mirror of
https://github.com/scratchfoundation/bgfx.git
synced 2024-11-28 10:35:43 -05:00
Added ETC2 encoding.
This commit is contained in:
parent
8ab0a4eea5
commit
6c68a79526
11 changed files with 1274 additions and 0 deletions
24
3rdparty/etc2/LICENSE.txt
vendored
Normal file
24
3rdparty/etc2/LICENSE.txt
vendored
Normal file
|
@ -0,0 +1,24 @@
|
|||
Copyright (c) 2013, Bartosz Taudul <wolf.pld@gmail.com>
|
||||
All rights reserved.
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions are met:
|
||||
* Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
* Redistributions in binary form must reproduce the above copyright
|
||||
notice, this list of conditions and the following disclaimer in the
|
||||
documentation and/or other materials provided with the distribution.
|
||||
* Neither the name of the <organization> nor the
|
||||
names of its contributors may be used to endorse or promote products
|
||||
derived from this software without specific prior written permission.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
|
||||
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
||||
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
||||
DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
|
||||
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
||||
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||||
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
|
||||
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||||
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
89
3rdparty/etc2/Math.hpp
vendored
Normal file
89
3rdparty/etc2/Math.hpp
vendored
Normal file
|
@ -0,0 +1,89 @@
|
|||
#ifndef __DARKRL__MATH_HPP__
|
||||
#define __DARKRL__MATH_HPP__
|
||||
|
||||
#include <algorithm>
|
||||
|
||||
#include "Types.hpp"
|
||||
|
||||
template<typename T>
|
||||
inline T AlignPOT( T val )
|
||||
{
|
||||
if( val == 0 ) return 1;
|
||||
val--;
|
||||
for( unsigned int i=1; i<sizeof( T ) * 8; i <<= 1 )
|
||||
{
|
||||
val |= val >> i;
|
||||
}
|
||||
return val + 1;
|
||||
}
|
||||
|
||||
inline int CountSetBits( uint32 val )
|
||||
{
|
||||
val -= ( val >> 1 ) & 0x55555555;
|
||||
val = ( ( val >> 2 ) & 0x33333333 ) + ( val & 0x33333333 );
|
||||
val = ( ( val >> 4 ) + val ) & 0x0f0f0f0f;
|
||||
val += val >> 8;
|
||||
val += val >> 16;
|
||||
return val & 0x0000003f;
|
||||
}
|
||||
|
||||
inline int CountLeadingZeros( uint32 val )
|
||||
{
|
||||
val |= val >> 1;
|
||||
val |= val >> 2;
|
||||
val |= val >> 4;
|
||||
val |= val >> 8;
|
||||
val |= val >> 16;
|
||||
return 32 - CountSetBits( val );
|
||||
}
|
||||
|
||||
inline float sRGB2linear( float v )
|
||||
{
|
||||
const float a = 0.055f;
|
||||
if( v <= 0.04045f )
|
||||
{
|
||||
return v / 12.92f;
|
||||
}
|
||||
else
|
||||
{
|
||||
return pow( ( v + a ) / ( 1 + a ), 2.4f );
|
||||
}
|
||||
}
|
||||
|
||||
inline float linear2sRGB( float v )
|
||||
{
|
||||
const float a = 0.055f;
|
||||
if( v <= 0.0031308f )
|
||||
{
|
||||
return 12.92f * v;
|
||||
}
|
||||
else
|
||||
{
|
||||
return ( 1 + a ) * pow( v, 1/2.4f ) - a;
|
||||
}
|
||||
}
|
||||
|
||||
template<class T>
|
||||
inline T SmoothStep( T x )
|
||||
{
|
||||
return x*x*(3-2*x);
|
||||
}
|
||||
|
||||
inline uint8 clampu8( int32 val )
|
||||
{
|
||||
return std::min( std::max( 0, val ), 255 );
|
||||
}
|
||||
|
||||
template<class T>
|
||||
inline T sq( T val )
|
||||
{
|
||||
return val * val;
|
||||
}
|
||||
|
||||
static inline int mul8bit( int a, int b )
|
||||
{
|
||||
int t = a*b + 128;
|
||||
return ( t + ( t >> 8 ) ) >> 8;
|
||||
}
|
||||
|
||||
#endif
|
51
3rdparty/etc2/ProcessCommon.hpp
vendored
Normal file
51
3rdparty/etc2/ProcessCommon.hpp
vendored
Normal file
|
@ -0,0 +1,51 @@
|
|||
#ifndef __PROCESSCOMMON_HPP__
|
||||
#define __PROCESSCOMMON_HPP__
|
||||
|
||||
#include <assert.h>
|
||||
#include <stddef.h>
|
||||
|
||||
#include "Types.hpp"
|
||||
|
||||
template<class T>
|
||||
static size_t GetLeastError( const T* err, size_t num )
|
||||
{
|
||||
size_t idx = 0;
|
||||
for( size_t i=1; i<num; i++ )
|
||||
{
|
||||
if( err[i] < err[idx] )
|
||||
{
|
||||
idx = i;
|
||||
}
|
||||
}
|
||||
return idx;
|
||||
}
|
||||
|
||||
static uint64 FixByteOrder( uint64 d )
|
||||
{
|
||||
return ( ( d & 0x00000000FFFFFFFF ) ) |
|
||||
( ( d & 0xFF00000000000000 ) >> 24 ) |
|
||||
( ( d & 0x000000FF00000000 ) << 24 ) |
|
||||
( ( d & 0x00FF000000000000 ) >> 8 ) |
|
||||
( ( d & 0x0000FF0000000000 ) << 8 );
|
||||
}
|
||||
|
||||
template<class T, class S>
|
||||
static uint64 EncodeSelectors( uint64 d, const T terr[2][8], const S tsel[16][8], const uint32* id )
|
||||
{
|
||||
size_t tidx[2];
|
||||
tidx[0] = GetLeastError( terr[0], 8 );
|
||||
tidx[1] = GetLeastError( terr[1], 8 );
|
||||
|
||||
d |= tidx[0] << 26;
|
||||
d |= tidx[1] << 29;
|
||||
for( int i=0; i<16; i++ )
|
||||
{
|
||||
uint64 t = tsel[i][tidx[id[i]%2]];
|
||||
d |= ( t & 0x1 ) << ( i + 32 );
|
||||
d |= ( t & 0x2 ) << ( i + 47 );
|
||||
}
|
||||
|
||||
return d;
|
||||
}
|
||||
|
||||
#endif
|
708
3rdparty/etc2/ProcessRGB.cpp
vendored
Normal file
708
3rdparty/etc2/ProcessRGB.cpp
vendored
Normal file
|
@ -0,0 +1,708 @@
|
|||
#include <array>
|
||||
#include <string.h>
|
||||
|
||||
#include "Math.hpp"
|
||||
#include "ProcessCommon.hpp"
|
||||
#include "ProcessRGB.hpp"
|
||||
#include "Tables.hpp"
|
||||
#include "Types.hpp"
|
||||
#include "Vector.hpp"
|
||||
|
||||
#include <bx/endian.h>
|
||||
|
||||
#ifdef __SSE4_1__
|
||||
# ifdef _MSC_VER
|
||||
# include <intrin.h>
|
||||
# include <Windows.h>
|
||||
# else
|
||||
# include <x86intrin.h>
|
||||
# endif
|
||||
#endif
|
||||
|
||||
namespace
|
||||
{
|
||||
|
||||
typedef std::array<uint16, 4> v4i;
|
||||
|
||||
void Average( const uint8* data, v4i* a )
|
||||
{
|
||||
#ifdef __SSE4_1__
|
||||
__m128i d0 = _mm_loadu_si128(((__m128i*)data) + 0);
|
||||
__m128i d1 = _mm_loadu_si128(((__m128i*)data) + 1);
|
||||
