/* * Copyright 2011-2013 Branimir Karadzic. All rights reserved. * License: http://www.opensource.org/licenses/BSD-2-Clause */ #include "bgfx_p.h" #if BGFX_CONFIG_RENDERER_DIRECT3D11 # include "renderer_d3d11.h" namespace bgfx { static const D3D11_PRIMITIVE_TOPOLOGY s_primType[] = { D3D11_PRIMITIVE_TOPOLOGY_TRIANGLELIST, D3D11_PRIMITIVE_TOPOLOGY_LINELIST, D3D11_PRIMITIVE_TOPOLOGY_POINTLIST, }; static const D3D11_BLEND s_blendFactor[][2] = { { (D3D11_BLEND)0, (D3D11_BLEND)0 }, // ignored { D3D11_BLEND_ZERO, D3D11_BLEND_ZERO }, { D3D11_BLEND_ONE, D3D11_BLEND_ONE }, { D3D11_BLEND_SRC_COLOR, D3D11_BLEND_SRC_ALPHA }, { D3D11_BLEND_INV_SRC_COLOR, D3D11_BLEND_INV_SRC_ALPHA }, { D3D11_BLEND_SRC_ALPHA, D3D11_BLEND_SRC_ALPHA }, { D3D11_BLEND_INV_SRC_ALPHA, D3D11_BLEND_INV_SRC_ALPHA }, { D3D11_BLEND_DEST_ALPHA, D3D11_BLEND_DEST_ALPHA }, { D3D11_BLEND_INV_DEST_ALPHA, D3D11_BLEND_INV_DEST_ALPHA }, { D3D11_BLEND_DEST_COLOR, D3D11_BLEND_DEST_ALPHA }, { D3D11_BLEND_INV_DEST_COLOR, D3D11_BLEND_INV_DEST_ALPHA }, { D3D11_BLEND_SRC_ALPHA_SAT, D3D11_BLEND_ONE }, }; static const D3D11_COMPARISON_FUNC s_depthFunc[] = { D3D11_COMPARISON_LESS, // ignored D3D11_COMPARISON_LESS, D3D11_COMPARISON_LESS_EQUAL, D3D11_COMPARISON_EQUAL, D3D11_COMPARISON_GREATER_EQUAL, D3D11_COMPARISON_GREATER, D3D11_COMPARISON_NOT_EQUAL, D3D11_COMPARISON_NEVER, D3D11_COMPARISON_ALWAYS, }; static const D3D11_COMPARISON_FUNC s_stencilFunc[] = { D3D11_COMPARISON_LESS, // ignored D3D11_COMPARISON_LESS, D3D11_COMPARISON_LESS_EQUAL, D3D11_COMPARISON_EQUAL, D3D11_COMPARISON_GREATER_EQUAL, D3D11_COMPARISON_GREATER, D3D11_COMPARISON_NOT_EQUAL, D3D11_COMPARISON_NEVER, D3D11_COMPARISON_ALWAYS, }; static const D3D11_STENCIL_OP s_stencilOp[] = { D3D11_STENCIL_OP_ZERO, D3D11_STENCIL_OP_KEEP, D3D11_STENCIL_OP_REPLACE, D3D11_STENCIL_OP_INCR, D3D11_STENCIL_OP_INCR_SAT, D3D11_STENCIL_OP_DECR, D3D11_STENCIL_OP_DECR_SAT, D3D11_STENCIL_OP_INVERT, }; static const D3D11_CULL_MODE s_cullMode[] = { D3D11_CULL_NONE, D3D11_CULL_FRONT, D3D11_CULL_BACK, }; static DXGI_FORMAT s_colorFormat[] = { DXGI_FORMAT_UNKNOWN, // ignored DXGI_FORMAT_R8G8B8A8_UNORM, DXGI_FORMAT_R32_FLOAT, }; static const DXGI_FORMAT s_depthFormat[] = { DXGI_FORMAT_UNKNOWN, // ignored DXGI_FORMAT_D24_UNORM_S8_UINT, }; static const D3D11_TEXTURE_ADDRESS_MODE s_textureAddress[] = { D3D11_TEXTURE_ADDRESS_WRAP, D3D11_TEXTURE_ADDRESS_MIRROR, D3D11_TEXTURE_ADDRESS_CLAMP, }; /* * D3D11_FILTER_MIN_MAG_MIP_POINT = 0x00, * D3D11_FILTER_MIN_MAG_POINT_MIP_LINEAR = 0x01, * D3D11_FILTER_MIN_POINT_MAG_LINEAR_MIP_POINT = 0x04, * D3D11_FILTER_MIN_POINT_MAG_MIP_LINEAR = 0x05, * D3D11_FILTER_MIN_LINEAR_MAG_MIP_POINT = 0x10, * D3D11_FILTER_MIN_LINEAR_MAG_POINT_MIP_LINEAR = 0x11, * D3D11_FILTER_MIN_MAG_LINEAR_MIP_POINT = 0x14, * D3D11_FILTER_MIN_MAG_MIP_LINEAR = 0x15, * D3D11_FILTER_ANISOTROPIC = 0x55, * * According to D3D11_FILTER enum bits for mip, mag and mip are: * 0x10 // MIN_LINEAR * 0x04 // MAG_LINEAR * 0x01 // MIP_LINEAR */ static const uint32_t s_textureFilter[3][3] = { { 0x10, // min linear 0x00, // min point 0x55, // anisotopic }, { 0x04, // mag linear 0x00, // mag point 0x55, // anisotopic }, { 0x01, // mip linear 0x00, // mip point 0x55, // anisotopic }, }; struct TextureFormatInfo { DXGI_FORMAT m_fmt; uint8_t m_bpp; }; #ifndef DXGI_FORMAT_B4G4R4A4_UNORM // Win8 only BS // https://blogs.msdn.com/b/chuckw/archive/2012/11/14/directx-11-1-and-windows-7.aspx?Redirected=true // http://msdn.microsoft.com/en-us/library/windows/desktop/bb173059%28v=vs.85%29.aspx # define DXGI_FORMAT_B4G4R4A4_UNORM DXGI_FORMAT(115) #endif // DXGI_FORMAT_B4G4R4A4_UNORM static const TextureFormatInfo s_textureFormat[TextureFormat::Count] = { { DXGI_FORMAT_BC1_UNORM, 4 }, { DXGI_FORMAT_BC2_UNORM, 8 }, { DXGI_FORMAT_BC3_UNORM, 8 }, { DXGI_FORMAT_BC4_UNORM, 4 }, { DXGI_FORMAT_BC5_UNORM, 8 }, { DXGI_FORMAT_UNKNOWN, 0 }, { DXGI_FORMAT_R8_UNORM, 8 }, { DXGI_FORMAT_B8G8R8A8_UNORM, 32 }, { DXGI_FORMAT_B8G8R8A8_UNORM, 32 }, { DXGI_FORMAT_R16G16B16A16_UNORM, 64 }, { DXGI_FORMAT_R16G16B16A16_FLOAT, 64 }, { DXGI_FORMAT_B5G6R5_UNORM, 16 }, { DXGI_FORMAT_B4G4R4A4_UNORM, 16 }, { DXGI_FORMAT_B5G5R5A1_UNORM, 16 }, { DXGI_FORMAT_R10G10B10A2_UNORM, 32 }, }; static const D3D11_INPUT_ELEMENT_DESC s_attrib[Attrib::Count] = { { "POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 }, { "NORMAL", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 }, { "TANGENT", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 }, { "COLOR", 0, DXGI_FORMAT_R8G8B8A8_UINT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 }, { "COLOR", 1, DXGI_FORMAT_R8G8B8A8_UINT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 }, { "BLENDINDICES", 0, DXGI_FORMAT_R8G8B8A8_UINT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 }, { "BLENDWEIGHT", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 }, { "TEXCOORD", 0, DXGI_FORMAT_R32G32_FLOAT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 }, { "TEXCOORD", 1, DXGI_FORMAT_R32G32_FLOAT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 }, { "TEXCOORD", 2, DXGI_FORMAT_R32G32_FLOAT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 }, { "TEXCOORD", 3, DXGI_FORMAT_R32G32_FLOAT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 }, { "TEXCOORD", 4, DXGI_FORMAT_R32G32_FLOAT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 }, { "TEXCOORD", 5, DXGI_FORMAT_R32G32_FLOAT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 }, { "TEXCOORD", 6, DXGI_FORMAT_R32G32_FLOAT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 }, { "TEXCOORD", 7, DXGI_FORMAT_R32G32_FLOAT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 }, }; static const DXGI_FORMAT s_attribType[AttribType::Count][4][2] = { { { DXGI_FORMAT_R8_UINT, DXGI_FORMAT_R8_UNORM }, { DXGI_FORMAT_R8G8_UINT, DXGI_FORMAT_R8G8_UNORM }, { DXGI_FORMAT_R8G8B8A8_UINT, DXGI_FORMAT_R8G8B8A8_UNORM }, { DXGI_FORMAT_R8G8B8A8_UINT, DXGI_FORMAT_R8G8B8A8_UNORM }, }, { { DXGI_FORMAT_R16_SINT, DXGI_FORMAT_R16_SNORM }, { DXGI_FORMAT_R16G16_SINT, DXGI_FORMAT_R16G16_SNORM }, { DXGI_FORMAT_R16G16B16A16_SINT, DXGI_FORMAT_R16G16B16A16_SNORM }, { DXGI_FORMAT_R16G16B16A16_SINT, DXGI_FORMAT_R16G16B16A16_SNORM }, }, { { DXGI_FORMAT_R16_FLOAT, DXGI_FORMAT_R16_FLOAT }, { DXGI_FORMAT_R16G16_FLOAT, DXGI_FORMAT_R16G16_FLOAT }, { DXGI_FORMAT_R16G16B16A16_FLOAT, DXGI_FORMAT_R16G16B16A16_FLOAT }, { DXGI_FORMAT_R16G16B16A16_FLOAT, DXGI_FORMAT_R16G16B16A16_FLOAT }, }, { { DXGI_FORMAT_R32_FLOAT, DXGI_FORMAT_R32_FLOAT }, { DXGI_FORMAT_R32G32_FLOAT, DXGI_FORMAT_R32G32_FLOAT }, { DXGI_FORMAT_R32G32B32_FLOAT, DXGI_FORMAT_R32G32B32_FLOAT }, { DXGI_FORMAT_R32G32B32A32_FLOAT, DXGI_FORMAT_R32G32B32A32_FLOAT }, }, }; static D3D11_INPUT_ELEMENT_DESC* fillVertexDecl(D3D11_INPUT_ELEMENT_DESC* _out, uint32_t _count, const VertexDecl& _decl) { D3D11_INPUT_ELEMENT_DESC* elem = _out; for (uint32_t attr = 0; attr < Attrib::Count; ++attr) { if (0xff != _decl.m_attributes[attr]) { memcpy(elem, &s_attrib[attr], sizeof(D3D11_INPUT_ELEMENT_DESC) ); if (0 == _decl.m_attributes[attr]) { elem->AlignedByteOffset = 0; } else { uint8_t num; AttribType::Enum type; bool normalized; bool asInt; _decl.decode(Attrib::Enum(attr), num, type, normalized, asInt); elem->Format = s_attribType[type][num-1][normalized]; elem->AlignedByteOffset = _decl.m_offset[attr]; } ++elem; } } return elem; } struct TextureStage { TextureStage() { clear(); } void clear() { memset(m_srv, 0, sizeof(m_srv) ); memset(m_sampler, 0, sizeof(m_sampler) ); } ID3D11ShaderResourceView* m_srv[BGFX_STATE_TEX_COUNT]; ID3D11SamplerState* m_sampler[BGFX_STATE_TEX_COUNT]; }; static const GUID WKPDID_D3DDebugObjectName = { 0x429b8c22, 0x9188, 0x4b0c, { 0x87, 0x42, 0xac, 0xb0, 0xbf, 0x85, 0xc2, 0x00 } }; template static BX_NO_INLINE void setDebugObjectName(Ty* _interface, const char* _format, ...) { #if BGFX_CONFIG_DEBUG_OBJECT_NAME char temp[2048]; va_list argList; va_start(argList, _format); int size = uint32_min(sizeof(temp)-1, vsnprintf(temp, sizeof(temp), _format, argList) ); va_end(argList); temp[size] = '\0'; _interface->SetPrivateData(WKPDID_D3DDebugObjectName, size, temp); #endif // BGFX_CONFIG_DEBUG_OBJECT_NAME } struct RendererContext { RendererContext() : m_captureTexture(NULL) , m_captureResolve(NULL) , m_wireframe(false) , m_vsChanges(0) , m_fsChanges(0) { } void init() { m_d3d11dll = LoadLibrary("d3d11.dll"); BGFX_FATAL(NULL != m_d3d11dll, Fatal::UnableToInitialize, "Failed to load d3d11.dll."); PFN_D3D11_CREATE_DEVICE_AND_SWAP_CHAIN d3D11CreateDeviceAndSwapChain = (PFN_D3D11_CREATE_DEVICE_AND_SWAP_CHAIN)GetProcAddress(m_d3d11dll, "D3D11CreateDeviceAndSwapChain"); BGFX_FATAL(NULL != d3D11CreateDeviceAndSwapChain, Fatal::UnableToInitialize, "Function D3D11CreateDeviceAndSwapChain not found."); HRESULT hr; D3D_FEATURE_LEVEL features[] = { D3D_FEATURE_LEVEL_11_0, }; memset(&m_scd, 0, sizeof(m_scd) ); m_scd.BufferDesc.Width = BGFX_DEFAULT_WIDTH; m_scd.BufferDesc.Height = BGFX_DEFAULT_HEIGHT; m_scd.BufferDesc.Format = DXGI_FORMAT_R8G8B8A8_UNORM; m_scd.BufferDesc.RefreshRate.Numerator = 60; m_scd.BufferDesc.RefreshRate.Denominator = 1; m_scd.SampleDesc.Count = 1; m_scd.SampleDesc.Quality = 0; m_scd.BufferUsage = DXGI_USAGE_RENDER_TARGET_OUTPUT; m_scd.BufferCount = 1; m_scd.OutputWindow = g_bgfxHwnd; m_scd.Windowed = true; uint32_t flags = D3D11_CREATE_DEVICE_SINGLETHREADED #if BGFX_CONFIG_DEBUG | D3D11_CREATE_DEVICE_DEBUG #endif // BGFX_CONFIG_DEBUG ; D3D_FEATURE_LEVEL featureLevel; hr = d3D11CreateDeviceAndSwapChain(NULL , D3D_DRIVER_TYPE_HARDWARE , NULL , flags , features , 1 , D3D11_SDK_VERSION , &m_scd , &m_swapChain , &m_device , &featureLevel , &m_deviceCtx ); BGFX_FATAL(SUCCEEDED(hr), Fatal::UnableToInitialize, "Unable to create Direct3D11 device."); for (uint32_t ii = 0; ii < PredefinedUniform::Count; ++ii) { m_predefinedUniforms[ii].create(UniformType::Uniform4x4fv, 1, false); m_uniformReg.add(getPredefinedUniformName(PredefinedUniform::Enum(ii) ), &m_predefinedUniforms[ii]); } postReset(); } void shutdown() { preReset(); m_deviceCtx->ClearState(); invalidateCache(); for (uint32_t ii = 0; ii < countof(m_indexBuffers); ++ii) { m_indexBuffers[ii].destroy(); } for (uint32_t ii = 0; ii < countof(m_vertexBuffers); ++ii) { m_vertexBuffers[ii].destroy(); } for (uint32_t ii = 0; ii < countof(m_vertexShaders); ++ii) { m_vertexShaders[ii].destroy(); } for (uint32_t ii = 0; ii < countof(m_fragmentShaders); ++ii) { m_fragmentShaders[ii].destroy(); } for (uint32_t ii = 0; ii < countof(m_textures); ++ii) { m_textures[ii].destroy(); } for (uint32_t ii = 0; ii < countof(m_renderTargets); ++ii) { m_renderTargets[ii].destroy(); } for (uint32_t ii = 0; ii < countof(m_uniforms); ++ii) { m_uniforms[ii].destroy(); } for (uint32_t ii = 0; ii < PredefinedUniform::Count; ++ii) { m_predefinedUniforms[ii].destroy(); } DX_RELEASE(m_swapChain, 0); DX_RELEASE(m_deviceCtx, 0); DX_RELEASE(m_device, 0); FreeLibrary(m_d3d11dll); } void preReset() { DX_RELEASE(m_backBufferDepthStencil, 0); DX_RELEASE(m_backBufferColor, 0); // invalidateCache(); capturePreReset(); } void postReset() { ID3D11Texture2D* color; DX_CHECK(m_swapChain->GetBuffer(0, __uuidof(ID3D11Texture2D), (void**)&color) ); DX_CHECK(m_device->CreateRenderTargetView(color, NULL, &m_backBufferColor) ); DX_RELEASE(color, 0); D3D11_TEXTURE2D_DESC dsd; dsd.Width = m_scd.BufferDesc.Width; dsd.Height = m_scd.BufferDesc.Height; dsd.MipLevels = 1; dsd.ArraySize = 1; dsd.Format = DXGI_FORMAT_D24_UNORM_S8_UINT; dsd.SampleDesc = m_scd.SampleDesc; dsd.Usage = D3D11_USAGE_DEFAULT; dsd.BindFlags = D3D11_BIND_DEPTH_STENCIL; dsd.CPUAccessFlags = 0; dsd.MiscFlags = 0; ID3D11Texture2D* depthStencil; DX_CHECK(m_device->CreateTexture2D(&dsd, NULL, &depthStencil) ); DX_CHECK(m_device->CreateDepthStencilView(depthStencil, NULL, &m_backBufferDepthStencil) ); DX_RELEASE(depthStencil, 0); m_deviceCtx->OMSetRenderTargets(1, &m_backBufferColor, m_backBufferDepthStencil); m_currentColor = m_backBufferColor; m_currentDepthStencil = m_backBufferDepthStencil; capturePostReset(); } void flip() { if (NULL != m_swapChain) { uint32_t syncInterval = !!(m_flags & BGFX_RESET_VSYNC); DX_CHECK(m_swapChain->Present(syncInterval, 0) ); } } void invalidateCache() { m_inputLayoutCache.invalidate(); m_blendStateCache.invalidate(); m_depthStencilStateCache.invalidate(); m_rasterizerStateCache.invalidate(); m_samplerStateCache.invalidate(); } void updateResolution(const Resolution& _resolution) { if ( (uint32_t)m_scd.BufferDesc.Width != _resolution.m_width || (uint32_t)m_scd.BufferDesc.Height != _resolution.m_height || m_flags != _resolution.m_flags) { m_flags = _resolution.m_flags; m_textVideoMem.resize(false, _resolution.m_width, _resolution.m_height); m_textVideoMem.clear(); m_scd.BufferDesc.Width = _resolution.m_width; m_scd.BufferDesc.Height = _resolution.m_height; preReset(); DX_CHECK(m_swapChain->ResizeBuffers(2 , m_scd.BufferDesc.Width , m_scd.BufferDesc.Height , m_scd.BufferDesc.Format , DXGI_SWAP_CHAIN_FLAG_ALLOW_MODE_SWITCH ) ); postReset(); } } void setShaderConstant(uint8_t _flags, uint16_t _regIndex, const void* _val, uint16_t _numRegs) { if (_flags&BGFX_UNIFORM_FRAGMENTBIT) { memcpy(&m_fsScratch[_regIndex], _val, _numRegs*16); m_fsChanges += _numRegs; } else { memcpy(&m_vsScratch[_regIndex], _val, _numRegs*16); m_vsChanges += _numRegs; } } void commitShaderConstants() { if (0 < m_vsChanges) { if (NULL != m_currentProgram->m_vsh->m_buffer) { m_deviceCtx->UpdateSubresource(m_currentProgram->m_vsh->m_buffer, 0, 0, m_vsScratch, 0, 0); } m_vsChanges = 0; } if (0 < m_fsChanges) { if (NULL != m_currentProgram->m_fsh->m_buffer) { m_deviceCtx->UpdateSubresource(m_currentProgram->m_fsh->m_buffer, 0, 0, m_fsScratch, 0, 0); } m_fsChanges = 0; } } void setRenderTarget(RenderTargetHandle _rt, bool _msaa = true) { if (_rt.idx == invalidHandle) { m_deviceCtx->OMSetRenderTargets(1, &m_backBufferColor, m_backBufferDepthStencil); m_currentColor = m_backBufferColor; m_currentDepthStencil = m_backBufferDepthStencil; } else { invalidateTextureStage(); RenderTarget& renderTarget = m_renderTargets[_rt.idx]; m_deviceCtx->OMSetRenderTargets(1, &renderTarget.m_rtv, renderTarget.m_dsv); m_currentColor = renderTarget.m_rtv; m_currentDepthStencil = renderTarget.m_dsv; } } void clear(const Clear& _clear) { if (NULL != m_currentColor && BGFX_CLEAR_COLOR_BIT & _clear.m_flags) { uint32_t rgba = _clear.m_rgba; float frgba[4] = { (rgba>>24)/255.0f, ( (rgba>>16)&0xff)/255.0f, ( (rgba>>8)&0xff)/255.0f, (rgba&0xff)/255.0f }; m_deviceCtx->ClearRenderTargetView(m_currentColor, frgba); } if (NULL != m_currentDepthStencil && (BGFX_CLEAR_DEPTH_BIT|BGFX_CLEAR_STENCIL_BIT) & _clear.m_flags) { DWORD flags = 0; flags |= (_clear.m_flags & BGFX_CLEAR_DEPTH_BIT) ? D3D11_CLEAR_DEPTH : 0; flags |= (_clear.m_flags & BGFX_CLEAR_STENCIL_BIT) ? D3D11_CLEAR_STENCIL : 0; m_deviceCtx->ClearDepthStencilView(m_currentDepthStencil, flags, _clear.m_depth, _clear.m_stencil); } } void setInputLayout(const VertexDecl& _vertexDecl, const Program& _program, uint8_t _numInstanceData) { uint64_t layoutHash = (uint64_t(_vertexDecl.m_hash)<<32) | _program.m_vsh->m_hash; layoutHash ^= _numInstanceData; ID3D11InputLayout* layout = m_inputLayoutCache.find(layoutHash); if (NULL == layout) { D3D11_INPUT_ELEMENT_DESC vertexElements[Attrib::Count+1+BGFX_CONFIG_MAX_INSTANCE_DATA_COUNT]; VertexDecl decl; memcpy(&decl, &_vertexDecl, sizeof(VertexDecl) ); const uint8_t* attrMask = _program.m_vsh->m_attrMask; for (uint32_t ii = 0; ii < Attrib::Count; ++ii) { uint8_t mask = attrMask[ii]; uint8_t attr = (decl.m_attributes[ii] & mask); decl.m_attributes[ii] = attr == 0 ? 0xff : attr == 0xff ? 0 : attr; } D3D11_INPUT_ELEMENT_DESC* elem = fillVertexDecl(vertexElements, Attrib::Count, decl); uint32_t num = uint32_t(elem-vertexElements); const D3D11_INPUT_ELEMENT_DESC inst = { "TEXCOORD", 0, DXGI_FORMAT_R32G32B32A32_FLOAT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_INSTANCE_DATA, 1 }; for (uint32_t ii = 0; ii < _numInstanceData; ++ii) { uint32_t index = 8-_numInstanceData+ii; uint32_t jj; D3D11_INPUT_ELEMENT_DESC* curr; for (jj = 0; jj < num; ++jj) { curr = &vertexElements[jj]; if (0 == strcmp(curr->SemanticName, "TEXCOORD") && curr->SemanticIndex == index) { break; } } if (jj == num) { curr = elem; ++elem; } memcpy(curr, &inst, sizeof(D3D11_INPUT_ELEMENT_DESC) ); curr->InputSlot = 1; curr->SemanticIndex = index; curr->AlignedByteOffset = ii*16; } num = uint32_t(elem-vertexElements); DX_CHECK(m_device->CreateInputLayout(vertexElements , num , _program.m_vsh->m_code->data , _program.m_vsh->m_code->size , &layout ) ); m_inputLayoutCache.add(layoutHash, layout); } m_deviceCtx->IASetInputLayout(layout); } void setBlendState(uint64_t _state) { _state &= BGFX_STATE_BLEND_MASK|BGFX_STATE_ALPHA_WRITE|BGFX_STATE_RGB_WRITE; ID3D11BlendState* bs = m_blendStateCache.find(_state); if (NULL == bs) { D3D11_BLEND_DESC desc; memset(&desc, 0, sizeof(desc) ); D3D11_RENDER_TARGET_BLEND_DESC& drt = desc.RenderTarget[0]; drt.BlendEnable = !!