_a, 255); const uint32_t result = uint32_imax(min, 0); return (uint8_t)result; } uint8_t uint8_satadd(int32_t _a, int32_t _b) { const int32_t add = _a + _b; return uint8_sat(add); } void decodeBlockEtc2ModeT(uint8_t _dst[16*4], const uint8_t _src[8]) { uint8_t rgb[16]; // 0 1 2 3 4 5 6 7 // 7654321076543210765432107654321076543210765432107654321076543210 // ...rr.rrggggbbbbrrrrggggbbbbDDD.mmmmmmmmmmmmmmmmllllllllllllllll // ^ ^ ^ ^ ^ // +-- c0 +-- c1 | +-- msb +-- lsb // +-- dist rgb[ 0] = ( (_src[0] >> 1) & 0xc) | (_src[0] & 0x3) ; rgb[ 1] = _src[1] >> 4; rgb[ 2] = _src[1] & 0xf; rgb[ 8] = _src[2] >> 4; rgb[ 9] = _src[2] & 0xf; rgb[10] = _src[3] >> 4; rgb[ 0] = bitRangeConvert(rgb[ 0], 4, 8); rgb[ 1] = bitRangeConvert(rgb[ 1], 4, 8); rgb[ 2] = bitRangeConvert(rgb[ 2], 4, 8); rgb[ 8] = bitRangeConvert(rgb[ 8], 4, 8); rgb[ 9] = bitRangeConvert(rgb[ 9], 4, 8); rgb[10] = bitRangeConvert(rgb[10], 4, 8); uint8_t dist = (_src[3] >> 1) & 0x7; int32_t mod = s_etc2Mod[dist]; rgb[ 4] = uint8_satadd(rgb[ 8], mod); rgb[ 5] = uint8_satadd(rgb[ 9], mod); rgb[ 6] = uint8_satadd(rgb[10], mod); rgb[12] = uint8_satadd(rgb[ 8], -mod); rgb[13] = uint8_satadd(rgb[ 9], -mod); rgb[14] = uint8_satadd(rgb[10], -mod); uint32_t indexMsb = (_src[4]<<8) | _src[5]; uint32_t indexLsb = (_src[6]<<8) | _src[7]; for (uint32_t ii = 0; ii < 16; ++ii) { const uint32_t idx = (ii&0xc) | ( (ii & 0x3)<<4); const uint32_t lsbi = indexLsb & 1; const uint32_t msbi = (indexMsb & 1)<<1; const uint32_t pal = (lsbi | msbi)<<2; _dst[idx + 0] = rgb[pal+2]; _dst[idx + 1] = rgb[pal+1]; _dst[idx + 2] = rgb[pal+0]; _dst[idx + 3] = 255; indexLsb >>= 1; indexMsb >>= 1; } } void decodeBlockEtc2ModeH(uint8_t _dst[16*4], const uint8_t _src[8]) { uint8_t rgb[16]; // 0 1 2 3 4 5 6 7 // 7654321076543210765432107654321076543210765432107654321076543210 // .rrrrggg...gb.bbbrrrrggggbbbbDD.mmmmmmmmmmmmmmmmllllllllllllllll // ^ ^ ^ ^ ^ // +-- c0 +-- c1 | +-- msb +-- lsb // +-- dist rgb[ 0] = (_src[0] >> 3) & 0xf; rgb[ 1] = ( (_src[0] << 1) & 0xe) | ( (_src[1] >> 4) & 0x1) ; rgb[ 2] = (_src[1] & 0x8) | ( (_src[1] << 1) & 0x6) | (_src[2] >> 7) ; rgb[ 8] = (_src[2] >> 3) & 0xf; rgb[ 9] = ( (_src[2] << 1) & 0xe) | (_src[3] >> 7) ; rgb[10] = (_src[2] >> 3) & 0xf; rgb[ 0] = bitRangeConvert(rgb[ 0], 4, 8); rgb[ 1] = bitRangeConvert(rgb[ 1], 4, 8); rgb[ 2] = bitRangeConvert(rgb[ 2], 4, 8); rgb[ 8] = bitRangeConvert(rgb[ 8], 4, 8); rgb[ 9] = bitRangeConvert(rgb[ 9], 4, 8); rgb[10] = bitRangeConvert(rgb[10], 4, 8); uint32_t col0 = uint32_t(rgb[0]<<16) | uint32_t(rgb[1]<<8) | uint32_t(rgb[ 2]); uint32_t col1 = uint32_t(rgb[8]<<16) | uint32_t(rgb[9]<<8) | uint32_t(rgb[10]); uint8_t dist = (_src[3] & 0x6) | (col0 >= col1); int32_t mod = s_etc2Mod[dist]; rgb[ 4] = uint8_satadd(rgb[ 0], -mod); rgb[ 5] = uint8_satadd(rgb[ 1], -mod); rgb[ 6] = uint8_satadd(rgb[ 2], -mod); rgb[ 0] = uint8_satadd(rgb[ 0], mod); rgb[ 1] = uint8_satadd(rgb[ 1], mod); rgb[ 2] = uint8_satadd(rgb[ 2], mod); rgb[12] = uint8_satadd(rgb[ 8], -mod); rgb[13] = uint8_satadd(rgb[ 9], -mod); rgb[14] = uint8_satadd(rgb[10], -mod); rgb[ 8] = uint8_satadd(rgb[ 8], mod); rgb[ 9] = uint8_satadd(rgb[ 9], mod); rgb[10] = uint8_satadd(rgb[10], mod); uint32_t indexMsb = (_src[4]<<8) | _src[5]; uint32_t indexLsb = (_src[6]<<8) | _src[7]; for (uint32_t ii = 0; ii < 16; ++ii) { const uint32_t idx = (ii&0xc) | ( (ii & 0x3)<<4); const uint32_t lsbi = indexLsb & 1; const uint32_t msbi = (indexMsb & 1)<<1; const uint32_t pal = (lsbi | msbi)<<2; _dst[idx + 0] = rgb[pal+2]; _dst[idx + 1] = rgb[pal+1]; _dst[idx + 2] = rgb[pal+0]; _dst[idx + 3] = 255; indexLsb >>= 1; indexMsb >>= 1; } } void