__m128i d2 = _mm_loadu_si128(((__m128i*)data) + 2);
|
||||
__m128i d3 = _mm_loadu_si128(((__m128i*)data) + 3);
|
||||
|
||||
__m128i d0l = _mm_unpacklo_epi8(d0, _mm_setzero_si128());
|
||||
__m128i d0h = _mm_unpackhi_epi8(d0, _mm_setzero_si128());
|
||||
__m128i d1l = _mm_unpacklo_epi8(d1, _mm_setzero_si128());
|
||||
__m128i d1h = _mm_unpackhi_epi8(d1, _mm_setzero_si128());
|
||||
__m128i d2l = _mm_unpacklo_epi8(d2, _mm_setzero_si128());
|
||||
__m128i d2h = _mm_unpackhi_epi8(d2, _mm_setzero_si128());
|
||||
__m128i d3l = _mm_unpacklo_epi8(d3, _mm_setzero_si128());
|
||||
__m128i d3h = _mm_unpackhi_epi8(d3, _mm_setzero_si128());
|
||||
|
||||
__m128i sum0 = _mm_add_epi16(d0l, d1l);
|
||||
__m128i sum1 = _mm_add_epi16(d0h, d1h);
|
||||
__m128i sum2 = _mm_add_epi16(d2l, d3l);
|
||||
__m128i sum3 = _mm_add_epi16(d2h, d3h);
|
||||
|
||||
__m128i sum0l = _mm_unpacklo_epi16(sum0, _mm_setzero_si128());
|
||||
__m128i sum0h = _mm_unpackhi_epi16(sum0, _mm_setzero_si128());
|
||||
__m128i sum1l = _mm_unpacklo_epi16(sum1, _mm_setzero_si128());
|
||||
__m128i sum1h = _mm_unpackhi_epi16(sum1, _mm_setzero_si128());
|
||||
__m128i sum2l = _mm_unpacklo_epi16(sum2, _mm_setzero_si128());
|
||||
__m128i sum2h = _mm_unpackhi_epi16(sum2, _mm_setzero_si128());
|
||||
__m128i sum3l = _mm_unpacklo_epi16(sum3, _mm_setzero_si128());
|
||||
__m128i sum3h = _mm_unpackhi_epi16(sum3, _mm_setzero_si128());
|
||||
|
||||
__m128i b0 = _mm_add_epi32(sum0l, sum0h);
|
||||
__m128i b1 = _mm_add_epi32(sum1l, sum1h);
|
||||
__m128i b2 = _mm_add_epi32(sum2l, sum2h);
|
||||
__m128i b3 = _mm_add_epi32(sum3l, sum3h);
|
||||
|
||||
__m128i a0 = _mm_srli_epi32(_mm_add_epi32(_mm_add_epi32(b2, b3), _mm_set1_epi32(4)), 3);
|
||||
__m128i a1 = _mm_srli_epi32(_mm_add_epi32(_mm_add_epi32(b0, b1), _mm_set1_epi32(4)), 3);
|
||||
__m128i a2 = _mm_srli_epi32(_mm_add_epi32(_mm_add_epi32(b1, b3), _mm_set1_epi32(4)), 3);
|
||||
__m128i a3 = _mm_srli_epi32(_mm_add_epi32(_mm_add_epi32(b0, b2), _mm_set1_epi32(4)), 3);
|
||||
|
||||
_mm_storeu_si128((__m128i*)&a[0], _mm_packus_epi32(_mm_shuffle_epi32(a0, _MM_SHUFFLE(3, 0, 1, 2)), _mm_shuffle_epi32(a1, _MM_SHUFFLE(3, 0, 1, 2))));
|
||||
_mm_storeu_si128((__m128i*)&a[2], _mm_packus_epi32(_mm_shuffle_epi32(a2, _MM_SHUFFLE(3, 0, 1, 2)), _mm_shuffle_epi32(a3, _MM_SHUFFLE(3, 0, 1, 2))));
|
||||
#else
|
||||
uint32 r[4];
|
||||
uint32 g[4];
|
||||
uint32 b[4];
|
||||
|
||||
memset(r, 0, sizeof(r));
|
||||
memset(g, 0, sizeof(g));
|
||||
memset(b, 0, sizeof(b));
|
||||
|
||||
for( int j=0; j<4; j++ )
|
||||
{
|
||||
for( int i=0; i<4; i++ )
|
||||
{
|
||||
int index = (j & 2) + (i >> 1);
|
||||
b[index] += *data++;
|
||||
g[index] += *data++;
|
||||
r[index] += *data++;
|
||||
data++;
|
||||
}
|
||||
}
|
||||
|
||||
a[0] = v4i{ uint16( (r[2] + r[3] + 4) / 8 ), uint16( (g[2] + g[3] + 4) / 8 ), uint16( (b[2] + b[3] + 4) / 8 ), 0};
|
||||
a[1] = v4i{ uint16( (r[0] + r[1] + 4) / 8 ), uint16( (g[0] + g[1] + 4) / 8 ), uint16( (b[0] + b[1] + 4) / 8 ), 0};
|
||||
a[2] = v4i{ uint16( (r[1] + r[3] + 4) / 8 ), uint16( (g[1] + g[3] + 4) / 8 ), uint16( (b[1] + b[3] + 4) / 8 ), 0};
|
||||
a[3] = v4i{ uint16( (r[0] + r[2] + 4) / 8 ), uint16( (g[0] + g[2] + 4) / 8 ), uint16( (b[0] + b[2] + 4) / 8 ), 0};
|
||||
#endif
|
||||
}
|
||||
|
||||
void CalcErrorBlock( const uint8* data, uint err[4][4] )
|
||||
{
|
||||
#ifdef __SSE4_1__
|
||||
__m128i d0 = _mm_loadu_si128(((__m128i*)data) + 0);
|
||||
__m128i d1 = _mm_loadu_si128(((__m128i*)data) + 1);
|
||||
__m128i d2 = _mm_loadu_si128(((__m128i*)data) + 2);
|
||||
__m128i d3 = _mm_loadu_si128(((__m128i*)data) + 3);
|
||||
|
||||
__m128i dm0 = _mm_and_si128(d0, _mm_set1_epi32(0x00FFFFFF));
|
||||
__m128i dm1 = _mm_and_si128(d1, _mm_set1_epi32(0x00FFFFFF));
|
||||
__m128i dm2 = _mm_and_si128(d2, _mm_set1_epi32(0x00FFFFFF));
|
||||
__m128i dm3 = _mm_and_si128(d3, _mm_set1_epi32(0x00FFFFFF));
|
||||
|
||||
__m128i d0l = _mm_unpacklo_epi8(dm0, _mm_setzero_si128());
|
||||
__m128i d0h = _mm_unpackhi_epi8(dm0, _mm_setzero_si128());
|
||||
__m128i d1l = _mm_unpacklo_epi8(dm1, _mm_setzero_si128());
|
||||
__m128i d1h = _mm_unpackhi_epi8(dm1, _mm_setzero_si128());
|
||||
__m128i d2l = _mm_unpacklo_epi8(dm2, _mm_setzero_si128());
|
||||
__m128i d2h = _mm_unpackhi_epi8(dm2, _mm_setzero_si128());
|
||||
__m128i d3l = _mm_unpacklo_epi8(dm3, _mm_setzero_si128());
|
||||
__m128i d3h = _mm_unpackhi_epi8(dm3, _mm_setzero_si128());
|
||||
|
||||
__m128i sum0 = _mm_add_epi16(d0l, d1l);
|
||||
__m128i sum1 = _mm_add_epi16(d0h, d1h);
|
||||
__m128i sum2 = _mm_add_epi16(d2l, d3l);
|
||||
__m128i sum3 = _mm_add_epi16(d2h, d3h);
|
||||
|
||||
__m128i sum0l = _mm_unpacklo_epi16(sum0, _mm_setzero_si128());
|
||||
__m128i sum0h = _mm_unpackhi_epi16(sum0, _mm_setzero_si128());
|
||||
__m128i sum1l = _mm_unpacklo_epi16(sum1, _mm_setzero_si128());
|
||||
__m128i sum1h = _mm_unpackhi_epi16(sum1, _mm_setzero_si128());
|
||||
__m128i sum2l = _mm_unpacklo_epi16(sum2, _mm_setzero_si128());
|
||||
__m128i sum2h = _mm_unpackhi_epi16(sum2, _mm_setzero_si128());
|
||||
__m128i sum3l = _mm_unpacklo_epi16(sum3, _mm_setzero_si128());
|
||||
__m128i sum3h = _mm_unpackhi_epi16(sum3, _mm_setzero_si128());
|
||||
|
||||
__m128i b0 = _mm_add_epi32(sum0l, sum0h);
|
||||
__m128i b1 = _mm_add_epi32(sum1l, sum1h);
|
||||
__m128i b2 = _mm_add_epi32(sum2l, sum2h);
|
||||
__m128i b3 = _mm_add_epi32(sum3l, sum3h);
|
||||
|
||||
__m128i a0 = _mm_add_epi32(b2, b3);
|
||||
__m128i a1 = _mm_add_epi32(b0, b1);
|
||||
__m128i a2 = _mm_add_epi32(b1, b3);
|
||||
__m128i a3 = _mm_add_epi32(b0, b2);
|
||||
|
||||
_mm_storeu_si128((__m128i*)&err[0], a0);
|
||||
_mm_storeu_si128((__m128i*)&err[1], a1);
|
||||
_mm_storeu_si128((__m128i*)&err[2], a2);
|
||||
_mm_storeu_si128((__m128i*)&err[3], a3);
|
||||
#else
|
||||
uint terr[4][4];
|
||||
|
||||
memset(terr, 0, 16 * sizeof(uint));
|
||||
|
||||
for( int j=0; j<4; j++ )
|
||||
{
|
||||
for( int i=0; i<4; i++ )
|
||||
{
|
