bgfx/src/renderer_d3d11.cpp

1846 lines
53 KiB
C++
Raw Normal View History

2012-07-23 00:08:58 -04:00
/*
* Copyright 2011-2012 Branimir Karadzic. All rights reserved.
* License: http://www.opensource.org/licenses/BSD-2-Clause
*/
#include "bgfx_p.h"
#if BGFX_CONFIG_RENDERER_DIRECT3D11
# include "renderer_d3d11.h"
namespace bgfx
{
static const D3D11_PRIMITIVE_TOPOLOGY s_primType[] =
{
D3D11_PRIMITIVE_TOPOLOGY_TRIANGLELIST,
D3D11_PRIMITIVE_TOPOLOGY_LINELIST,
D3D11_PRIMITIVE_TOPOLOGY_POINTLIST,
};
static const uint32_t s_primNumVerts[] =
{
3,
2,
1,
};
static const D3D11_BLEND s_blendFactor[] =
{
(D3D11_BLEND)0, // ignored
D3D11_BLEND_ZERO,
D3D11_BLEND_ONE,
D3D11_BLEND_SRC_COLOR,
D3D11_BLEND_INV_SRC_COLOR,
D3D11_BLEND_SRC_ALPHA,
D3D11_BLEND_INV_SRC_ALPHA,
D3D11_BLEND_DEST_ALPHA,
D3D11_BLEND_INV_DEST_ALPHA,
D3D11_BLEND_DEST_COLOR,
D3D11_BLEND_INV_DEST_COLOR,
D3D11_BLEND_SRC_ALPHA_SAT,
};
static const D3D11_COMPARISON_FUNC s_depthFunc[] =
{
(D3D11_COMPARISON_FUNC)0, // ignored
D3D11_COMPARISON_LESS,
D3D11_COMPARISON_LESS_EQUAL,
D3D11_COMPARISON_EQUAL,
D3D11_COMPARISON_GREATER_EQUAL,
D3D11_COMPARISON_GREATER,
D3D11_COMPARISON_NOT_EQUAL,
D3D11_COMPARISON_NEVER,
D3D11_COMPARISON_ALWAYS,
};
static const D3D11_CULL_MODE s_cullMode[] =
{
D3D11_CULL_NONE,
D3D11_CULL_FRONT,
D3D11_CULL_BACK,
};
static const D3D11_TEXTURE_ADDRESS_MODE s_textureAddress[] =
{
D3D11_TEXTURE_ADDRESS_WRAP,
D3D11_TEXTURE_ADDRESS_MIRROR,
D3D11_TEXTURE_ADDRESS_CLAMP,
};
static const D3D11_INPUT_ELEMENT_DESC s_attrib[Attrib::Count] =
{
{ "POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 },
{ "NORMAL", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 },
{ "COLOR", 0, DXGI_FORMAT_R8G8B8A8_UINT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 },
{ "COLOR", 1, DXGI_FORMAT_R8G8B8A8_UINT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 },
{ "BLENDINDICES", 0, DXGI_FORMAT_R8G8B8A8_UINT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 },
{ "BLENDWEIGHT", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 },
{ "TEXCOORD", 0, DXGI_FORMAT_R32G32_FLOAT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 },
{ "TEXCOORD", 1, DXGI_FORMAT_R32G32_FLOAT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 },
{ "TEXCOORD", 2, DXGI_FORMAT_R32G32_FLOAT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 },
{ "TEXCOORD", 3, DXGI_FORMAT_R32G32_FLOAT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 },
{ "TEXCOORD", 4, DXGI_FORMAT_R32G32_FLOAT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 },
{ "TEXCOORD", 5, DXGI_FORMAT_R32G32_FLOAT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 },
{ "TEXCOORD", 6, DXGI_FORMAT_R32G32_FLOAT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 },
{ "TEXCOORD", 7, DXGI_FORMAT_R32G32_FLOAT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 },
};