(BGFX_STATE_BLEND_MASK & _state); uint32_t blend = (_state&BGFX_STATE_BLEND_MASK)>>BGFX_STATE_BLEND_SHIFT; uint32_t src = blend&0xf; uint32_t dst = (blend>>4)&0xf; uint32_t writeMask = (_state&BGFX_STATE_ALPHA_WRITE) ? D3D11_COLOR_WRITE_ENABLE_ALPHA : 0; writeMask |= (_state&BGFX_STATE_RGB_WRITE) ? D3D11_COLOR_WRITE_ENABLE_RED|D3D11_COLOR_WRITE_ENABLE_GREEN|D3D11_COLOR_WRITE_ENABLE_BLUE : 0; drt.SrcBlend = s_blendFactor[src][0]; drt.DestBlend = s_blendFactor[dst][0]; drt.BlendOp = D3D11_BLEND_OP_ADD; drt.SrcBlendAlpha = s_blendFactor[src][1]; drt.DestBlendAlpha = s_blendFactor[dst][1]; drt.BlendOpAlpha = D3D11_BLEND_OP_ADD; drt.RenderTargetWriteMask = writeMask; DX_CHECK(m_device->CreateBlendState(&desc, &bs) ); m_blendStateCache.add(_state, bs); } m_deviceCtx->OMSetBlendState(bs, NULL, 0xffffffff); } void setDepthStencilState(uint64_t _state, uint64_t _stencil = 0) { _state &= BGFX_STATE_DEPTH_WRITE|BGFX_STATE_DEPTH_TEST_MASK; uint32_t fstencil = unpackStencil(0, _stencil); uint32_t ref = (fstencil&BGFX_STENCIL_FUNC_REF_MASK)>>BGFX_STENCIL_FUNC_REF_SHIFT; _stencil &= packStencil(BGFX_STENCIL_FUNC_REF_MASK, BGFX_STENCIL_MASK); HashMurmur2A murmur; murmur.begin(); murmur.add(_state); murmur.add(_stencil); uint32_t hash = murmur.end(); ID3D11DepthStencilState* dss = m_depthStencilStateCache.find(hash); if (NULL == dss) { D3D11_DEPTH_STENCIL_DESC desc; memset(&desc, 0, sizeof(desc) ); uint32_t func = (_state&BGFX_STATE_DEPTH_TEST_MASK)>>BGFX_STATE_DEPTH_TEST_SHIFT; desc.DepthEnable = 0 != func; desc.DepthWriteMask = !!(BGFX_STATE_DEPTH_WRITE & _state) ? D3D11_DEPTH_WRITE_MASK_ALL : D3D11_DEPTH_WRITE_MASK_ZERO; desc.DepthFunc = s_depthFunc[func]; uint32_t bstencil = unpackStencil(1, _stencil); uint32_t frontAndBack = bstencil != BGFX_STENCIL_NONE && bstencil != fstencil; bstencil = frontAndBack ? bstencil : fstencil; desc.StencilEnable = 0 != _stencil; desc.StencilReadMask = (fstencil&BGFX_STENCIL_FUNC_RMASK_MASK)>>BGFX_STENCIL_FUNC_RMASK_SHIFT; desc.StencilWriteMask = 0xff; desc.FrontFace.StencilFailOp = s_stencilOp[(fstencil&BGFX_STENCIL_OP_FAIL_S_MASK)>>BGFX_STENCIL_OP_FAIL_S_SHIFT]; desc.FrontFace.StencilDepthFailOp = s_stencilOp[(fstencil&BGFX_STENCIL_OP_FAIL_Z_MASK)>>BGFX_STENCIL_OP_FAIL_Z_SHIFT]; desc.FrontFace.StencilPassOp = s_stencilOp[(fstencil&BGFX_STENCIL_OP_PASS_Z_MASK)>>BGFX_STENCIL_OP_PASS_Z_SHIFT]; desc.FrontFace.StencilFunc = s_stencilFunc[(fstencil&BGFX_STENCIL_TEST_MASK)>>BGFX_STENCIL_TEST_SHIFT]; desc.BackFace.StencilFailOp = s_stencilOp[(bstencil&BGFX_STENCIL_OP_FAIL_Z_MASK)>>BGFX_STENCIL_OP_FAIL_Z_SHIFT]; desc.BackFace.StencilDepthFailOp = s_stencilOp[(bstencil&BGFX_STENCIL_OP_FAIL_S_MASK)>>BGFX_STENCIL_OP_FAIL_S_SHIFT]; desc.BackFace.StencilPassOp = s_stencilOp[(bstencil&BGFX_STENCIL_OP_PASS_Z_MASK)>>BGFX_STENCIL_OP_PASS_Z_SHIFT]; desc.BackFace.StencilFunc = s_stencilFunc[(bstencil&BGFX_STENCIL_TEST_MASK)>>BGFX_STENCIL_TEST_SHIFT]; DX_CHECK(m_device->CreateDepthStencilState(&desc, &dss) ); m_depthStencilStateCache.add(hash, dss); } m_deviceCtx->OMSetDepthStencilState(dss, ref); } void setDebugWireframe(bool _wireframe) { if (m_wireframe != _wireframe) { m_wireframe = _wireframe; m_rasterizerStateCache.invalidate(); } } void setRasterizerState(uint64_t _state, bool _wireframe = false) { _state &= BGFX_STATE_CULL_MASK; _state |= _wireframe ? BGFX_STATE_PT_LINES : BGFX_STATE_NONE; ID3D11RasterizerState* rs = m_rasterizerStateCache.find(_state); if (NULL == rs) { uint32_t cull = (_state&BGFX_STATE_CULL_MASK)>>BGFX_STATE_CULL_SHIFT; D3D11_RASTERIZER_DESC desc; desc.FillMode = _wireframe ? D3D11_FILL_WIREFRAME : D3D11_FILL_SOLID; desc.CullMode = s_cullMode[cull]; desc.FrontCounterClockwise = false; desc.DepthBias = 0; desc.DepthBiasClamp = 0.0f; desc.SlopeScaledDepthBias = 0.0f; desc.DepthClipEnable = false; desc.ScissorEnable = false; desc.MultisampleEnable = false; desc.AntialiasedLineEnable = false; DX_CHECK(m_device->CreateRasterizerState(&desc, &rs) ); m_rasterizerStateCache.add(_state, rs); } m_deviceCtx->RSSetState(rs); } ID3D11SamplerState* getSamplerState(uint32_t _flags) { _flags &= BGFX_TEXTURE_MIN_MASK|BGFX_TEXTURE_MAG_MASK|BGFX_TEXTURE_MIP_MASK | BGFX_TEXTURE_U_MASK|BGFX_TEXTURE_V_MASK|BGFX_TEXTURE_W_MASK ; uint8_t minFilter = s_textureFilter[0][(_flags&BGFX_TEXTURE_MIN_MASK)>>BGFX_TEXTURE_MIN_SHIFT]; uint8_t magFilter = s_textureFilter[1][(_flags&BGFX_TEXTURE_MAG_MASK)>>BGFX_TEXTURE_MAG_SHIFT]; uint8_t mipFilter = s_textureFilter[2][(_flags&BGFX_TEXTURE_MIP_MASK)>>BGFX_TEXTURE_MIP_SHIFT]; D3D11_SAMPLER_DESC sd; sd.Filter = (D3D11_FILTER)(minFilter|magFilter|mipFilter); sd.AddressU = s_textureAddress[(_flags&BGFX_TEXTURE_U_MASK)>>BGFX_TEXTURE_U_SHIFT]; sd.AddressV = s_textureAddress[(_flags&BGFX_TEXTURE_V_MASK)>>BGFX_TEXTURE_V_SHIFT]; sd.AddressW = s_textureAddress[(_flags&BGFX_TEXTURE_W_MASK)>>BGFX_TEXTURE_W_SHIFT]; sd.MipLODBias = 0.0f; sd.MaxAnisotropy = 1; sd.ComparisonFunc = D3D11_COMPARISON_NEVER; sd.BorderColor[0] = 0.0f; sd.BorderColor[1] = 0.0f; sd.BorderColor[2] = 0.0f; sd.BorderColor[3] = 0.0f; sd.MinLOD = 0; sd.MaxLOD = D3D11_FLOAT32_MAX; uint32_t hash = bx::hashMurmur2A(sd); ID3D11SamplerState* sampler = m_samplerStateCache.find(hash); if (NULL == sampler) { m_device->CreateSamplerState(&sd, &sampler); DX_CHECK_REFCOUNT(sampler, 1); m_samplerStateCache.add(hash, sampler); } return sampler; } void commitTextureStage() { m_deviceCtx->PSSetShaderResources(0, BGFX_STATE_TEX_COUNT, m_textureStage.m_srv); m_deviceCtx->PSSetSamplers(0, BGFX_STATE_TEX_COUNT, m_textureStage.m_sampler); } void invalidateTextureStage() { m_textureStage.clear(); commitTextureStage(); } void capturePostReset() { if (m_flags&BGFX_RESET_CAPTURE) { ID3D11Texture2D* backBuffer; DX_CHECK(m_swapChain->GetBuffer(0, __uuidof(ID3D11Texture2D), (void**)&backBuffer) ); D3D11_TEXTURE2D_DESC backBufferDesc; backBuffer->GetDesc(&backBufferDesc); D3D11_TEXTURE2D_DESC desc; memcpy(&desc, &backBufferDesc, sizeof(desc) ); desc.SampleDesc.Count = 1; desc.SampleDesc.Quality = 0; desc.Usage = D3D11_USAGE_STAGING; desc.BindFlags = 0; desc.CPUAccessFlags = D3D11_CPU_ACCESS_READ; HRESULT hr = m_device->CreateTexture2D(&desc, NULL, &m_captureTexture); if (SUCCEEDED(hr) ) { if (backBufferDesc.SampleDesc.Count != 1) { desc.Usage = D3D11_USAGE_DEFAULT; desc.CPUAccessFlags = 0; m_device->CreateTexture2D(&desc, NULL, &m_captureResolve); } g_callback->captureBegin(backBufferDesc.Width, backBufferDesc.Height, backBufferDesc.Width*4, TextureFormat::BGRA8, false); } DX_RELEASE(backBuffer, 0); } } void capturePreReset() { if (NULL != m_captureTexture) { g_callback->captureEnd(); } DX_RELEASE(m_captureResolve, 0); DX_RELEASE(m_captureTexture, 0); } void capture() { if (NULL != m_captureTexture) { ID3D11Texture2D* backBuffer; DX_CHECK(m_swapChain->GetBuffer(0, __uuidof(ID3D11Texture2D), (void**)&backBuffer) ); DXGI_MODE_DESC& desc = m_scd.BufferDesc; if (NULL == m_captureResolve) { m_deviceCtx->CopyResource(m_captureTexture, backBuffer); } else { m_deviceCtx->ResolveSubresource(m_captureResolve, 0, backBuffer, 0, desc.Format); m_deviceCtx->CopyResource(m_captureTexture, m_captureResolve); } D3D11_MAPPED_SUBRESOURCE mapped; DX_CHECK(m_deviceCtx->Map(m_captureTexture, 0, D3D11_MAP_READ, 0, &mapped) ); g_callback->captureFrame(mapped.pData, desc.Height*mapped.RowPitch); m_deviceCtx->Unmap(m_captureTexture, 0); DX_RELEASE(backBuffer, 0); } } void saveScreenShot(Memory* _mem) { ID3D11Texture2D* backBuffer; DX_CHECK(m_swapChain->GetBuffer(0, __uuidof(ID3D11Texture2D), (void**)&backBuffer) ); D3D11_TEXTURE2D_DESC backBufferDesc; backBuffer->GetDesc(&backBufferDesc); D3D11_TEXTURE2D_DESC desc; memcpy(&desc, &backBufferDesc, sizeof(desc) ); desc.SampleDesc.Count = 1; desc.SampleDesc.Quality = 0; desc.Usage = D3D11_USAGE_STAGING; desc.BindFlags = 0; desc.CPUAccessFlags = D3D11_CPU_ACCESS_READ; ID3D11Texture2D* texture; HRESULT hr = m_device->CreateTexture2D(&desc, NULL, &texture); if (SUCCEEDED(hr) ) { if (backBufferDesc.SampleDesc.Count == 1) { m_deviceCtx->CopyResource(texture, backBuffer); } else { desc.Usage = D3D11_USAGE_DEFAULT; desc.CPUAccessFlags = 0; ID3D11Texture2D* resolve; HRESULT hr = m_device->CreateTexture2D(&desc, NULL, &resolve); if (SUCCEEDED(hr) ) { m_deviceCtx->ResolveSubresource(resolve, 0, backBuffer, 0, desc.Format); m_deviceCtx->CopyResource(texture, resolve); DX_RELEASE(resolve, 0); } } D3D11_MAPPED_SUBRESOURCE mapped; DX_CHECK(m_deviceCtx->Map(texture, 0, D3D11_MAP_READ, 0, &mapped) ); g_callback->screenShot( (const char*)_mem->data , backBufferDesc.Width , backBufferDesc.Height , mapped.RowPitch , mapped.pData , backBufferDesc.Height*mapped.RowPitch , false ); m_deviceCtx->Unmap(texture, 0); DX_RELEASE(texture, 0); } DX_RELEASE(backBuffer, 0); } HMODULE m_d3d11dll; IDXGISwapChain* m_swapChain; ID3D11Device* m_device; ID3D11DeviceContext* m_deviceCtx; ID3D11RenderTargetView* m_backBufferColor; ID3D11DepthStencilView* m_backBufferDepthStencil; ID3D11RenderTargetView* m_currentColor; ID3D11DepthStencilView* m_currentDepthStencil; ID3D11Texture2D* m_captureTexture; ID3D11Texture2D* m_captureResolve; bool m_wireframe; DXGI_SWAP_CHAIN_DESC m_scd; uint32_t m_flags; IndexBuffer m_indexBuffers[BGFX_CONFIG_MAX_INDEX_BUFFERS]; VertexBuffer m_vertexBuffers[BGFX_CONFIG_MAX_VERTEX_BUFFERS]; Shader m_vertexShaders[BGFX_CONFIG_MAX_VERTEX_SHADERS]; Shader m_fragmentShaders[BGFX_CONFIG_MAX_FRAGMENT_SHADERS]; Program m_program[BGFX_CONFIG_MAX_PROGRAMS]; Texture m_textures[BGFX_CONFIG_MAX_TEXTURES]; VertexDecl m_vertexDecls[BGFX_CONFIG_MAX_VERTEX_DECLS]; RenderTarget m_renderTargets[BGFX_CONFIG_MAX_RENDER_TARGETS]; UniformBuffer m_uniforms[BGFX_CONFIG_MAX_UNIFORMS]; UniformBuffer m_predefinedUniforms[PredefinedUniform::Count]; UniformRegistry m_uniformReg; StateCacheT m_blendStateCache; StateCacheT m_depthStencilStateCache; StateCacheT m_inputLayoutCache; StateCacheT m_rasterizerStateCache; StateCacheT m_samplerStateCache; TextVideoMem m_textVideoMem; RenderTargetHandle m_rt; TextureStage m_textureStage; Program* m_currentProgram; uint8_t m_vsScratch[64<<10]; uint8_t m_fsScratch[64<<10]; uint32_t m_vsChanges; uint32_t m_fsChanges; }; static RendererContext s_renderCtx; void IndexBuffer::create(uint32_t _size, void* _data) { m_size = _size; m_dynamic = NULL == _data; D3D11_BUFFER_DESC desc; desc.ByteWidth = _size; desc.BindFlags = D3D11_BIND_INDEX_BUFFER; desc.MiscFlags = 0; desc.StructureByteStride = 0; if (m_dynamic) { desc.Usage = D3D11_USAGE_DYNAMIC; desc.CPUAccessFlags = D3D11_CPU_ACCESS_WRITE; DX_CHECK(s_renderCtx.m_device->CreateBuffer(&desc , NULL , &m_ptr ) ); } else { desc.Usage = D3D11_USAGE_IMMUTABLE; desc.CPUAccessFlags = 0; D3D11_SUBRESOURCE_DATA srd; srd.pSysMem = _data; srd.SysMemPitch = 0; srd.SysMemSlicePitch = 0; DX_CHECK(s_renderCtx.m_device->CreateBuffer(&desc , &srd , &m_ptr ) ); } } void IndexBuffer::update(uint32_t _offset, uint32_t _size, void* _data) { ID3D11DeviceContext* deviceCtx = s_renderCtx.m_deviceCtx; BX_CHECK(m_dynamic, "Must be dynamic!"); D3D11_MAPPED_SUBRESOURCE mapped; D3D11_MAP type = m_dynamic && 0 == _offset && m_size == _size ? D3D11_MAP_WRITE_DISCARD : D3D11_MAP_WRITE_NO_OVERWRITE; DX_CHECK(deviceCtx->Map(m_ptr, 0, type, 0, &mapped) ); memcpy( (uint8_t*)mapped.pData + _offset, _data, _size); deviceCtx->Unmap(m_ptr, 0); } void VertexBuffer::create(uint32_t _size, void* _data, VertexDeclHandle _declHandle) { m_size = _size; m_decl = _declHandle; m_dynamic = NULL == _data; D3D11_BUFFER_DESC desc; desc.ByteWidth = _size; desc.BindFlags = D3D11_BIND_VERTEX_BUFFER; desc.MiscFlags = 0; if (m_dynamic) { desc.Usage = D3D11_USAGE_DYNAMIC; desc.CPUAccessFlags = D3D11_CPU_ACCESS_WRITE; desc.StructureByteStride = 0; DX_CHECK(s_renderCtx.m_device->CreateBuffer(&desc , NULL , &m_ptr ) ); } else { desc.Usage = D3D11_USAGE_IMMUTABLE; desc.CPUAccessFlags = 0; desc.StructureByteStride = 0; D3D11_SUBRESOURCE_DATA srd; srd.pSysMem = _data; srd.SysMemPitch = 0; srd.SysMemSlicePitch = 0; DX_CHECK(s_renderCtx.m_device->CreateBuffer(&desc , &srd , &m_ptr ) ); } } void VertexBuffer::update(uint32_t _offset, uint32_t _size, void* _data) { ID3D11DeviceContext* deviceCtx = s_renderCtx.m_deviceCtx; BX_CHECK(m_dynamic, "Must be dynamic!"); D3D11_MAPPED_SUBRESOURCE mapped; D3D11_MAP type = m_dynamic && 0 == _offset && m_size == _size ? D3D11_MAP_WRITE_DISCARD : D3D11_MAP_WRITE_NO_OVERWRITE; DX_CHECK(deviceCtx->Map(m_ptr, 0, type, 0, &mapped) ); memcpy( (uint8_t*)mapped.pData + _offset, _data, _size); deviceCtx->Unmap(m_ptr, 0); } void ConstantBuffer::commit() { reset(); do { uint32_t opcode = read(); if (UniformType::End == opcode) { break; } UniformType::Enum type; uint16_t loc; uint16_t num; uint16_t copy; decodeOpcode(opcode, type, loc, num, copy); const char* data; if (copy) { data = read(g_uniformTypeSize[type]*num); } else { memcpy(&data, read(sizeof(void*) ), sizeof(void*) ); } #define CASE_IMPLEMENT_UNIFORM(_uniform, _glsuffix, _dxsuffix, _type) \ case UniformType::_uniform: \ case UniformType::_uniform|BGFX_UNIFORM_FRAGMENTBIT: \ { \ s_renderCtx.setShaderConstant(type, loc, data, num); \ } \ break; switch ((int32_t)type) { CASE_IMPLEMENT_UNIFORM(Uniform1i, 1iv, I, int); CASE_IMPLEMENT_UNIFORM(Uniform1f, 1fv, F, float); CASE_IMPLEMENT_UNIFORM(Uniform1iv, 1iv, I, int); CASE_IMPLEMENT_UNIFORM(Uniform1fv, 1fv, F, float); CASE_IMPLEMENT_UNIFORM(Uniform2fv, 2fv, F, float); CASE_IMPLEMENT_UNIFORM(Uniform3fv, 3fv, F, float); CASE_IMPLEMENT_UNIFORM(Uniform4fv, 4fv, F, float); CASE_IMPLEMENT_UNIFORM(Uniform3x3fv, Matrix3fv, F, float); CASE_IMPLEMENT_UNIFORM(Uniform4x4fv, Matrix4fv, F, float); case UniformType::End: break; default: BX_TRACE("%4d: INVALID 0x%08x, t %d, l %d, n %d, c %d", m_pos, opcode, type, loc, num, copy); break; } #undef CASE_IMPLEMENT_UNIFORM } while (true); } void TextVideoMemBlitter::setup() { ID3D11DeviceContext* deviceCtx = s_renderCtx.m_deviceCtx; uint32_t width = s_renderCtx.m_scd.BufferDesc.Width; uint32_t height = s_renderCtx.m_scd.BufferDesc.Height; RenderTargetHandle rt = BGFX_INVALID_HANDLE; s_renderCtx.setRenderTarget(rt, false); D3D11_VIEWPORT vp; vp.TopLeftX = 0; vp.TopLeftY = 0; vp.Width = (float)width; vp.Height = (float)height; vp.MinDepth = 0.0f; vp.MaxDepth = 1.0f; deviceCtx->RSSetViewports(1, &vp); uint64_t state = BGFX_STATE_RGB_WRITE | BGFX_STATE_ALPHA_WRITE | BGFX_STATE_DEPTH_TEST_ALWAYS ; s_renderCtx.setBlendState(state); s_renderCtx.setDepthStencilState(state); s_renderCtx.setRasterizerState(state, false); Program& program = s_renderCtx.m_program[m_program.idx]; s_renderCtx.m_currentProgram = &program; deviceCtx->VSSetShader( (ID3D11VertexShader*)program.m_vsh->m_ptr, NULL, 0); deviceCtx->VSSetConstantBuffers(0, 1, &program.m_vsh->m_buffer); deviceCtx->PSSetShader( (ID3D11PixelShader*)program.m_fsh->m_ptr, NULL, 0); deviceCtx->PSSetConstantBuffers(0, 1, &program.m_fsh->m_buffer); VertexBuffer& vb = s_renderCtx.m_vertexBuffers[m_vb->handle.idx]; VertexDecl& vertexDecl = s_renderCtx.m_vertexDecls[m_vb->decl.idx]; uint32_t stride = vertexDecl.m_stride; uint32_t offset = 0; deviceCtx->IASetVertexBuffers(0, 1, &vb.m_ptr, &stride, &offset); s_renderCtx.setInputLayout(vertexDecl, program, 0); IndexBuffer& ib = s_renderCtx.m_indexBuffers[m_ib->handle.idx]; deviceCtx->IASetIndexBuffer(ib.m_ptr, DXGI_FORMAT_R16_UINT, 0); float proj[16]; mtxOrtho(proj, 0.0f, (float)width, (float)height, 0.0f, 0.0f, 1000.0f); PredefinedUniform& predefined = program.m_predefined[0]; uint8_t flags = predefined.m_type; s_renderCtx.setShaderConstant(flags, predefined.m_loc, proj, 4); s_renderCtx.commitShaderConstants(); s_renderCtx.m_textures[m_texture.idx].commit(0); s_renderCtx.commitTextureStage(); } void TextVideoMemBlitter::render(uint32_t _numIndices) { ID3D11DeviceContext* deviceCtx = s_renderCtx.m_deviceCtx; IndexBuffer& ib = s_renderCtx.m_indexBuffers[m_ib->handle.idx]; ib.update(0, _numIndices*2, m_ib->data); uint32_t numVertices = _numIndices*4/6; s_renderCtx.m_vertexBuffers[m_vb->handle.idx].update(0, numVertices*m_decl.m_stride, m_vb->data); deviceCtx->IASetPrimitiveTopology(D3D11_PRIMITIVE_TOPOLOGY_TRIANGLELIST); deviceCtx->DrawIndexed(_numIndices, 0, 0); } void ClearQuad::clear(const Rect& _rect, const Clear& _clear) { uint32_t width = s_renderCtx.m_scd.BufferDesc.Width; uint32_t height = s_renderCtx.m_scd.BufferDesc.Height; if (0 == _rect.m_x && 0 == _rect.m_y && width == _rect.m_width && height == _rect.m_height) { s_renderCtx.clear(_clear); } else { ID3D11DeviceContext* deviceCtx = s_renderCtx.m_deviceCtx; uint64_t state = 0; state |= _clear.m_flags & BGFX_CLEAR_COLOR_BIT ? BGFX_STATE_RGB_WRITE|BGFX_STATE_ALPHA_WRITE : 0; state |= _clear.m_flags & BGFX_CLEAR_DEPTH_BIT ? BGFX_STATE_DEPTH_TEST_ALWAYS|BGFX_STATE_DEPTH_WRITE : 0; s_renderCtx.setBlendState(state); s_renderCtx.setDepthStencilState(state); s_renderCtx.setRasterizerState(state, false); Program& program = s_renderCtx.m_program[m_program.idx]; s_renderCtx.m_currentProgram = &program; deviceCtx->VSSetShader( (ID3D11VertexShader*)program.m_vsh->m_ptr, NULL, 0); deviceCtx->VSSetConstantBuffers(0, 