uncrustify whole font code

This commit is contained in:
Jeremie Roy 2013-05-15 15:21:23 +02:00
parent 61305ed0e4
commit c4b4b15e37
8 changed files with 1586 additions and 1367 deletions

View file

@ -19,7 +19,7 @@
int _main_(int /*_argc*/, char** /*_argv*/)
{
uint32_t width = 1280;
uint32_t width = 1280;
uint32_t height = 720;
uint32_t debug = BGFX_DEBUG_TEXT;
uint32_t reset = 0;
@ -33,18 +33,19 @@ int _main_(int /*_argc*/, char** /*_argv*/)
// Set view 0 clear state.
bgfx::setViewClear(0
, BGFX_CLEAR_COLOR_BIT|BGFX_CLEAR_DEPTH_BIT
, 0x303030ff
, 1.0f
, 0
);
, BGFX_CLEAR_COLOR_BIT | BGFX_CLEAR_DEPTH_BIT
, 0x303030ff
, 1.0f
, 0
);
//init the text rendering system
FontManager* fontManager = new FontManager(512);
TextBufferManager* textBufferManager = new TextBufferManager(fontManager);
//load some truetype files
const char* fontNames[7] = {
const char* fontNames[7] =
{
"font/droidsans.ttf",
"font/chp-fire.ttf",
"font/bleeding_cowboys.ttf",
@ -54,11 +55,11 @@ int _main_(int /*_argc*/, char** /*_argv*/)
"font/five_minutes.otf"
};
const uint32_t fontCount = sizeof(fontNames)/sizeof(const char*);
const uint32_t fontCount = sizeof(fontNames) / sizeof(const char*);
TrueTypeHandle fontFiles[fontCount];
FontHandle fonts[fontCount];
for(int32_t ii = 0; ii<fontCount ; ++ii)
for (int32_t ii = 0; ii < fontCount; ++ii)
{
//instantiate a usable font
fontFiles[ii] = fontManager->loadTrueTypeFromFile(fontNames[ii]);
@ -82,7 +83,7 @@ int _main_(int /*_argc*/, char** /*_argv*/)
//the pen position represent the top left of the box of the first line of text
textBufferManager->setPenPosition(staticText, 24.0f, 100.0f);
for(int32_t ii = 0; ii<fontCount ; ++ii)
for (int32_t ii = 0; ii < fontCount; ++ii)
{
//add some text to the buffer
textBufferManager->appendText(staticText, fonts[ii], L"The quick brown fox jumps over the lazy dog\n");
@ -114,23 +115,23 @@ int _main_(int /*_argc*/, char** /*_argv*/)
textBufferManager->appendText(staticText, fonts[0], L"the lazy ");
//text + bkg + strike-through
textBufferManager->setStyle(staticText, STYLE_BACKGROUND|STYLE_STRIKE_THROUGH);
textBufferManager->setStyle(staticText, STYLE_BACKGROUND | STYLE_STRIKE_THROUGH);
textBufferManager->appendText(staticText, fonts[0], L"dog\n");
//create a transient buffer for realtime data
TextBufferHandle transientText = textBufferManager->createTextBuffer(FONT_TYPE_ALPHA, TRANSIENT);
uint32_t w = 0,h = 0;
while (!processEvents(width, height, debug, reset) )
uint32_t w = 0, h = 0;
while (!processEvents(width, height, debug, reset) )
{
if(w!=width|| h!=height)
if (w != width
|| h != height)
{
w=width;
h= height;
printf("ri: %d,%d\n",width,height);
w = width;
h = height;
printf("ri: %d,%d\n", width, height);
}
// Set view 0 default viewport.
bgfx::setViewRect(0, 0, 0, width, height);
@ -143,7 +144,7 @@ int _main_(int /*_argc*/, char** /*_argv*/)
const int64_t frameTime = now - last;
last = now;
const double freq = double(bx::getHPFrequency() );
const double toMs = 1000.0/freq;
const double toMs = 1000.0 / freq;
// Use debug font to print information about this example.
//bgfx::dbgTextClear();
@ -155,7 +156,7 @@ int _main_(int /*_argc*/, char** /*_argv*/)
//Code below is similar to commented code above
wchar_t fpsText[64];
//swprintf(fpsText,L"Frame: % 7.3f[ms]", double(frameTime)*toMs);
swprintf(fpsText, countof(fpsText), L"Frame: % 7.3f[ms]", double(frameTime)*toMs);
swprintf(fpsText, countof(fpsText), L"Frame: % 7.3f[ms]", double(frameTime) * toMs);
textBufferManager->clearTextBuffer(transientText);
textBufferManager->setPenPosition(transientText, 20.0, 4.0f);
@ -171,7 +172,7 @@ int _main_(int /*_argc*/, char** /*_argv*/)
mtxLookAt(view, eye, at);
//setup a top-left ortho matrix for screen space drawing
float centering = 0.5f;
mtxOrtho(proj, centering, width+centering,height+centering, centering,-1.0f, 1.0f);
mtxOrtho(proj, centering, width + centering, height + centering, centering, -1.0f, 1.0f);
// Set view and projection matrix for view 0.
bgfx::setViewTransform(0, view, proj);
@ -182,16 +183,15 @@ int _main_(int /*_argc*/, char** /*_argv*/)
//submit the static text
textBufferManager->submitTextBuffer(staticText, 0);
// Advance to next frame. Rendering thread will be kicked to
// Advance to next frame. Rendering thread will be kicked to
// process submitted rendering primitives.
bgfx::frame();
}
fontManager->unloadTrueType(console_tt);
//destroy the fonts
fontManager->destroyFont(consola_16);
for(int32_t ii = 0; ii<fontCount ; ++ii)
for (int32_t ii = 0; ii < fontCount; ++ii)
{
fontManager->destroyFont(fonts[ii]);
}
@ -203,7 +203,7 @@ int _main_(int /*_argc*/, char** /*_argv*/)
delete fontManager;
// Shutdown bgfx.
bgfx::shutdown();
bgfx::shutdown();
return 0;
}

View file

@ -16,7 +16,7 @@
inline void mtxTranslate(float* _result, float x, float y, float z)
{
memset(_result, 0, sizeof(float)*16);
memset(_result, 0, sizeof(float) * 16);
_result[0] = _result[5] = _result[10] = _result[15] = 1.0f;
_result[12] = x;
_result[13] = y;
@ -25,7 +25,7 @@ inline void mtxTranslate(float* _result, float x, float y, float z)
inline void mtxScale(float* _result, float x, float y, float z)
{
memset(_result, 0, sizeof(float)*16);
memset(_result, 0, sizeof(float) * 16);
_result[0] = x;
_result[5] = y;
_result[10] = z;
@ -34,7 +34,7 @@ inline void mtxScale(float* _result, float x, float y, float z)
int _main_(int /*_argc*/, char** /*_argv*/)
{
uint32_t width = 1280;
uint32_t width = 1280;
uint32_t height = 720;
uint32_t debug = BGFX_DEBUG_TEXT;
uint32_t reset = 0;
@ -48,13 +48,13 @@ int _main_(int /*_argc*/, char** /*_argv*/)
// Set view 0 clear state.
bgfx::setViewClear(0
, BGFX_CLEAR_COLOR_BIT|BGFX_CLEAR_DEPTH_BIT
//, 0x303030ff
//, 0xffffffff
, 0x000000FF
, 1.0f
, 0
);
, BGFX_CLEAR_COLOR_BIT | BGFX_CLEAR_DEPTH_BIT
//, 0x303030ff
//, 0xffffffff
, 0x000000FF
, 1.0f
, 0
);
//init the text rendering system
FontManager* fontManager = new FontManager(512);
@ -91,9 +91,8 @@ int _main_(int /*_argc*/, char** /*_argv*/)
textBufferManager->appendText(staticText, distance_font, L"BGFX ");
textBufferManager->appendText(staticText, smaller_font, L"bgfx");
int64_t timeOffset = bx::getHPCounter();
while (!processEvents(width, height, debug, reset) )
while (!processEvents(width, height, debug, reset) )
{
// Set view 0 default viewport.
bgfx::setViewRect(0, 0, 0, width, height);
@ -107,14 +106,14 @@ int _main_(int /*_argc*/, char** /*_argv*/)
const int64_t frameTime = now - last;
last = now;
const double freq = double(bx::getHPFrequency() );
const double toMs = 1000.0/freq;
float time = (float)( (now - timeOffset)/double(bx::getHPFrequency() ) );
const double toMs = 1000.0 / freq;
float time = (float)( (now - timeOffset) / double(bx::getHPFrequency() ) );
// Use debug font to print information about this example.
bgfx::dbgTextClear();
bgfx::dbgTextPrintf(0, 1, 0x4f, "bgfx/examples/11-fontsdf");
bgfx::dbgTextPrintf(0, 2, 0x6f, "Description: Use a single distance field font to render text of various size.");
bgfx::dbgTextPrintf(0, 3, 0x0f, "Frame: % 7.3f[ms]", double(frameTime)*toMs);
bgfx::dbgTextPrintf(0, 3, 0x0f, "Frame: % 7.3f[ms]", double(frameTime) * toMs);
float at[3] = { 0, 0, 0.0f };
float eye[3] = {0, 0, -1.0f };
@ -124,7 +123,7 @@ int _main_(int /*_argc*/, char** /*_argv*/)
mtxLookAt(view, eye, at);
float centering = 0.5f;
//setup a top-left ortho matrix for screen space drawing
mtxOrtho(proj, centering, width+centering,height+centering, centering,-1.0f, 1.0f);
mtxOrtho(proj, centering, width + centering, height + centering, centering, -1.0f, 1.0f);
// Set view and projection matrix for view 0.
bgfx::setViewTransform(0, view, proj);
@ -133,16 +132,16 @@ int _main_(int /*_argc*/, char** /*_argv*/)
float mtxA[16];
float mtxB[16];
float mtxC[16];
mtxRotateZ(mtxA, time*0.37f);
mtxTranslate(mtxB, -(rect.width*0.5f), -(rect.height*0.5f), 0);
mtxRotateZ(mtxA, time * 0.37f);
mtxTranslate(mtxB, -(rect.width * 0.5f), -(rect.height * 0.5f), 0);
mtxMul(mtxC, mtxB, mtxA);
float scale=4.1f+4.0f*sinf(time);
float scale = 4.1f + 4.0f * sinf(time);
mtxScale(mtxA, scale, scale, 1.0f);
mtxMul(mtxB, mtxC, mtxA);
mtxTranslate(mtxC, ((width)*0.5f), ((height)*0.5f), 0);
mtxTranslate(mtxC, ( (width) * 0.5f), ( (height) * 0.5f), 0);
mtxMul(mtxA, mtxB, mtxC);
// Set model matrix for rendering.
@ -151,7 +150,7 @@ int _main_(int /*_argc*/, char** /*_argv*/)
//draw your text
textBufferManager->submitTextBuffer(staticText, 0);
// Advance to next frame. Rendering thread will be kicked to
// Advance to next frame. Rendering thread will be kicked to
// process submitted rendering primitives.
bgfx::frame();
}
@ -165,7 +164,7 @@ int _main_(int /*_argc*/, char** /*_argv*/)
delete textBufferManager;
delete fontManager;
// Shutdown bgfx.
bgfx::shutdown();
bgfx::shutdown();
return 0;
}