||||
int index = (j & 2) + (i >> 1);
|
||||
uint d = *data++;
|
||||
terr[index][0] += d;
|
||||
d = *data++;
|
||||
terr[index][1] += d;
|
||||
d = *data++;
|
||||
terr[index][2] += d;
|
||||
data++;
|
||||
}
|
||||
}
|
||||
|
||||
for( int i=0; i<3; i++ )
|
||||
{
|
||||
err[0][i] = terr[2][i] + terr[3][i];
|
||||
err[1][i] = terr[0][i] + terr[1][i];
|
||||
err[2][i] = terr[1][i] + terr[3][i];
|
||||
err[3][i] = terr[0][i] + terr[2][i];
|
||||
}
|
||||
for( int i=0; i<4; i++ )
|
||||
{
|
||||
err[i][3] = 0;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
uint CalcError( const uint block[4], const v4i& average )
|
||||
{
|
||||
uint err = 0x3FFFFFFF; // Big value to prevent negative values, but small enough to prevent overflow
|
||||
err -= block[0] * 2 * average[2];
|
||||
err -= block[1] * 2 * average[1];
|
||||
err -= block[2] * 2 * average[0];
|
||||
err += 8 * ( sq( average[0] ) + sq( average[1] ) + sq( average[2] ) );
|
||||
return err;
|
||||
}
|
||||
|
||||
void ProcessAverages( v4i* a )
|
||||
{
|
||||
#ifdef __SSE4_1__
|
||||
for( int i=0; i<2; i++ )
|
||||
{
|
||||
__m128i d = _mm_loadu_si128((__m128i*)a[i*2].data());
|
||||
|
||||
__m128i t = _mm_add_epi16(_mm_mullo_epi16(d, _mm_set1_epi16(31)), _mm_set1_epi16(128));
|
||||
|
||||
__m128i c = _mm_srli_epi16(_mm_add_epi16(t, _mm_srli_epi16(t, 8)), 8);
|
||||
|
||||
__m128i c1 = _mm_shuffle_epi32(c, _MM_SHUFFLE(3, 2, 3, 2));
|
||||
__m128i diff = _mm_sub_epi16(c, c1);
|
||||
diff = _mm_max_epi16(diff, _mm_set1_epi16(-4));
|
||||
diff = _mm_min_epi16(diff, _mm_set1_epi16(3));
|
||||
|
||||
__m128i co = _mm_add_epi16(c1, diff);
|
||||
|
||||
c = _mm_blend_epi16(co, c, 0xF0);
|
||||
|
||||
__m128i a0 = _mm_or_si128(_mm_slli_epi16(c, 3), _mm_srli_epi16(c, 2));
|
||||
|
||||
_mm_storeu_si128((__m128i*)a[4+i*2].data(), a0);
|
||||
}
|
||||
|
||||
for( int i=0; i<2; i++ )
|
||||
{
|
||||
__m128i d = _mm_loadu_si128((__m128i*)a[i*2].data());
|
||||
|
||||
__m128i t0 = _mm_add_epi16(_mm_mullo_epi16(d, _mm_set1_epi16(15)), _mm_set1_epi16(128));
|
||||
__m128i t1 = _mm_srli_epi16(_mm_add_epi16(t0, _mm_srli_epi16(t0, 8)), 8);
|
||||
|
||||
__m128i t2 = _mm_or_si128(t1, _mm_slli_epi16(t1, 4));
|
||||
|
||||
_mm_storeu_si128((__m128i*)a[i*2].data(), t2);
|
||||
}
|
||||
#else
|
||||
for( int i=0; i<2; i++ )
|
||||
{
|
||||
for( int j=0; j<3; j++ )
|
||||
{
|
||||
int32 c1 = mul8bit( a[i*2+1][j], 31 );
|
||||
int32 c2 = mul8bit( a[i*2][j], 31 );
|
||||
|
||||
int32 diff = c2 - c1;
|
||||
if( diff > 3 ) diff = 3;
|
||||
else if( diff < -4 ) diff = -4;
|
||||
|
||||
int32 co = c1 + diff;
|
||||
|
||||
a[5+i*2][j] = ( c1 << 3 ) | ( c1 >> 2 );
|
||||
a[4+i*2][j] = ( co << 3 ) | ( co >> 2 );
|
||||
}
|
||||
}
|
||||
|
||||
for( int i=0; i<4; i++ )
|
||||
{
|
||||
a[i][0] = g_avg2[mul8bit( a[i][0], 15 )];
|
||||
a[i][1] = g_avg2[mul8bit( a[i][1], 15 )];
|
||||
a[i][2] = g_avg2[mul8bit( a[i][2], 15 )];
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
void EncodeAverages( uint64& _d, const v4i* a, size_t idx )
|
||||
{
|
||||
uint64 d = _d;
|
||||
d |= ( idx << 24 );
|
||||
size_t base = idx << 1;
|
||||
|
||||
if( ( idx & 0x2 ) == 0 )
|
||||
{
|
||||
for( int i=0; i<3; i++ )
|
||||
{
|
||||
d |= uint64( a[base+0][i] >> 4 ) << ( i*8 );
|
||||
d |= uint64( a[base+1][i] >> 4 ) << ( i*8 + 4 );
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
for( int i=0; i<3; i++ )
|
||||
{
|
||||
d |= uint64( a[base+1][i] & 0xF8 ) << ( i*8 );
|
||||
int32 c = ( ( a[base+0][i] & 0xF8 ) - ( a[base+1][i] & 0xF8 ) ) >> 3;
|
||||
c &= ~0xFFFFFFF8;
|
||||
d |= ((uint64)c) << ( i*8 );
|
||||
}
|
||||
}
|
||||
_d = d;
|
||||
}
|
||||
|
||||
uint64 CheckSolid( const uint8* src )
|
||||
{
|
||||
#ifdef __SSE4_1__
|
||||
__m128i d0 = _mm_loadu_si128(((__m128i*)src) + 0);
|
||||
__m128i d1 = _mm_loadu_si128(((__m128i*)src) + 1);
|
||||
__m128i d2 = _mm_loadu_si128(((__m128i*)src) + 2);
|
||||
__m128i d3 = _mm_loadu_si128(((__m128i*)src) + 3);
|
||||
|
||||
__m128i c = _mm_shuffle_epi32(d0, _MM_SHUFFLE(0, 0, 0, 0));
|
||||
|
||||
__m128i c0 = _mm_cmpeq_epi8(d0, c);
|
||||
__m128i c1 = _mm_cmpeq_epi8(d1, c);
|
||||
__m128i c2 = _mm_cmpeq_epi8(d2, c);
|
||||
__m128i c3 = _mm_cmpeq_epi8(d3, c);
|
||||
|
||||
__m128i m0 = _mm_and_si128(c0, c1);
|
||||
__m128i m1 = _mm_and_si128(c2, c3);
|
||||
__m128i m = _mm_and_si128(m0, m1);
|
||||
|
||||
if (!_mm_testc_si128(m, _mm_set1_epi32(-1)))
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
#else
|
||||
const uint8* ptr = src + 4;
|
||||
for( int i=1; i<16; i++ )
|
||||
{
|
||||
if( memcmp( src, ptr, 4 ) != 0 )
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
ptr += 4;
|
||||
}
|
||||
#endif
|
||||
return 0x02000000 |
|
||||
( uint( src[0] & 0xF8 ) << 16 ) |
|
||||
( uint( src[1] & 0xF8 ) << 8 ) |
|
||||
( uint( src[2] & 0xF8 ) );
|
||||
}
|
||||
|
||||
void PrepareAverages( v4i a[8], const uint8* src, uint err[4] )
|
||||
{
|
||||
Average( src, a );
|
||||
ProcessAverages( a );
|
||||
|
||||
uint errblock[4][4];
|
||||
CalcErrorBlock( src, errblock );
|
||||
|
||||
for( int i=0; i<4; i++ )
|
||||
{
|
||||
err[i/2] += CalcError( errblock[i], a[i] );
|
||||
err[2+i/2] += CalcError( errblock[i], a[i+4] );
|
||||
}
|
||||
}
|
||||
|
||||
void FindBestFit( uint64 terr[2][8], uint16 tsel[16][8], v4i a[8], const uint32* id, const uint8* data )
|
||||
{
|
||||
for( size_t i=0; i<16; i++ )
|
||||
{
|
||||
uint16* sel = tsel[i];
|
||||
uint bid = id[i];
|
||||
uint64* ter = terr[bid%2];
|
||||
|
||||
uint8 b = *data++;
|
||||
uint8 g = *data++;
|
||||
uint8 r = *data++;
|
||||
data++;
|
||||
|
||||
int dr = a[bid][0] - r;
|
||||
int dg = a[bid][1] - g;
|
||||
int db = a[bid][2] - b;
|
||||
|
||||
#ifdef __SSE4_1__
|
||||
// Reference implementation
|
||||
|
||||
__m128i pix = _mm_set1_epi32(dr * 77 + dg * 151 + db * 28);
|
||||
// Taking the absolute value is way faster. The values are only used to sort, so the result will be the same.