static D3D11_INPUT_ELEMENT_DESC* fillVertexDecl(D3D11_INPUT_ELEMENT_DESC* _out, uint32_t _count, const VertexDecl& _decl)
{
D3D11_INPUT_ELEMENT_DESC* elem = _out;
for (uint32_t attr = 0; attr < Attrib::Count; ++attr)
{
if (0xff != _decl.m_attributes[attr])
{
uint8_t num;
AttribType::Enum type;
bool normalized;
_decl.decode(Attrib::Enum(attr), num, type, normalized);
memcpy(elem, &s_attrib[attr], sizeof(D3D11_INPUT_ELEMENT_DESC) );
DXGI_FORMAT format = elem->Format;
switch (type)
{
case AttribType::Uint8:
if (normalized)
{
switch (num)
{
case 1:
format = DXGI_FORMAT_R8_UNORM;
break;
case 2:
format = DXGI_FORMAT_R8G8_UNORM;
break;
default:
case 4:
format = DXGI_FORMAT_R8G8B8A8_UNORM;
break;
}
}
else
{
switch (num)
{
case 1:
format = DXGI_FORMAT_R8_UINT;
break;
case 2:
format = DXGI_FORMAT_R8G8_UINT;
break;
default:
case 4:
format = DXGI_FORMAT_R8G8B8A8_UNORM; //DXGI_FORMAT_R8G8B8A8_UINT;
break;
}
}
break;
case AttribType::Uint16:
if (normalized)
{
switch (num)
{
default:
case 2:
format = DXGI_FORMAT_R16G16_UNORM;
break;
case 4:
format = DXGI_FORMAT_R16G16B16A16_UNORM;
break;
}
}
else
{
switch (num)
{
default:
case 2:
format = DXGI_FORMAT_R16G16_UINT;
break;
case 4:
format = DXGI_FORMAT_R16G16B16A16_UINT;
break;
}
}
break;
case AttribType::Float:
switch (num)
{
case 1:
format = DXGI_FORMAT_R32_FLOAT;
break;
case 2:
format = DXGI_FORMAT_R32G32_FLOAT;
break;
default:
case 3:
format = DXGI_FORMAT_R32G32B32_FLOAT;
break;
case 4:
format = DXGI_FORMAT_R32G32B32A32_FLOAT;
break;
}
break;
default:
BX_CHECK(false, "Invalid attrib type.");
break;
}
elem->Format = format;
elem->AlignedByteOffset = _decl.m_offset[attr];
++elem;
}
}
return elem;
}
struct RendererContext
{
RendererContext()
: m_vsChanges(0)
, m_fsChanges(0)
{
}
void init()
{
m_d3d11dll = LoadLibrary("d3d11.dll");
BGFX_FATAL(NULL != m_d3d11dll, bgfx::Fatal::D3D11_UnableToInitialize, "Failed to load d3d11.dll.");
m_dxgidll = LoadLibrary("dxgi.dll");
BGFX_FATAL(NULL != m_dxgidll, bgfx::Fatal::D3D11_UnableToInitialize, "Failed to load dxgi.dll.");
PFN_D3D11_CREATE_DEVICE_AND_SWAP_CHAIN d3D11CreateDeviceAndSwapChain = (PFN_D3D11_CREATE_DEVICE_AND_SWAP_CHAIN)GetProcAddress(m_d3d11dll, "D3D11CreateDeviceAndSwapChain");
BGFX_FATAL(NULL != d3D11CreateDeviceAndSwapChain, bgfx::Fatal::D3D11_UnableToInitialize, "Function D3D11CreateDeviceAndSwapChain not found.");
CreateDXGIFactoryFn createDXGIFactory = (CreateDXGIFactoryFn)GetProcAddress(m_dxgidll, "CreateDXGIFactory");
BGFX_FATAL(NULL != createDXGIFactory, bgfx::Fatal::D3D11_UnableToInitialize, "Function CreateDXGIFactory not found.");
HRESULT hr;
// IDXGIFactory* factory;
// hr = CreateDXGIFactory(__uuidof(IDXGIFactory), (void**)(&factory) );
D3D_FEATURE_LEVEL features[] =
{
D3D_FEATURE_LEVEL_11_0,
};
memset(&m_scd, 0, sizeof(m_scd) );
m_scd.BufferDesc.Width = BGFX_DEFAULT_WIDTH;
m_scd.BufferDesc.Height = BGFX_DEFAULT_HEIGHT;
m_scd.BufferDesc.Format = DXGI_FORMAT_R8G8B8A8_UNORM;