View file

@ -8,64 +8,71 @@
#include <bgfx.h>
#include <vector>
//********** Rectangle packer implementation ************
class RectanglePacker
{
public:
RectanglePacker();
RectanglePacker(uint32_t _width, uint32_t _height);
RectanglePacker();
RectanglePacker(uint32_t _width, uint32_t _height);
/// non constructor initialization
void init(uint32_t _width, uint32_t _height);
/// find a suitable position for the given rectangle
/// @return true if the rectangle can be added, false otherwise
bool addRectangle(uint16_t _width, uint16_t _height, uint16_t& _outX, uint16_t& _outY );
/// return the used surface in squared unit
uint32_t getUsedSurface() { return m_usedSpace; }
/// return the total available surface in squared unit
uint32_t getTotalSurface() { return m_width*m_height; }
/// return the usage ratio of the available surface [0:1]
float getUsageRatio();
/// reset to initial state
void clear();
/// non constructor initialization
void init(uint32_t _width, uint32_t _height);
/// find a suitable position for the given rectangle
/// @return true if the rectangle can be added, false otherwise
bool addRectangle(uint16_t _width, uint16_t _height, uint16_t& _outX, uint16_t& _outY);
/// return the used surface in squared unit
uint32_t getUsedSurface()
{
return m_usedSpace;
}
/// return the total available surface in squared unit
uint32_t getTotalSurface()
{
return m_width * m_height;
}
/// return the usage ratio of the available surface [0:1]
float getUsageRatio();
/// reset to initial state
void clear();
private:
int32_t fit(uint32_t _skylineNodeIndex, uint16_t _width, uint16_t _height);
/// Merges all skyline nodes that are at the same level.
void merge();
int32_t fit(uint32_t _skylineNodeIndex, uint16_t _width, uint16_t _height);
/// Merges all skyline nodes that are at the same level.
void merge();
struct Node
struct Node
{
Node(int16_t _x, int16_t _y, int16_t _width) : m_x(_x), m_y(_y), m_width(_width)
{
Node(int16_t _x, int16_t _y, int16_t _width):m_x(_x), m_y(_y), m_width(_width) {}
}
/// The starting x-coordinate (leftmost).
int16_t m_x;
/// The y-coordinate of the skyline level line.
int16_t m_y;
/// The line _width. The ending coordinate (inclusive) will be x+width-1.
int32_t m_width; //32bit to avoid padding
};
/// width (in pixels) of the underlying texture
uint32_t m_width;
/// height (in pixels) of the underlying texture
uint32_t m_height;
/// Surface used in squared pixel
uint32_t m_usedSpace;
/// node of the skyline algorithm
std::vector<Node> m_skyline;
/// The starting x-coordinate (leftmost).
int16_t m_x;
/// The y-coordinate of the skyline level line.
int16_t m_y;
/// The line _width. The ending coordinate (inclusive) will be x+width-1.
int32_t m_width; //32bit to avoid padding
};
RectanglePacker::RectanglePacker(): m_width(0), m_height(0), m_usedSpace(0)
/// width (in pixels) of the underlying texture
uint32_t m_width;
/// height (in pixels) of the underlying texture
uint32_t m_height;
/// Surface used in squared pixel
uint32_t m_usedSpace;
/// node of the skyline algorithm
std::vector<Node> m_skyline;
};
RectanglePacker::RectanglePacker() : m_width(0), m_height(0), m_usedSpace(0)
{
}
RectanglePacker::RectanglePacker(uint32_t _width, uint32_t _height):m_width(_width), m_height(_height), m_usedSpace(0)
RectanglePacker::RectanglePacker(uint32_t _width, uint32_t _height) : m_width(_width), m_height(_height), m_usedSpace(0)
{
// We want a one pixel border around the whole atlas to avoid any artefact when
// sampling texture
m_skyline.push_back(Node(1,1, _width-2));
// We want a one pixel border around the whole atlas to avoid any artefact when
// sampling texture
m_skyline.push_back(Node(1, 1, _width - 2) );
}
void RectanglePacker::init(uint32_t _width, uint32_t _height)
@ -78,32 +85,33 @@ void RectanglePacker::init(uint32_t _width, uint32_t _height)
m_skyline.clear();
// We want a one pixel border around the whole atlas to avoid any artifact when
// sampling texture
m_skyline.push_back(Node(1,1, _width-2));
// sampling texture
m_skyline.push_back(Node(1, 1, _width - 2) );
}
bool RectanglePacker::addRectangle(uint16_t _width, uint16_t _height, uint16_t& _outX, uint16_t& _outY)
{
int y, best_height, best_index;
int32_t best_width;
Node* node;
Node* prev;
_outX = 0;
int32_t best_width;
Node* node;
Node* prev;
_outX = 0;
_outY = 0;
uint32_t ii;
best_height = INT_MAX;
best_index = -1;
best_width = INT_MAX;
for( ii = 0; ii < m_skyline.size(); ++ii )
best_height = INT_MAX;
best_index = -1;
best_width = INT_MAX;
for (ii = 0; ii < m_skyline.size(); ++ii)
{
y = fit( ii, _width, _height );
if( y >= 0 )
y = fit(ii, _width, _height);
if (y >= 0)
{
node = &m_skyline[ii];
if( ( (y + _height) < best_height ) ||
( ((y + _height) == best_height) && (node->m_width < best_width)) )
node = &m_skyline[ii];
if ( ( (y + _height) < best_height)
|| ( ( (y + _height) == best_height)
&& (node->m_width < best_width) ) )
{
best_height = y + _height;
best_index = ii;
@ -111,116 +119,124 @@ bool RectanglePacker::addRectangle(uint16_t _width, uint16_t _height, uint16_t&
_outX = node->m_x;
_outY = y;
}
}
}
}
}
if( best_index == -1 )
{
if (best_index == -1)
{
return false;
}
}
Node newNode(_outX, _outY + _height, _width);
m_skyline.insert(m_skyline.begin() + best_index, newNode);
Node newNode(_outX, _outY + _height, _width);
m_skyline.insert(m_skyline.begin() + best_index, newNode);
for(ii = best_index+1; ii < m_skyline.size(); ++ii)
{
node = &m_skyline[ii];
prev = &m_skyline[ii-1];
if (node->m_x < (prev->m_x + prev->m_width) )
{
int shrink = prev->m_x + prev->m_width - node->m_x;
node->m_x += shrink;
node->m_width -= shrink;
if (node->m_width <= 0)
{
m_skyline.erase(m_skyline.begin() + ii);
--ii;
}
else
{
break;
}
}
else
{
break;
}
}
for (ii = best_index + 1; ii < m_skyline.size(); ++ii)
{
node = &m_skyline[ii];
prev = &m_skyline[ii - 1];
if (node->m_x < (prev->m_x + prev->m_width) )
{
int shrink = prev->m_x + prev->m_width - node->m_x;
node->m_x += shrink;
node->m_width -= shrink;
if (node->m_width <= 0)
{
m_skyline.erase(m_skyline.begin() + ii);
--ii;
}
else
{
break;
}
}
else
{
break;
}
}
merge();
m_usedSpace += _width * _height;
return true;
merge();
m_usedSpace += _width * _height;
return true;
}
float RectanglePacker::getUsageRatio()
{
uint32_t total = m_width*m_height;
if(total > 0)
uint32_t total = m_width * m_height;
if (total > 0)
{
return (float) m_usedSpace / (float) total;
}
else
{
return 0.0f;
}
}
void RectanglePacker::clear()
{
m_skyline.clear();
m_usedSpace = 0;
m_usedSpace = 0;
// We want a one pixel border around the whole atlas to avoid any artefact when
// sampling texture
m_skyline.push_back(Node(1,1, m_width-2));
// We want a one pixel border around the whole atlas to avoid any artefact when
// sampling texture
m_skyline.push_back(Node(1, 1, m_width - 2) );
}
int32_t RectanglePacker::fit(uint32_t _skylineNodeIndex, uint16_t _width, uint16_t _height)
{
int32_t width = _width;
int32_t height = _height;
int32_t height = _height;
const Node& baseNode = m_skyline[_skylineNodeIndex];
const Node& baseNode = m_skyline[_skylineNodeIndex];
int32_t x = baseNode.m_x, y;
int32_t x = baseNode.m_x, y;
int32_t _width_left = width;
int32_t i = _skylineNodeIndex;
if ( (x + width) > (int32_t)(m_width-1) )
{
return -1;
}
y = baseNode.m_y;
while( _width_left > 0 )
if ( (x + width) > (int32_t)(m_width - 1) )
{
const Node& node = m_skyline[i];
if( node.m_y > y )
{
y = node.m_y;
}
if( (y + height) > (int32_t)(m_height-1) )
{
return -1;
}
y = baseNode.m_y;
while (_width_left > 0)
{
const Node& node = m_skyline[i];
if (node.m_y > y)
{
y = node.m_y;
}
if ( (y + height) > (int32_t)(m_height - 1) )
{
return -1;
}
_width_left -= node.m_width;
}
_width_left -= node.m_width;
++i;
}
return y;
}
void RectanglePacker::merge()
{
Node* node;
Node* next;
uint32_t ii;
Node* next;
uint32_t ii;
for( ii=0; ii < m_skyline.size()-1; ++ii )
{
node = (Node *) &m_skyline[ii];
next = (Node *) &m_skyline[ii+1];
if( node->m_y == next->m_y )
for (ii = 0; ii < m_skyline.size() - 1; ++ii)
{
node = (Node*) &m_skyline[ii];
next = (Node*) &m_skyline[ii + 1];
if (node->m_y == next->m_y)
{
node->m_width += next->m_width;
m_skyline.erase(m_skyline.begin() + ii + 1);
m_skyline.erase(m_skyline.begin() + ii + 1);
--ii;
}
}
}
}
//********** Cube Atlas implementation ************
@ -231,15 +247,18 @@ struct Atlas::PackedLayer
AtlasRegion faceRegion;
};
Atlas::Atlas(uint16_t _textureSize, uint16_t _maxRegionsCount )
Atlas::Atlas(uint16_t _textureSize, uint16_t _maxRegionsCount)
{
BX_CHECK(_textureSize >= 64 && _textureSize <= 4096, "suspicious texture size" );
BX_CHECK(_maxRegionsCount >= 64 && _maxRegionsCount <= 32000, "suspicious _regions count" );
BX_CHECK(_textureSize >= 64
&& _textureSize <= 4096, "suspicious texture size");
BX_CHECK(_maxRegionsCount >= 64
&& _maxRegionsCount <= 32000, "suspicious _regions count");
m_layers = new PackedLayer[24];
for(int ii=0; ii<24;++ii)
for (int ii = 0; ii < 24; ++ii)
{
m_layers[ii].packer.init(_textureSize, _textureSize);
}
m_usedLayers = 0;
m_usedFaces = 0;
@ -248,28 +267,29 @@ Atlas::Atlas(uint16_t _textureSize, uint16_t _maxRegionsCount )
m_maxRegionCount = _maxRegionsCount;
m_regions = new AtlasRegion[_maxRegionsCount];
m_textureBuffer = new uint8_t[ _textureSize * _textureSize * 6 * 4 ];
memset(m_textureBuffer, 0, _textureSize * _textureSize * 6 * 4);
memset(m_textureBuffer, 0, _textureSize * _textureSize * 6 * 4);
//BGFX_TEXTURE_MIN_POINT|BGFX_TEXTURE_MAG_POINT|BGFX_TEXTURE_MIP_POINT;
//BGFX_TEXTURE_MIN_ANISOTROPIC|BGFX_TEXTURE_MAG_ANISOTROPIC|BGFX_TEXTURE_MIP_POINT
//BGFX_TEXTURE_U_CLAMP|BGFX_TEXTURE_V_CLAMP
uint32_t flags = 0;// BGFX_TEXTURE_MIN_ANISOTROPIC|BGFX_TEXTURE_MAG_ANISOTROPIC|BGFX_TEXTURE_MIP_POINT;
uint32_t flags = 0; // BGFX_TEXTURE_MIN_ANISOTROPIC|BGFX_TEXTURE_MAG_ANISOTROPIC|BGFX_TEXTURE_MIP_POINT;
//Uncomment this to debug atlas
//const bgfx::Memory* mem = bgfx::alloc(textureSize*textureSize * 6 * 4);
//memset(mem->data, 255, mem->size);
const bgfx::Memory* mem = NULL;
m_textureHandle = bgfx::createTextureCube(6
, _textureSize
, 1
, bgfx::TextureFormat::BGRA8
, flags
,mem
);
, _textureSize
, 1
, bgfx::TextureFormat::BGRA8
, flags
, mem
);
}
Atlas::Atlas(uint16_t _textureSize, const uint8_t* _textureBuffer , uint16_t _regionCount, const uint8_t* _regionBuffer, uint16_t _maxRegionsCount)
Atlas::Atlas(uint16_t _textureSize, const uint8_t* _textureBuffer, uint16_t _regionCount, const uint8_t* _regionBuffer, uint16_t _maxRegionsCount)
{
BX_CHECK(_regionCount <= 64 && _maxRegionsCount <= 4096, "suspicious initialization");
BX_CHECK(_regionCount <= 64
&& _maxRegionsCount <= 4096, "suspicious initialization");
//layers are frozen
m_usedLayers = 24;
m_usedFaces = 6;
@ -277,27 +297,32 @@ Atlas::Atlas(uint16_t _textureSize, const uint8_t* _textureBuffer , uint16_t _re
m_textureSize = _textureSize;
m_regionCount = _regionCount;
//regions are frozen
if(_regionCount < _maxRegionsCount)
if (_regionCount < _maxRegionsCount)