0, NULL); deviceCtx->PSSetShader( (ID3D11PixelShader*)program.m_fsh->m_ptr, NULL, 0); deviceCtx->PSSetConstantBuffers(0, 0, NULL); VertexBuffer& vb = s_renderCtx.m_vertexBuffers[m_vb->handle.idx]; VertexDecl& vertexDecl = s_renderCtx.m_vertexDecls[m_vb->decl.idx]; uint32_t stride = vertexDecl.m_stride; uint32_t offset = 0; { struct Vertex { float m_x; float m_y; float m_z; uint32_t m_abgr; } * vertex = (Vertex*)m_vb->data; const uint32_t abgr = bx::endianSwap(_clear.m_rgba); const float depth = _clear.m_depth; vertex->m_x = -1.0f; vertex->m_y = -1.0f; vertex->m_z = depth; vertex->m_abgr = abgr; vertex++; vertex->m_x = 1.0f; vertex->m_y = -1.0f; vertex->m_z = depth; vertex->m_abgr = abgr; vertex++; vertex->m_x = 1.0f; vertex->m_y = 1.0f; vertex->m_z = depth; vertex->m_abgr = abgr; vertex++; vertex->m_x = -1.0f; vertex->m_y = 1.0f; vertex->m_z = depth; vertex->m_abgr = abgr; } s_renderCtx.m_vertexBuffers[m_vb->handle.idx].update(0, 4*m_decl.m_stride, m_vb->data); deviceCtx->IASetVertexBuffers(0, 1, &vb.m_ptr, &stride, &offset); s_renderCtx.setInputLayout(vertexDecl, program, 0); IndexBuffer& ib = s_renderCtx.m_indexBuffers[m_ib.idx]; deviceCtx->IASetIndexBuffer(ib.m_ptr, DXGI_FORMAT_R16_UINT, 0); deviceCtx->IASetPrimitiveTopology(D3D11_PRIMITIVE_TOPOLOGY_TRIANGLELIST); deviceCtx->DrawIndexed(6, 0, 0); } } void Shader::create(bool _fragment, const Memory* _mem) { bx::MemoryReader reader(_mem->data, _mem->size); uint32_t magic; bx::read(&reader, magic); uint32_t iohash; bx::read(&reader, iohash); bx::read(&reader, m_attrMask, sizeof(m_attrMask) ); uint16_t count; bx::read(&reader, count); uint16_t size; bx::read(&reader, size); if (0 < size) { D3D11_BUFFER_DESC desc; desc.ByteWidth = size; desc.Usage = D3D11_USAGE_DEFAULT; desc.BindFlags = D3D11_BIND_CONSTANT_BUFFER; desc.CPUAccessFlags = 0; desc.MiscFlags = 0; desc.StructureByteStride = 0; DX_CHECK(s_renderCtx.m_device->CreateBuffer(&desc, NULL, &m_buffer) ); } m_numPredefined = 0; m_numUniforms = count; BX_TRACE("Shader consts %d", count); uint8_t fragmentBit = _fragment ? BGFX_UNIFORM_FRAGMENTBIT : 0; if (0 < count) { m_constantBuffer = ConstantBuffer::create(1024); for (uint32_t ii = 0; ii < count; ++ii) { uint8_t nameSize; bx::read(&reader, nameSize); char name[256]; bx::read(&reader, &name, nameSize); name[nameSize] = '\0'; uint8_t type; bx::read(&reader, type); uint8_t num; bx::read(&reader, num); uint16_t regIndex; bx::read(&reader, regIndex); uint16_t regCount; bx::read(&reader, regCount); const char* kind = "invalid"; const void* data = NULL; PredefinedUniform::Enum predefined = nameToPredefinedUniformEnum(name); if (PredefinedUniform::Count != predefined) { kind = "predefined"; m_predefined[m_numPredefined].m_loc = regIndex; m_predefined[m_numPredefined].m_count = regCount; m_predefined[m_numPredefined].m_type = predefined|fragmentBit; m_numPredefined++; } else { const UniformInfo* info = s_renderCtx.m_uniformReg.find(name); UniformBuffer* uniform = info != NULL ? (UniformBuffer*)info->m_data : NULL; if (NULL != uniform) { kind = "user"; data = uniform->m_data; m_constantBuffer->writeUniformRef( (UniformType::Enum)(type|fragmentBit), regIndex, data, regCount); } } BX_TRACE("\t%s: %s, type %2d, num %2d, r.index %3d, r.count %2d" , kind , name , type , num , regIndex , regCount ); BX_UNUSED(kind); } m_constantBuffer->finish(); } uint16_t shaderSize; bx::read(&reader, shaderSize); const DWORD* code = (const DWORD*)reader.getDataPtr(); bx::skip(&reader, shaderSize); if (_fragment) { DX_CHECK(s_renderCtx.m_device->CreatePixelShader(code, shaderSize, NULL, (ID3D11PixelShader**)&m_ptr) ); BGFX_FATAL(NULL != m_ptr, bgfx::Fatal::InvalidShader, "Failed to create fragment shader."); } else { m_hash = hashMurmur2A(code, shaderSize); m_code = alloc(shaderSize); memcpy(m_code->data, code, shaderSize); DX_CHECK(s_renderCtx.m_device->CreateVertexShader(code, shaderSize, NULL, (ID3D11VertexShader**)&m_ptr) ); BGFX_FATAL(NULL != m_ptr, bgfx::Fatal::InvalidShader, "Failed to create vertex shader."); } } void Texture::create(const Memory* _mem, uint32_t _flags) { m_sampler = s_renderCtx.getSamplerState(_flags); Dds dds; if (parseDds(dds, _mem) ) { bool decompress = false; if (dds.m_cubeMap) { m_type = TextureCube; } else if (dds.m_depth > 1) { m_type = Texture3D; } else { m_type = Texture2D; } uint32_t numSrd = dds.m_numMips*(dds.m_cubeMap ? 6 : 1); D3D11_SUBRESOURCE_DATA* srd = (D3D11_SUBRESOURCE_DATA*)alloca(numSrd*sizeof(D3D11_SUBRESOURCE_DATA) ); uint32_t kk = 0; bool convert = false; m_numMips = dds.m_numMips; if (decompress || TextureFormat::Unknown < dds.m_type) { uint32_t bpp = s_textureFormat[dds.m_type].m_bpp; convert = TextureFormat::BGRX8 == dds.m_type; for (uint8_t side = 0, numSides = dds.m_cubeMap ? 6 : 1; side < numSides; ++side) { uint32_t width = dds.m_width; uint32_t height = dds.m_height; uint32_t depth = dds.m_depth; for (uint32_t lod = 0, num = m_numMips; lod < num; ++lod) { width = uint32_max(1, width); height = uint32_max(1, height); depth = uint32_max(1, depth); Mip mip; if (getRawImageData(dds, side, lod, _mem, mip) ) { if (convert) { uint8_t* temp = (uint8_t*)g_realloc(NULL, mip.m_width*mip.m_height*bpp/8); mip.decode(temp); srd[kk].pSysMem = temp; srd[kk].SysMemPitch = mip.m_width*bpp/8; } else { srd[kk].pSysMem = mip.m_data; srd[kk].SysMemPitch = mip.m_width*mip.m_bpp/8; } srd[kk].SysMemSlicePitch = mip.m_height*srd[kk].SysMemPitch; ++kk; } width >>= 1; height >>= 1; depth >>= 1; } } } else { for (uint8_t side = 0, numSides = dds.m_cubeMap ? 6 : 1; side < numSides; ++side) { for (uint32_t lod = 0, num = m_numMips; lod < num; ++lod) { Mip mip; if (getRawImageData(dds, side, lod, _mem, mip) ) { srd[kk].pSysMem = mip.m_data; if (TextureFormat::Unknown > dds.m_type) { srd[kk].SysMemPitch = (mip.m_width/4)*mip.m_blockSize; srd[kk].SysMemSlicePitch = (mip.m_height/4)*srd[kk].SysMemPitch; } else { srd[kk].SysMemPitch = mip.m_width*mip.m_bpp/8; srd[kk].SysMemSlicePitch = mip.m_height*srd[kk].SysMemPitch; } ++kk; } } } } D3D11_SHADER_RESOURCE_VIEW_DESC srvd; memset(&srvd, 0, sizeof(srvd) ); srvd.Format = s_textureFormat[dds.m_type].m_fmt; switch (m_type) { case Texture2D: case TextureCube: { D3D11_TEXTURE2D_DESC desc; desc.Width = dds.m_width; desc.Height = dds.m_height; desc.MipLevels = dds.m_numMips; desc.Format = s_textureFormat[dds.m_type].m_fmt; desc.SampleDesc.Count = 1; desc.SampleDesc.Quality = 0; desc.Usage = D3D11_USAGE_IMMUTABLE; desc.BindFlags = D3D11_BIND_SHADER_RESOURCE; desc.CPUAccessFlags = 0; if (dds.m_cubeMap) { desc.ArraySize = 6; desc.MiscFlags = D3D11_RESOURCE_MISC_TEXTURECUBE; srvd.ViewDimension = D3D11_SRV_DIMENSION_TEXTURECUBE; srvd.TextureCube.MipLevels = dds.m_numMips; } else { desc.ArraySize = 1; desc.MiscFlags = 0; srvd.ViewDimension = D3D11_SRV_DIMENSION_TEXTURE2D; srvd.Texture2D.MipLevels = dds.m_numMips; } DX_CHECK(s_renderCtx.m_device->CreateTexture2D(&desc, srd, &m_texture2d) ); } break; case Texture3D: { D3D11_TEXTURE3D_DESC desc; desc.Width = dds.m_width; desc.Height = dds.m_height; desc.Depth = dds.m_depth; desc.MipLevels = dds.m_numMips; desc.Format = s_textureFormat[dds.m_type].m_fmt; desc.Usage = D3D11_USAGE_IMMUTABLE; desc.BindFlags = D3D11_BIND_SHADER_RESOURCE; desc.CPUAccessFlags = 0; desc.MiscFlags = 0; srvd.ViewDimension = D3D11_SRV_DIMENSION_TEXTURE3D; srvd.Texture3D.MipLevels = dds.m_numMips; DX_CHECK(s_renderCtx.m_device->CreateTexture3D(&desc, srd, &m_texture3d) ); } break; } DX_CHECK(s_renderCtx.m_device->CreateShaderResourceView(m_ptr, &srvd, &m_srv) ); if (convert) { kk = 0; for (uint8_t side = 0, numSides = dds.m_cubeMap ? 6 : 1; side < numSides; ++side) { for (uint32_t lod = 0, num = dds.m_numMips; lod < num; ++lod) { g_free(const_cast(srd[kk].pSysMem) ); ++kk; } } } } else { bx::MemoryReader reader(_mem->data, _mem->size); uint32_t magic; bx::read(&reader, magic); if (BGFX_CHUNK_MAGIC_TEX == magic) { TextureCreate tc; bx::read(&reader, tc); if (tc.m_cubeMap) { m_type = TextureCube; } else if (tc.m_depth > 1) { m_type = Texture3D; } else { m_type = Texture2D; } m_numMips = tc.m_numMips; D3D11_SHADER_RESOURCE_VIEW_DESC srvd; memset(&srvd, 0, sizeof(srvd) ); srvd.Format = s_textureFormat[tc.m_format].m_fmt; if (NULL != tc.m_mem) { D3D11_TEXTURE2D_DESC desc; desc.Width = tc.m_width; desc.Height = tc.m_height; desc.MipLevels = tc.m_numMips; desc.ArraySize = 1; desc.Format = srvd.Format; desc.SampleDesc.Count = 1; desc.SampleDesc.Quality = 0; desc.Usage = D3D11_USAGE_IMMUTABLE; desc.BindFlags = D3D11_BIND_SHADER_RESOURCE; desc.CPUAccessFlags = 0; desc.MiscFlags = 0; srvd.ViewDimension = D3D11_SRV_DIMENSION_TEXTURE2D; srvd.Texture2D.MipLevels = tc.m_numMips; D3D11_SUBRESOURCE_DATA* srd = (D3D11_SUBRESOURCE_DATA*)alloca(tc.m_numMips*sizeof(D3D11_SUBRESOURCE_DATA) ); uint32_t bpp = s_textureFormat[tc.m_format].m_bpp; uint8_t* data = tc.m_mem->data; for (uint8_t side = 0, numSides = tc.m_cubeMap ? 