/* * Copyright 2013 Jeremie Roy. All rights reserved. * License: http://www.opensource.org/licenses/BSD-2-Clause */ #include "common.h" #include #include // INT_MAX #include // memset #include #include "cube_atlas.h" class RectanglePacker { public: RectanglePacker(); RectanglePacker(uint32_t _width, uint32_t _height); /// non constructor initialization void init(uint32_t _width, uint32_t _height); /// find a suitable position for the given rectangle /// @return true if the rectangle can be added, false otherwise bool addRectangle(uint16_t _width, uint16_t _height, uint16_t& _outX, uint16_t& _outY); /// return the used surface in squared unit uint32_t getUsedSurface() { return m_usedSpace; } /// return the total available surface in squared unit uint32_t getTotalSurface() { return m_width * m_height; } /// return the usage ratio of the available surface [0:1] float getUsageRatio(); /// reset to initial state void clear(); private: int32_t fit(uint32_t _skylineNodeIndex, uint16_t _width, uint16_t _height); /// Merges all skyline nodes that are at the same level. void merge(); struct Node { Node(int16_t _x, int16_t _y, int16_t _width) : x(_x), y(_y), width(_width) { } int16_t x; //< The starting x-coordinate (leftmost). int16_t y; //< The y-coordinate of the skyline level line. int32_t width; //< The line _width. The ending coordinate (inclusive) will be x+width-1. }; uint32_t m_width; //< width (in pixels) of the underlying texture uint32_t m_height; //< height (in pixels) of the underlying texture uint32_t m_usedSpace; //< Surface used in squared pixel std::vector m_skyline; //< node of the skyline algorithm }; RectanglePacker::RectanglePacker() : m_width(0) , m_height(0) , m_usedSpace(0) { } RectanglePacker::RectanglePacker(uint32_t _width, uint32_t _height) : m_width(_width) , m_height(_height) , m_usedSpace(0) { // We want a one pixel border around the whole atlas to avoid any artefact when // sampling texture m_skyline.push_back(Node(1, 1, _width - 2) ); } void RectanglePacker::init(uint32_t _width, uint32_t _height) { BX_CHECK(_width > 2, "_width must be > 2"); BX_CHECK(_height > 2, "_height must be > 2"); m_width = _width; m_height = _height; m_usedSpace = 0; m_skyline.clear(); // We want a one pixel border around the whole atlas to avoid any artifact when // sampling texture m_skyline.push_back(Node(1, 1, _width - 2) ); } bool RectanglePacker::addRectangle(uint16_t _width, uint16_t _height, uint16_t& _outX, uint16_t& _outY) { int yy, best_height, best_index; int32_t best_width; Node* node; Node* prev; _outX = 0; _outY = 0; uint32_t ii; best_height = INT_MAX; best_index = -1; best_width = INT_MAX; for (ii = 0; ii < m_skyline.size(); ++ii) { yy = fit(ii, _width, _height); if (yy >= 0) { node = &m_skyline[ii]; if ( ( (yy + _height) < best_height) || ( ( (yy + _height) == best_height) && (node->width < best_width) ) ) { best_height = yy + _height; best_index = ii; best_width = node->width; _outX = node->x; _outY = yy; } } } if (best_index == -1) { return false; } Node newNode(_outX, _outY + _height, _width); m_skyline.insert(m_skyline.begin() + best_index, newNode); for (ii = best_index + 1; ii < m_skyline.size(); ++ii) { node = &m_skyline[ii]; prev = &m_skyline[ii - 1]; if (node->x < (prev->x + prev->width) ) { int shrink = prev->x + prev->width - node->x; node->x += shrink; node->width -= shrink; if (node->width <= 0) { m_skyline.erase(m_skyline.begin() + ii); --ii; } else { break; } } else { break; } } merge(); m_usedSpace += _width * _height; return true; } float RectanglePacker::getUsageRatio() { uint32_t total = m_width * m_height; if (total > 0) { return (float)m_usedSpace / (float)total; } return 0.0f; } void RectanglePacker::clear() { m_skyline.clear(); m_usedSpace = 0; // We want a one pixel border around the whole atlas to avoid any artefact when // sampling texture m_skyline.push_back(Node(1, 1, m_width - 2) ); } int32_t RectanglePacker::fit(uint32_t _skylineNodeIndex, uint16_t _width, uint16_t _height) { int32_t width = _width; int32_t height = _height; const Node& baseNode = m_skyline[_skylineNodeIndex]; int32_t xx = baseNode.x, yy; int32_t widthLeft = width; int32_t ii = _skylineNodeIndex; if ( (xx + width) > (int32_t)(m_width - 1) ) { return -1; } yy = baseNode.y; while (widthLeft > 0) { const Node& node = m_skyline[ii]; if (node.y > yy) { yy = node.y; } if ( (yy + height) > (int32_t)(m_height - 1) ) { return -1; } widthLeft -= node.width; ++ii; } return yy; } void RectanglePacker::merge() { Node* node; Node* next; uint32_t ii; for (ii = 0; ii < m_skyline.size() - 1; ++ii) { node = (Node*) &m_skyline[ii]; next = (Node*) &m_skyline[ii + 1]; if (node->y == next->y) { node->width += next->width; m_skyline.erase(m_skyline.begin() + ii + 1); --ii; } } } struct Atlas::PackedLayer { RectanglePacker packer; AtlasRegion faceRegion; }; Atlas::Atlas(uint16_t _textureSize, uint16_t _maxRegionsCount) : m_usedLayers(0) , m_usedFaces(0) , m_textureSize(_textureSize) , m_regionCount(0) , m_maxRegionCount(_maxRegionsCount) { BX_CHECK(_textureSize >= 64 && _textureSize <= 4096, "Invalid _textureSize %d.", _textureSize); BX_CHECK(_maxRegionsCount >= 64 && _maxRegionsCount <= 32000, "Invalid _maxRegionsCount %d.", _maxRegionsCount); init(); m_layers = new PackedLayer[24]; for (int ii = 0; ii < 24; ++ii) { m_layers[ii].packer.init(_textureSize, _textureSize); } m_regions = new AtlasRegion[_maxRegionsCount]; m_textureBuffer = new uint8_t[ _textureSize * _textureSize * 6 * 4 ]; memset(m_textureBuffer, 0, _textureSize * _textureSize * 6 * 4); m_textureHandle = bgfx::createTextureCube(6 , _textureSize , 1 , bgfx::TextureFormat::BGRA8 ); } Atlas::Atlas(uint16_t _textureSize, const uint8_t* _textureBuffer, uint16_t _regionCount, const uint8_t* _regionBuffer, uint16_t _maxRegionsCount) : m_usedLayers(24) , m_usedFaces(6) , m_textureSize(_textureSize) , m_regionCount(_regionCount) , m_maxRegionCount(_regionCount < _maxRegionsCount ? _regionCount : _maxRegionsCount) { BX_CHECK(_regionCount <= 64 && _maxRegionsCount <= 4096, "_regionCount %d, _maxRegionsCount %d", _regionCount, _maxRegionsCount); init(); m_regions = new AtlasRegion[_regionCount]; m_textureBuffer = new uint8_t[getTextureBufferSize()]; memcpy(m_regions, _regionBuffer, _regionCount * sizeof(AtlasRegion) ); memcpy(m_textureBuffer, _textureBuffer, getTextureBufferSize() ); m_textureHandle = bgfx::createTextureCube(6 , _textureSize , 1 , bgfx::TextureFormat::BGRA8 , BGFX_TEXTURE_NONE , bgfx::makeRef(m_textureBuffer, getTextureBufferSize() ) ); } Atlas::~Atlas() { bgfx::destroyTexture(m_textureHandle); delete [] m_layers; delete [] m_regions; delete [] m_textureBuffer; } void Atlas::init() { m_texelSize = float(UINT16_MAX) / float(m_textureSize); float texelHalf = m_texelSize/2.0f; switch (bgfx::getRendererType()) { case bgfx::RendererType::Direct3D9: m_texelOffset[0] = 0.0f; m_texelOffset[1] = 0.0f; break; case bgfx::RendererType::Direct3D11: m_texelOffset[0] = texelHalf; m_texelOffset[1] = texelHalf; break; default: m_texelOffset[0] = texelHalf; m_texelOffset[1] = -texelHalf; break; } } uint16_t Atlas::addRegion(uint16_t _width, uint16_t _height, const uint8_t* _bitmapBuffer, AtlasRegion::Type _type, uint16_t outline) { if (m_regionCount >= m_maxRegionCount) { return UINT16_MAX; } uint16_t xx = 0; uint16_t yy = 0; uint32_t idx = 0; while (idx < m_usedLayers) { if (m_layers[idx].faceRegion.getType() == _type && m_layers[idx].packer.addRectangle(_width + 1, _height + 1, xx, yy) ) { break; } idx++; } if (idx >= m_usedLayers) { if ( (idx + _type) > 24 || m_usedFaces >= 6) { return UINT16_MAX; } for (int ii = 0; ii < _type; ++ii) { AtlasRegion& region = m_layers[idx + ii].faceRegion; region.x = 0; region.y = 0; region.width = m_textureSize; region.height = m_textureSize; region.setMask(_type, m_usedFaces, ii); } m_usedLayers += _type; m_usedFaces++; if (!m_layers[idx].packer.addRectangle(_width + 1, _height + 1, xx, yy) ) { return UINT16_MAX; } } AtlasRegion& region = m_regions[m_regionCount]; region.x = xx; region.y = yy; region.width = _width; region.height = _height; region.mask = m_layers[idx].faceRegion.mask; updateRegion(region, _bitmapBuffer); region.x += outline; region.y += outline; region.width -= (outline * 2); region.height -= (outline * 2); return m_regionCount++; } void Atlas::updateRegion(const AtlasRegion& _region, const uint8_t* _bitmapBuffer) { const bgfx::Memory* mem = bgfx::alloc(_region.width * _region.height * 4); memset(mem->data, 0, mem->size); if (_region.getType() == AtlasRegion::TYPE_BGRA8) { const uint8_t* inLineBuffer = _bitmapBuffer; uint8_t* outLineBuffer = m_textureBuffer + _region.getFaceIndex() * (m_textureSize * m_textureSize * 4) + ( ( (_region.y * m_textureSize) + _region.x) * 4); for (int yy = 0; yy < _region.height; ++yy) { memcpy(outLineBuffer, inLineBuffer, _region.width * 4); inLineBuffer += _region.width * 4; outLineBuffer += m_textureSize * 4; } memcpy(mem->data, _bitmapBuffer, mem->size); } else { uint32_t layer = _region.getComponentIndex(); const uint8_t* inLineBuffer = _bitmapBuffer; uint8_t* outLineBuffer = (m_textureBuffer + _region.getFaceIndex() * (m_textureSize * m_textureSize * 4) + ( ( (_region.y * m_textureSize) + _region.x) * 4) ); for (int yy = 0; yy < _region.height; ++yy) { for (int xx = 0; xx < _region.width; ++xx) { outLineBuffer[(xx * 4) + layer] = inLineBuffer[xx]; } memcpy(mem->data + yy * _region.width * 4, outLineBuffer, _region.width * 4); inLineBuffer += _region.width; outLineBuffer += m_textureSize * 4; } } bgfx::updateTextureCube(m_textureHandle, (uint8_t)_region.getFaceIndex(), 0, _region.x, _region.y, _region.width, _region.height, mem); } void Atlas::packFaceLayerUV(uint32_t _idx, uint8_t* _vertexBuffer, uint32_t _offset, uint32_t _stride) const { packUV(m_layers[_idx].faceRegion, _vertexBuffer, _offset, _stride); } void Atlas::packUV(uint16_t _regionHandle, uint8_t* _vertexBuffer, uint32_t _offset, uint32_t _stride) const { const AtlasRegion& region = m_regions[_regionHandle]; packUV(region, _vertexBuffer, _offset, _stride); } static void writeUV(uint8_t* _vertexBuffer, int16_t _x, int16_t _y, int16_t _z, int16_t _w) { uint16_t* xyzw = (uint16_t*)_vertexBuffer; xyzw[0] = _x; xyzw[1] = _y; xyzw[2] = _z; xyzw[3] = _w; } void Atlas::packUV(const AtlasRegion& _region, uint8_t* _vertexBuffer, uint32_t _offset, uint32_t _stride) const { int16_t x0 = (int16_t)( ( (float)_region.x * m_texelSize + m_texelOffset[0]) - float(INT16_MAX) ); int16_t y0 = (int16_t)( ( (float)_region.y * m_texelSize + m_texelOffset[1]) - float(INT16_MAX) ); int16_t x1 = (int16_t)( ( ( (float)_region.x + _region.width) * m_texelSize + m_texelOffset[0]) - float(INT16_MAX) ); int16_t y1 = (int16_t)( ( ( (float)_region.y + _region.height) * m_texelSize + m_texelOffset[1]) - float(INT16_MAX) ); int16_t ww = (int16_t)( (float(INT16_MAX) / 4.0f) * (float)_region.getComponentIndex() ); _vertexBuffer += _offset; switch (_region.getFaceIndex() ) { case 0: // +X x0 = -x0; x1 = -x1; y0 = -y0; y1 = -y1; writeUV(_vertexBuffer, INT16_MAX, y0, x0, ww); _vertexBuffer += _stride; writeUV(_vertexBuffer, INT16_MAX, y1, x0, ww); _vertexBuffer += _stride; writeUV(_vertexBuffer, INT16_MAX, y1, x1, ww); _vertexBuffer += _stride; writeUV(_vertexBuffer, INT16_MAX, y0, x1, ww); _vertexBuffer += _stride; break; case 1: // -X y0 = -y0; y1 = -y1; writeUV(_vertexBuffer, INT16_MIN, y0, x0, ww); _vertexBuffer += _stride; writeUV(_vertexBuffer, INT16_MIN, y1, x0, ww); _vertexBuffer += _stride; writeUV(_vertexBuffer, INT16_MIN, y1, x1, ww); _vertexBuffer += _stride; writeUV(_vertexBuffer, INT16_MIN, y0, x1, ww); _vertexBuffer += _stride; break; case 2: // +Y writeUV(_vertexBuffer, x0, INT16_MAX, y0, ww); _vertexBuffer += _stride; writeUV(_vertexBuffer, x0, INT16_MAX, y1, ww); _vertexBuffer += _stride; writeUV(_vertexBuffer, x1, INT16_MAX, y1, ww); _vertexBuffer += _stride; writeUV(_vertexBuffer, x1, INT16_MAX, y0, ww); _vertexBuffer += _stride; break; case 3: // -Y y0 = -y0; y1 = -y1; writeUV(_vertexBuffer, x0, INT16_MIN, y0, ww); _vertexBuffer += _stride; writeUV(_vertexBuffer, x0, INT16_MIN, y1, ww); _vertexBuffer += _stride; writeUV(_vertexBuffer, x1, INT16_MIN, y1, ww); _vertexBuffer += _stride; writeUV(_vertexBuffer, x1, INT16_MIN, y0, ww); _vertexBuffer += _stride; break; case 4: // +Z y0 = -y0; y1 = -y1; writeUV(_vertexBuffer, x0, y0, INT16_MAX, ww); _vertexBuffer += _stride; writeUV(_vertexBuffer, x0, y1, INT16_MAX, ww); _vertexBuffer += _stride; writeUV(_vertexBuffer, x1, y1, INT16_MAX, ww); _vertexBuffer += _stride; writeUV(_vertexBuffer, x1, y0, INT16_MAX, ww); _vertexBuffer += _stride; break; case 5: // -Z x0 = -x0; x1 = -x1; y0 = -y0; y1 = -y1; writeUV(_vertexBuffer, x0, y0, INT16_MIN, ww); _vertexBuffer += _stride; writeUV(_vertexBuffer, x0, y1, INT16_MIN, ww); _vertexBuffer += _stride; writeUV(_vertexBuffer, x1, y1, INT16_MIN, ww); _vertexBuffer += _stride; writeUV(_vertexBuffer, x1, y0, INT16_MIN, ww); _vertexBuffer += _stride; break; } }