|
||||
__m128i error0 = _mm_abs_epi32(_mm_add_epi32(pix, g_table256_SIMD[0]));
|
||||
__m128i error1 = _mm_abs_epi32(_mm_add_epi32(pix, g_table256_SIMD[1]));
|
||||
__m128i error2 = _mm_abs_epi32(_mm_sub_epi32(pix, g_table256_SIMD[0]));
|
||||
__m128i error3 = _mm_abs_epi32(_mm_sub_epi32(pix, g_table256_SIMD[1]));
|
||||
|
||||
__m128i index0 = _mm_and_si128(_mm_cmplt_epi32(error1, error0), _mm_set1_epi32(1));
|
||||
__m128i minError0 = _mm_min_epi32(error0, error1);
|
||||
|
||||
__m128i index1 = _mm_sub_epi32(_mm_set1_epi32(2), _mm_cmplt_epi32(error3, error2));
|
||||
__m128i minError1 = _mm_min_epi32(error2, error3);
|
||||
|
||||
__m128i minIndex0 = _mm_blendv_epi8(index0, index1, _mm_cmplt_epi32(minError1, minError0));
|
||||
__m128i minError = _mm_min_epi32(minError0, minError1);
|
||||
|
||||
// Squaring the minimum error to produce correct values when adding
|
||||
__m128i minErrorLow = _mm_shuffle_epi32(minError, _MM_SHUFFLE(1, 1, 0, 0));
|
||||
__m128i squareErrorLow = _mm_mul_epi32(minErrorLow, minErrorLow);
|
||||
squareErrorLow = _mm_add_epi64(squareErrorLow, _mm_loadu_si128(((__m128i*)ter) + 0));
|
||||
_mm_storeu_si128(((__m128i*)ter) + 0, squareErrorLow);
|
||||
__m128i minErrorHigh = _mm_shuffle_epi32(minError, _MM_SHUFFLE(3, 3, 2, 2));
|
||||
__m128i squareErrorHigh = _mm_mul_epi32(minErrorHigh, minErrorHigh);
|
||||
squareErrorHigh = _mm_add_epi64(squareErrorHigh, _mm_loadu_si128(((__m128i*)ter) + 1));
|
||||
_mm_storeu_si128(((__m128i*)ter) + 1, squareErrorHigh);
|
||||
|
||||
// Taking the absolute value is way faster. The values are only used to sort, so the result will be the same.
|
||||
error0 = _mm_abs_epi32(_mm_add_epi32(pix, g_table256_SIMD[2]));
|
||||
error1 = _mm_abs_epi32(_mm_add_epi32(pix, g_table256_SIMD[3]));
|
||||
error2 = _mm_abs_epi32(_mm_sub_epi32(pix, g_table256_SIMD[2]));
|
||||
error3 = _mm_abs_epi32(_mm_sub_epi32(pix, g_table256_SIMD[3]));
|
||||
|
||||
index0 = _mm_and_si128(_mm_cmplt_epi32(error1, error0), _mm_set1_epi32(1));
|
||||
minError0 = _mm_min_epi32(error0, error1);
|
||||
|
||||
index1 = _mm_sub_epi32(_mm_set1_epi32(2), _mm_cmplt_epi32(error3, error2));
|
||||
minError1 = _mm_min_epi32(error2, error3);
|
||||
|
||||
__m128i minIndex1 = _mm_blendv_epi8(index0, index1, _mm_cmplt_epi32(minError1, minError0));
|
||||
minError = _mm_min_epi32(minError0, minError1);
|
||||
|
||||
// Squaring the minimum error to produce correct values when adding
|
||||
minErrorLow = _mm_shuffle_epi32(minError, _MM_SHUFFLE(1, 1, 0, 0));
|
||||
squareErrorLow = _mm_mul_epi32(minErrorLow, minErrorLow);
|
||||
squareErrorLow = _mm_add_epi64(squareErrorLow, _mm_loadu_si128(((__m128i*)ter) + 2));
|
||||
_mm_storeu_si128(((__m128i*)ter) + 2, squareErrorLow);
|
||||
minErrorHigh = _mm_shuffle_epi32(minError, _MM_SHUFFLE(3, 3, 2, 2));
|
||||
squareErrorHigh = _mm_mul_epi32(minErrorHigh, minErrorHigh);
|
||||
squareErrorHigh = _mm_add_epi64(squareErrorHigh, _mm_loadu_si128(((__m128i*)ter) + 3));
|
||||
_mm_storeu_si128(((__m128i*)ter) + 3, squareErrorHigh);
|
||||
__m128i minIndex = _mm_packs_epi32(minIndex0, minIndex1);
|
||||
_mm_storeu_si128((__m128i*)sel, minIndex);
|
||||
#else
|
||||
int pix = dr * 77 + dg * 151 + db * 28;
|
||||
|
||||
for( int t=0; t<8; t++ )
|
||||
{
|
||||
const int64* tab = g_table256[t];
|
||||
uint idx = 0;
|
||||
uint64 err = sq( tab[0] + pix );
|
||||
for( int j=1; j<4; j++ )
|
||||
{
|
||||
uint64 local = sq( tab[j] + pix );
|
||||
if( local < err )
|
||||
{
|
||||
err = local;
|
||||
idx = j;
|
||||
}
|
||||
}
|
||||
*sel++ = idx;
|
||||
*ter++ += err;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef __SSE4_1__
|
||||
// Non-reference implementation, but faster. Produces same results as the AVX2 version
|
||||
void FindBestFit( uint32 terr[2][8], uint16 tsel[16][8], v4i a[8], const uint32* id, const uint8* data )
|
||||
{
|
||||
for( size_t i=0; i<16; i++ )
|
||||
{
|
||||
uint16* sel = tsel[i];
|
||||
uint bid = id[i];
|
||||
uint32* ter = terr[bid%2];
|
||||
|
||||
uint8 b = *data++;
|
||||
uint8 g = *data++;
|
||||
uint8 r = *data++;
|
||||
data++;
|
||||
|
||||
int dr = a[bid][0] - r;
|
||||
int dg = a[bid][1] - g;
|
||||
int db = a[bid][2] - b;
|
||||
|
||||
// The scaling values are divided by two and rounded, to allow the differences to be in the range of signed int16
|
||||
// This produces slightly different results, but is significant faster
|
||||
__m128i pixel = _mm_set1_epi16(dr * 38 + dg * 76 + db * 14);
|
||||
__m128i pix = _mm_abs_epi16(pixel);
|
||||
|
||||
// Taking the absolute value is way faster. The values are only used to sort, so the result will be the same.
|
||||
// Since the selector table is symmetrical, we need to calculate the difference only for half of the entries.