6 : 1; side < numSides; ++side) { uint32_t width = tc.m_width; uint32_t height = tc.m_height; uint32_t depth = tc.m_depth; for (uint32_t lod = 0, num = tc.m_numMips; lod < num; ++lod) { width = uint32_max(1, width); height = uint32_max(1, height); depth = uint32_max(1, depth); srd[lod].pSysMem = data; srd[lod].SysMemPitch = width*bpp/8; srd[lod].SysMemSlicePitch = 0; data += width*height*bpp/8; width >>= 1; height >>= 1; depth >>= 1; } } DX_CHECK(s_renderCtx.m_device->CreateTexture2D(&desc, srd, &m_texture2d) ); release(tc.m_mem); } else { switch (m_type) { case Texture2D: case TextureCube: { D3D11_TEXTURE2D_DESC desc; desc.Width = tc.m_width; desc.Height = tc.m_height; desc.MipLevels = tc.m_numMips; desc.Format = srvd.Format; desc.SampleDesc.Count = 1; desc.SampleDesc.Quality = 0; desc.Usage = D3D11_USAGE_DEFAULT; desc.BindFlags = D3D11_BIND_SHADER_RESOURCE; desc.CPUAccessFlags = 0; if (TextureCube == m_type) { desc.ArraySize = 6; desc.MiscFlags = D3D11_RESOURCE_MISC_TEXTURECUBE; srvd.ViewDimension = D3D11_SRV_DIMENSION_TEXTURECUBE; srvd.TextureCube.MipLevels = m_numMips; } else { desc.ArraySize = 1; desc.MiscFlags = 0; srvd.ViewDimension = D3D11_SRV_DIMENSION_TEXTURE2D; srvd.Texture2D.MipLevels = m_numMips; } DX_CHECK(s_renderCtx.m_device->CreateTexture2D(&desc, NULL, &m_texture2d) ); } break; case Texture3D: { D3D11_TEXTURE3D_DESC desc; desc.Width = tc.m_width; desc.Height = tc.m_height; desc.Depth = tc.m_depth; desc.MipLevels = tc.m_numMips; desc.Format = srvd.Format; desc.Usage = D3D11_USAGE_DEFAULT; desc.BindFlags = D3D11_BIND_SHADER_RESOURCE; desc.CPUAccessFlags = 0; desc.MiscFlags = 0; srvd.ViewDimension = D3D11_SRV_DIMENSION_TEXTURE3D; srvd.Texture3D.MipLevels = m_numMips; DX_CHECK(s_renderCtx.m_device->CreateTexture3D(&desc, NULL, &m_texture3d) ); } break; } } DX_CHECK(s_renderCtx.m_device->CreateShaderResourceView(m_ptr, &srvd, &m_srv) ); } else { // } } } void Texture::destroy() { DX_RELEASE(m_srv, 0); DX_RELEASE(m_ptr, 0); } void Texture::commit(uint8_t _stage) { s_renderCtx.m_textureStage.m_srv[_stage] = m_srv; s_renderCtx.m_textureStage.m_sampler[_stage] = m_sampler; } void Texture::update(uint8_t _side, uint8_t _mip, const Rect& _rect, uint16_t _z, uint16_t _depth, const Memory* _mem) { ID3D11DeviceContext* deviceCtx = s_renderCtx.m_deviceCtx; D3D11_BOX box; box.left = _rect.m_x; box.top = _rect.m_y; box.right = box.left + _rect.m_width; box.bottom = box.top + _rect.m_height; box.front = _z; box.back = box.front + _depth; uint32_t subres = _mip + (_side * m_numMips); #if 0 D3D11_MAPPED_SUBRESOURCE mapped; DX_CHECK(deviceCtx->Map(m_ptr, 0, D3D11_MAP_WRITE, D3D11_MAP_FLAG_DO_NOT_WAIT, &mapped) ); memcpy( (uint8_t*)mapped.pData + subres*mapped.DepthPitch, _mem->data, _mem->size); deviceCtx->Unmap(m_ptr, 0); deviceCtx->CopySubresourceRegion(m_ptr , subres , _rect.m_x , _rect.m_y , _rect.m_z , staging // D3D11_USAGE_STAGING , ... ); #else deviceCtx->UpdateSubresource(m_ptr, subres, &box, _mem->data, _rect.m_width*4, 0); #endif // 0 } void RenderTarget::create(uint16_t _width, uint16_t _height, uint32_t _flags, uint32_t _textureFlags) { m_width = _width; m_height = _height; m_flags = _flags; uint32_t colorFormat = (m_flags&BGFX_RENDER_TARGET_COLOR_MASK)>>BGFX_RENDER_TARGET_COLOR_SHIFT; uint32_t depthFormat = (m_flags&BGFX_RENDER_TARGET_DEPTH_MASK)>>BGFX_RENDER_TARGET_DEPTH_SHIFT; D3D11_TEXTURE2D_DESC desc; desc.Width = _width; desc.Height = _height; desc.MipLevels = 1; desc.ArraySize = 1; desc.Format = s_colorFormat[colorFormat]; desc.SampleDesc.Count = 1; desc.SampleDesc.Quality = 0; desc.Usage = D3D11_USAGE_DEFAULT; desc.BindFlags = D3D11_BIND_SHADER_RESOURCE|D3D11_BIND_RENDER_TARGET; desc.CPUAccessFlags = 0; desc.MiscFlags = 0; DX_CHECK(s_renderCtx.m_device->CreateTexture2D(&desc, NULL, &m_colorTexture) ); DX_CHECK(s_renderCtx.m_device->CreateRenderTargetView(m_colorTexture, NULL, &m_rtv) ); DX_CHECK(s_renderCtx.m_device->CreateShaderResourceView(m_colorTexture, NULL, &m_srv) ); if (0 < depthFormat) { D3D11_TEXTURE2D_DESC desc; desc.Width = _width; desc.Height = _height; desc.MipLevels = 1; desc.ArraySize = 1; desc.Format = s_depthFormat[depthFormat]; desc.SampleDesc.Count = 1; desc.SampleDesc.Quality = 0; desc.Usage = D3D11_USAGE_DEFAULT; desc.BindFlags = D3D11_BIND_DEPTH_STENCIL; desc.CPUAccessFlags = 0; desc.MiscFlags = 0; DX_CHECK(s_renderCtx.m_device->CreateTexture2D(&desc, NULL, &m_depthTexture) ); DX_CHECK(s_renderCtx.m_device->CreateDepthStencilView(m_depthTexture, NULL, &m_dsv) ); // DX_CHECK(s_renderCtx.m_device->CreateShaderResourceView(m_depthTexture, NULL, &m_srv) ); } m_sampler = s_renderCtx.getSamplerState(_textureFlags); } void RenderTarget::destroy() { DX_RELEASE(m_srv, 0); DX_RELEASE(m_rtv, 0); DX_RELEASE(m_colorTexture, 0); DX_RELEASE(m_dsv, 0); DX_RELEASE(m_depthTexture, 0); m_flags = 0; } void RenderTarget::commit(uint8_t _stage) { s_renderCtx.m_textureStage.m_srv[_stage] = m_srv; s_renderCtx.m_textureStage.m_sampler[_stage] = m_sampler; } void UniformBuffer::create(UniformType::Enum _type, uint16_t _num, bool _alloc) { uint32_t size = BX_ALIGN_16(g_uniformTypeSize[_type]*_num); if (_alloc) { m_data = g_realloc(NULL, size); memset(m_data, 0, size); } D3D11_BUFFER_DESC desc; desc.ByteWidth = size; desc.Usage = D3D11_USAGE_DEFAULT; desc.BindFlags = D3D11_BIND_CONSTANT_BUFFER; desc.CPUAccessFlags = 0; desc.MiscFlags = 0; desc.StructureByteStride = 0; DX_CHECK(s_renderCtx.m_device->CreateBuffer(&desc, NULL, &m_ptr) ); } void UniformBuffer::destroy() { if (NULL != m_data) { g_free(m_data); m_data = NULL; } DX_RELEASE(m_ptr, 0); } void Context::flip() { s_renderCtx.flip(); } void Context::rendererInit() { s_renderCtx.init(); } void Context::rendererShutdown() { s_renderCtx.shutdown(); } void Context::rendererCreateIndexBuffer(IndexBufferHandle _handle, Memory* _mem) { s_renderCtx.m_indexBuffers[_handle.idx].create(_mem->size, _mem->data); } void Context::rendererDestroyIndexBuffer(IndexBufferHandle _handle) { s_renderCtx.m_indexBuffers[_handle.idx].destroy(); } void Context::rendererCreateVertexDecl(VertexDeclHandle _handle, const VertexDecl& _decl) { VertexDecl& decl = s_renderCtx.m_vertexDecls[_handle.idx]; memcpy(&decl, &_decl, sizeof(VertexDecl) ); dump(decl); } void Context::rendererDestroyVertexDecl(VertexDeclHandle /*_handle*/) { } void Context::rendererCreateVertexBuffer(VertexBufferHandle _handle, Memory* _mem, VertexDeclHandle _declHandle) { s_renderCtx.m_vertexBuffers[_handle.idx].create(_mem->size, _mem->data, _declHandle); } void Context::rendererDestroyVertexBuffer(VertexBufferHandle _handle) { s_renderCtx.m_vertexBuffers[_handle.idx].destroy(); } void Context::rendererCreateDynamicIndexBuffer(IndexBufferHandle _handle, uint32_t _size) { s_renderCtx.m_indexBuffers[_handle.idx].create(_size, NULL); } void Context::rendererUpdateDynamicIndexBuffer(IndexBufferHandle _handle, uint32_t _offset, uint32_t _size, Memory* _mem) { s_renderCtx.m_indexBuffers[_handle.idx].update(_offset, uint32_min(_size, _mem->size), _mem->data); } void Context::rendererDestroyDynamicIndexBuffer(IndexBufferHandle _handle) { s_renderCtx.m_indexBuffers[_handle.idx].destroy(); } void Context::rendererCreateDynamicVertexBuffer(VertexBufferHandle _handle, uint32_t _size) { VertexDeclHandle decl = BGFX_INVALID_HANDLE; s_renderCtx.m_vertexBuffers[_handle.idx].create(_size, NULL, decl); } void Context::rendererUpdateDynamicVertexBuffer(VertexBufferHandle _handle, uint32_t _offset, uint32_t _size, Memory* _mem) { s_renderCtx.m_vertexBuffers[_handle.idx].update(_offset, uint32_min(_size, _mem->size), _mem->data); } void Context::rendererDestroyDynamicVertexBuffer(VertexBufferHandle _handle) { s_renderCtx.m_vertexBuffers[_handle.idx].destroy(); } void Context::rendererCreateVertexShader(VertexShaderHandle _handle, Memory* _mem) { s_renderCtx.m_vertexShaders[_handle.idx].create(false, _mem); } void Context::rendererDestroyVertexShader(VertexShaderHandle _handle) { s_renderCtx.m_vertexShaders[_handle.idx].destroy(); } void Context::rendererCreateFragmentShader(FragmentShaderHandle _handle, Memory* _mem) { s_renderCtx.m_fragmentShaders[_handle.idx].create(true, _mem); } void