{
m_maxRegionCount = _regionCount;
}
else
{
m_maxRegionCount = _maxRegionsCount;
}
m_regions = new AtlasRegion[_regionCount];
m_textureBuffer = new uint8_t[getTextureBufferSize()];
//BGFX_TEXTURE_MIN_POINT|BGFX_TEXTURE_MAG_POINT|BGFX_TEXTURE_MIP_POINT;
//BGFX_TEXTURE_MIN_ANISOTROPIC|BGFX_TEXTURE_MAG_ANISOTROPIC|BGFX_TEXTURE_MIP_POINT
//BGFX_TEXTURE_U_CLAMP|BGFX_TEXTURE_V_CLAMP
uint32_t flags = 0;//BGFX_TEXTURE_MIN_ANISOTROPIC|BGFX_TEXTURE_MAG_ANISOTROPIC|BGFX_TEXTURE_MIP_POINT;
memcpy(m_regions, _regionBuffer, _regionCount * sizeof(AtlasRegion));
memcpy(m_textureBuffer, _textureBuffer, getTextureBufferSize());
uint32_t flags = 0; //BGFX_TEXTURE_MIN_ANISOTROPIC|BGFX_TEXTURE_MAG_ANISOTROPIC|BGFX_TEXTURE_MIP_POINT;
memcpy(m_regions, _regionBuffer, _regionCount * sizeof(AtlasRegion) );
memcpy(m_textureBuffer, _textureBuffer, getTextureBufferSize() );
m_textureHandle = bgfx::createTextureCube(6
, _textureSize
, 1
, bgfx::TextureFormat::BGRA8
, flags
, bgfx::makeRef(m_textureBuffer, getTextureBufferSize())
);
, _textureSize
, 1
, bgfx::TextureFormat::BGRA8
, flags
, bgfx::makeRef(m_textureBuffer, getTextureBufferSize() )
);
}
Atlas::~Atlas()
@ -307,52 +332,58 @@ Atlas::~Atlas()
delete[] m_textureBuffer;
}
uint16_t Atlas::addRegion(uint16_t _width, uint16_t _height, const uint8_t* _bitmapBuffer, AtlasRegion::Type _type, uint16_t outline)
uint16_t Atlas::addRegion(uint16_t _width, uint16_t _height, const uint8_t* _bitmapBuffer, AtlasRegion::Type _type, uint16_t outline)
{
if (m_regionCount >= m_maxRegionCount)
{
return UINT16_MAX;
}
uint16_t x=0,y=0;
uint16_t x = 0, y = 0;
// We want each bitmap to be separated by at least one black pixel
// TODO manage mipmaps
uint32_t idx = 0;
while(idx<m_usedLayers)
while (idx < m_usedLayers)
{
if(m_layers[idx].faceRegion.getType() == _type)
if (m_layers[idx].faceRegion.getType() == _type)
{
if(m_layers[idx].packer.addRectangle(_width+1,_height+1,x,y)) break;
if (m_layers[idx].packer.addRectangle(_width + 1, _height + 1, x, y) )
{
break;
}
}
idx++;
}
if(idx >= m_usedLayers)
if (idx >= m_usedLayers)
{
//do we have still room to add layers ?
if( (idx + _type) > 24 || m_usedFaces>=6)
if ( (idx + _type) > 24
|| m_usedFaces >= 6)
{
return UINT16_MAX;
return UINT16_MAX;
}
//create new layers
for(int ii=0; ii < _type; ++ii)
for (int ii = 0; ii < _type; ++ii)
{
m_layers[idx+ii].faceRegion.setMask(_type, m_usedFaces, ii);
m_layers[idx + ii].faceRegion.setMask(_type, m_usedFaces, ii);
}
m_usedLayers += _type;
m_usedFaces++;
//add it to the created layer
if(!m_layers[idx].packer.addRectangle(_width+1, _height+1, x, y))
if (!m_layers[idx].packer.addRectangle(_width + 1, _height + 1, x, y) )
{
return UINT16_MAX;
}
}
AtlasRegion& region = m_regions[m_regionCount];
region.m_x = x ;
region.m_y = y ;
region.m_x = x;
region.m_y = y;
region.m_width = _width;
region.m_height = _height;
region.m_mask = m_layers[idx].faceRegion.m_mask;
@ -361,8 +392,8 @@ uint16_t Atlas::addRegion(uint16_t _width, uint16_t _height, const uint8_t* _bit
region.m_x += outline;
region.m_y += outline;
region.m_width -= (outline*2);
region.m_height -= (outline*2);
region.m_width -= (outline * 2);
region.m_height -= (outline * 2);
return m_regionCount++;
}
@ -371,119 +402,128 @@ void Atlas::updateRegion(const AtlasRegion& _region, const uint8_t* _bitmapBuffe
{
const bgfx::Memory* mem = bgfx::alloc(_region.m_width * _region.m_height * 4);
//BAD!
memset(mem->data,0, mem->size);
if(_region.getType() == AtlasRegion::TYPE_BGRA8)
memset(mem->data, 0, mem->size);
if (_region.getType() == AtlasRegion::TYPE_BGRA8)
{
const uint8_t* inLineBuffer = _bitmapBuffer;
uint8_t* outLineBuffer = m_textureBuffer + _region.getFaceIndex() * (m_textureSize*m_textureSize*4) + (((_region.m_y *m_textureSize)+_region.m_x)*4);
uint8_t* outLineBuffer = m_textureBuffer + _region.getFaceIndex() * (m_textureSize * m_textureSize * 4) + ( ( (_region.m_y * m_textureSize) + _region.m_x) * 4);
//update the cpu buffer
for(int yy = 0; yy < _region.m_height; ++yy)
for (int yy = 0; yy < _region.m_height; ++yy)
{
memcpy(outLineBuffer, inLineBuffer, _region.m_width * 4);
inLineBuffer += _region.m_width*4;
outLineBuffer += m_textureSize*4;
inLineBuffer += _region.m_width * 4;
outLineBuffer += m_textureSize * 4;
}
//update the GPU buffer
memcpy(mem->data, _bitmapBuffer, mem->size);
}else
}
else
{
uint32_t layer = _region.getComponentIndex();
//uint32_t face = _region.getFaceIndex();
const uint8_t* inLineBuffer = _bitmapBuffer;
uint8_t* outLineBuffer = (m_textureBuffer + _region.getFaceIndex() * (m_textureSize*m_textureSize*4) + (((_region.m_y *m_textureSize)+_region.m_x)*4));
uint8_t* outLineBuffer = (m_textureBuffer + _region.getFaceIndex() * (m_textureSize * m_textureSize * 4) + ( ( (_region.m_y * m_textureSize) + _region.m_x) * 4) );
//update the cpu buffer
for(int yy = 0; yy<_region.m_height; ++yy)
for (int yy = 0; yy < _region.m_height; ++yy)
{
for(int xx = 0; xx<_region.m_width; ++xx)
for (int xx = 0; xx < _region.m_width; ++xx)
{
outLineBuffer[(xx*4) + layer] = inLineBuffer[xx];
outLineBuffer[(xx * 4) + layer] = inLineBuffer[xx];
}
//update the GPU buffer
memcpy(mem->data + yy*_region.m_width*4, outLineBuffer, _region.m_width*4);
memcpy(mem->data + yy * _region.m_width * 4, outLineBuffer, _region.m_width * 4);
inLineBuffer += _region.m_width;
outLineBuffer += m_textureSize*4;
outLineBuffer += m_textureSize * 4;
}
}
bgfx::updateTextureCube(m_textureHandle, (uint8_t)_region.getFaceIndex(), 0, _region.m_x, _region.m_y, _region.m_width, _region.m_height, mem);
}
void Atlas::packFaceLayerUV(uint32_t _idx, uint8_t* _vertexBuffer, uint32_t _offset, uint32_t _stride )
void Atlas::packFaceLayerUV(uint32_t _idx, uint8_t* _vertexBuffer, uint32_t _offset, uint32_t _stride)
{
packUV(m_layers[_idx].faceRegion, _vertexBuffer, _offset, _stride);
}
void Atlas::packUV( uint16_t handle, uint8_t* _vertexBuffer, uint32_t _offset, uint32_t _stride )
void Atlas::packUV(uint16_t handle, uint8_t* _vertexBuffer, uint32_t _offset, uint32_t _stride)
{
const AtlasRegion& region = m_regions[handle];
packUV(region, _vertexBuffer, _offset, _stride);
}
void Atlas::packUV( const AtlasRegion& _region, uint8_t* _vertexBuffer, uint32_t _offset, uint32_t _stride )
void Atlas::packUV(const AtlasRegion& _region, uint8_t* _vertexBuffer, uint32_t _offset, uint32_t _stride)
{
float texMult = 65535.0f / ((float)(m_textureSize));
float texMult = 65535.0f / ( (float)(m_textureSize) );
static const int16_t minVal = -32768;
static const int16_t maxVal = 32767;
int16_t x0 = (int16_t)(_region.m_x * texMult)-32768;
int16_t y0 = (int16_t)(_region.m_y * texMult)-32768;
int16_t x1 = (int16_t)((_region.m_x + _region.m_width)* texMult)-32768;
int16_t y1 = (int16_t)((_region.m_y + _region.m_height)* texMult)-32768;
int16_t w = (int16_t) ((32767.0f/4.0f) * _region.getComponentIndex());
int16_t x0 = (int16_t)(_region.m_x * texMult) - 32768;
int16_t y0 = (int16_t)(_region.m_y * texMult) - 32768;
int16_t x1 = (int16_t)( (_region.m_x + _region.m_width) * texMult) - 32768;
int16_t y1 = (int16_t)( (_region.m_y + _region.m_height) * texMult) - 32768;
int16_t w = (int16_t) ( (32767.0f / 4.0f) * _region.getComponentIndex() );
_vertexBuffer+=_offset;
switch(_region.getFaceIndex())
_vertexBuffer += _offset;
switch (_region.getFaceIndex() )
{
case 0: // +X
x0= -x0;
x1= -x1;
y0= -y0;
y1= -y1;
writeUV(_vertexBuffer, maxVal, y0, x0, w); _vertexBuffer+=_stride;
writeUV(_vertexBuffer, maxVal, y1, x0, w); _vertexBuffer+=_stride;
writeUV(_vertexBuffer, maxVal, y1, x1, w); _vertexBuffer+=_stride;
writeUV(_vertexBuffer, maxVal, y0, x1, w); _vertexBuffer+=_stride;
x0 = -x0;
x1 = -x1;
y0 = -y0;
y1 = -y1;
writeUV(_vertexBuffer, maxVal, y0, x0, w); _vertexBuffer += _stride;
writeUV(_vertexBuffer, maxVal, y1, x0, w); _vertexBuffer += _stride;
writeUV(_vertexBuffer, maxVal, y1, x1, w); _vertexBuffer += _stride;
writeUV(_vertexBuffer, maxVal, y0, x1, w); _vertexBuffer += _stride;
break;
case 1: // -X
y0= -y0;
y1= -y1;
writeUV(_vertexBuffer, minVal, y0, x0, w); _vertexBuffer+=_stride;
writeUV(_vertexBuffer, minVal, y1, x0, w); _vertexBuffer+=_stride;
writeUV(_vertexBuffer, minVal, y1, x1, w); _vertexBuffer+=_stride;
writeUV(_vertexBuffer, minVal, y0, x1, w); _vertexBuffer+=_stride;
y0 = -y0;
y1 = -y1;
writeUV(_vertexBuffer, minVal, y0, x0, w); _vertexBuffer += _stride;
writeUV(_vertexBuffer, minVal, y1, x0, w); _vertexBuffer += _stride;
writeUV(_vertexBuffer, minVal, y1, x1, w); _vertexBuffer += _stride;
writeUV(_vertexBuffer, minVal, y0, x1, w); _vertexBuffer += _stride;
break;
case 2: // +Y
writeUV(_vertexBuffer, x0, maxVal, y0, w); _vertexBuffer+=_stride;
writeUV(_vertexBuffer, x0, maxVal, y1, w); _vertexBuffer+=_stride;
writeUV(_vertexBuffer, x1, maxVal, y1, w); _vertexBuffer+=_stride;
writeUV(_vertexBuffer, x1, maxVal, y0, w); _vertexBuffer+=_stride;
writeUV(_vertexBuffer, x0, maxVal, y0, w); _vertexBuffer += _stride;
writeUV(_vertexBuffer, x0, maxVal, y1, w); _vertexBuffer += _stride;
writeUV(_vertexBuffer, x1, maxVal, y1, w); _vertexBuffer += _stride;
writeUV(_vertexBuffer, x1, maxVal, y0, w); _vertexBuffer += _stride;
break;
case 3: // -Y
y0= -y0;
y1= -y1;
writeUV(_vertexBuffer, x0, minVal, y0, w); _vertexBuffer+=_stride;
writeUV(_vertexBuffer, x0, minVal, y1, w); _vertexBuffer+=_stride;
writeUV(_vertexBuffer, x1, minVal, y1, w); _vertexBuffer+=_stride;
writeUV(_vertexBuffer, x1, minVal, y0, w); _vertexBuffer+=_stride;
y0 = -y0;
y1 = -y1;
writeUV(_vertexBuffer, x0, minVal, y0, w); _vertexBuffer += _stride;
writeUV(_vertexBuffer, x0, minVal, y1, w); _vertexBuffer += _stride;
writeUV(_vertexBuffer, x1, minVal, y1, w); _vertexBuffer += _stride;
writeUV(_vertexBuffer, x1, minVal, y0, w); _vertexBuffer += _stride;
break;
case 4: // +Z
y0= -y0;
y1= -y1;
writeUV(_vertexBuffer, x0, y0, maxVal, w); _vertexBuffer+=_stride;
writeUV(_vertexBuffer, x0, y1, maxVal, w); _vertexBuffer+=_stride;
writeUV(_vertexBuffer, x1, y1, maxVal, w); _vertexBuffer+=_stride;
writeUV(_vertexBuffer, x1, y0, maxVal, w); _vertexBuffer+=_stride;
y0 = -y0;
y1 = -y1;
writeUV(_vertexBuffer, x0, y0, maxVal, w); _vertexBuffer += _stride;
writeUV(_vertexBuffer, x0, y1, maxVal, w); _vertexBuffer += _stride;
writeUV(_vertexBuffer, x1, y1, maxVal, w); _vertexBuffer += _stride;
writeUV(_vertexBuffer, x1, y0, maxVal, w); _vertexBuffer += _stride;
break;
case 5: // -Z
x0= -x0;
x1= -x1;
y0= -y0;
y1= -y1;
writeUV(_vertexBuffer, x0, y0, minVal, w); _vertexBuffer+=_stride;
writeUV(_vertexBuffer, x0, y1, minVal, w); _vertexBuffer+=_stride;
writeUV(_vertexBuffer, x1, y1, minVal, w); _vertexBuffer+=_stride;
writeUV(_vertexBuffer, x1, y0, minVal, w); _vertexBuffer+=_stride;
x0 = -x0;
x1 = -x1;
y0 = -y0;
y1 = -y1;
writeUV(_vertexBuffer, x0, y0, minVal, w); _vertexBuffer += _stride;
writeUV(_vertexBuffer, x0, y1, minVal, w); _vertexBuffer += _stride;
writeUV(_vertexBuffer, x1, y1, minVal, w); _vertexBuffer += _stride;
writeUV(_vertexBuffer, x1, y0, minVal, w); _vertexBuffer += _stride;
break;
}
}