|
||||
__m128i error0 = _mm_abs_epi16(_mm_sub_epi16(pix, g_table128_SIMD[0]));
|
||||
__m128i error1 = _mm_abs_epi16(_mm_sub_epi16(pix, g_table128_SIMD[1]));
|
||||
|
||||
__m128i index = _mm_and_si128(_mm_cmplt_epi16(error1, error0), _mm_set1_epi16(1));
|
||||
__m128i minError = _mm_min_epi16(error0, error1);
|
||||
|
||||
// Exploiting symmetry of the selector table and use the sign bit
|
||||
// This produces slightly different results, but is needed to produce same results as AVX2 implementation
|
||||
__m128i indexBit = _mm_andnot_si128(_mm_srli_epi16(pixel, 15), _mm_set1_epi8(-1));
|
||||
__m128i minIndex = _mm_or_si128(index, _mm_add_epi16(indexBit, indexBit));
|
||||
|
||||
// Squaring the minimum error to produce correct values when adding
|
||||
__m128i squareErrorLo = _mm_mullo_epi16(minError, minError);
|
||||
__m128i squareErrorHi = _mm_mulhi_epi16(minError, minError);
|
||||
|
||||
__m128i squareErrorLow = _mm_unpacklo_epi16(squareErrorLo, squareErrorHi);
|
||||
__m128i squareErrorHigh = _mm_unpackhi_epi16(squareErrorLo, squareErrorHi);
|
||||
|
||||
squareErrorLow = _mm_add_epi32(squareErrorLow, _mm_loadu_si128(((__m128i*)ter) + 0));
|
||||
_mm_storeu_si128(((__m128i*)ter) + 0, squareErrorLow);
|
||||
squareErrorHigh = _mm_add_epi32(squareErrorHigh, _mm_loadu_si128(((__m128i*)ter) + 1));
|
||||
_mm_storeu_si128(((__m128i*)ter) + 1, squareErrorHigh);
|
||||
|
||||
_mm_storeu_si128((__m128i*)sel, minIndex);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
uint8_t convert6(float f)
|
||||
{
|
||||
int i = (std::min(std::max(static_cast<int>(f), 0), 1023) - 15) >> 1;
|
||||
return (i + 11 - ((i + 11) >> 7) - ((i + 4) >> 7)) >> 3;
|
||||
}
|
||||
|
||||
uint8_t convert7(float f)
|
||||
{
|
||||
int i = (std::min(std::max(static_cast<int>(f), 0), 1023) - 15) >> 1;
|
||||
return (i + 9 - ((i + 9) >> 8) - ((i + 6) >> 8)) >> 2;
|
||||
}
|
||||
|
||||
std::pair<uint64, uint64> Planar(const uint8* src)
|
||||
{
|
||||
int32 r = 0;
|
||||
int32 g = 0;
|
||||
int32 b = 0;
|
||||
|
||||
for (int i = 0; i < 16; ++i)
|
||||
{
|
||||
b += src[i * 4 + 0];
|
||||
g += src[i * 4 + 1];
|
||||
r += src[i * 4 + 2];
|
||||
}
|
||||
|
||||
int32 difRyz = 0;
|
||||
int32 difGyz = 0;
|
||||
int32 difByz = 0;
|
||||
int32 difRxz = 0;
|
||||
int32 difGxz = 0;
|
||||
int32 difBxz = 0;
|
||||
|
||||
const int32 scaling[] = { -255, -85, 85, 255 };
|
||||
|
||||
for (int i = 0; i < 16; ++i)
|
||||
{
|
||||
int32 difB = (static_cast<int>(src[i * 4 + 0]) << 4) - b;
|
||||
int32 difG = (static_cast<int>(src[i * 4 + 1]) << 4) - g;
|
||||
int32 difR = (static_cast<int>(src[i * 4 + 2]) << 4) - r;
|
||||
|
||||
difRyz += difR * scaling[i % 4];
|
||||
difGyz += difG * scaling[i % 4];
|
||||
difByz += difB * scaling[i % 4];
|
||||
|
||||
difRxz += difR * scaling[i / 4];
|
||||
difGxz += difG * scaling[i / 4];
|
||||
difBxz += difB * scaling[i / 4];
|
||||
}
|
||||
|
||||
const float scale = -4.0f / ((255 * 255 * 8.0f + 85 * 85 * 8.0f) * 16.0f);
|
||||
|
||||
float aR = difRxz * scale;
|
||||
float aG = difGxz * scale;
|
||||
float aB = difBxz * scale;
|
||||
|
||||
float bR = difRyz * scale;
|
||||
float bG = difGyz * scale;
|
||||
float bB = difByz * scale;
|
||||
|
||||
float dR = r * (4.0f / 16.0f);
|
||||
float dG = g * (4.0f / 16.0f);
|
||||
float dB = b * (4.0f / 16.0f);
|
||||
|
||||
// calculating the three colors RGBO, RGBH, and RGBV. RGB = df - af * x - bf * y;
|
||||
float cofR = std::fma(aR, 255.0f, std::fma(bR, 255.0f, dR));
|
||||
float cofG = std::fma(aG, 255.0f, std::fma(bG, 255.0f, dG));
|
||||
float cofB = std::fma(aB, 255.0f, std::fma(bB, 255.0f, dB));
|
||||
float chfR = std::fma(aR, -425.0f, std::fma(bR, 255.0f, dR));
|
||||
float chfG = std::fma(aG, -425.0f, std::fma(bG, 255.0f, dG));
|
||||
float chfB = std::fma(aB, -425.0f, std::fma(bB, 255.0f, dB));
|
||||
float cvfR = std::fma(aR, 255.0f, std::fma(bR, -425.0f, dR));
|
||||
float cvfG = std::fma(aG, 255.0f, std::fma(bG, -425.0f, dG));
|
||||
float cvfB = std::fma(aB, 255.0f, std::fma(bB, -425.0f, dB));
|
||||
|
||||
// convert to r6g7b6
|
||||
int32 coR = convert6(cofR);
|
||||
int32 coG = convert7(cofG);
|
||||
int32 coB = convert6(cofB);
|
||||
int32 chR = convert6(chfR);
|
||||
int32 chG = convert7(chfG);
|
||||
int32 chB = convert6(chfB);
|
||||
int32 cvR = convert6(cvfR);
|
||||
int32 cvG = convert7(cvfG);
|
||||
int32 cvB = convert6(cvfB);
|
||||
|
||||
// Error calculation
|
||||
int32 ro0 = coR;
|
||||
int32 go0 = coG;
|
||||
int32 bo0 = coB;
|
||||
int32 ro1 = (ro0 >> 4) | (ro0 << 2);
|
||||
int32 go1 = (go0 >> 6) | (go0 << 1);
|
||||
int32 bo1 = (bo0 >> 4) | (bo0 << 2);
|
||||
int32 ro2 = (ro1 << 2) + 2;
|
||||
int32 go2 = (go1 << 2) + 2;
|
||||
int32 bo2 = (bo1 << 2) + 2;
|
||||
|
||||
int32 rh0 = chR;
|
||||
int32 gh0 = chG;
|
||||
int32 bh0 = chB;
|
||||
int32 rh1 = (rh0 >> 4) | (rh0 << 2);
|
||||
int32 gh1 = (gh0 >> 6) | (gh0 << 1);
|
||||
int32 bh1 = (bh0 >> 4) | (bh0 << 2);
|
||||
|
||||
int32 rh2 = rh1 - ro1;
|
||||
int32 gh2 = gh1 - go1;
|
||||
int32 bh2 = bh1 - bo1;
|
||||
|
||||
int32 rv0 = cvR;
|
||||
int32 gv0 = cvG;
|
||||
int32 bv0 = cvB;
|
||||
int32 rv1 = (rv0 >> 4) | (rv0 << 2);
|
||||
int32 gv1 = (gv0 >> 6) | (gv0 << 1);
|
||||
int32 bv1 = (bv0 >> 4) | (bv0 << 2);
|
||||
|
||||
int32 rv2 = rv1 - ro1;
|
||||
int32 gv2 = gv1 - go1;
|
||||
int32 bv2 = bv1 - bo1;
|
||||
|
||||
uint64 error = 0;
|
||||
|
||||
for (int i = 0; i < 16; ++i)
|