decodeBlockEtc2ModePlanar(uint8_t _dst[16*4], const uint8_t _src[8]) { // 0 1 2 3 4 5 6 7 // 7654321076543210765432107654321076543210765432107654321076543210 // .rrrrrrg.ggggggb...bb.bbbrrrrr.rgggggggbbbbbbrrrrrrgggggggbbbbbb // ^ ^ ^ // +-- c0 +-- cH +-- cV uint8_t c0[3]; uint8_t cH[3]; uint8_t cV[3]; c0[0] = (_src[0] >> 1) & 0x3f; c0[1] = ( (_src[0] & 1) << 6) | ( (_src[1] >> 1) & 0x3f) ; c0[2] = ( (_src[1] & 1) << 5) | ( (_src[2] & 0x18) ) | ( (_src[2] << 1) & 6) | ( (_src[3] >> 7) ) ; cH[0] = ( (_src[3] >> 1) & 0x3e) | (_src[3] & 1) ; cH[1] = _src[4] >> 1; cH[2] = ( (_src[4] & 1) << 5) | (_src[5] >> 3) ; cV[0] = ( (_src[5] & 0x7) << 3) | (_src[6] >> 5) ; cV[1] = ( (_src[6] & 0x1f) << 2) | (_src[7] >> 5) ; cV[2] = _src[7] & 0x3f; c0[0] = bitRangeConvert(c0[0], 6, 8); c0[1] = bitRangeConvert(c0[1], 7, 8); c0[2] = bitRangeConvert(c0[2], 6, 8); cH[0] = bitRangeConvert(cH[0], 6, 8); cH[1] = bitRangeConvert(cH[1], 7, 8); cH[2] = bitRangeConvert(cH[2], 6, 8); cV[0] = bitRangeConvert(cV[0], 6, 8); cV[1] = bitRangeConvert(cV[1], 7, 8); cV[2] = bitRangeConvert(cV[2], 6, 8); int16_t dy[3]; dy[0] = cV[0] - c0[0]; dy[1] = cV[1] - c0[1]; dy[2] = cV[2] - c0[2]; int16_t sx[3]; sx[0] = int16_t(c0[0])<<2; sx[1] = int16_t(c0[1])<<2; sx[2] = int16_t(c0[2])<<2; int16_t ex[3]; ex[0] = int16_t(cH[0])<<2; ex[1] = int16_t(cH[1])<<2; ex[2] = int16_t(cH[2])<<2; for (int32_t vv = 0; vv < 4; ++vv) { int16_t dx[3]; dx[0] = (ex[0] - sx[0])>>2; dx[1] = (ex[1] - sx[1])>>2; dx[2] = (ex[2] - sx[2])>>2; for (int32_t hh = 0; hh < 4; ++hh) { const uint32_t idx = (vv<<4) + (hh<<2); _dst[idx + 0] = uint8_sat( (sx[2] + dx[2]*hh)>>2); _dst[idx + 1] = uint8_sat( (sx[1] + dx[1]*hh)>>2); _dst[idx + 2] = uint8_sat( (sx[0] + dx[0]*hh)>>2); _dst[idx + 3] = 255; } sx[0] += dy[0]; sx[1] += dy[1]; sx[2] += dy[2]; ex[0] += dy[0]; ex[1] += dy[1]; ex[2] += dy[2]; } } void decodeBlockEtc12(uint8_t _dst[16*4], const uint8_t _src[8]) { bool flipBit = 0 != (_src[3] & 0x1); bool diffBit = 0 != (_src[3] & 0x2); uint8_t rgb[8]; if (diffBit) { rgb[0] = _src[0] >> 3; rgb[1] = _src[1] >> 3; rgb[2] = _src[2] >> 3; int8_t diff[3]; diff[0] = int8_t( (_src[0] & 0x7)<<5)>>5; diff[1] = int8_t( (_src[1] & 0x7)<<5)>>5; diff[2] = int8_t( (_src[2] & 0x7)<<5)>>5; int8_t rr = rgb[0] + diff[0]; int8_t gg = rgb[1] + diff[1]; int8_t bb = rgb[2] + diff[2]; // Etc2 3-modes if (rr < 0 || rr > 31) { decodeBlockEtc2ModeT(_dst, _src); return; } if (gg < 0 || gg > 31) { decodeBlockEtc2ModeH(_dst, _src); return; } if (bb < 0 || bb > 31) { decodeBlockEtc2ModePlanar(_dst, _src); return; } // Etc1 rgb[0] = bitRangeConvert(rgb[0], 5, 8); rgb[1] = bitRangeConvert(rgb[1], 5, 8); rgb[2] = bitRangeConvert(rgb[2], 5, 8); rgb[4] = bitRangeConvert(rr, 5, 8); rgb[5] = bitRangeConvert(gg, 5, 8); rgb[6] = bitRangeConvert(bb, 5, 8); } else { rgb[0] = _src[0] >> 4; rgb[1] = _src[1] >> 4; rgb[2] = _src[2] >> 4; rgb[4] = _src[0] & 0xf; rgb[5] = _src[1] & 0xf; rgb[6] = _src[2] & 0xf; rgb[0] = bitRangeConvert(rgb[0], 4, 8); rgb[1] = bitRangeConvert(rgb[1], 4, 8); rgb[2] = bitRangeConvert(rgb[2], 4, 8); rgb[4] = bitRangeConvert(rgb[4], 4, 8); rgb[5] = bitRangeConvert(rgb[5], 4, 8); rgb[6] = bitRangeConvert(rgb[6], 4, 8); } uint32_t table[2]; table[0] = (_src[3] >> 5) & 0x7; table[1] = (_src[3] >> 2) & 0x7; uint32_t indexMsb = (_src[4]<<8) | _src[5]; uint32_t indexLsb = (_src[6]<<8) | _src[7]; if (flipBit) { for (uint32_t ii = 0; ii < 16; ++ii) { const uint32_t block = (ii>>1)&1; const uint32_t color = block<<2; const uint32_t idx = (ii&0xc) | ( (ii & 0x3)<<4); const uint32_t lsbi = indexLsb & 1; const uint32_t msbi = (indexMsb & 1)<<1; const int32_t