View file

@ -29,109 +29,141 @@ struct AtlasRegion
uint16_t m_width, m_height;
uint32_t m_mask; //encode the region type, the face index and the component index in case of a gray region
Type getType()const { return (Type) ((m_mask >> 0) & 0x0000000F); }
uint32_t getFaceIndex()const { return (m_mask >> 4) & 0x0000000F; }
uint32_t getComponentIndex()const { return (m_mask >> 8) & 0x0000000F; }
void setMask(Type _type, uint32_t _faceIndex, uint32_t _componentIndex) { m_mask = (_componentIndex << 8) + (_faceIndex << 4) + (uint32_t)_type; }
Type getType() const
{
return (Type) ( (m_mask >> 0) & 0x0000000F);
}
uint32_t getFaceIndex() const
{
return (m_mask >> 4) & 0x0000000F;
}
uint32_t getComponentIndex() const
{
return (m_mask >> 8) & 0x0000000F;
}
void setMask(Type _type, uint32_t _faceIndex, uint32_t _componentIndex)
{
m_mask = (_componentIndex << 8) + (_faceIndex << 4) + (uint32_t)_type;
}
};
class Atlas
{
public:
/// create an empty dynamic atlas (region can be updated and added)
/// @param textureSize an atlas creates a texture cube of 6 faces with size equal to (textureSize*textureSize * sizeof(RGBA))
/// @param maxRegionCount maximum number of region allowed in the atlas
Atlas(uint16_t _textureSize, uint16_t _maxRegionsCount = 4096);
/// create an empty dynamic atlas (region can be updated and added)
/// @param textureSize an atlas creates a texture cube of 6 faces with size equal to (textureSize*textureSize * sizeof(RGBA))
/// @param maxRegionCount maximum number of region allowed in the atlas
Atlas(uint16_t _textureSize, uint16_t _maxRegionsCount = 4096);
/// initialize a static atlas with serialized data (region can be updated but not added)
/// @param textureSize an atlas creates a texture cube of 6 faces with size equal to (textureSize*textureSize * sizeof(RGBA))
/// @param textureBuffer buffer of size 6*textureSize*textureSize*sizeof(uint32_t) (will be copied)
/// @param regionCount number of region in the Atlas
/// @param regionBuffer buffer containing the region (will be copied)
/// @param maxRegionCount maximum number of region allowed in the atlas
Atlas(uint16_t _textureSize, const uint8_t * _textureBuffer, uint16_t _regionCount, const uint8_t* _regionBuffer, uint16_t _maxRegionsCount = 4096);
~Atlas();
/// initialize a static atlas with serialized data (region can be updated but not added)
/// @param textureSize an atlas creates a texture cube of 6 faces with size equal to (textureSize*textureSize * sizeof(RGBA))
/// @param textureBuffer buffer of size 6*textureSize*textureSize*sizeof(uint32_t) (will be copied)
/// @param regionCount number of region in the Atlas
/// @param regionBuffer buffer containing the region (will be copied)
/// @param maxRegionCount maximum number of region allowed in the atlas
Atlas(uint16_t _textureSize, const uint8_t* _textureBuffer, uint16_t _regionCount, const uint8_t* _regionBuffer, uint16_t _maxRegionsCount = 4096);
~Atlas();
/// add a region to the atlas, and copy the content of mem to the underlying texture
uint16_t addRegion(uint16_t _width, uint16_t _height, const uint8_t* _bitmapBuffer, AtlasRegion::Type _type = AtlasRegion::TYPE_BGRA8, uint16_t outline = 0);
/// add a region to the atlas, and copy the content of mem to the underlying texture
uint16_t addRegion(uint16_t _width, uint16_t _height, const uint8_t* _bitmapBuffer, AtlasRegion::Type _type = AtlasRegion::TYPE_BGRA8, uint16_t outline = 0);
/// update a preallocated region
void updateRegion(const AtlasRegion& _region, const uint8_t* _bitmapBuffer);
/// update a preallocated region
void updateRegion(const AtlasRegion& _region, const uint8_t* _bitmapBuffer);
/// Pack the UV coordinates of the four corners of a region to a vertex buffer using the supplied vertex format.
/// v0 -- v3
/// | | encoded in that order: v0,v1,v2,v3
/// v1 -- v2
/// @remark the UV are four signed short normalized components.
/// @remark the x,y,z components encode cube uv coordinates. The w component encode the color channel if any.
/// @param handle handle to the region we are interested in
/// @param vertexBuffer address of the first vertex we want to update. Must be valid up to vertexBuffer + offset + 3*stride + 4*sizeof(int16_t), which means the buffer must contains at least 4 vertex includind the first.
/// @param offset byte offset to the first uv coordinate of the vertex in the buffer
/// @param stride stride between tho UV coordinates, usually size of a Vertex.
void packUV( uint16_t _regionHandle, uint8_t* _vertexBuffer, uint32_t _offset, uint32_t _stride );
void packUV( const AtlasRegion& _region, uint8_t* _vertexBuffer, uint32_t _offset, uint32_t _stride );
/// Pack the UV coordinates of the four corners of a region to a vertex buffer using the supplied vertex format.
/// v0 -- v3
/// | | encoded in that order: v0,v1,v2,v3
/// v1 -- v2
/// @remark the UV are four signed short normalized components.
/// @remark the x,y,z components encode cube uv coordinates. The w component encode the color channel if any.
/// @param handle handle to the region we are interested in
/// @param vertexBuffer address of the first vertex we want to update. Must be valid up to vertexBuffer + offset + 3*stride + 4*sizeof(int16_t), which means the buffer must contains at least 4 vertex includind the first.
/// @param offset byte offset to the first uv coordinate of the vertex in the buffer
/// @param stride stride between tho UV coordinates, usually size of a Vertex.
void packUV(uint16_t _regionHandle, uint8_t* _vertexBuffer, uint32_t _offset, uint32_t _stride);
void packUV(const AtlasRegion& _region, uint8_t* _vertexBuffer, uint32_t _offset, uint32_t _stride);
/// Same as packUV but pack a whole face of the atlas cube, mostly used for debugging and visualizing atlas
void packFaceLayerUV(uint32_t _idx, uint8_t* _vertexBuffer, uint32_t _offset, uint32_t _stride );
/// Same as packUV but pack a whole face of the atlas cube, mostly used for debugging and visualizing atlas
void packFaceLayerUV(uint32_t _idx, uint8_t* _vertexBuffer, uint32_t _offset, uint32_t _stride);
/// Pack the vertex index of the region as 2 quad into an index buffer
void packIndex(uint16_t* _indexBuffer, uint32_t _startIndex, uint32_t _startVertex )
{
_indexBuffer[_startIndex+0] = _startVertex+0;
_indexBuffer[_startIndex+1] = _startVertex+1;
_indexBuffer[_startIndex+2] = _startVertex+2;
_indexBuffer[_startIndex+3] = _startVertex+0;
_indexBuffer[_startIndex+4] = _startVertex+2;
_indexBuffer[_startIndex+5] = _startVertex+3;
}
/// Pack the vertex index of the region as 2 quad into an index buffer
void packIndex(uint16_t* _indexBuffer, uint32_t _startIndex, uint32_t _startVertex)
{
_indexBuffer[_startIndex + 0] = _startVertex + 0;
_indexBuffer[_startIndex + 1] = _startVertex + 1;
_indexBuffer[_startIndex + 2] = _startVertex + 2;
_indexBuffer[_startIndex + 3] = _startVertex + 0;
_indexBuffer[_startIndex + 4] = _startVertex + 2;
_indexBuffer[_startIndex + 5] = _startVertex + 3;
}
/// return the TextureHandle (cube) of the atlas
bgfx::TextureHandle getTextureHandle() const { return m_textureHandle; }
/// return the TextureHandle (cube) of the atlas
bgfx::TextureHandle getTextureHandle() const
{
return m_textureHandle;
}
//retrieve a region info
const AtlasRegion& getRegion(uint16_t _handle) const { return m_regions[_handle]; }
//retrieve a region info
const AtlasRegion& getRegion(uint16_t _handle) const
{
return m_regions[_handle];
}
/// retrieve the size of side of a texture in pixels
uint16_t getTextureSize(){ return m_textureSize; }
/// retrieve the size of side of a texture in pixels
uint16_t getTextureSize()
{
return m_textureSize;
}
/// retrieve the usage ratio of the atlas
//float getUsageRatio() const { return 0.0f; }
/// retrieve the usage ratio of the atlas
//float getUsageRatio() const { return 0.0f; }
/// retrieve the numbers of region in the atlas
uint16_t getRegionCount() const { return m_regionCount; }
/// retrieve the numbers of region in the atlas
uint16_t getRegionCount() const
{
return m_regionCount;
}
/// retrieve a pointer to the region buffer (in order to serialize it)
const AtlasRegion* getRegionBuffer() const { return m_regions; }
/// retrieve a pointer to the region buffer (in order to serialize it)
const AtlasRegion* getRegionBuffer() const
{
return m_regions;
}
/// retrieve the byte size of the texture
uint32_t getTextureBufferSize() const { return 6*m_textureSize*m_textureSize*4; }
/// retrieve the byte size of the texture
uint32_t getTextureBufferSize() const
{
return 6 * m_textureSize * m_textureSize * 4;
}
/// retrieve the mirrored texture buffer (to serialize it)
const uint8_t* getTextureBuffer() const { return m_textureBuffer; }
/// retrieve the mirrored texture buffer (to serialize it)
const uint8_t* getTextureBuffer() const
{
return m_textureBuffer;
}
private:
void writeUV( uint8_t* _vertexBuffer, int16_t _x, int16_t _y, int16_t _z, int16_t _w)
{
((uint16_t*) _vertexBuffer)[0] = _x;
((uint16_t*) _vertexBuffer)[1] = _y;
((uint16_t*) _vertexBuffer)[2] = _z;
((uint16_t*) _vertexBuffer)[3] = _w;
}
struct PackedLayer;
PackedLayer* m_layers;
void writeUV(uint8_t* _vertexBuffer, int16_t _x, int16_t _y, int16_t _z, int16_t _w)
{
( (uint16_t*) _vertexBuffer)[0] = _x;
( (uint16_t*) _vertexBuffer)[1] = _y;
( (uint16_t*) _vertexBuffer)[2] = _z;
( (uint16_t*) _vertexBuffer)[3] = _w;
}
struct PackedLayer;
PackedLayer* m_layers;
uint32_t m_usedLayers;
uint32_t m_usedFaces;
uint32_t m_usedLayers;
uint32_t m_usedFaces;
bgfx::TextureHandle m_textureHandle;
uint16_t m_textureSize;
bgfx::TextureHandle m_textureHandle;
uint16_t m_textureSize;
uint16_t m_regionCount;
uint16_t m_maxRegionCount;
AtlasRegion* m_regions;
uint8_t* m_textureBuffer;
uint16_t m_regionCount;
uint16_t m_maxRegionCount;
AtlasRegion* m_regions;
uint8_t* m_textureBuffer;
};
#endif // __CUBE_ATLAS_H__