||||
{
|
||||
int32 cR = clampu8((rh2 * (i / 4) + rv2 * (i % 4) + ro2) >> 2);
|
||||
int32 cG = clampu8((gh2 * (i / 4) + gv2 * (i % 4) + go2) >> 2);
|
||||
int32 cB = clampu8((bh2 * (i / 4) + bv2 * (i % 4) + bo2) >> 2);
|
||||
|
||||
int32 difB = static_cast<int>(src[i * 4 + 0]) - cB;
|
||||
int32 difG = static_cast<int>(src[i * 4 + 1]) - cG;
|
||||
int32 difR = static_cast<int>(src[i * 4 + 2]) - cR;
|
||||
|
||||
int32 dif = difR * 38 + difG * 76 + difB * 14;
|
||||
|
||||
error += dif * dif;
|
||||
}
|
||||
|
||||
/**/
|
||||
uint32 rgbv = cvB | (cvG << 6) | (cvR << 13);
|
||||
uint32 rgbh = chB | (chG << 6) | (chR << 13);
|
||||
uint32 hi = rgbv | ((rgbh & 0x1FFF) << 19);
|
||||
uint32 lo = (chR & 0x1) | 0x2 | ((chR << 1) & 0x7C);
|
||||
lo |= ((coB & 0x07) << 7) | ((coB & 0x18) << 8) | ((coB & 0x20) << 11);
|
||||
lo |= ((coG & 0x3F) << 17) | ((coG & 0x40) << 18);
|
||||
lo |= coR << 25;
|
||||
|
||||
const int32 idx = (coR & 0x20) | ((coG & 0x20) >> 1) | ((coB & 0x1E) >> 1);
|
||||
|
||||
lo |= g_flags[idx];
|
||||
|
||||
uint64 result = static_cast<uint32>(bx::endianSwap(lo));
|
||||
result |= static_cast<uint64>(static_cast<uint32>(bx::endianSwap(hi))) << 32;
|
||||
|
||||
return std::make_pair(result, error);
|
||||
}
|
||||
|
||||
template<class T, class S>
|
||||
uint64 EncodeSelectors( uint64 d, const T terr[2][8], const S tsel[16][8], const uint32* id, const uint64 value, const uint64 error)
|
||||
{
|
||||
size_t tidx[2];
|
||||
tidx[0] = GetLeastError( terr[0], 8 );
|
||||
tidx[1] = GetLeastError( terr[1], 8 );
|
||||
|
||||
if ((terr[0][tidx[0]] + terr[1][tidx[1]]) >= error)
|
||||
{
|
||||
return value;
|
||||
}
|
||||
|
||||
d |= tidx[0] << 26;
|
||||
d |= tidx[1] << 29;
|
||||
for( int i=0; i<16; i++ )
|
||||
{
|
||||
uint64 t = tsel[i][tidx[id[i]%2]];
|
||||
d |= ( t & 0x1 ) << ( i + 32 );
|
||||
d |= ( t & 0x2 ) << ( i + 47 );
|
||||
}
|
||||
|
||||
return FixByteOrder(d);
|
||||
}
|
||||
}
|
||||
|
||||
uint64 ProcessRGB( const uint8* src )
|
||||
{
|
||||
uint64 d = CheckSolid( src );
|
||||
if( d != 0 ) return d;
|
||||
|
||||
v4i a[8];
|
||||
uint err[4] = {};
|
||||
PrepareAverages( a, src, err );
|
||||
size_t idx = GetLeastError( err, 4 );
|
||||
EncodeAverages( d, a, idx );
|
||||
|
||||
#if defined __SSE4_1__ && !defined REFERENCE_IMPLEMENTATION
|
||||
uint32 terr[2][8] = {};
|
||||
#else
|
||||
uint64 terr[2][8] = {};
|
||||
#endif
|
||||
uint16 tsel[16][8];
|
||||
const uint32* id = g_id[idx];
|
||||
FindBestFit( terr, tsel, a, id, src );
|
||||
|
||||
return FixByteOrder( EncodeSelectors( d, terr, tsel, id ) );
|
||||
}
|
||||
|
||||
uint64 ProcessRGB_ETC2( const uint8* src )
|
||||
{
|
||||
std::pair<uint64, uint64> result = Planar( src );
|
||||
|
||||
uint64 d = 0;
|
||||
|
||||
v4i a[8];
|
||||
uint err[4] = {};
|
||||
PrepareAverages( a, src, err );
|
||||
size_t idx = GetLeastError( err, 4 );
|
||||
EncodeAverages( d, a, idx );
|
||||
|
||||
uint64 terr[2][8] = {};
|
||||
uint16 tsel[16][8];
|
||||
const uint32* id = g_id[idx];
|
||||
FindBestFit( terr, tsel, a, id, src );
|
||||
|
||||
return EncodeSelectors( d, terr, tsel, id, result.first, result.second );
|
||||
}
|
9
3rdparty/etc2/ProcessRGB.hpp
vendored
Normal file
9
3rdparty/etc2/ProcessRGB.hpp
vendored
Normal file
|
@ -0,0 +1,9 @@
|
|||
#ifndef __PROCESSRGB_HPP__
|
||||
#define __PROCESSRGB_HPP__
|
||||
|
||||
#include "Types.hpp"
|
||||
|
||||
uint64 ProcessRGB( const uint8* src );
|
||||
uint64 ProcessRGB_ETC2( const uint8* src );
|
||||
|
||||
#endif
|
109
3rdparty/etc2/Tables.cpp
vendored
Normal file
109
3rdparty/etc2/Tables.cpp
vendored
Normal file
|
@ -0,0 +1,109 @@
|
|||
#include "Tables.hpp"
|
||||
|
||||
const int32 g_table[8][4] = {
|
||||
{ 2, 8, -2, -8 },
|
||||
{ 5, 17, -5, -17 },
|
||||
{ 9, 29, -9, -29 },
|
||||
{ 13, 42, -13, -42 },
|
||||
{ 18, 60, -18, -60 },
|
||||
{ 24, 80, -24, -80 },
|
||||
{ 33, 106, -33, -106 },
|
||||
{ 47, 183, -47, -183 }
|
||||
};
|
||||
|
||||
const int64 g_table256[8][4] = {
|
||||
{ 2*256, 8*256, -2*256, -8*256 },
|
||||
{ 5*256, 17*256, -5*256, -17*256 },
|
||||
{ 9*256, 29*256, -9*256, -29*256 },
|
||||
{ 13*256, 42*256, -13*256, -42*256 },
|
||||
{ 18*256, 60*256, -18*256, -60*256 },
|
||||
{ 24*256, 80*256, -24*256, -80*256 },
|
||||
{ 33*256, 106*256, -33*256, -106*256 },
|
||||
{ 47*256, 183*256, -47*256, -183*256 }
|
||||
};
|
||||
|
||||
const uint32 g_id[4][16] = {
|
||||
{ 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0 },
|
||||
{ 3, 3, 2, 2, 3, 3, 2, 2, 3, 3, 2, 2, 3, 3, 2, 2 },
|
||||
{ 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4 },
|
||||
{ 7, 7, 6, 6, 7, 7, 6, 6, 7, 7, 6, 6, 7, 7, 6, 6 }
|
||||
};
|
||||
|
||||
const uint32 g_avg2[16] = {
|
||||
0x00,
|
||||
0x11,
|
||||
0x22,
|
||||
0x33,
|
||||
0x44,
|
||||
0x55,
|
||||
0x66,
|
||||
0x77,
|
||||
0x88,
|
||||
0x99,
|
||||
0xAA,
|
||||
0xBB,
|
||||
0xCC,
|
||||
0xDD,
|
||||
0xEE,
|
||||
0xFF
|
||||
};
|
||||
|
||||
const uint32 g_flags[64] = {
|
||||
0x80800402, 0x80800402, 0x80800402, 0x80800402,
|
||||
0x80800402, 0x80800402, 0x80800402, 0x8080E002,
|
||||
0x80800402, 0x80800402, 0x8080E002, 0x8080E002,
|
||||
0x80800402, 0x8080E002, 0x8080E002, 0x8080E002,
|
||||
0x80000402, 0x80000402, 0x80000402, 0x80000402,
|
||||
0x80000402, 0x80000402, 0x80000402, 0x8000E002,
|
||||
0x80000402, 0x80000402, 0x8000E002, 0x8000E002,
|
||||
0x80000402, 0x8000E002, 0x8000E002, 0x8000E002,
|
||||