mod = s_etc1Mod[table[block] ][lsbi | msbi]; _dst[idx + 0] = uint8_satadd(rgb[color+2], mod); _dst[idx + 1] = uint8_satadd(rgb[color+1], mod); _dst[idx + 2] = uint8_satadd(rgb[color+0], mod); _dst[idx + 3] = 255; indexLsb >>= 1; indexMsb >>= 1; } } else { for (uint32_t ii = 0; ii < 16; ++ii) { const uint32_t block = ii>>3; const uint32_t color = block<<2; const uint32_t idx = (ii&0xc) | ( (ii & 0x3)<<4); const uint32_t lsbi = indexLsb & 1; const uint32_t msbi = (indexMsb & 1)<<1; const int32_t mod = s_etc1Mod[table[block] ][lsbi | msbi]; _dst[idx + 0] = uint8_satadd(rgb[color+2], mod); _dst[idx + 1] = uint8_satadd(rgb[color+1], mod); _dst[idx + 2] = uint8_satadd(rgb[color+0], mod); _dst[idx + 3] = 255; indexLsb >>= 1; indexMsb >>= 1; } } } // DDS #define DDS_MAGIC BX_MAKEFOURCC('D', 'D', 'S', ' ') #define DDS_HEADER_SIZE 124 #define DDS_IMAGE_DATA_OFFSET (DDS_HEADER_SIZE + 4) #define DDS_DXT1 BX_MAKEFOURCC('D', 'X', 'T', '1') #define DDS_DXT2 BX_MAKEFOURCC('D', 'X', 'T', '2') #define DDS_DXT3 BX_MAKEFOURCC('D', 'X', 'T', '3') #define DDS_DXT4 BX_MAKEFOURCC('D', 'X', 'T', '4') #define DDS_DXT5 BX_MAKEFOURCC('D', 'X', 'T', '5') #define DDS_ATI1 BX_MAKEFOURCC('A', 'T', 'I', '1') #define DDS_BC4U BX_MAKEFOURCC('B', 'C', '4', 'U') #define DDS_ATI2 BX_MAKEFOURCC('A', 'T', 'I', '2') #define DDS_BC5U BX_MAKEFOURCC('B', 'C', '5', 'U') #define D3DFMT_A16B16G16R16 36 #define D3DFMT_A16B16G16R16F 113 #define DDSD_CAPS 0x00000001 #define DDSD_HEIGHT 0x00000002 #define DDSD_WIDTH 0x00000004 #define DDSD_PITCH 0x00000008 #define DDSD_PIXELFORMAT 0x00001000 #define DDSD_MIPMAPCOUNT 0x00020000 #define DDSD_LINEARSIZE 0x00080000 #define DDSD_DEPTH 0x00800000 #define DDPF_ALPHAPIXELS 0x00000001 #define DDPF_ALPHA 0x00000002 #define DDPF_FOURCC 0x00000004 #define DDPF_INDEXED 0x00000020 #define DDPF_RGB 0x00000040 #define DDPF_YUV 0x00000200 #define DDPF_LUMINANCE 0x00020000 #define DDSCAPS_COMPLEX 0x00000008 #define DDSCAPS_TEXTURE 0x00001000 #define DDSCAPS_MIPMAP 0x00400000 #define DDSCAPS2_CUBEMAP 0x00000200 #define DDSCAPS2_CUBEMAP_POSITIVEX 0x00000400 #define DDSCAPS2_CUBEMAP_NEGATIVEX 0x00000800 #define DDSCAPS2_CUBEMAP_POSITIVEY 0x00001000 #define DDSCAPS2_CUBEMAP_NEGATIVEY 0x00002000 #define DDSCAPS2_CUBEMAP_POSITIVEZ 0x00004000 #define DDSCAPS2_CUBEMAP_NEGATIVEZ 0x00008000 #define DDS_CUBEMAP_ALLFACES (DDSCAPS2_CUBEMAP_POSITIVEX|DDSCAPS2_CUBEMAP_NEGATIVEX \ |DDSCAPS2_CUBEMAP_POSITIVEY|DDSCAPS2_CUBEMAP_NEGATIVEY \ |DDSCAPS2_CUBEMAP_POSITIVEZ|DDSCAPS2_CUBEMAP_NEGATIVEZ) #define DDSCAPS2_VOLUME 0x00200000 static struct TranslateDdsFormat { uint32_t m_format; TextureFormat::Enum m_textureFormat; } s_translateDdsFormat[] = { { DDS_DXT1, TextureFormat::BC1 }, { DDS_DXT2, TextureFormat::BC2 }, { DDS_DXT3, TextureFormat::BC2 }, { DDS_DXT4, TextureFormat::BC3 }, { DDS_DXT5, TextureFormat::BC3 }, { DDS_ATI1, TextureFormat::BC4 }, { DDS_BC4U, TextureFormat::BC4 }, { DDS_ATI2, TextureFormat::BC5 }, { DDS_BC5U, TextureFormat::BC5 }, { D3DFMT_A16B16G16R16, TextureFormat::RGBA16 }, { D3DFMT_A16B16G16R16F, TextureFormat::RGBA16F }, { DDPF_RGB|DDPF_ALPHAPIXELS, TextureFormat::BGRA8 }, { DDPF_INDEXED, TextureFormat::R8 }, { DDPF_LUMINANCE, TextureFormat::R8 }, { DDPF_ALPHA, TextureFormat::R8 }, }; bool imageParseDds(ImageContainer& _imageContainer, bx::ReaderSeekerI* _reader) { uint32_t headerSize; bx::read(_reader, headerSize); if (headerSize < DDS_HEADER_SIZE) { return false; } uint32_t flags; bx::read(_reader, flags); if ( (flags & (DDSD_CAPS|DDSD_HEIGHT|DDSD_WIDTH|DDSD_PIXELFORMAT) ) != (DDSD_CAPS|DDSD_HEIGHT|DDSD_WIDTH|DDSD_PIXELFORMAT) ) { return false; } uint32_t