View file

@ -7,40 +7,42 @@
#include "../cube_atlas.h"
#if BX_COMPILER_MSVC
# pragma warning(push)
# pragma warning(disable: 4100) // DISABLE warning C4100: '' : unreferenced formal parameter
# pragma warning(disable: 4146) // DISABLE warning C4146: unary minus operator applied to unsigned type, result still unsigned
# pragma warning(disable: 4700) // DISABLE warning C4700: uninitialized local variable 'temp' used
# pragma warning(disable: 4701) // DISABLE warning C4701: potentially uninitialized local variable '' used
# include <freetype/freetype.h>
# pragma warning(pop)
# pragma warning(push)
# pragma warning(disable: 4100) // DISABLE warning C4100: '' : unreferenced formal parameter
# pragma warning(disable: 4146) // DISABLE warning C4146: unary minus operator applied to unsigned type, result still unsigned
# pragma warning(disable: 4700) // DISABLE warning C4700: uninitialized local variable 'temp' used
# pragma warning(disable: 4701) // DISABLE warning C4701: potentially uninitialized local variable '' used
# include <freetype/freetype.h>
# pragma warning(pop)
#else
# include <freetype/freetype.h>
# include <freetype/freetype.h>
#endif // BX_COMPILER_MSVC
#include <edtaa3/edtaa3func.h>
#include <edtaa3/edtaa3func.cpp>
#include <bx/bx.h>
#if BGFX_CONFIG_USE_TINYSTL
namespace tinystl
{
//struct bgfx_allocator
//{
//static void* static_allocate(size_t _bytes);
//static void static_deallocate(void* _ptr, size_t /*_bytes*/);
//static void* static_allocate(size_t _bytes);
//static void static_deallocate(void* _ptr, size_t /*_bytes*/);
//};
} // namespace tinystl
//# define TINYSTL_ALLOCATOR tinystl::bgfx_allocator
# include <TINYSTL/unordered_map.h>
# include <TINYSTL/unordered_map.h>
//# include <TINYSTL/unordered_set.h>
namespace stl = tinystl;
#else
# include <unordered_map>
namespace std { namespace tr1 {} }
namespace stl {
# include <unordered_map>
namespace std
{ namespace tr1
{}
}
namespace stl
{
using namespace std;
using namespace std::tr1;
}
@ -49,52 +51,51 @@ namespace stl {
class FontManager::TrueTypeFont
{
public:
TrueTypeFont();
~TrueTypeFont();
TrueTypeFont();
~TrueTypeFont();
/// Initialize from an external buffer
/// @remark The ownership of the buffer is external, and you must ensure it stays valid up to this object lifetime
/// @return true if the initialization succeed
bool init(const uint8_t* _buffer, uint32_t _bufferSize, int32_t _fontIndex, uint32_t _pixelHeight );
/// Initialize from an external buffer
/// @remark The ownership of the buffer is external, and you must ensure it stays valid up to this object lifetime
/// @return true if the initialization succeed
bool init(const uint8_t* _buffer, uint32_t _bufferSize, int32_t _fontIndex, uint32_t _pixelHeight);
/// return the font descriptor of the current font
FontInfo getFontInfo();
/// return the font descriptor of the current font
FontInfo getFontInfo();
/// raster a glyph as 8bit alpha to a memory buffer
/// update the GlyphInfo according to the raster strategy
/// @ remark buffer min size: glyphInfo.m_width * glyphInfo * height * sizeof(char)
bool bakeGlyphAlpha(CodePoint_t _codePoint, GlyphInfo& _outGlyphInfo, uint8_t* _outBuffer);
/// raster a glyph as 8bit alpha to a memory buffer
/// update the GlyphInfo according to the raster strategy
/// @ remark buffer min size: glyphInfo.m_width * glyphInfo * height * sizeof(char)
bool bakeGlyphAlpha(CodePoint_t _codePoint, GlyphInfo& _outGlyphInfo, uint8_t* _outBuffer);
/// raster a glyph as 32bit subpixel rgba to a memory buffer
/// update the GlyphInfo according to the raster strategy
/// @ remark buffer min size: glyphInfo.m_width * glyphInfo * height * sizeof(uint32_t)
bool bakeGlyphSubpixel(CodePoint_t _codePoint, GlyphInfo& _outGlyphInfo, uint8_t* _outBuffer);
/// raster a glyph as 32bit subpixel rgba to a memory buffer
/// update the GlyphInfo according to the raster strategy
/// @ remark buffer min size: glyphInfo.m_width * glyphInfo * height * sizeof(uint32_t)
bool bakeGlyphSubpixel(CodePoint_t _codePoint, GlyphInfo& _outGlyphInfo, uint8_t* _outBuffer);
/// raster a glyph as 8bit signed distance to a memory buffer
/// update the GlyphInfo according to the raster strategy
/// @ remark buffer min size: glyphInfo.m_width * glyphInfo * height * sizeof(char)
bool bakeGlyphDistance(CodePoint_t _codePoint, GlyphInfo& _outGlyphInfo, uint8_t* _outBuffer);
/// raster a glyph as 8bit signed distance to a memory buffer
/// update the GlyphInfo according to the raster strategy
/// @ remark buffer min size: glyphInfo.m_width * glyphInfo * height * sizeof(char)
bool bakeGlyphDistance(CodePoint_t _codePoint, GlyphInfo& _outGlyphInfo, uint8_t* _outBuffer);
private:
void* m_font;
void* m_font;
};
struct FTHolder
{
FT_Library library;
FT_Face face;
};
FontManager::TrueTypeFont::TrueTypeFont(): m_font(NULL)
FontManager::TrueTypeFont::TrueTypeFont() : m_font(NULL)
{
}
FontManager::TrueTypeFont::~TrueTypeFont()
{
if(m_font!=NULL)
if (m_font != NULL)
{
FTHolder* holder = (FTHolder*) m_font;
FT_Done_Face( holder->face );
FT_Done_FreeType( holder->library );
FT_Done_Face(holder->face);
FT_Done_FreeType(holder->library);
delete m_font;
m_font = NULL;
}
@ -102,55 +103,58 @@ FontManager::TrueTypeFont::~TrueTypeFont()
bool FontManager::TrueTypeFont::init(const uint8_t* _buffer, uint32_t _bufferSize, int32_t _fontIndex, uint32_t _pixelHeight)
{
BX_CHECK((_bufferSize > 256 && _bufferSize < 100000000), "TrueType buffer size is suspicious");
BX_CHECK((_pixelHeight > 4 && _pixelHeight < 128), "TrueType buffer size is suspicious");
BX_CHECK( (_bufferSize > 256
&& _bufferSize < 100000000), "TrueType buffer size is suspicious");
BX_CHECK( (_pixelHeight > 4
&& _pixelHeight < 128), "TrueType buffer size is suspicious");
BX_CHECK(m_font == NULL, "TrueTypeFont already initialized" );
BX_CHECK(m_font == NULL, "TrueTypeFont already initialized");
FTHolder* holder = new FTHolder();
// Initialize Freetype library
FT_Error error = FT_Init_FreeType( &holder->library );
if( error)
FT_Error error = FT_Init_FreeType(&holder->library);
if (error)
{
delete holder;
return false;
}
error = FT_New_Memory_Face( holder->library, _buffer, _bufferSize, _fontIndex, &holder->face );
if ( error == FT_Err_Unknown_File_Format )
error = FT_New_Memory_Face(holder->library, _buffer, _bufferSize, _fontIndex, &holder->face);
if (error == FT_Err_Unknown_File_Format)
{
// the font file could be opened and read, but it appears
//that its font format is unsupported
FT_Done_FreeType( holder->library );
FT_Done_FreeType(holder->library);
delete holder;
return false;
}
else if ( error )
else if (error)
{
// another error code means that the font file could not
// be opened or read, or simply that it is broken...
FT_Done_FreeType( holder->library );
FT_Done_FreeType(holder->library);
delete holder;
return false;
}
// Select unicode charmap
error = FT_Select_Charmap( holder->face, FT_ENCODING_UNICODE );
if( error )
{
FT_Done_Face( holder->face );
FT_Done_FreeType( holder->library );
return false;
}
// Select unicode charmap
error = FT_Select_Charmap(holder->face, FT_ENCODING_UNICODE);
if (error)
{
FT_Done_Face(holder->face);
FT_Done_FreeType(holder->library);
return false;
}
//set size in pixels
error = FT_Set_Pixel_Sizes( holder->face, 0, _pixelHeight );
if( error )
{
FT_Done_Face( holder->face );
FT_Done_FreeType( holder->library );
return false;
}
error = FT_Set_Pixel_Sizes(holder->face, 0, _pixelHeight);
if (error)
{
FT_Done_Face(holder->face);
FT_Done_FreeType(holder->library);
return false;
}
m_font = holder;
return true;
@ -158,43 +162,51 @@ bool FontManager::TrueTypeFont::init(const uint8_t* _buffer, uint32_t _bufferSiz
FontInfo FontManager::TrueTypeFont::getFontInfo()
{
BX_CHECK(m_font != NULL, "TrueTypeFont not initialized" );
BX_CHECK(m_font != NULL, "TrueTypeFont not initialized");
FTHolder* holder = (FTHolder*) m_font;
//todo manage unscalable font
BX_CHECK(FT_IS_SCALABLE (holder->face), "Font is unscalable");
BX_CHECK(FT_IS_SCALABLE(holder->face), "Font is unscalable");
FT_Size_Metrics metrics = holder->face->size->metrics;
FontInfo outFontInfo;
outFontInfo.scale = 1.0f;
outFontInfo.ascender = metrics.ascender /64.0f;
outFontInfo.descender = metrics.descender /64.0f;
outFontInfo.lineGap = (metrics.height - metrics.ascender + metrics.descender) /64.0f;
outFontInfo.ascender = metrics.ascender / 64.0f;
outFontInfo.descender = metrics.descender / 64.0f;
outFontInfo.lineGap = (metrics.height - metrics.ascender + metrics.descender) / 64.0f;
outFontInfo.underline_position = FT_MulFix(holder->face->underline_position, metrics.y_scale) /64.0f;
outFontInfo.underline_thickness= FT_MulFix(holder->face->underline_thickness,metrics.y_scale) /64.0f;
outFontInfo.underline_position = FT_MulFix(holder->face->underline_position, metrics.y_scale) / 64.0f;
outFontInfo.underline_thickness = FT_MulFix(holder->face->underline_thickness, metrics.y_scale) / 64.0f;
return outFontInfo;
}
bool FontManager::TrueTypeFont::bakeGlyphAlpha(CodePoint_t _codePoint, GlyphInfo& _glyphInfo, uint8_t* _outBuffer)
{
BX_CHECK(m_font != NULL, "TrueTypeFont not initialized" );
BX_CHECK(m_font != NULL, "TrueTypeFont not initialized");
FTHolder* holder = (FTHolder*) m_font;
_glyphInfo.glyphIndex = FT_Get_Char_Index( holder->face, _codePoint );
_glyphInfo.glyphIndex = FT_Get_Char_Index(holder->face, _codePoint);
FT_GlyphSlot slot = holder->face->glyph;
FT_Error error = FT_Load_Glyph( holder->face, _glyphInfo.glyphIndex, FT_LOAD_DEFAULT );
if(error) { return false; }
FT_Error error = FT_Load_Glyph(holder->face, _glyphInfo.glyphIndex, FT_LOAD_DEFAULT);
if (error)
{
return false;
}
FT_Glyph glyph;
error = FT_Get_Glyph( slot, &glyph );
if ( error ) { return false; }
error = FT_Get_Glyph(slot, &glyph);