Context::rendererDestroyFragmentShader(FragmentShaderHandle _handle) { s_renderCtx.m_fragmentShaders[_handle.idx].destroy(); } void Context::rendererCreateProgram(ProgramHandle _handle, VertexShaderHandle _vsh, FragmentShaderHandle _fsh) { s_renderCtx.m_program[_handle.idx].create(s_renderCtx.m_vertexShaders[_vsh.idx], s_renderCtx.m_fragmentShaders[_fsh.idx]); } void Context::rendererDestroyProgram(FragmentShaderHandle _handle) { s_renderCtx.m_program[_handle.idx].destroy(); } void Context::rendererCreateTexture(TextureHandle _handle, Memory* _mem, uint32_t _flags) { s_renderCtx.m_textures[_handle.idx].create(_mem, _flags); } void Context::rendererUpdateTextureBegin(TextureHandle /*_handle*/, uint8_t /*_side*/, uint8_t /*_mip*/) { } void Context::rendererUpdateTexture(TextureHandle _handle, uint8_t _side, uint8_t _mip, const Rect& _rect, uint16_t _z, uint16_t _depth, const Memory* _mem) { s_renderCtx.m_textures[_handle.idx].update(_side, _mip, _rect, _z, _depth, _mem); } void Context::rendererUpdateTextureEnd() { } void Context::rendererDestroyTexture(TextureHandle _handle) { s_renderCtx.m_textures[_handle.idx].destroy(); } void Context::rendererCreateRenderTarget(RenderTargetHandle _handle, uint16_t _width, uint16_t _height, uint32_t _flags, uint32_t _textureFlags) { s_renderCtx.m_renderTargets[_handle.idx].create(_width, _height, _flags, _textureFlags); } void Context::rendererDestroyRenderTarget(RenderTargetHandle _handle) { s_renderCtx.m_renderTargets[_handle.idx].destroy(); } void Context::rendererCreateUniform(UniformHandle _handle, UniformType::Enum _type, uint16_t _num, const char* _name) { s_renderCtx.m_uniforms[_handle.idx].create(_type, _num); s_renderCtx.m_uniformReg.add(_name, &s_renderCtx.m_uniforms[_handle.idx]); } void Context::rendererDestroyUniform(UniformHandle _handle) { s_renderCtx.m_uniforms[_handle.idx].destroy(); } void Context::rendererSaveScreenShot(Memory* _mem) { s_renderCtx.saveScreenShot(_mem); } void Context::rendererUpdateUniform(uint16_t _loc, const void* _data, uint32_t _size) { memcpy(s_renderCtx.m_uniforms[_loc].m_data, _data, _size); } void Context::rendererSubmit() { ID3D11DeviceContext* deviceCtx = s_renderCtx.m_deviceCtx; s_renderCtx.updateResolution(m_render->m_resolution); int64_t elapsed = -bx::getHPCounter(); int64_t captureElapsed = 0; if (0 < m_render->m_iboffset) { TransientIndexBuffer* ib = m_render->m_transientIb; s_renderCtx.m_indexBuffers[ib->handle.idx].update(0, m_render->m_iboffset, ib->data); } if (0 < m_render->m_vboffset) { TransientVertexBuffer* vb = m_render->m_transientVb; s_renderCtx.m_vertexBuffers[vb->handle.idx].update(0, m_render->m_vboffset, vb->data); } m_render->sort(); RenderState currentState; currentState.reset(); currentState.m_flags = BGFX_STATE_NONE; currentState.m_stencil = packStencil(BGFX_STENCIL_NONE, BGFX_STENCIL_NONE); Matrix4 viewProj[BGFX_CONFIG_MAX_VIEWS]; for (uint32_t ii = 0; ii < BGFX_CONFIG_MAX_VIEWS; ++ii) { mtxMul(viewProj[ii].val, m_render->m_view[ii].val, m_render->m_proj[ii].val); } bool wireframe = !!(m_render->m_debug&BGFX_DEBUG_WIREFRAME); s_renderCtx.setDebugWireframe(wireframe); uint16_t programIdx = invalidHandle; SortKey key; uint8_t view = 0xff; RenderTargetHandle rt = BGFX_INVALID_HANDLE; float alphaRef = 0.0f; D3D11_PRIMITIVE_TOPOLOGY primType = D3D11_PRIMITIVE_TOPOLOGY_TRIANGLELIST; deviceCtx->IASetPrimitiveTopology(primType); uint32_t primNumVerts = 3; uint32_t statsNumPrimsSubmitted = 0; uint32_t statsNumIndices = 0; uint32_t statsNumInstances = 0; uint32_t statsNumPrimsRendered = 0; if (0 == (m_render->m_debug&BGFX_DEBUG_IFH) ) { for (uint32_t item = 0, numItems = m_render->m_num; item < numItems; ++item) { key.decode(m_render->m_sortKeys[item]); const RenderState& state = m_render->m_renderState[m_render->m_sortValues[item] ]; const uint64_t newFlags = state.m_flags; uint64_t changedFlags = currentState.m_flags ^ state.m_flags; currentState.m_flags = newFlags; const uint64_t newStencil = state.m_stencil; uint64_t changedStencil = currentState.m_stencil ^ state.m_stencil; currentState.m_stencil = newStencil; if (key.m_view != view) { currentState.clear(); changedFlags = BGFX_STATE_MASK; changedStencil = packStencil(BGFX_STENCIL_MASK, BGFX_STENCIL_MASK); currentState.m_flags = newFlags; currentState.m_stencil = newStencil; view = key.m_view; programIdx = invalidHandle; if (m_render->m_rt[view].idx != rt.idx) { rt = m_render->m_rt[view]; s_renderCtx.setRenderTarget(rt); } Rect& rect = m_render->m_rect[view]; D3D11_VIEWPORT vp; vp.TopLeftX = rect.m_x; vp.TopLeftY = rect.m_y; vp.Width = rect.m_width; vp.Height = rect.m_height; vp.MinDepth = 0.0f; vp.MaxDepth = 1.0f; deviceCtx->RSSetViewports(1, &vp); Clear& clear = m_render->m_clear[view]; if (BGFX_CLEAR_NONE != clear.m_flags) { m_clearQuad.clear(rect, clear); } s_renderCtx.setBlendState(BGFX_STATE_DEFAULT); s_renderCtx.setDepthStencilState(BGFX_STATE_DEFAULT, packStencil(BGFX_STENCIL_DEFAULT, BGFX_STENCIL_DEFAULT) ); s_renderCtx.setRasterizerState(BGFX_STATE_DEFAULT, wireframe); uint8_t primIndex = uint8_t( (newFlags&BGFX_STATE_PT_MASK)>>BGFX_STATE_PT_SHIFT); if (primType != s_primType[primIndex]) { primType = s_primType[primIndex]; primNumVerts = 3-primIndex; deviceCtx->IASetPrimitiveTopology(primType); } } if ( (BGFX_STATE_DEPTH_WRITE|BGFX_STATE_DEPTH_TEST_MASK) & changedFlags || 0 != changedStencil) { s_renderCtx.setDepthStencilState(newFlags, newStencil); } if ( (BGFX_STATE_CULL_MASK|BGFX_STATE_ALPHA_MASK|BGFX_STATE_RGB_WRITE |BGFX_STATE_BLEND_MASK|BGFX_STATE_ALPHA_REF_MASK|BGFX_STATE_PT_MASK |BGFX_STATE_POINT_SIZE_MASK|BGFX_STATE_SRGBWRITE|BGFX_STATE_MSAA) & changedFlags) { if ( (BGFX_STATE_BLEND_MASK|BGFX_STATE_ALPHA_WRITE|BGFX_STATE_RGB_WRITE) & changedFlags) { s_renderCtx.setBlendState(newFlags); } if ( (BGFX_STATE_CULL_MASK) & changedFlags) { s_renderCtx.setRasterizerState(newFlags, wireframe); } if (BGFX_STATE_ALPHA_REF_MASK & changedFlags) { uint32_t ref = (newFlags&BGFX_STATE_ALPHA_REF_MASK)>>BGFX_STATE_ALPHA_REF_SHIFT; alphaRef = ref/255.0f; } uint8_t primIndex = uint8_t( (newFlags&BGFX_STATE_PT_MASK)>>BGFX_STATE_PT_SHIFT); if (primType != s_primType[primIndex]) { primType = s_primType[primIndex]; primNumVerts = 3-primIndex; deviceCtx->IASetPrimitiveTopology(primType); } } bool programChanged = false; bool constantsChanged = state.m_constBegin < state.m_constEnd; rendererUpdateUniforms(m_render->m_constantBuffer, state.m_constBegin, state.m_constEnd); if (key.m_program != programIdx) { programIdx = key.m_program; if (invalidHandle == programIdx) { s_renderCtx.m_currentProgram = NULL; deviceCtx->VSSetShader(NULL, 0, 0); deviceCtx->PSSetShader(NULL, 0, 0); } else { Program& program = s_renderCtx.m_program[programIdx]; s_renderCtx.m_currentProgram = &program; deviceCtx->VSSetShader( (ID3D11VertexShader*)program.m_vsh->m_ptr, NULL, 0); deviceCtx->VSSetConstantBuffers(0, 1, &program.m_vsh->m_buffer); deviceCtx->PSSetShader( (ID3D11PixelShader*)program.m_fsh->m_ptr, NULL, 0); deviceCtx->PSSetConstantBuffers(0, 1, &program.m_fsh->m_buffer); } programChanged = constantsChanged = true; } if (invalidHandle != programIdx) { Program& program = s_renderCtx.m_program[programIdx]; if (constantsChanged) { program.commit(); } for (uint32_t ii = 0, num = program.m_numPredefined; ii < num; ++ii) { PredefinedUniform& predefined = program.m_predefined[ii]; uint8_t flags = predefined.m_type&BGFX_UNIFORM_FRAGMENTBIT; switch (predefined.m_type&(~BGFX_UNIFORM_FRAGMENTBIT) ) { case PredefinedUniform::ViewRect: { float rect[4]; rect[0] = m_render->m_rect[view].m_x; rect[1] = m_render->m_rect[view].m_y; rect[2] = m_render->m_rect[view].m_width; rect[3] = m_render->m_rect[view].m_height; s_renderCtx.setShaderConstant(flags, predefined.m_loc, &rect[0], 1); } break; case PredefinedUniform::ViewTexel: { float rect[4]; rect[0] = 1.0f/float(m_render->m_rect[view].m_width); rect[1] = 1.0f/float(m_render->m_rect[view].m_height); s_renderCtx.setShaderConstant(flags, predefined.m_loc, &rect[0], 1); } break; case PredefinedUniform::View: { s_renderCtx.setShaderConstant(flags, predefined.m_loc, m_render->m_view[view].val, uint32_min(4, predefined.m_count) ); } break; case PredefinedUniform::ViewProj: { s_renderCtx.setShaderConstant(flags, predefined.m_loc, viewProj[view].val, uint32_min(4, predefined.m_count) ); } break; case PredefinedUniform::Model: { const Matrix4& model = m_render->m_matrixCache.m_cache[state.m_matrix]; s_renderCtx.setShaderConstant(flags, predefined.m_loc, model.val, uint32_min(state.m_num*4, predefined.m_count) ); } break; case PredefinedUniform::ModelView: { Matrix4 modelView; const Matrix4& model = m_render->m_matrixCache.m_cache[state.m_matrix]; mtxMul(modelView.val, model.val, m_render->m_view[view].val); s_renderCtx.setShaderConstant(flags, predefined.m_loc, modelView.val, uint32_min(4, predefined.m_count) ); } break; case PredefinedUniform::ModelViewProj: { Matrix4 modelViewProj; const Matrix4& model = m_render->m_matrixCache.m_cache[state.m_matrix]; mtxMul(modelViewProj.val, model.val, viewProj[view].val); s_renderCtx.setShaderConstant(flags, predefined.m_loc, modelViewProj.val, uint32_min(4, predefined.m_count) ); } break; case PredefinedUniform::ModelViewProjX: { const Matrix4& model = m_render->m_matrixCache.m_cache[state.m_matrix]; static const BX_ALIGN_STRUCT_16(float) s_bias[16] = { 0.5f, 0.0f, 0.0f, 0.0f, 0.0f, 0.5f, 0.0f, 0.0f, 0.0f, 0.0f, 0.5f, 0.0f, 0.5f, 0.5f, 0.5f, 1.0f, }; uint8_t other = m_render->m_other[view]; Matrix4 viewProjBias; mtxMul(viewProjBias.val, viewProj[other].val, s_bias); Matrix4 modelViewProj; mtxMul(modelViewProj.val, model.val, viewProjBias.val); s_renderCtx.setShaderConstant(flags, predefined.m_loc, modelViewProj.val, uint32_min(4, predefined.m_count) ); } break; case PredefinedUniform::ViewProjX: { static const BX_ALIGN_STRUCT_16(float) s_bias[16] = { 0.5f, 0.0f, 0.0f, 0.0f, 0.0f, 0.5f, 0.0f, 0.0f, 0.0f, 0.0f, 0.5f, 0.0f, 0.5f, 0.5f, 0.5f, 1.0f, }; uint8_t other = m_render->m_other[view]; Matrix4 viewProjBias; mtxMul(viewProjBias.val, viewProj[other].val, s_bias); s_renderCtx.setShaderConstant(flags, predefined.m_loc, viewProjBias.val, uint32_min(4, predefined.m_count) ); } break; case PredefinedUniform::AlphaRef: { s_renderCtx.setShaderConstant(flags, predefined.m_loc, &alphaRef, 1); } break; default: BX_CHECK(false, "predefined %d not handled", predefined.m_type); break; } } if (constantsChanged || program.m_numPredefined > 0) { s_renderCtx.commitShaderConstants(); } } // if (BGFX_STATE_TEX_MASK & changedFlags) { uint32_t changes = 0; uint64_t flag = BGFX_STATE_TEX0; for (uint32_t stage = 0; stage < BGFX_STATE_TEX_COUNT; ++stage) { const Sampler& sampler = state.m_sampler[stage]; Sampler& current = currentState.m_sampler[stage]; if (current.m_idx != sampler.m_idx || current.m_flags != sampler.m_flags || programChanged) { if (invalidHandle != sampler.m_idx) { switch (sampler.m_flags&BGFX_SAMPLER_TYPE_MASK) { case BGFX_SAMPLER_TEXTURE: s_renderCtx.m_textures[sampler.m_idx].commit(stage); break; case BGFX_SAMPLER_RENDERTARGET_COLOR: s_renderCtx.m_renderTargets[sampler.m_idx].commit(stage); break; case BGFX_SAMPLER_RENDERTARGET_DEPTH: // id = s_renderCtx.m_renderTargets[sampler.m_idx].m_depth.m_id; break; } } else { s_renderCtx.m_textureStage.m_srv[stage] = NULL; s_renderCtx.m_textureStage.m_sampler[stage] = NULL; } ++changes; } current = sampler; flag <<= 1; } if (0 < changes) { s_renderCtx.commitTextureStage(); } } if (currentState.m_vertexBuffer.idx != state.m_vertexBuffer.idx || programChanged) { currentState.m_vertexBuffer = state.m_vertexBuffer; uint16_t handle = state.m_vertexBuffer.idx; if (invalidHandle != handle) { const VertexBuffer& vb = s_renderCtx.m_vertexBuffers[handle]; uint16_t decl = vb.m_decl.idx == invalidHandle ? state.m_vertexDecl.idx : vb.m_decl.idx; const VertexDecl& vertexDecl = s_renderCtx.m_vertexDecls[decl]; uint32_t stride = vertexDecl.m_stride; uint32_t offset = 0; deviceCtx->IASetVertexBuffers(0, 1, &vb.m_ptr, &stride, &offset); if (invalidHandle != state.m_instanceDataBuffer.idx) { const VertexBuffer& inst = s_renderCtx.m_vertexBuffers[state.m_instanceDataBuffer.idx]; uint32_t instStride = state.m_instanceDataStride; deviceCtx->IASetVertexBuffers(1, 1, &inst.m_ptr, &instStride, &state.m_instanceDataOffset); s_renderCtx.setInputLayout(vertexDecl, s_renderCtx.m_program[programIdx], state.m_instanceDataStride/16); } else { deviceCtx->IASetVertexBuffers(1, 0, NULL, NULL, NULL); s_renderCtx.setInputLayout(vertexDecl, s_renderCtx.m_program[programIdx], 0); } } else { deviceCtx->IASetVertexBuffers(0, 0, NULL, NULL, NULL); } } if (currentState.m_indexBuffer.idx != state.m_indexBuffer.idx) { currentState.m_indexBuffer = state.m_indexBuffer; uint16_t handle = state.m_indexBuffer.idx; if (invalidHandle != handle) { const IndexBuffer& ib = s_renderCtx.m_indexBuffers[handle]; deviceCtx->IASetIndexBuffer(ib.m_ptr, DXGI_FORMAT_R16_UINT, 0); } else { deviceCtx->IASetIndexBuffer(NULL, DXGI_FORMAT_R16_UINT, 0); } } if (invalidHandle != currentState.m_vertexBuffer.idx) { uint32_t numVertices = state.m_numVertices; if (UINT32_C(0xffffffff) == numVertices) { const VertexBuffer& vb = s_renderCtx.m_vertexBuffers[currentState.m_vertexBuffer.idx]; uint16_t decl = vb.m_decl.idx == invalidHandle ? state.m_vertexDecl.idx : vb.m_decl.idx; const VertexDecl& vertexDecl = s_renderCtx.m_vertexDecls[decl]; numVertices = vb.m_size/vertexDecl.m_stride; } uint32_t numIndices = 0; uint32_t numPrimsSubmitted = 0; uint32_t numInstances = 0; uint32_t numPrimsRendered = 0; if (invalidHandle != state.m_indexBuffer.idx) { if (UINT32_MAX == state.m_numIndices) { numIndices = s_renderCtx.m_indexBuffers[state.m_indexBuffer.idx].m_size/2; numPrimsSubmitted = numIndices/primNumVerts; numInstances = state.m_numInstances; numPrimsRendered = numPrimsSubmitted*state.m_numInstances; deviceCtx->DrawIndexedInstanced(numIndices , state.m_numInstances , 0 , state.m_startVertex , 0 ); } else if (primNumVerts <= state.m_numIndices) { numIndices = state.m_numIndices; numPrimsSubmitted = numIndices/primNumVerts; numInstances = state.m_numInstances; numPrimsRendered = numPrimsSubmitted*state.m_numInstances; deviceCtx->DrawIndexedInstanced(numIndices , state.m_numInstances , state.m_startIndex , state.m_startVertex , 0 ); } } else { numPrimsSubmitted = numVertices/primNumVerts; numInstances = state.m_numInstances; numPrimsRendered = numPrimsSubmitted*state.m_numInstances; deviceCtx->DrawInstanced(numVertices , state.m_numInstances , state.m_startVertex , 0 ); } statsNumPrimsSubmitted += numPrimsSubmitted; statsNumIndices += numIndices; statsNumInstances += numInstances; statsNumPrimsRendered += numPrimsRendered; } } if (0 < m_render->m_num) { captureElapsed = -bx::getHPCounter(); s_renderCtx.capture(); captureElapsed += bx::getHPCounter(); } } int64_t now = bx::getHPCounter(); elapsed += now; static int64_t last = now; int64_t frameTime = now - last; last = now; static int64_t min = frameTime; static int64_t max = frameTime; min = min > frameTime ? frameTime : min; max = max < frameTime ? frameTime : max; if (m_render->m_debug & (BGFX_DEBUG_IFH|BGFX_DEBUG_STATS) ) { // PIX_BEGINEVENT(D3DCOLOR_RGBA(0x40, 0x40, 0x40, 0xff), "debugstats"); TextVideoMem& tvm = s_renderCtx.m_textVideoMem; static int64_t next = now; if (now >= next) { next = now + bx::getHPFrequency(); double freq = double(bx::getHPFrequency() ); double toMs = 1000.0/freq; tvm.clear(); uint16_t pos = 10; tvm.printf(0, 0, BGFX_CONFIG_DEBUG ? 0x89 : 0x8f, " " BGFX_RENDERER_NAME " "); tvm.printf(10, pos++, 0x8e, " Frame: %7.3f, % 7.3f \x1f, % 7.3f \x1e [ms] / % 6.2f FPS" , double(frameTime)*toMs , double(min)*toMs , double(max)*toMs , freq/frameTime ); double elapsedCpuMs = double(elapsed)*toMs; tvm.printf(10, pos++, 0x8e, " Draw calls: %4d / CPU %3.4f [ms]" , m_render->m_num , elapsedCpuMs ); tvm.printf(10, pos++, 0x8e, " Prims: %7d (#inst: %5d), submitted: %7d" , statsNumPrimsRendered , statsNumInstances , statsNumPrimsSubmitted ); double captureMs = double(captureElapsed)*toMs; tvm.printf(10, pos++, 0x8e, " Capture: %3.4f [ms]", captureMs); tvm.printf(10, pos++, 0x8e, " Indices: %7d", statsNumIndices); tvm.printf(10, pos++, 0x8e, " DVB size: %7d", m_render->m_vboffset); tvm.printf(10, pos++, 0x8e, " DIB size: %7d", m_render->m_iboffset); uint8_t attr[2] = { 0x89, 0x8a }; uint8_t attrIndex = m_render->m_waitSubmit < m_render->m_waitRender; tvm.printf(10, pos++, attr[attrIndex&1], "Submit wait: %3.4f [ms]", m_render->m_waitSubmit*toMs); tvm.printf(10, pos++, attr[(attrIndex+1)&1], "Render wait: %3.4f [ms]", m_render->m_waitRender*toMs); min = frameTime; max = frameTime; } m_textVideoMemBlitter.blit(tvm); // PIX_ENDEVENT(); } else if (m_render->m_debug & BGFX_DEBUG_TEXT) { // PIX_BEGINEVENT(D3DCOLOR_RGBA(0x40, 0x40, 0x40, 0xff), "debugtext"); m_textVideoMemBlitter.blit(m_render->m_textVideoMem); // PIX_ENDEVENT(); } } } #endif // BGFX_CONFIG_RENDERER_DIRECT3D11