height; bx::read(_reader, height); uint32_t width; bx::read(_reader, width); uint32_t pitch; bx::read(_reader, pitch); uint32_t depth; bx::read(_reader, depth); uint32_t mips; bx::read(_reader, mips); bx::skip(_reader, 44); // reserved bx::skip(_reader, 4); // pixel format size uint32_t pixelFlags; bx::read(_reader, pixelFlags); uint32_t fourcc; bx::read(_reader, fourcc); uint32_t rgbCount; bx::read(_reader, rgbCount); uint32_t rbitmask; bx::read(_reader, rbitmask); uint32_t gbitmask; bx::read(_reader, gbitmask); uint32_t bbitmask; bx::read(_reader, bbitmask); uint32_t abitmask; bx::read(_reader, abitmask); uint32_t caps[4]; bx::read(_reader, caps); if ( (caps[0] & DDSCAPS_TEXTURE) == 0) { return false; } bool cubeMap = 0 != (caps[1] & DDSCAPS2_CUBEMAP); if (cubeMap) { if ( (caps[1] & DDS_CUBEMAP_ALLFACES) != DDS_CUBEMAP_ALLFACES) { // parital cube map is not supported. return false; } } bx::skip(_reader, 4); // reserved TextureFormat::Enum format = TextureFormat::Unknown; bool hasAlpha = pixelFlags & DDPF_ALPHAPIXELS; uint32_t ddsFormat = pixelFlags & DDPF_FOURCC ? fourcc : pixelFlags; for (uint32_t ii = 0; ii < BX_COUNTOF(s_translateDdsFormat); ++ii) { if (s_translateDdsFormat[ii].m_format == ddsFormat) { format = s_translateDdsFormat[ii].m_textureFormat; break; } } _imageContainer.m_data = NULL; _imageContainer.m_size = 0; _imageContainer.m_offset = DDS_IMAGE_DATA_OFFSET; _imageContainer.m_width = width; _imageContainer.m_height = height; _imageContainer.m_depth = depth; _imageContainer.m_format = format; _imageContainer.m_numMips = (caps[0] & DDSCAPS_MIPMAP) ? mips : 1; _imageContainer.m_hasAlpha = hasAlpha; _imageContainer.m_cubeMap = cubeMap; _imageContainer.m_ktx = false; return TextureFormat::Unknown != format; } // KTX #define KTX_MAGIC BX_MAKEFOURCC(0xAB, 'K', 'T', 'X') #define KTX_HEADER_SIZE 64 #define KTX_ETC1_RGB8_OES 0x8D64 #define KTX_COMPRESSED_R11_EAC 0x9270 #define KTX_COMPRESSED_SIGNED_R11_EAC 0x9271 #define KTX_COMPRESSED_RG11_EAC 0x9272 #define KTX_COMPRESSED_SIGNED_RG11_EAC 0x9273 #define KTX_COMPRESSED_RGB8_ETC2 0x9274 #define KTX_COMPRESSED_SRGB8_ETC2 0x9275 #define KTX_COMPRESSED_RGB8_PUNCHTHROUGH_ALPHA1_ETC2 0x9276 #define KTX_COMPRESSED_SRGB8_PUNCHTHROUGH_ALPHA1_ETC2 0x9277 #define KTX_COMPRESSED_RGBA8_ETC2_EAC 0x9278 #define KTX_COMPRESSED_SRGB8_ALPHA8_ETC2_EAC 0x9279 #define KTX_COMPRESSED_RGB_PVRTC_4BPPV1_IMG 0x8C00 #define KTX_COMPRESSED_RGB_PVRTC_2BPPV1_IMG 0x8C01 #define KTX_COMPRESSED_RGBA_PVRTC_4BPPV1_IMG 0x8C02 #define KTX_COMPRESSED_RGBA_PVRTC_2BPPV1_IMG 0x8C03 #define KTX_COMPRESSED_RGBA_PVRTC_2BPPV2_IMG 0x9137 #define KTX_COMPRESSED_RGBA_PVRTC_4BPPV2_IMG 0x9138 #define KTX_COMPRESSED_RGBA_S3TC_DXT1_EXT 0x83F1 #define KTX_COMPRESSED_RGBA_S3TC_DXT3_EXT 0x83F2 #define KTX_COMPRESSED_RGBA_S3TC_DXT5_EXT 0x83F3 #define KTX_COMPRESSED_LUMINANCE_LATC1_EXT 0x8C70 #define KTX_COMPRESSED_LUMINANCE_ALPHA_LATC2_EXT 0x8C72 #define KTX_RGBA16 0x805B #define KTX_RGBA16F 0x881A static struct TranslateKtxFormat { uint32_t m_format; TextureFormat::Enum m_textureFormat; } s_translateKtxFormat[] = { { KTX_COMPRESSED_RGBA_S3TC_DXT1_EXT, TextureFormat::BC1 }, { KTX_COMPRESSED_RGBA_S3TC_DXT3_EXT, TextureFormat::BC2 }, { KTX_COMPRESSED_RGBA_S3TC_DXT5_EXT, TextureFormat::BC3 }, { KTX_COMPRESSED_LUMINANCE_LATC1_EXT, TextureFormat::BC4 }, { KTX_COMPRESSED_LUMINANCE_ALPHA_LATC2_EXT, TextureFormat::BC5 }, { KTX_ETC1_RGB8_OES, TextureFormat::ETC1 }, { KTX_COMPRESSED_RGB8_ETC2, TextureFormat::ETC2 }, { KTX_COMPRESSED_RGBA8_ETC2_EAC, TextureFormat::ETC2A }, { KTX_COMPRESSED_RGB8_PUNCHTHROUGH_ALPHA1_ETC2, TextureFormat::ETC2A1 }, { KTX_COMPRESSED_RGB_PVRTC_2BPPV1_IMG, TextureFormat::PTC12 }, { KTX_COMPRESSED_RGBA_PVRTC_2BPPV1_IMG, TextureFormat::PTC12A }, { KTX_COMPRESSED_RGB_PVRTC_4BPPV1_IMG, TextureFormat::PTC14 }, { KTX_COMPRESSED_RGBA_PVRTC_4BPPV1_IMG, TextureFormat::PTC14A }, { KTX_COMPRESSED_RGBA_PVRTC_2BPPV2_IMG, TextureFormat::PTC22 }, { KTX_COMPRESSED_RGBA_PVRTC_4BPPV2_IMG, TextureFormat::PTC24 }, { KTX_RGBA16, TextureFormat::RGBA16 }, { KTX_RGBA16F, TextureFormat::RGBA16F }, { KTX_COMPRESSED_R11_EAC, TextureFormat::Unknown }, { KTX_COMPRESSED_SIGNED_R11_EAC, TextureFormat::Unknown }, { KTX_COMPRESSED_RG11_EAC, TextureFormat::Unknown }, { KTX_COMPRESSED_SIGNED_RG11_EAC, TextureFormat::Unknown }, { KTX_COMPRESSED_SRGB8_ETC2, TextureFormat::Unknown }, { KTX_COMPRESSED_SRGB8_PUNCHTHROUGH_ALPHA1_ETC2, TextureFormat::Unknown }, { KTX_COMPRESSED_SRGB8_ALPHA8_ETC2_EAC, TextureFormat::Unknown }, }; bool imageParseKtx(ImageContainer& _imageContainer, bx::ReaderSeekerI* _reader) { uint8_t identifier[8]; bx::read(_reader, identifier); if (identifier[1] != '1' && identifier[2] != '1') { return false; } uint32_t endianness; bx::read(_reader, endianness); bool fromLittleEndian = 0x04030201 == endianness; uint32_t glType; bx::readHE(_reader, glType, fromLittleEndian); uint32_t glTypeSize; bx::readHE(_reader, glTypeSize, fromLittleEndian); uint32_t glFormat; bx::readHE(_reader, glFormat, fromLittleEndian); uint32_t glInternalFormat; bx::readHE(_reader, glInternalFormat, fromLittleEndian); uint32_t glBaseInternalFormat; bx::readHE(_reader, glBaseInternalFormat, fromLittleEndian); uint32_t width; bx::readHE(_reader, width, fromLittleEndian); uint32_t height; bx::readHE(_reader, height, fromLittleEndian); uint32_t depth; bx::readHE(_reader, depth, fromLittleEndian); uint32_t numberOfArrayElements; bx::readHE(_reader, numberOfArrayElements, fromLittleEndian); uint32_t numFaces; bx::readHE(_reader, numFaces, fromLittleEndian); uint32_t numMips; bx::readHE(_reader, numMips, fromLittleEndian); uint32_t metaDataSize; bx::readHE(_reader, metaDataSize, fromLittleEndian); // skip meta garbage... int64_t offset = bx::skip(_reader, metaDataSize); TextureFormat::Enum format = TextureFormat::Unknown; bool hasAlpha = false; for (uint32_t ii = 0; ii < BX_COUNTOF(s_translateKtxFormat); ++ii) { if (s_translateKtxFormat[ii].m_format == glInternalFormat) { format = s_translateKtxFormat[ii].m_textureFormat; break; } } _imageContainer.m_data = NULL; _imageContainer.m_size = 0; _imageContainer.m_offset = (uint32_t)offset; _imageContainer.m_width = width; _imageContainer.m_height = height; _imageContainer.m_depth = depth; _imageContainer.m_format = format; _imageContainer.m_numMips = numMips; _imageContainer.m_hasAlpha = hasAlpha; _imageContainer.m_cubeMap = numFaces > 1; _imageContainer.m_ktx = true; return TextureFormat::Unknown != format; } // PVR3 #define PVR3_MAKE8CC(_a, _b, _c, _d, _e, _f, _g, _h) (uint64_t(BX_MAKEFOURCC(_a, _b, _c, _d) ) | (uint64_t(BX_MAKEFOURCC(_e, _f, _g, _h) )<<32) ) #define PVR3_MAGIC BX_MAKEFOURCC('P', 'V', 'R', 3) #define PVR3_HEADER_SIZE 52 #define PVR3_PVRTC1_2BPP_RGB 0 #define PVR3_PVRTC1_2BPP_RGBA 1 #define PVR3_PVRTC1_4BPP_RGB 2 #define PVR3_PVRTC1_4BPP_RGBA 3 #define PVR3_PVRTC2_2BPP_RGBA 4 #define PVR3_PVRTC2_4BPP_RGBA 5 #define PVR3_ETC1 6 #define PVR3_DXT1 7 #define PVR3_DXT2 8 #define PVR3_DXT3 9 #define PVR3_DXT4 10 #define PVR3_DXT5 11 #define PVR3_BC4 12 #define PVR3_BC5 13 #define PVR3_R8 PVR3_MAKE8CC('r', 0, 0, 0, 8, 0, 0, 0) #define PVR3_R16 PVR3_MAKE8CC('r', 0, 0, 0, 16, 0, 0, 0) #define PVR3_BGRA8 PVR3_MAKE8CC('b', 'g', 'r', 'a', 8, 8, 8, 8) #define PVR3_RGBA16 PVR3_MAKE8CC('r', 'g', 