m_scd.BufferDesc.RefreshRate.Numerator = 60;
m_scd.BufferDesc.RefreshRate.Denominator = 1;
m_scd.SampleDesc.Count = 1;
m_scd.SampleDesc.Quality = 0;
m_scd.BufferUsage = DXGI_USAGE_RENDER_TARGET_OUTPUT;
m_scd.BufferCount = 1;
m_scd.OutputWindow = g_bgfxHwnd;
m_scd.Windowed = true;
uint32_t flags = D3D11_CREATE_DEVICE_SINGLETHREADED
#if BGFX_CONFIG_DEBUG
| D3D11_CREATE_DEVICE_DEBUG
#endif // BGFX_CONFIG_DEBUG
;
D3D_FEATURE_LEVEL featureLevel;
hr = d3D11CreateDeviceAndSwapChain(NULL
, D3D_DRIVER_TYPE_HARDWARE
, NULL
, flags
, features
, 1
, D3D11_SDK_VERSION
, &m_scd
, &m_swapChain
, &m_device
, &featureLevel
, &m_deviceCtx
);
BGFX_FATAL(SUCCEEDED(hr), bgfx::Fatal::D3D11_UnableToInitialize, "Unable to create Direct3D11 device.");
ID3D11Texture2D* color;
DX_CHECK(m_swapChain->GetBuffer(0, __uuidof(ID3D11Texture2D), (void**)&color) );
DX_CHECK(m_device->CreateRenderTargetView(color, NULL, &m_backBufferColor) );
DX_RELEASE(color, 0);
D3D11_TEXTURE2D_DESC dsd;
dsd.Width = m_scd.BufferDesc.Width;
dsd.Height = m_scd.BufferDesc.Height;
dsd.MipLevels = 1;
dsd.ArraySize = 1;
dsd.Format = DXGI_FORMAT_D24_UNORM_S8_UINT;
dsd.SampleDesc = m_scd.SampleDesc;
dsd.Usage = D3D11_USAGE_DEFAULT;
dsd.BindFlags = D3D11_BIND_DEPTH_STENCIL;
dsd.CPUAccessFlags = 0;
dsd.MiscFlags = 0;
ID3D11Texture2D* depthStencil;
DX_CHECK(m_device->CreateTexture2D(&dsd, NULL, &depthStencil) );
DX_CHECK(m_device->CreateDepthStencilView(depthStencil, NULL, &m_backBufferDepthStencil) );
DX_RELEASE(depthStencil, 0);
m_deviceCtx->OMSetRenderTargets(1, &m_backBufferColor, m_backBufferDepthStencil);
for (uint32_t ii = 0; ii < PredefinedUniform::Count; ++ii)
{
m_predefinedUniforms[ii].create(ConstantType::Uniform4x4fv, 1, false);
m_uniformReg.reg(getPredefinedUniformName(PredefinedUniform::Enum(ii) ), &m_predefinedUniforms[ii]);
}
}
void shutdown()
{
2012-07-24 01:29:20 -04:00
m_deviceCtx->ClearState();
2012-07-23 00:08:58 -04:00
invalidateCache();
for (uint32_t ii = 0; ii < countof(m_indexBuffers); ++ii)
{
m_indexBuffers[ii].destroy();
}
for (uint32_t ii = 0; ii < countof(m_vertexBuffers); ++ii)
{
m_vertexBuffers[ii].destroy();
}
for (uint32_t ii = 0; ii < countof(m_vertexShaders); ++ii)
{
m_vertexShaders[ii].destroy();
}
for (uint32_t ii = 0; ii < countof(m_fragmentShaders); ++ii)
{
m_fragmentShaders[ii].destroy();
}
for (uint32_t ii = 0; ii < countof(m_textures); ++ii)
{
m_textures[ii].destroy();
}
for (uint32_t ii = 0; ii < countof(m_renderTargets); ++ii)
{
m_renderTargets[ii].destroy();
}
for (uint32_t ii = 0; ii < countof(m_uniforms); ++ii)
{
m_uniforms[ii].destroy();
}
for (uint32_t ii = 0; ii < PredefinedUniform::Count; ++ii)
{
m_predefinedUniforms[ii].destroy();
}
DX_RELEASE(m_backBufferDepthStencil, 0);
DX_RELEASE(m_backBufferColor, 0);
DX_RELEASE(m_swapChain, 0);
DX_RELEASE(m_deviceCtx, 0);
DX_RELEASE(m_device, 0);
FreeLibrary(m_dxgidll);