0x00800402, 0x00800402, 0x00800402, 0x00800402,
|
||||
0x00800402, 0x00800402, 0x00800402, 0x0080E002,
|
||||
0x00800402, 0x00800402, 0x0080E002, 0x0080E002,
|
||||
0x00800402, 0x0080E002, 0x0080E002, 0x0080E002,
|
||||
0x00000402, 0x00000402, 0x00000402, 0x00000402,
|
||||
0x00000402, 0x00000402, 0x00000402, 0x0000E002,
|
||||
0x00000402, 0x00000402, 0x0000E002, 0x0000E002,
|
||||
0x00000402, 0x0000E002, 0x0000E002, 0x0000E002
|
||||
};
|
||||
|
||||
#ifdef __SSE4_1__
|
||||
const uint8 g_flags_AVX2[64] =
|
||||
{
|
||||
0x63, 0x63, 0x63, 0x63,
|
||||
0x63, 0x63, 0x63, 0x7D,
|
||||
0x63, 0x63, 0x7D, 0x7D,
|
||||
0x63, 0x7D, 0x7D, 0x7D,
|
||||
0x43, 0x43, 0x43, 0x43,
|
||||
0x43, 0x43, 0x43, 0x5D,
|
||||
0x43, 0x43, 0x5D, 0x5D,
|
||||
0x43, 0x5D, 0x5D, 0x5D,
|
||||
0x23, 0x23, 0x23, 0x23,
|
||||
0x23, 0x23, 0x23, 0x3D,
|
||||
0x23, 0x23, 0x3D, 0x3D,
|
||||
0x23, 0x3D, 0x3D, 0x3D,
|
||||
0x03, 0x03, 0x03, 0x03,
|
||||
0x03, 0x03, 0x03, 0x1D,
|
||||
0x03, 0x03, 0x1D, 0x1D,
|
||||
0x03, 0x1D, 0x1D, 0x1D,
|
||||
};
|
||||
|
||||
const __m128i g_table_SIMD[2] =
|
||||
{
|
||||
_mm_setr_epi16( 2, 5, 9, 13, 18, 24, 33, 47),
|
||||
_mm_setr_epi16( 8, 17, 29, 42, 60, 80, 106, 183)
|
||||
};
|
||||
const __m128i g_table128_SIMD[2] =
|
||||
{
|
||||
_mm_setr_epi16( 2*128, 5*128, 9*128, 13*128, 18*128, 24*128, 33*128, 47*128),
|
||||
_mm_setr_epi16( 8*128, 17*128, 29*128, 42*128, 60*128, 80*128, 106*128, 183*128)
|
||||
};
|
||||
const __m128i g_table256_SIMD[4] =
|
||||
{
|
||||
_mm_setr_epi32( 2*256, 5*256, 9*256, 13*256),
|
||||
_mm_setr_epi32( 8*256, 17*256, 29*256, 42*256),
|
||||
_mm_setr_epi32( 18*256, 24*256, 33*256, 47*256),
|
||||
_mm_setr_epi32( 60*256, 80*256, 106*256, 183*256)
|
||||
};
|
||||
#endif
|
||||
|
25
3rdparty/etc2/Tables.hpp
vendored
Normal file
25
3rdparty/etc2/Tables.hpp
vendored
Normal file
|
@ -0,0 +1,25 @@
|
|||
#ifndef __TABLES_HPP__
|
||||
#define __TABLES_HPP__
|
||||
|
||||
#include "Types.hpp"
|
||||
#ifdef __SSE4_1__
|
||||
#include <smmintrin.h>
|
||||
#endif
|
||||
|
||||
extern const int32 g_table[8][4];
|
||||
extern const int64 g_table256[8][4];
|
||||
|
||||
extern const uint32 g_id[4][16];
|
||||
|
||||
extern const uint32 g_avg2[16];
|
||||
|
||||
extern const uint32 g_flags[64];
|
||||
|
||||
#ifdef __SSE4_1__
|
||||
extern const uint8 g_flags_AVX2[64];
|
||||
extern const __m128i g_table_SIMD[2];
|
||||
extern const __m128i g_table128_SIMD[2];
|
||||
extern const __m128i g_table256_SIMD[4];
|
||||
#endif
|
||||
|
||||
#endif
|
17
3rdparty/etc2/Types.hpp
vendored
Normal file
17
3rdparty/etc2/Types.hpp
vendored
Normal file
|
@ -0,0 +1,17 @@
|
|||
#ifndef __DARKRL__TYPES_HPP__
|
||||
#define __DARKRL__TYPES_HPP__
|
||||
|
||||
#include <cstdint>
|
||||
|
||||
typedef int8_t int8;
|
||||
typedef uint8_t uint8;
|
||||
typedef int16_t int16;
|
||||
typedef uint16_t uint16;
|
||||
typedef int32_t int32;
|
||||
typedef uint32_t uint32;
|
||||
typedef int64_t int64;
|
||||
typedef uint64_t uint64;
|
||||
|
||||
typedef unsigned int uint;
|
||||
|
||||
#endif
|
222
3rdparty/etc2/Vector.hpp
vendored
Normal file
222
3rdparty/etc2/Vector.hpp
vendored
Normal file
|
@ -0,0 +1,222 @@
|
|||
#ifndef __DARKRL__VECTOR_HPP__
|
||||
#define __DARKRL__VECTOR_HPP__
|
||||
|
||||
#include <assert.h>
|
||||
#include <algorithm>
|
||||
#include <math.h>
|
||||
|
||||
#include "Math.hpp"
|
||||
#include "Types.hpp"
|
||||
|
||||
template<class T>
|
||||
struct Vector2
|
||||
{
|
||||
Vector2() : x( 0 ), y( 0 ) {}
|
||||
Vector2( T v ) : x( v ), y( v ) {}
|
||||
Vector2( T _x, T _y ) : x( _x ), y( _y ) {}
|
||||
|
||||
bool operator==( const Vector2<T>& rhs ) const { return x == rhs.x && y == rhs.y; }
|
||||
bool operator!=( const Vector2<T>& rhs ) const { return !( *this == rhs ); }
|
||||
|
||||
Vector2<T>& operator+=( const Vector2<T>& rhs )
|
||||
{
|
||||
x += rhs.x;
|
||||
y += rhs.y;
|
||||
return *this;
|
||||
}
|
||||
Vector2<T>& operator-=( const Vector2<T>& rhs )
|
||||
{
|
||||
x -= rhs.x;
|
||||
y -= rhs.y;
|
||||
return *this;
|
||||
}
|
||||
Vector2<T>& operator*=( const Vector2<T>& rhs )
|
||||
{
|
||||
x *= rhs.x;
|
||||
y *= rhs.y;
|
||||
return *this;
|
||||
}
|
||||
|
||||
T x, y;
|
||||
};
|
||||
|
||||
template<class T>
|
||||
Vector2<T> operator+( const Vector2<T>& lhs, const Vector2<T>& rhs )
|
||||
{
|
||||
return Vector2<T>( lhs.x + rhs.x, lhs.y + rhs.y );
|
||||
}
|
||||
|
||||
template<class T>
|
||||
Vector2<T> operator-( const Vector2<T>& lhs, const Vector2<T>& rhs )
|
||||
{
|
||||
return Vector2<T>( lhs.x - rhs.x, lhs.y - rhs.y );
|
||||
}
|
||||
|
||||
template<class T>
|
||||
Vector2<T> operator*( const Vector2<T>& lhs, const float& rhs )
|
||||
{
|
||||
return Vector2<T>( lhs.x * rhs, lhs.y * rhs );
|
||||
}
|
||||
|
||||
template<class T>
|
||||
Vector2<T> operator/( const Vector2<T>& lhs, const T& rhs )
|
||||
{
|
||||
return Vector2<T>( lhs.x / rhs, lhs.y / rhs );
|
||||
}
|
||||
|
||||
|
||||
typedef Vector2<int32> v2i;
|
||||
typedef Vector2<float> v2f;
|
||||
|
||||
|
||||
template<class T>
|
||||
struct Vector3
|
||||
{
|
||||
Vector3() : x( 0 ), y( 0 ), z( 0 ) {}
|
||||
Vector3( T v ) : x( v ), y( v ), z( v ) {}
|
||||
Vector3( T _x, T _y, T _z ) : x( _x ), y( _y ), z( _z ) {}
|
||||
template<class Y>
|
||||
Vector3( const Vector3<Y>& v ) : x( T( v.x ) ), y( T( v.y ) ), z( T( v.z ) ) {}
|
||||
|
||||
T Luminance() const { return T( x * 0.3f + y * 0.59f + z * 0.11f ); }
|
||||