if (error)
{
return false;
}
error = FT_Glyph_To_Bitmap( &glyph, FT_RENDER_MODE_NORMAL, 0, 1 );
if(error){ return false; }
error = FT_Glyph_To_Bitmap(&glyph, FT_RENDER_MODE_NORMAL, 0, 1);
if (error)
{
return false;
}
FT_BitmapGlyph bitmap = (FT_BitmapGlyph)glyph;
@ -207,38 +219,48 @@ bool FontManager::TrueTypeFont::bakeGlyphAlpha(CodePoint_t _codePoint, GlyphInfo
_glyphInfo.offset_y = (float) y;
_glyphInfo.width = (float) w;
_glyphInfo.height = (float) h;
_glyphInfo.advance_x = (float)slot->advance.x /64.0f;
_glyphInfo.advance_y = (float)slot->advance.y /64.0f;
_glyphInfo.advance_x = (float)slot->advance.x / 64.0f;
_glyphInfo.advance_y = (float)slot->advance.y / 64.0f;
int32_t charsize = 1;
int32_t depth=1;
int32_t depth = 1;
int32_t stride = bitmap->bitmap.pitch;
for( int32_t ii=0; ii<h; ++ii )
{
memcpy(_outBuffer+(ii*w) * charsize * depth,
bitmap->bitmap.buffer + (ii*stride) * charsize, w * charsize * depth );
}
for (int32_t ii = 0; ii < h; ++ii)
{
memcpy(_outBuffer + (ii * w) * charsize * depth,
bitmap->bitmap.buffer + (ii * stride) * charsize, w * charsize * depth);
}
FT_Done_Glyph(glyph);
return true;
}
bool FontManager::TrueTypeFont::bakeGlyphSubpixel(CodePoint_t _codePoint, GlyphInfo& _glyphInfo, uint8_t* _outBuffer)
{
BX_CHECK(m_font != NULL, "TrueTypeFont not initialized" );
BX_CHECK(m_font != NULL, "TrueTypeFont not initialized");
FTHolder* holder = (FTHolder*) m_font;
_glyphInfo.glyphIndex = FT_Get_Char_Index( holder->face, _codePoint );
_glyphInfo.glyphIndex = FT_Get_Char_Index(holder->face, _codePoint);
FT_GlyphSlot slot = holder->face->glyph;
FT_Error error = FT_Load_Glyph( holder->face, _glyphInfo.glyphIndex, FT_LOAD_DEFAULT );
if(error) { return false; }
FT_Error error = FT_Load_Glyph(holder->face, _glyphInfo.glyphIndex, FT_LOAD_DEFAULT);
if (error)
{
return false;
}
FT_Glyph glyph;
error = FT_Get_Glyph( slot, &glyph );
if ( error ) { return false; }
error = FT_Get_Glyph(slot, &glyph);
if (error)
{
return false;
}
error = FT_Glyph_To_Bitmap( &glyph, FT_RENDER_MODE_LCD, 0, 1 );
if(error){ return false; }
error = FT_Glyph_To_Bitmap(&glyph, FT_RENDER_MODE_LCD, 0, 1);
if (error)
{
return false;
}
FT_BitmapGlyph bitmap = (FT_BitmapGlyph)glyph;
int32_t x = bitmap->left;
@ -250,118 +272,154 @@ bool FontManager::TrueTypeFont::bakeGlyphSubpixel(CodePoint_t _codePoint, GlyphI
_glyphInfo.offset_y = (float) y;
_glyphInfo.width = (float) w;
_glyphInfo.height = (float) h;
_glyphInfo.advance_x = (float)slot->advance.x /64.0f;
_glyphInfo.advance_y = (float)slot->advance.y /64.0f;
_glyphInfo.advance_x = (float)slot->advance.x / 64.0f;
_glyphInfo.advance_y = (float)slot->advance.y / 64.0f;
int32_t charsize = 1;
int32_t depth=3;
int32_t depth = 3;
int32_t stride = bitmap->bitmap.pitch;
for( int32_t ii=0; ii<h; ++ii )
{
memcpy(_outBuffer+(ii*w) * charsize * depth,
bitmap->bitmap.buffer + (ii*stride) * charsize, w * charsize * depth );
}
for (int32_t ii = 0; ii < h; ++ii)
{
memcpy(_outBuffer + (ii * w) * charsize * depth,
bitmap->bitmap.buffer + (ii * stride) * charsize, w * charsize * depth);
}
FT_Done_Glyph(glyph);
return true;
}
//TODO optimize: remove dynamic allocation and convert double to float
void make_distance_map( unsigned char *img, unsigned char *outImg, unsigned int width, unsigned int height )
void make_distance_map(unsigned char* img, unsigned char* outImg, unsigned int width, unsigned int height)
{
short * xdist = (short *) malloc( width * height * sizeof(short) );
short * ydist = (short *) malloc( width * height * sizeof(short) );
double * gx = (double *) calloc( width * height, sizeof(double) );
double * gy = (double *) calloc( width * height, sizeof(double) );
double * data = (double *) calloc( width * height, sizeof(double) );
double * outside = (double *) calloc( width * height, sizeof(double) );
double * inside = (double *) calloc( width * height, sizeof(double) );
uint32_t ii;
short* xdist = (short*) malloc(width * height * sizeof(short) );
short* ydist = (short*) malloc(width * height * sizeof(short) );
double* gx = (double*) calloc(width * height, sizeof(double) );
double* gy = (double*) calloc(width * height, sizeof(double) );
double* data = (double*) calloc(width * height, sizeof(double) );
double* outside = (double*) calloc(width * height, sizeof(double) );
double* inside = (double*) calloc(width * height, sizeof(double) );
uint32_t ii;
// Convert img into double (data)
double img_min = 255, img_max = -255;
for( ii=0; ii<width*height; ++ii)
{
double v = img[ii];
data[ii] = v;
if (v > img_max) img_max = v;
if (v < img_min) img_min = v;
}
// Rescale image levels between 0 and 1
for( ii=0; ii<width*height; ++ii)
{
data[ii] = (img[ii]-img_min)/(img_max-img_min);
}
// Convert img into double (data)
double img_min = 255, img_max = -255;
for (ii = 0; ii < width * height; ++ii)
{
double v = img[ii];
data[ii] = v;
if (v > img_max)
{
img_max = v;
}
// Compute outside = edtaa3(bitmap); % Transform background (0's)
computegradient( data, width, height, gx, gy);
edtaa3(data, gx, gy, width, height, xdist, ydist, outside);
for( ii=0; ii<width*height; ++ii)
if( outside[ii] < 0 )
outside[ii] = 0.0;
if (v < img_min)
{
img_min = v;
}
}
// Compute inside = edtaa3(1-bitmap); % Transform foreground (1's)
memset(gx, 0, sizeof(double)*width*height );
memset(gy, 0, sizeof(double)*width*height );
for( ii=0; ii<width*height; ++ii)
data[ii] = 1.0 - data[ii];
computegradient( data, width, height, gx, gy);
edtaa3(data, gx, gy, width, height, xdist, ydist, inside);
for( ii=0; ii<width*height; ++ii)
if( inside[ii] < 0 )
inside[ii] = 0.0;
// Rescale image levels between 0 and 1
for (ii = 0; ii < width * height; ++ii)
{
data[ii] = (img[ii] - img_min) / (img_max - img_min);
}
// distmap = outside - inside; % Bipolar distance field
unsigned char *out = outImg;//(unsigned char *) malloc( width * height * sizeof(unsigned char) );
for( ii=0; ii<width*height; ++ii)
{
// Compute outside = edtaa3(bitmap); % Transform background (0's)
computegradient(data, width, height, gx, gy);
edtaa3(data, gx, gy, width, height, xdist, ydist, outside);
for (ii = 0; ii < width * height; ++ii)
{
if (outside[ii] < 0)
{
outside[ii] = 0.0;
}
}
// Compute inside = edtaa3(1-bitmap); % Transform foreground (1's)
memset(gx, 0, sizeof(double) * width * height);
memset(gy, 0, sizeof(double) * width * height);
for (ii = 0; ii < width * height; ++ii)
{
data[ii] = 1.0 - data[ii];
}
computegradient(data, width, height, gx, gy);
edtaa3(data, gx, gy, width, height, xdist, ydist, inside);
for (ii = 0; ii < width * height; ++ii)
{
if (inside[ii] < 0)
{
inside[ii] = 0.0;
}
}
// distmap = outside - inside; % Bipolar distance field
unsigned char* out = outImg; //(unsigned char *) malloc( width * height * sizeof(unsigned char) );
for (ii = 0; ii < width * height; ++ii)
{
//out[i] = 127 - outside[i]*8;
//if(out[i]<0) out[i] = 0;
//out[i] += inside[i]*16;
//if(out[i]>255) out[i] = 255;
outside[ii] -= inside[ii];
outside[ii] = 128 + outside[ii]*16;
outside[ii] = 128 + outside[ii] * 16;
//if(outside[i] > 8) outside[i] = 8;
//if(inside[i] > 8) outside[i] = 8;
//outside[i] = 128 - inside[i]*8 + outside[i]*8;
if( outside[ii] < 0 ) outside[ii] = 0;
if( outside[ii] > 255 ) outside[ii] = 255;
out[ii] = 255 - (unsigned char) outside[ii];
//out[i] = (unsigned char) outside[i];
}
if (outside[ii] < 0)
{
outside[ii] = 0;
}
free( xdist );
free( ydist );
free( gx );
free( gy );
free( data );
free( outside );
free( inside );
if (outside[ii] > 255)
{
outside[ii] = 255;
}
out[ii] = 255 - (unsigned char) outside[ii];
//out[i] = (unsigned char) outside[i];
}
free(xdist);
free(ydist);
free(gx);
free(gy);
free(data);
free(outside);
free(inside);
}
bool FontManager::TrueTypeFont::bakeGlyphDistance(CodePoint_t _codePoint, GlyphInfo& _glyphInfo, uint8_t* _outBuffer)
{
BX_CHECK(m_font != NULL, "TrueTypeFont not initialized" );
BX_CHECK(m_font != NULL, "TrueTypeFont not initialized");
FTHolder* holder = (FTHolder*) m_font;
_glyphInfo.glyphIndex = FT_Get_Char_Index( holder->face, _codePoint );
_glyphInfo.glyphIndex = FT_Get_Char_Index(holder->face, _codePoint);
FT_Int32 loadMode = FT_LOAD_DEFAULT|FT_LOAD_NO_HINTING;
FT_Int32 loadMode = FT_LOAD_DEFAULT | FT_LOAD_NO_HINTING;
FT_Render_Mode renderMode = FT_RENDER_MODE_NORMAL;
FT_GlyphSlot slot = holder->face->glyph;
FT_Error error = FT_Load_Glyph( holder->face, _glyphInfo.glyphIndex, loadMode );
if(error) { return false; }
FT_Error error = FT_Load_Glyph(holder->face, _glyphInfo.glyphIndex, loadMode);
if (error)
{
return false;
}
FT_Glyph glyph;
error = FT_Get_Glyph( slot, &glyph );
if ( error ) { return false; }
error = FT_Get_Glyph(slot, &glyph);
if (error)
{
return false;
}
error = FT_Glyph_To_Bitmap( &glyph, renderMode, 0, 1 );
if(error){ return false; }
error = FT_Glyph_To_Bitmap(&glyph, renderMode, 0, 1);
if (error)
{
return false;
}
FT_BitmapGlyph bitmap = (FT_BitmapGlyph)glyph;
@ -374,40 +432,47 @@ bool FontManager::TrueTypeFont::bakeGlyphDistance(CodePoint_t _codePoint, GlyphI
_glyphInfo.offset_y = (float) y;
_glyphInfo.width = (float) w;
_glyphInfo.height = (float) h;
_glyphInfo.advance_x = (float)slot->advance.x /64.0f;
_glyphInfo.advance_y = (float)slot->advance.y /64.0f;
_glyphInfo.advance_x = (float)slot->advance.x / 64.0f;
_glyphInfo.advance_y = (float)slot->advance.y / 64.0f;
int32_t charsize = 1;
int32_t depth=1;
int32_t depth = 1;
int32_t stride = bitmap->bitmap.pitch;
for(int32_t ii=0; ii<h; ++ii )
{
for (int32_t ii = 0; ii < h; ++ii)
{
memcpy(_outBuffer + (ii * w) * charsize * depth,
bitmap->bitmap.buffer + (ii * stride) * charsize, w * charsize * depth);
}
memcpy(_outBuffer+(ii*w) * charsize * depth,
bitmap->bitmap.buffer + (ii*stride) * charsize, w * charsize * depth );
}
FT_Done_Glyph(glyph);
if(w*h >0)
if (w * h > 0)
{
uint32_t dw = 6;