FreeLibrary(m_d3d11dll);
}
void flip()
{
if (NULL != m_swapChain)
{
DX_CHECK(m_swapChain->Present(0, 0) );
}
}
void invalidateCache()
{
m_inputLayoutCache.invalidate();
m_blendStateCache.invalidate();
m_depthStencilStateCache.invalidate();
m_rasterizerStateCache.invalidate();
m_samplerStateCache.invalidate();
}
void updateResolution(const Resolution& _resolution)
{
if ( (uint32_t)m_scd.BufferDesc.Width != _resolution.m_width
|| (uint32_t)m_scd.BufferDesc.Height != _resolution.m_height
|| m_flags != _resolution.m_flags)
{
m_flags = _resolution.m_flags;
m_textVideoMem.resize(false, _resolution.m_width, _resolution.m_height);
m_textVideoMem.clear();
#if 0
D3DDEVICE_CREATION_PARAMETERS dcp;
DX_CHECK(m_device->GetCreationParameters(&dcp) );
D3DDISPLAYMODE dm;
DX_CHECK(m_d3d9->GetAdapterDisplayMode(dcp.AdapterOrdinal, &dm) );
m_params.BackBufferFormat = dm.Format;
m_params.BackBufferWidth = _resolution.m_width;
m_params.BackBufferHeight = _resolution.m_height;
m_params.FullScreen_RefreshRateInHz = BGFX_RESET_FULLSCREEN == (m_flags&BGFX_RESET_FULLSCREEN_MASK) ? 60 : 0;
m_params.PresentationInterval = !!(m_flags&BGFX_RESET_VSYNC) ? D3DPRESENT_INTERVAL_ONE : D3DPRESENT_INTERVAL_IMMEDIATE;
updateMsaa();
Msaa& msaa = s_msaa[(m_flags&BGFX_RESET_MSAA_MASK)>>BGFX_RESET_MSAA_SHIFT];
m_params.MultiSampleType = msaa.m_type;
m_params.MultiSampleQuality = msaa.m_quality;
preReset();
DX_CHECK(m_device->Reset(&m_params) );
postReset();
#endif // 0
}
}
void setShaderConstant(uint8_t _flags, uint16_t _regIndex, const void* _val, uint16_t _numRegs)
{
if (_flags&BGFX_UNIFORM_FRAGMENTBIT)
{
memcpy(&m_fsScratch[_regIndex], _val, _numRegs*16);
++m_fsChanges;
}
else
{
memcpy(&m_vsScratch[_regIndex], _val, _numRegs*16);
++m_vsChanges;
}
}
void commitShaderConstants()
{
if (0 < m_vsChanges)
{
if (NULL != m_currentMaterial->m_vsh->m_buffer)
{
m_deviceCtx->UpdateSubresource(m_currentMaterial->m_vsh->m_buffer, 0, 0, m_vsScratch, 0, 0);
}
m_vsChanges = 0;
}
if (0 < m_fsChanges)
{
if (NULL != m_currentMaterial->m_fsh->m_buffer)
{
m_deviceCtx->UpdateSubresource(m_currentMaterial->m_fsh->m_buffer, 0, 0, m_fsScratch, 0, 0);
}
m_fsChanges = 0;
}
}
void setRenderTarget(RenderTargetHandle _rt, bool _msaa = true)
{
if (_rt.idx == invalidHandle)
{
m_deviceCtx->OMSetRenderTargets(1, &m_backBufferColor, m_backBufferDepthStencil);
}
else
{
}
}
void clear(const Rect& _rect, const Clear& _clear)
{
// DX_CHECK(s_renderCtx.m_device->SetRenderState(D3DRS_SCISSORTESTENABLE, TRUE) );
// DX_CHECK(s_renderCtx.m_device->SetScissorRect(&rc) );
if (BGFX_CLEAR_COLOR_BIT & _clear.m_flags)
{
uint32_t rgba = _clear.m_rgba;
float frgba[4] = { (rgba>>24)/255.0f, ( (rgba>>16)&0xff)/255.0f, ( (rgba>>8)&0xff)/255.0f, (rgba&0xff)/255.0f };
// DX_CHECK(s_renderCtx.m_device->SetRenderState(D3DRS_COLORWRITEENABLE, D3DCOLORWRITEENABLE_RED|D3DCOLORWRITEENABLE_GREEN|D3DCOLORWRITEENABLE_BLUE|D3DCOLORWRITEENABLE_ALPHA) );