'b', 'a', 16, 16, 16, 16) #define PVR3_RGB565 PVR3_MAKE8CC('r', 'g', 'b', 0, 5, 6, 5, 0) #define PVR3_RGBA4 PVR3_MAKE8CC('r', 'g', 'b', 'a', 4, 4, 4, 4) #define PVR3_RGBA51 PVR3_MAKE8CC('r', 'g', 'b', 'a', 5, 5, 5, 1) #define PVR3_RGB10A2 PVR3_MAKE8CC('r', 'g', 'b', 'a', 10, 10, 10, 2) #define PVR3_CHANNEL_TYPE_ANY UINT32_MAX #define PVR3_CHANNEL_TYPE_FLOAT UINT32_C(12) static struct TranslatePvr3Format { uint64_t m_format; uint32_t m_channelTypeMask; TextureFormat::Enum m_textureFormat; } s_translatePvr3Format[] = { { PVR3_PVRTC1_2BPP_RGB, PVR3_CHANNEL_TYPE_ANY, TextureFormat::PTC12 }, { PVR3_PVRTC1_2BPP_RGBA, PVR3_CHANNEL_TYPE_ANY, TextureFormat::PTC12A }, { PVR3_PVRTC1_4BPP_RGB, PVR3_CHANNEL_TYPE_ANY, TextureFormat::PTC14 }, { PVR3_PVRTC1_4BPP_RGBA, PVR3_CHANNEL_TYPE_ANY, TextureFormat::PTC14A }, { PVR3_PVRTC2_2BPP_RGBA, PVR3_CHANNEL_TYPE_ANY, TextureFormat::PTC22 }, { PVR3_PVRTC2_4BPP_RGBA, PVR3_CHANNEL_TYPE_ANY, TextureFormat::PTC24 }, { PVR3_ETC1, PVR3_CHANNEL_TYPE_ANY, TextureFormat::ETC1 }, { PVR3_DXT1, PVR3_CHANNEL_TYPE_ANY, TextureFormat::BC1 }, { PVR3_DXT2, PVR3_CHANNEL_TYPE_ANY, TextureFormat::BC2 }, { PVR3_DXT3, PVR3_CHANNEL_TYPE_ANY, TextureFormat::BC2 }, { PVR3_DXT4, PVR3_CHANNEL_TYPE_ANY, TextureFormat::BC3 }, { PVR3_DXT5, PVR3_CHANNEL_TYPE_ANY, TextureFormat::BC3 }, { PVR3_BC4, PVR3_CHANNEL_TYPE_ANY, TextureFormat::BC4 }, { PVR3_BC5, PVR3_CHANNEL_TYPE_ANY, TextureFormat::BC5 }, { PVR3_R8, PVR3_CHANNEL_TYPE_ANY, TextureFormat::R8 }, { PVR3_R16, PVR3_CHANNEL_TYPE_ANY, TextureFormat::R16 }, { PVR3_R16, PVR3_CHANNEL_TYPE_FLOAT, TextureFormat::R16F }, { PVR3_BGRA8, PVR3_CHANNEL_TYPE_ANY, TextureFormat::BGRA8 }, { PVR3_RGBA16, PVR3_CHANNEL_TYPE_ANY, TextureFormat::RGBA16 }, { PVR3_RGBA16, PVR3_CHANNEL_TYPE_FLOAT, TextureFormat::RGBA16F }, { PVR3_RGB565, PVR3_CHANNEL_TYPE_ANY, TextureFormat::R5G6B5 }, { PVR3_RGBA4, PVR3_CHANNEL_TYPE_ANY, TextureFormat::RGBA4 }, { PVR3_RGBA51, PVR3_CHANNEL_TYPE_ANY, TextureFormat::RGB5A1 }, { PVR3_RGB10A2, PVR3_CHANNEL_TYPE_ANY, TextureFormat::RGB10A2 }, }; bool imageParsePvr3(ImageContainer& _imageContainer, bx::ReaderSeekerI* _reader) { uint32_t flags; bx::read(_reader, flags); uint64_t pixelFormat; bx::read(_reader, pixelFormat); uint32_t colorSpace; bx::read(_reader, colorSpace); // 0 - linearRGB, 1 - sRGB uint32_t channelType; bx::read(_reader, channelType); uint32_t height; bx::read(_reader, height); uint32_t width; bx::read(_reader, width); uint32_t depth; bx::read(_reader, depth); uint32_t numSurfaces; bx::read(_reader, numSurfaces); uint32_t numFaces; bx::read(_reader, numFaces); uint32_t numMips; bx::read(_reader, numMips); uint32_t metaDataSize; bx::read(_reader, metaDataSize); // skip meta garbage... int64_t offset = bx::skip(_reader, metaDataSize); TextureFormat::Enum format = TextureFormat::Unknown; bool hasAlpha = false; for (uint32_t ii = 0; ii < BX_COUNTOF(s_translatePvr3Format); ++ii) { if (s_translatePvr3Format[ii].m_format == pixelFormat && channelType == (s_translatePvr3Format[ii].m_channelTypeMask & channelType) ) { format = s_translatePvr3Format[ii].m_textureFormat; break; } } _imageContainer.m_data = NULL; _imageContainer.m_size = 0; _imageContainer.m_offset = (uint32_t)offset; _imageContainer.m_width = width; _imageContainer.m_height = height; _imageContainer.m_depth = depth; _imageContainer.m_format = format; _imageContainer.m_numMips = numMips; _imageContainer.m_hasAlpha = hasAlpha; _imageContainer.m_cubeMap = numFaces > 1; _imageContainer.m_ktx = false; return TextureFormat::Unknown != format; } bool imageParse(ImageContainer& _imageContainer, bx::ReaderSeekerI* _reader) { uint32_t