void Clamp()
|
||||
{
|
||||
x = std::min( T(1), std::max( T(0), x ) );
|
||||
y = std::min( T(1), std::max( T(0), y ) );
|
||||
z = std::min( T(1), std::max( T(0), z ) );
|
||||
}
|
||||
|
||||
bool operator==( const Vector3<T>& rhs ) const { return x == rhs.x && y == rhs.y && z == rhs.z; }
|
||||
bool operator!=( const Vector2<T>& rhs ) const { return !( *this == rhs ); }
|
||||
|
||||
T& operator[]( uint idx ) { assert( idx < 3 ); return ((T*)this)[idx]; }
|
||||
const T& operator[]( uint idx ) const { assert( idx < 3 ); return ((T*)this)[idx]; }
|
||||
|
||||
Vector3<T> operator+=( const Vector3<T>& rhs )
|
||||
{
|
||||
x += rhs.x;
|
||||
y += rhs.y;
|
||||
z += rhs.z;
|
||||
return *this;
|
||||
}
|
||||
|
||||
Vector3<T> operator*=( const Vector3<T>& rhs )
|
||||
{
|
||||
x *= rhs.x;
|
||||
y *= rhs.y;
|
||||
z *= rhs.z;
|
||||
return *this;
|
||||
}
|
||||
|
||||
Vector3<T> operator*=( const float& rhs )
|
||||
{
|
||||
x *= rhs;
|
||||
y *= rhs;
|
||||
z *= rhs;
|
||||
return *this;
|
||||
}
|
||||
|
||||
T x, y, z;
|
||||
T padding;
|
||||
};
|
||||
|
||||
template<class T>
|
||||
Vector3<T> operator+( const Vector3<T>& lhs, const Vector3<T>& rhs )
|
||||
{
|
||||
return Vector3<T>( lhs.x + rhs.x, lhs.y + rhs.y, lhs.z + rhs.z );
|
||||
}
|
||||
|
||||
template<class T>
|
||||
Vector3<T> operator-( const Vector3<T>& lhs, const Vector3<T>& rhs )
|
||||
{
|
||||
return Vector3<T>( lhs.x - rhs.x, lhs.y - rhs.y, lhs.z - rhs.z );
|
||||
}
|
||||
|
||||
template<class T>
|
||||
Vector3<T> operator*( const Vector3<T>& lhs, const Vector3<T>& rhs )
|
||||
{
|
||||
return Vector3<T>( lhs.x * rhs.x, lhs.y * rhs.y, lhs.z * rhs.z );
|
||||
}
|
||||
|
||||
template<class T>
|
||||
Vector3<T> operator*( const Vector3<T>& lhs, const float& rhs )
|
||||
{
|
||||
return Vector3<T>( T( lhs.x * rhs ), T( lhs.y * rhs ), T( lhs.z * rhs ) );
|
||||
}
|
||||
|
||||
template<class T>
|
||||
Vector3<T> operator/( const Vector3<T>& lhs, const T& rhs )
|
||||
{
|
||||
return Vector3<T>( lhs.x / rhs, lhs.y / rhs, lhs.z / rhs );
|
||||
}
|
||||
|
||||
template<class T>
|
||||
bool operator<( const Vector3<T>& lhs, const Vector3<T>& rhs )
|
||||
{
|
||||
return lhs.Luminance() < rhs.Luminance();
|
||||
}
|
||||
|
||||
typedef Vector3<int32> v3i;
|
||||
typedef Vector3<float> v3f;
|
||||
typedef Vector3<uint8> v3b;
|
||||
|
||||
|
||||
static inline v3b v3f_to_v3b( const v3f& v )
|
||||
{
|
||||
return v3b( uint8( std::min( 1.f, v.x ) * 255 ), uint8( std::min( 1.f, v.y ) * 255 ), uint8( std::min( 1.f, v.z ) * 255 ) );
|
||||
}
|
||||
|
||||
template<class T>
|
||||
Vector3<T> Mix( const Vector3<T>& v1, const Vector3<T>& v2, float amount )
|
||||
{
|
||||
return v1 + ( v2 - v1 ) * amount;
|
||||
}
|
||||
|
||||
template<>
|
||||
inline v3b Mix( const v3b& v1, const v3b& v2, float amount )
|
||||
{
|
||||
return v3b( v3f( v1 ) + ( v3f( v2 ) - v3f( v1 ) ) * amount );
|
||||
}
|
||||
|
||||
template<class T>
|
||||
Vector3<T> Desaturate( const Vector3<T>& v )
|
||||
{
|
||||
T l = v.Luminance();
|
||||
return Vector3<T>( l, l, l );
|
||||
}
|
||||
|
||||
template<class T>
|
||||
Vector3<T> Desaturate( const Vector3<T>& v, float mul )
|
||||
{
|
||||
T l = T( v.Luminance() * mul );
|
||||
return Vector3<T>( l, l, l );
|
||||
}
|
||||
|
||||
template<class T>
|
||||
Vector3<T> pow( const Vector3<T>& base, float exponent )
|
||||
{
|
||||
return Vector3<T>(
|
||||
pow( base.x, exponent ),
|
||||
pow( base.y, exponent ),
|
||||
pow( base.z, exponent ) );
|
||||
}
|
||||
|
||||
template<class T>
|
||||
Vector3<T> sRGB2linear( const Vector3<T>& v )
|
||||
{
|
||||
return Vector3<T>(
|
||||
sRGB2linear( v.x ),
|
||||
sRGB2linear( v.y ),
|
||||
sRGB2linear( v.z ) );
|
||||
}
|
||||
|
||||
template<class T>
|
||||
Vector3<T> linear2sRGB( const Vector3<T>& v )
|
||||
{
|
||||
return Vector3<T>(
|
||||
linear2sRGB( v.x ),
|
||||
linear2sRGB( v.y ),
|
||||
linear2sRGB( v.z ) );
|
||||
}
|
||||
|
||||
#endif
|
|
@ -21,6 +21,8 @@ project "texturec"
|
|||
path.join(BGFX_DIR, "3rdparty/libsquish/**.h"),
|
||||
path.join(BGFX_DIR, "3rdparty/etc1/**.cpp"),
|
||||
path.join(BGFX_DIR, "3rdparty/etc1/**.h"),
|
||||
path.join(BGFX_DIR, "3rdparty/etc2/**.cpp"),
|
||||
path.join(BGFX_DIR, "3rdparty/etc2/**.hpp"),
|
||||
path.join(BGFX_DIR, "3rdparty/nvtt/**.cpp"),
|
||||
path.join(BGFX_DIR, "3rdparty/nvtt/**.h"),
|
||||
path.join(BGFX_DIR, "3rdparty/pvrtc/**.cpp"),
|
||||
|
|
|
@ -13,6 +13,7 @@
|
|||
#include "image.h"
|
||||
#include <libsquish/squish.h>
|
||||
#include <etc1/etc1.h>
|
||||
#include <etc2/ProcessRGB.hpp>
|
||||
#include <nvtt/nvtt.h>
|
||||
#include <pvrtc/PvrTcEncoder.h>
|
||||
#include <tinyexr/tinyexr.h>
|
||||
|
@ -86,6 +87,23 @@ namespace bgfx
|
|||
etc1_encode_image( (const uint8_t*)_src, _width, _height, 4, _width*4, (uint8_t*)_dst);
|
||||
return true;
|
||||
|
||||
case TextureFormat::ETC2:
|
||||
{
|
||||
const uint32_t pitch = _width*4;
|
||||
const uint32_t width = _width/4;
|
||||
const uint32_t height = _height/4;
|
||||
const uint8_t* src = (const uint8_t*)_src;
|
||||
uint64_t* dst = (uint64_t*)_dst;
|
||||
for (uint32_t yy = 0; yy < height; ++yy)
|
||||
{
|
||||
for (uint32_t xx = 0; xx < width; ++xx)
|
||||
{
|
||||
*dst++ = ProcessRGB_ETC2(&src[(yy*pitch+xx)*4]);
|
||||
}
|
||||
}
|
||||
}
|
||||
return true;
|
||||
|
||||
case TextureFormat::PTC14:
|
||||
{
|
||||
using namespace Javelin;
|
||||
|
|
Loading…
Reference in a new issue