uint32_t dh = 6;
if(dw<2) dw = 2;
if(dh<2) dh = 2;
if (dw < 2)
{
dw = 2;
}
uint32_t nw = w + dw*2;
uint32_t nh = h + dh*2;
BX_CHECK(nw*nh < 128*128, "buffer overflow");
uint32_t buffSize = nw*nh*sizeof(uint8_t);
if (dh < 2)
{
dh = 2;
}
uint8_t * alphaImg = (uint8_t *) malloc( buffSize );
memset(alphaImg, 0, nw*nh*sizeof(uint8_t));
uint32_t nw = w + dw * 2;
uint32_t nh = h + dh * 2;
BX_CHECK(nw * nh < 128 * 128, "buffer overflow");
uint32_t buffSize = nw * nh * sizeof(uint8_t);
uint8_t* alphaImg = (uint8_t*) malloc(buffSize);
memset(alphaImg, 0, nw * nh * sizeof(uint8_t) );
//copy the original buffer to the temp one
for(uint32_t ii= dh; ii< nh-dh; ++ii)
for (uint32_t ii = dh; ii < nh - dh; ++ii)
{
memcpy(alphaImg+ii*nw+dw, _outBuffer+(ii-dh)*w, w);
memcpy(alphaImg + ii * nw + dw, _outBuffer + (ii - dh) * w, w);
}
make_distance_map(alphaImg, _outBuffer, nw, nh);
@ -415,22 +480,23 @@ bool FontManager::TrueTypeFont::bakeGlyphDistance(CodePoint_t _codePoint, GlyphI
_glyphInfo.offset_x -= (float) dw;
_glyphInfo.offset_y -= (float) dh;
_glyphInfo.width = (float) nw ;
_glyphInfo.width = (float) nw;
_glyphInfo.height = (float) nh;
}
return true;
}
//*************************************************************
typedef stl::unordered_map<CodePoint_t, GlyphInfo> GlyphHash_t;
// cache font data
struct FontManager::CachedFont
{
CachedFont(){ trueTypeFont = NULL; masterFontHandle.idx = -1; }
CachedFont()
{
trueTypeFont = NULL; masterFontHandle.idx = -1;
}
FontInfo fontInfo;
GlyphHash_t cachedGlyphs;
FontManager::TrueTypeFont* trueTypeFont;
@ -439,21 +505,18 @@ struct FontManager::CachedFont
int16_t padding;
};
const uint16_t MAX_OPENED_FILES = 64;
const uint16_t MAX_OPENED_FONT = 64;
const uint32_t MAX_FONT_BUFFER_SIZE = 512*512*4;
const uint32_t MAX_FONT_BUFFER_SIZE = 512 * 512 * 4;
FontManager::FontManager(Atlas* _atlas):m_filesHandles(MAX_OPENED_FILES), m_fontHandles(MAX_OPENED_FONT)
FontManager::FontManager(Atlas* _atlas) : m_filesHandles(MAX_OPENED_FILES), m_fontHandles(MAX_OPENED_FONT)
{
m_atlas = _atlas;
m_ownAtlas = false;
init();
}
FontManager::FontManager(uint32_t _textureSideWidth):m_filesHandles(MAX_OPENED_FILES), m_fontHandles(MAX_OPENED_FONT)
FontManager::FontManager(uint32_t _textureSideWidth) : m_filesHandles(MAX_OPENED_FILES), m_fontHandles(MAX_OPENED_FONT)
{
m_atlas = new Atlas(_textureSideWidth);
m_ownAtlas = true;
@ -468,39 +531,37 @@ void FontManager::init()
const uint32_t W = 3;
// Create filler rectangle
uint8_t buffer[W*W*4];
memset( buffer, 255, W * W * 4);
uint8_t buffer[W * W * 4];
memset(buffer, 255, W * W * 4);
m_blackGlyph.width = W;
m_blackGlyph.height = W;
///make sure the black glyph doesn't bleed by using a one pixel inner outline
m_blackGlyph.regionIndex = m_atlas->addRegion(W, W, buffer, AtlasRegion::TYPE_GRAY, 1 );
m_blackGlyph.regionIndex = m_atlas->addRegion(W, W, buffer, AtlasRegion::TYPE_GRAY, 1);
}
FontManager::~FontManager()
{
BX_CHECK(m_fontHandles.getNumHandles() == 0, "All the fonts must be destroyed before destroying the manager");
delete [] m_cachedFonts;
delete[] m_cachedFonts;
BX_CHECK(m_filesHandles.getNumHandles() == 0, "All the font files must be destroyed before destroying the manager");
delete [] m_cachedFiles;
delete[] m_cachedFiles;
delete [] m_buffer;
delete[] m_buffer;
if(m_ownAtlas)
if (m_ownAtlas)
{
delete m_atlas;
}
}
TrueTypeHandle FontManager::loadTrueTypeFromFile(const char* _fontPath)
{
FILE * pFile;
pFile = fopen (_fontPath, "rb");
if (pFile==NULL)
FILE* pFile;
pFile = fopen(_fontPath, "rb");
if (pFile == NULL)
{
TrueTypeHandle invalid = BGFX_INVALID_HANDLE;
return invalid;
@ -524,14 +585,15 @@ TrueTypeHandle FontManager::loadTrueTypeFromFile(const char* _fontPath)
fseek(pFile, 0L, SEEK_SET);
// Read the entire file into memory.
uint32_t newLen = fread((void*)buffer, sizeof(char), bufsize, pFile);
uint32_t newLen = fread( (void*)buffer, sizeof(char), bufsize, pFile);
if (newLen == 0)
{
fclose(pFile);
delete [] buffer;
delete[] buffer;
TrueTypeHandle invalid = BGFX_INVALID_HANDLE;
return invalid;
}
fclose(pFile);
uint16_t id = m_filesHandles.alloc();
@ -541,6 +603,7 @@ TrueTypeHandle FontManager::loadTrueTypeFromFile(const char* _fontPath)
TrueTypeHandle ret = {id};
return ret;
}
//TODO validate font
TrueTypeHandle invalid = BGFX_INVALID_HANDLE;
return invalid;
@ -573,7 +636,7 @@ FontHandle FontManager::createFontByPixelSize(TrueTypeHandle _tt_handle, uint32_
BX_CHECK(bgfx::invalidHandle != _tt_handle.idx, "Invalid handle used");
TrueTypeFont* ttf = new TrueTypeFont();
if(!ttf->init( m_cachedFiles[_tt_handle.idx].buffer, m_cachedFiles[_tt_handle.idx].bufferSize, _typefaceIndex, _pixelSize))
if (!ttf->init(m_cachedFiles[_tt_handle.idx].buffer, m_cachedFiles[_tt_handle.idx].bufferSize, _typefaceIndex, _pixelSize) )
{
delete ttf;
FontHandle invalid = BGFX_INVALID_HANDLE;
@ -608,7 +671,6 @@ FontHandle FontManager::createScaledFontToPixelSize(FontHandle _baseFontHandle,
newFontInfo.underline_thickness = (newFontInfo.underline_thickness * newFontInfo.scale);
newFontInfo.underline_position = (newFontInfo.underline_position * newFontInfo.scale);
uint16_t fontIdx = m_fontHandles.alloc();
BX_CHECK(fontIdx != bx::HandleAlloc::invalid, "Invalid handle used");
m_cachedFonts[fontIdx].cachedGlyphs.clear();
@ -619,7 +681,7 @@ FontHandle FontManager::createScaledFontToPixelSize(FontHandle _baseFontHandle,
return ret;
}
FontHandle FontManager::loadBakedFontFromFile(const char* /*fontPath*/, const char* /*descriptorPath*/)
FontHandle FontManager::loadBakedFontFromFile(const char* /*fontPath*/, const char* /*descriptorPath*/)
{
//assert(false); //TODO implement
FontHandle invalid = BGFX_INVALID_HANDLE;
@ -637,11 +699,12 @@ void FontManager::destroyFont(FontHandle _handle)
{
BX_CHECK(bgfx::invalidHandle != _handle.idx, "Invalid handle used");
if(m_cachedFonts[_handle.idx].trueTypeFont != NULL)
if (m_cachedFonts[_handle.idx].trueTypeFont != NULL)
{
delete m_cachedFonts[_handle.idx].trueTypeFont;
m_cachedFonts[_handle.idx].trueTypeFont = NULL;
}
m_cachedFonts[_handle.idx].cachedGlyphs.clear();
m_fontHandles.free(_handle.idx);
}
@ -652,18 +715,19 @@ bool FontManager::preloadGlyph(FontHandle _handle, const wchar_t* _string)
CachedFont& font = m_cachedFonts[_handle.idx];
//if truetype present
if(font.trueTypeFont != NULL)
if (font.trueTypeFont != NULL)
{
//parse string
for( uint32_t ii=0, end = wcslen(_string) ; ii < end; ++ii )
for (uint32_t ii = 0, end = wcslen(_string); ii < end; ++ii)
{
//if glyph cached, continue
CodePoint_t codePoint = _string[ii];
if(!preloadGlyph(_handle, codePoint))
if (!preloadGlyph(_handle, codePoint) )
{
return false;
}
}
return true;
}
@ -677,37 +741,40 @@ bool FontManager::preloadGlyph(FontHandle _handle, CodePoint_t _codePoint)
FontInfo& fontInfo = font.fontInfo;
//check if glyph not already present
GlyphHash_t::iterator iter = font.cachedGlyphs.find(_codePoint);
if(iter != font.cachedGlyphs.end())
if (iter != font.cachedGlyphs.end() )
{
return true;
}
//if truetype present
if(font.trueTypeFont != NULL)
if (font.trueTypeFont != NULL)
{
GlyphInfo glyphInfo;
//bake glyph as bitmap to buffer
switch(font.fontInfo.fontType)
switch (font.fontInfo.fontType)
{
case FONT_TYPE_ALPHA:
font.trueTypeFont->bakeGlyphAlpha(_codePoint, glyphInfo, m_buffer);
break;
//case FONT_TYPE_LCD:
//font.m_trueTypeFont->bakeGlyphSubpixel(codePoint, glyphInfo, m_buffer);
//break;
//font.m_trueTypeFont->bakeGlyphSubpixel(codePoint, glyphInfo, m_buffer);
//break;
case FONT_TYPE_DISTANCE:
font.trueTypeFont->bakeGlyphDistance(_codePoint, glyphInfo, m_buffer);
break;
case FONT_TYPE_DISTANCE_SUBPIXEL:
font.trueTypeFont->bakeGlyphDistance(_codePoint, glyphInfo, m_buffer);
break;
default:
BX_CHECK(false, "TextureType not supported yet");
};
}
//copy bitmap to texture
if(!addBitmap(glyphInfo, m_buffer) )
if (!addBitmap(glyphInfo, m_buffer) )
{
return false;
}
@ -717,17 +784,18 @@ bool FontManager::preloadGlyph(FontHandle _handle, CodePoint_t _codePoint)
glyphInfo.offset_x = (glyphInfo.offset_x * fontInfo.scale);
glyphInfo.offset_y = (glyphInfo.offset_y * fontInfo.scale);
glyphInfo.height = (glyphInfo.height * fontInfo.scale);
glyphInfo.width = (glyphInfo.width * fontInfo.scale);
glyphInfo.width = (glyphInfo.width * fontInfo.scale);
// store cached glyph
font.cachedGlyphs[_codePoint] = glyphInfo;
return true;
}else
}
else
{
//retrieve glyph from parent font if any
if(font.masterFontHandle.idx != bgfx::invalidHandle)
if (font.masterFontHandle.idx != bgfx::invalidHandle)
{
if(preloadGlyph(font.masterFontHandle, _codePoint))
if (preloadGlyph(font.masterFontHandle, _codePoint) )
{
GlyphInfo glyphInfo;
getGlyphInfo(font.masterFontHandle, _codePoint, glyphInfo);
@ -758,25 +826,26 @@ const FontInfo& FontManager::getFontInfo(FontHandle _handle)
bool FontManager::getGlyphInfo(FontHandle _handle, CodePoint_t _codePoint, GlyphInfo& _outInfo)
{
GlyphHash_t::iterator iter = m_cachedFonts[_handle.idx].cachedGlyphs.find(_codePoint);
if(iter == m_cachedFonts[_handle.idx].cachedGlyphs.end())
if (iter == m_cachedFonts[_handle.idx].cachedGlyphs.end() )
{
if(preloadGlyph(_handle, _codePoint))
if (preloadGlyph(_handle, _codePoint) )
{
iter = m_cachedFonts[_handle.idx].cachedGlyphs.find(_codePoint);
}else
}
else
{
return false;
}
}
_outInfo = iter->second;
return true;
}
// ****************************************************************************
bool FontManager::addBitmap(GlyphInfo& _glyphInfo, const uint8_t* _data)
{
_glyphInfo.regionIndex = m_atlas->addRegion((uint16_t) ceil(_glyphInfo.width),(uint16_t) ceil(_glyphInfo.height), _data, AtlasRegion::TYPE_GRAY);
_glyphInfo.regionIndex = m_atlas->addRegion( (uint16_t) ceil(_glyphInfo.width), (uint16_t) ceil(_glyphInfo.height), _data, AtlasRegion::TYPE_GRAY);
return true;
}