magic; bx::read(_reader, magic); if (DDS_MAGIC == magic) { return imageParseDds(_imageContainer, _reader); } else if (KTX_MAGIC == magic) { return imageParseKtx(_imageContainer, _reader); } else if (PVR3_MAGIC == magic) { return imageParsePvr3(_imageContainer, _reader); } else if (BGFX_CHUNK_MAGIC_TEX == magic) { TextureCreate tc; bx::read(_reader, tc); _imageContainer.m_format = tc.m_format; _imageContainer.m_offset = UINT32_MAX; if (NULL == tc.m_mem) { _imageContainer.m_data = NULL; _imageContainer.m_size = 0; } else { _imageContainer.m_data = tc.m_mem->data; _imageContainer.m_size = tc.m_mem->size; } _imageContainer.m_width = tc.m_width; _imageContainer.m_height = tc.m_height; _imageContainer.m_depth = tc.m_depth; _imageContainer.m_numMips = tc.m_numMips; _imageContainer.m_hasAlpha = false; _imageContainer.m_cubeMap = tc.m_cubeMap; _imageContainer.m_ktx = false; return true; } return false; } bool imageParse(ImageContainer& _imageContainer, const void* _data, uint32_t _size) { bx::MemoryReader reader(_data, _size); return imageParse(_imageContainer, &reader); } void imageDecodeToBgra8(uint8_t* _dst, const uint8_t* _src, uint32_t _width, uint32_t _height, uint32_t _pitch, uint8_t _type) { const uint8_t* src = _src; uint32_t width = _width/4; uint32_t height = _height/4; uint8_t temp[16*4]; switch (_type) { case TextureFormat::BC1: for (uint32_t yy = 0; yy < height; ++yy) { for (uint32_t xx = 0; xx < width; ++xx) { decodeBlockDxt1(temp, src); src += 8; uint8_t* dst = &_dst[(yy*_pitch+xx*4)*4]; memcpy(&dst[0*_pitch], &temp[ 0], 16); memcpy(&dst[1*_pitch], &temp[16], 16); memcpy(&dst[2*_pitch], &temp[32], 16); memcpy(&dst[3*_pitch], &temp[48], 16); } } break; case TextureFormat::BC2: for (uint32_t yy = 0; yy < height; ++yy) { for (uint32_t xx = 0; xx < width; ++xx) { decodeBlockDxt23A(temp+3, src); src += 8; decodeBlockDxt(temp, src); src += 8; uint8_t* dst = &_dst[(yy*_pitch+xx*4)*4]; memcpy(&dst[0*_pitch], &temp[ 0], 16); memcpy(&dst[1*_pitch], &temp[16], 16); memcpy(&dst[2*_pitch], &temp[32], 16); memcpy(&dst[3*_pitch], &temp[48], 16); } } break; case TextureFormat::BC3: for (uint32_t yy = 0; yy < height; ++yy) { for (uint32_t xx = 0; xx < width; ++xx) { decodeBlockDxt45A(temp+3, src); src += 8; decodeBlockDxt(temp, src); src += 8; uint8_t* dst = &_dst[(yy*_pitch+xx*4)*4]; memcpy(&dst[0*_pitch], &temp[ 0], 16); memcpy(&dst[1*_pitch], &temp[16], 16); memcpy(&dst[2*_pitch], &temp[32], 16); memcpy(&dst[3*_pitch], &temp[48], 16); } } break; case TextureFormat::BC4: for (uint32_t yy = 0; yy < height; ++yy) { for (uint32_t xx = 0; xx < width; ++xx) { decodeBlockDxt45A(temp, src); src += 8; uint8_t* dst = &_dst[(yy*_pitch+xx*4)*4]; memcpy(&dst[0*_pitch], &temp[ 0], 16); memcpy(&dst[1*_pitch], &temp[16], 16); memcpy(&dst[2*_pitch], &temp[32], 16); memcpy(&dst[3*_pitch], &temp[48], 16); } } break; case TextureFormat::BC5: for (uint32_t yy = 0; yy < height; ++yy) { for (uint32_t xx = 0; xx < width; ++xx) { decodeBlockDxt45A(temp+1, src); src += 8; decodeBlockDxt45A(temp+2, src); src += 8; for (uint32_t ii = 0; ii < 16; ++ii) { float nx = temp[ii*4+2]*2.0f/255.0f - 1.0f; float ny = temp[ii*4+1]*2.0f/255.0f - 1.0f; float nz = sqrtf(1.0f - nx*nx - ny*ny); temp[ii*4+0] = uint8_t( (nz + 1.0f)*255.0f/2.0f); temp[ii*4+3] = 0; } uint8_t* dst = &_dst[(yy*_pitch+xx*4)*4]; memcpy(&dst[0*_pitch], &temp[ 0], 16); memcpy(&dst[1*_pitch], &temp[16], 16); memcpy(&dst[2*_pitch], &temp[32], 16); memcpy(&dst[3*_pitch], &temp[48], 16); } } break; case TextureFormat::ETC1: case TextureFormat::ETC2: for (uint32_t yy = 0; yy < height; ++yy) { for (uint32_t xx = 0; xx < width; ++xx) { decodeBlockEtc12(temp, src); src += 8; uint8_t* dst = &_dst[(yy*_pitch+xx*4)*4]; memcpy(&dst[0*_pitch], &temp[ 0], 16); memcpy(&dst[1*_pitch], &temp[16], 16); memcpy(&dst[2*_pitch], &temp[32], 16); memcpy(&dst[3*_pitch], &temp[48], 16); } } break; case TextureFormat::ETC2A: BX_WARN(false, "ETC2A decoder is not implemented."); imageCheckerboard(_width, _height, 16, UINT32_C(0xff000000), UINT32_C(0xff00ff00), _dst); break; case TextureFormat::ETC2A1: BX_WARN(false, "ETC2A1 decoder is not implemented."); imageCheckerboard(_width, _height, 16, UINT32_C(0xff000000), UINT32_C(0xffff0000), _dst); break; case TextureFormat::PTC12: BX_WARN(false, "PTC12 decoder is not implemented."); imageCheckerboard(_width, _height, 16, UINT32_C(0xff000000), UINT32_C(0xffff00ff), _dst); break; case TextureFormat::PTC12A: BX_WARN(false, "PTC12A decoder is not implemented."); imageCheckerboard(_width, _height, 16, UINT32_C(0xff000000), UINT32_C(0xffffff00), _dst); break; case TextureFormat::PTC14: BX_WARN(false, "PTC14 decoder is not implemented."); imageCheckerboard(_width, _height, 16, UINT32_C(0xff000000), UINT32_C(0xff00ffff), _dst); break; case TextureFormat::PTC14A: BX_WARN(false, "PTC14A decoder is not implemented."); imageCheckerboard(_width, _height, 16, UINT32_C(0xffff0000), UINT32_C(0xff0000ff), _dst); break; case TextureFormat::PTC22: BX_WARN(false, "PTC22 decoder is not implemented."); imageCheckerboard(_width, _height, 16, UINT32_C(0xff00ff00), UINT32_C(0xff0000ff), _dst); break; case TextureFormat::PTC24: BX_WARN(false, "PTC24 decoder is not implemented."); imageCheckerboard(_width, _height, 16, UINT32_C(0xff000000), UINT32_C(0xffffffff), _dst); break; default: // Decompression not implemented... Make ugly red-yellow checkerboard texture. imageCheckerboard(_width, _height, 16, UINT32_C(0xffff0000), UINT32_C(0xffffff00), _dst); break; } } bool imageGetRawData(const ImageContainer& _imageContainer, uint8_t _side, uint8_t _lod, const void* _data, uint32_t _size, ImageMip& _mip) { uint32_t offset = _imageContainer.m_offset; TextureFormat::Enum type = TextureFormat::Enum(_imageContainer.m_format); bool hasAlpha = _imageContainer.m_hasAlpha; const ImageBlockInfo& blockInfo = s_imageBlockInfo[type]; const uint8_t bpp = blockInfo.bitsPerPixel; const uint32_t blockSize = blockInfo.blockSize; const uint32_t blockWidth = blockInfo.blockWidth; const uint32_t blockHeight = blockInfo.blockHeight; if (UINT32_MAX == _imageContainer.m_offset) { if (NULL == _imageContainer.m_data) { return false; } offset = 0; _data = _imageContainer.m_data; _size = _imageContainer.m_size; } for (uint8_t side = 0, numSides = _imageContainer.m_cubeMap ? 6 : 1; side < numSides; ++side) { uint32_t width = _imageContainer.m_width; uint32_t height = _imageContainer.m_height; uint32_t depth = _imageContainer.m_depth; for (uint8_t lod = 0, num = _imageContainer.m_numMips; lod < num; ++lod) { // skip imageSize in KTX format. offset += _imageContainer.m_ktx ? sizeof(uint32_t) : 0; width = bx::uint32_max(blockWidth, width); height = bx::uint32_max(blockHeight, height); depth = bx::uint32_max(1, depth); uint32_t size = width*height*depth*bpp/8; if (side == _side && lod == _lod) { _mip.m_width = width; _mip.m_height = height; _mip.m_blockSize = blockSize; _mip.m_size = size; _mip.m_data = (const uint8_t*)_data + offset; _mip.m_bpp = bpp; _mip.m_format = type; _mip.m_hasAlpha = hasAlpha; return true; } offset += size; BX_CHECK(offset <= _size, "Reading past size of data buffer! (offset %d, size %d)", offset, _size); BX_UNUSED(_size); width >>= 1; height >>= 1; depth >>= 1; } } return false; } } // namespace bgfx