View file

@ -12,7 +12,7 @@
class Atlas;
enum FontType
{
FONT_TYPE_ALPHA = 0x00000100 , // L8
FONT_TYPE_ALPHA = 0x00000100, // L8
//FONT_TYPE_LCD = 0x00000200, // BGRA8
//FONT_TYPE_RGBA = 0x00000300, // BGRA8
FONT_TYPE_DISTANCE = 0x00000400, // L8
@ -115,94 +115,100 @@ BGFX_HANDLE(FontHandle);
class FontManager
{
public:
/// create the font manager using an external cube atlas (doesn't take ownership of the atlas)
FontManager(Atlas* _atlas);
/// create the font manager and create the texture cube as BGRA8 with linear filtering
FontManager(uint32_t _textureSideWidth = 512);
/// create the font manager using an external cube atlas (doesn't take ownership of the atlas)
FontManager(Atlas* _atlas);
/// create the font manager and create the texture cube as BGRA8 with linear filtering
FontManager(uint32_t _textureSideWidth = 512);
~FontManager();
~FontManager();
/// retrieve the atlas used by the font manager (e.g. to add stuff to it)
Atlas* getAtlas() { return m_atlas; }
/// retrieve the atlas used by the font manager (e.g. to add stuff to it)
Atlas* getAtlas()
{
return m_atlas;
}
/// load a TrueType font from a file path
/// @return invalid handle if the loading fail
TrueTypeHandle loadTrueTypeFromFile(const char* _fontPath);
/// load a TrueType font from a file path
/// @return invalid handle if the loading fail
TrueTypeHandle loadTrueTypeFromFile(const char* _fontPath);
/// load a TrueType font from a given buffer.
/// the buffer is copied and thus can be freed or reused after this call
/// @return invalid handle if the loading fail
TrueTypeHandle loadTrueTypeFromMemory(const uint8_t* _buffer, uint32_t _size);
/// load a TrueType font from a given buffer.
/// the buffer is copied and thus can be freed or reused after this call
/// @return invalid handle if the loading fail
TrueTypeHandle loadTrueTypeFromMemory(const uint8_t* _buffer, uint32_t _size);
/// unload a TrueType font (free font memory) but keep loaded glyphs
void unloadTrueType(TrueTypeHandle _handle);
/// unload a TrueType font (free font memory) but keep loaded glyphs
void unloadTrueType(TrueTypeHandle _handle);
/// return a font whose height is a fixed pixel size
FontHandle createFontByPixelSize(TrueTypeHandle _handle, uint32_t _typefaceIndex, uint32_t _pixelSize, FontType _fontType = FONT_TYPE_ALPHA);
/// return a font whose height is a fixed pixel size
FontHandle createFontByPixelSize(TrueTypeHandle _handle, uint32_t _typefaceIndex, uint32_t _pixelSize, FontType _fontType = FONT_TYPE_ALPHA);
/// return a scaled child font whose height is a fixed pixel size
FontHandle createScaledFontToPixelSize(FontHandle _baseFontHandle, uint32_t _pixelSize);
/// return a scaled child font whose height is a fixed pixel size
FontHandle createScaledFontToPixelSize(FontHandle _baseFontHandle, uint32_t _pixelSize);
/// load a baked font (the set of glyph is fixed)
/// @return INVALID_HANDLE if the loading fail
FontHandle loadBakedFontFromFile(const char* _imagePath, const char* _descriptorPath);
/// load a baked font (the set of glyph is fixed)
/// @return INVALID_HANDLE if the loading fail
FontHandle loadBakedFontFromFile(const char* _imagePath, const char* _descriptorPath);
/// load a baked font (the set of glyph is fixed)
/// @return INVALID_HANDLE if the loading fail
FontHandle loadBakedFontFromMemory(const uint8_t* _imageBuffer, uint32_t _imageSize, const uint8_t* _descriptorBuffer, uint32_t _descriptorSize);
/// load a baked font (the set of glyph is fixed)
/// @return INVALID_HANDLE if the loading fail
FontHandle loadBakedFontFromMemory(const uint8_t* _imageBuffer, uint32_t _imageSize, const uint8_t* _descriptorBuffer, uint32_t _descriptorSize);
/// destroy a font (truetype or baked)
void destroyFont(FontHandle _handle);
/// destroy a font (truetype or baked)
void destroyFont(FontHandle _handle);
/// Preload a set of glyphs from a TrueType file
/// @return true if every glyph could be preloaded, false otherwise
/// if the Font is a baked font, this only do validation on the characters
bool preloadGlyph(FontHandle _handle, const wchar_t* _string);
/// Preload a set of glyphs from a TrueType file
/// @return true if every glyph could be preloaded, false otherwise
/// if the Font is a baked font, this only do validation on the characters
bool preloadGlyph(FontHandle _handle, const wchar_t* _string);
/// Preload a single glyph, return true on success
bool preloadGlyph(FontHandle _handle, CodePoint_t _character);
/// Preload a single glyph, return true on success
bool preloadGlyph(FontHandle _handle, CodePoint_t _character);
/// bake a font to disk (the set of preloaded glyph)
/// @return true if the baking succeed, false otherwise
bool saveBakedFont(FontHandle _handle, const char* _fontDirectory, const char* _fontName );
/// bake a font to disk (the set of preloaded glyph)
/// @return true if the baking succeed, false otherwise
bool saveBakedFont(FontHandle _handle, const char* _fontDirectory, const char* _fontName);
/// return the font descriptor of a font
/// @remark the handle is required to be valid
const FontInfo& getFontInfo(FontHandle _handle);
/// return the font descriptor of a font
/// @remark the handle is required to be valid
const FontInfo& getFontInfo(FontHandle _handle);
/// Return the rendering informations about the glyph region
/// Load the glyph from a TrueType font if possible
/// @return true if the Glyph is available
bool getGlyphInfo(FontHandle _handle, CodePoint_t _codePoint, GlyphInfo& _outInfo);
/// Return the rendering informations about the glyph region
/// Load the glyph from a TrueType font if possible
/// @return true if the Glyph is available
bool getGlyphInfo(FontHandle _handle, CodePoint_t _codePoint, GlyphInfo& _outInfo);
GlyphInfo& getBlackGlyph(){ return m_blackGlyph; }
GlyphInfo& getBlackGlyph()
{
return m_blackGlyph;
}
class TrueTypeFont; //public to shut off Intellisense warning
class TrueTypeFont; //public to shut off Intellisense warning
private:
struct CachedFont;
struct CachedFile
{
uint8_t* buffer;
uint32_t bufferSize;
};
struct CachedFont;
struct CachedFile
{
uint8_t* buffer;
uint32_t bufferSize;
};
void init();
bool addBitmap(GlyphInfo& _glyphInfo, const uint8_t* _data);
void init();
bool addBitmap(GlyphInfo& _glyphInfo, const uint8_t* _data);
bool m_ownAtlas;
Atlas* m_atlas;
bool m_ownAtlas;
Atlas* m_atlas;
bx::HandleAlloc m_fontHandles;
CachedFont* m_cachedFonts;
bx::HandleAlloc m_fontHandles;
CachedFont* m_cachedFonts;
bx::HandleAlloc m_filesHandles;
CachedFile* m_cachedFiles;
bx::HandleAlloc m_filesHandles;
CachedFile* m_cachedFiles;
GlyphInfo m_blackGlyph;
GlyphInfo m_blackGlyph;
//temporary buffer to raster glyph
uint8_t* m_buffer;
//temporary buffer to raster glyph
uint8_t* m_buffer;
};
#endif // __FONT_MANAGER_H__

File diff suppressed because it is too large Load diff

View file

@ -14,18 +14,18 @@ BGFX_HANDLE(TextBufferHandle);
enum BufferType
{
STATIC,
DYNAMIC ,
DYNAMIC,
TRANSIENT
};
/// special style effect (can be combined)
enum TextStyleFlags
{
STYLE_NORMAL = 0,
STYLE_OVERLINE = 1,
STYLE_UNDERLINE = 1<<1,
STYLE_STRIKE_THROUGH = 1<<2,
STYLE_BACKGROUND = 1<<3,
STYLE_NORMAL = 0,
STYLE_OVERLINE = 1,
STYLE_UNDERLINE = 1 << 1,
STYLE_STRIKE_THROUGH = 1 << 2,
STYLE_BACKGROUND = 1 << 3,
};
struct TextRectangle
@ -37,63 +37,63 @@ class TextBuffer;
class TextBufferManager
{
public:
TextBufferManager(FontManager* _fontManager);
~TextBufferManager();
TextBufferManager(FontManager* _fontManager);
~TextBufferManager();
TextBufferHandle createTextBuffer(FontType _type, BufferType _bufferType);
void destroyTextBuffer(TextBufferHandle _handle);
void submitTextBuffer(TextBufferHandle _handle, uint8_t _id, int32_t _depth = 0);
void submitTextBufferMask(TextBufferHandle _handle, uint32_t _viewMask, int32_t _depth = 0);
TextBufferHandle createTextBuffer(FontType _type, BufferType _bufferType);
void destroyTextBuffer(TextBufferHandle _handle);
void submitTextBuffer(TextBufferHandle _handle, uint8_t _id, int32_t _depth = 0);
void submitTextBufferMask(TextBufferHandle _handle, uint32_t _viewMask, int32_t _depth = 0);
void setStyle(TextBufferHandle _handle, uint32_t _flags = STYLE_NORMAL);
void setTextColor(TextBufferHandle _handle, uint32_t _rgba = 0x000000FF);
void setBackgroundColor(TextBufferHandle _handle, uint32_t _rgba = 0x000000FF);
void setStyle(TextBufferHandle _handle, uint32_t _flags = STYLE_NORMAL);
void setTextColor(TextBufferHandle _handle, uint32_t _rgba = 0x000000FF);
void setBackgroundColor(TextBufferHandle _handle, uint32_t _rgba = 0x000000FF);
void setOverlineColor(TextBufferHandle _handle, uint32_t _rgba = 0x000000FF);
void setUnderlineColor(TextBufferHandle _handle, uint32_t _rgba = 0x000000FF);
void setStrikeThroughColor(TextBufferHandle _handle, uint32_t _rgba = 0x000000FF);
void setOverlineColor(TextBufferHandle _handle, uint32_t _rgba = 0x000000FF);
void setUnderlineColor(TextBufferHandle _handle, uint32_t _rgba = 0x000000FF);
void setStrikeThroughColor(TextBufferHandle _handle, uint32_t _rgba = 0x000000FF);
void setPenPosition(TextBufferHandle _handle, float _x, float _y);
void setPenPosition(TextBufferHandle _handle, float _x, float _y);
/// append an ASCII/utf-8 string to the buffer using current pen position and color
void appendText(TextBufferHandle _handle, FontHandle _fontHandle, const char * _string);
/// append an ASCII/utf-8 string to the buffer using current pen position and color
void appendText(TextBufferHandle _handle, FontHandle _fontHandle, const char* _string);
/// append a wide char unicode string to the buffer using current pen position and color
void appendText(TextBufferHandle _handle, FontHandle _fontHandle, const wchar_t * _string);
/// append a wide char unicode string to the buffer using current pen position and color
void appendText(TextBufferHandle _handle, FontHandle _fontHandle, const wchar_t* _string);
/// Clear the text buffer and reset its state (pen/color)
void clearTextBuffer(TextBufferHandle _handle);
/// Clear the text buffer and reset its state (pen/color)
void clearTextBuffer(TextBufferHandle _handle);
TextRectangle getRectangle(TextBufferHandle _handle) const;
TextRectangle getRectangle(TextBufferHandle _handle) const;
/// return the size of the text
//Rectangle measureText(FontHandle fontHandle, const char * _string);
//Rectangle measureText(FontHandle fontHandle, const wchar_t * _string);
/// return the size of the text
//Rectangle measureText(FontHandle fontHandle, const char * _string);
//Rectangle measureText(FontHandle fontHandle, const wchar_t * _string);
private:
struct BufferCache
{
uint16_t indexBufferHandle;
uint16_t vertexBufferHandle;
TextBuffer* textBuffer;
BufferType bufferType;
FontType fontType;
};
struct BufferCache
{
uint16_t indexBufferHandle;
uint16_t vertexBufferHandle;
TextBuffer* textBuffer;
BufferType bufferType;
FontType fontType;
};
BufferCache* m_textBuffers;
bx::HandleAlloc m_textBufferHandles;
FontManager* m_fontManager;
bgfx::VertexDecl m_vertexDecl;
bgfx::UniformHandle u_texColor;
bgfx::UniformHandle u_inverse_gamma;
//shaders program
bgfx::ProgramHandle m_basicProgram;
bgfx::ProgramHandle m_distanceProgram;
bgfx::ProgramHandle m_distanceSubpixelProgram;
BufferCache* m_textBuffers;
bx::HandleAlloc m_textBufferHandles;
FontManager* m_fontManager;
bgfx::VertexDecl m_vertexDecl;
bgfx::UniformHandle u_texColor;
bgfx::UniformHandle u_inverse_gamma;
//shaders program
bgfx::ProgramHandle m_basicProgram;
bgfx::ProgramHandle m_distanceProgram;
bgfx::ProgramHandle m_distanceSubpixelProgram;
float m_height;
float m_width;
float m_height;
float m_width;
};
#endif // __TEXT_BUFFER_MANAGER_H__