m_deviceCtx->ClearRenderTargetView(m_backBufferColor, frgba);
}
if ( (BGFX_CLEAR_DEPTH_BIT|BGFX_CLEAR_STENCIL_BIT) & _clear.m_flags)
{
DWORD flags = 0;
flags |= (_clear.m_flags & BGFX_CLEAR_DEPTH_BIT) ? D3D11_CLEAR_DEPTH : 0;
flags |= (_clear.m_flags & BGFX_CLEAR_STENCIL_BIT) ? D3D11_CLEAR_STENCIL : 0;
// DX_CHECK(s_renderCtx.m_device->SetRenderState(D3DRS_ZWRITEENABLE, TRUE) );
m_deviceCtx->ClearDepthStencilView(m_backBufferDepthStencil, flags, _clear.m_depth, _clear.m_stencil);
}
// DX_CHECK(s_renderCtx.m_device->SetRenderState(D3DRS_SCISSORTESTENABLE, FALSE) );
}
void setInputLayout(const VertexDecl& _vertexDecl, const Material& _material)
{
uint64_t layoutHash = (uint64_t(_vertexDecl.m_hash)<<32) | _material.m_vsh->m_hash;
ID3D11InputLayout* layout = m_inputLayoutCache.find(layoutHash);
if (NULL == layout)
{
D3D11_INPUT_ELEMENT_DESC vertexElements[Attrib::Count+1+BGFX_CONFIG_MAX_INSTANCE_DATA_COUNT];
D3D11_INPUT_ELEMENT_DESC* elem = fillVertexDecl(vertexElements, Attrib::Count, _vertexDecl);
DX_CHECK(m_device->CreateInputLayout(vertexElements
, uint32_t(elem-vertexElements)
, _material.m_vsh->m_code->data
, _material.m_vsh->m_code->size
, &layout
) );
m_inputLayoutCache.add(layoutHash, layout);
}
m_deviceCtx->IASetInputLayout(layout);
}
void setBlendState(uint64_t _state)
{
_state &= BGFX_STATE_BLEND_MASK|BGFX_STATE_ALPHA_WRITE|BGFX_STATE_RGB_WRITE;
ID3D11BlendState* bs = m_blendStateCache.find(_state);
if (NULL == bs)
{
D3D11_BLEND_DESC desc;
memset(&desc, 0, sizeof(desc) );
D3D11_RENDER_TARGET_BLEND_DESC& drt = desc.RenderTarget[0];
drt.BlendEnable = !!(BGFX_STATE_BLEND_MASK & _state);
uint32_t blend = (_state&BGFX_STATE_BLEND_MASK)>>BGFX_STATE_BLEND_SHIFT;
uint32_t src = blend&0xf;
uint32_t dst = (blend>>4)&0xf;
uint32_t writeMask = (_state&BGFX_STATE_ALPHA_WRITE) ? D3D11_COLOR_WRITE_ENABLE_ALPHA : 0;
writeMask |= (_state&BGFX_STATE_RGB_WRITE) ? D3D11_COLOR_WRITE_ENABLE_RED|D3D11_COLOR_WRITE_ENABLE_GREEN|D3D11_COLOR_WRITE_ENABLE_BLUE : 0;
drt.SrcBlend =
drt.SrcBlendAlpha = s_blendFactor[src];
drt.DestBlend =
drt.DestBlendAlpha = s_blendFactor[dst];
drt.BlendOp =
drt.BlendOpAlpha = D3D11_BLEND_OP_ADD;
drt.SrcBlend = s_blendFactor[src];
drt.DestBlend = s_blendFactor[dst];
drt.BlendOp = D3D11_BLEND_OP_ADD;
drt.RenderTargetWriteMask = writeMask;
DX_CHECK(m_device->CreateBlendState(&desc, &bs) );
m_blendStateCache.add(_state, bs);
}
m_deviceCtx->OMSetBlendState(bs, NULL, 0xffffffff);
}
void setDepthStencilState(uint64_t _state)
{
_state &= BGFX_STATE_DEPTH_WRITE|BGFX_STATE_DEPTH_TEST_MASK;
ID3D11DepthStencilState* dss = m_depthStencilStateCache.find(_state);
if (NULL == dss)
{
D3D11_DEPTH_STENCIL_DESC desc;
memset(&desc, 0, sizeof(desc) );
uint32_t func = (_state&BGFX_STATE_DEPTH_TEST_MASK)>>BGFX_STATE_DEPTH_TEST_SHIFT;
desc.DepthEnable = 0 != func;
desc.DepthWriteMask = !!(BGFX_STATE_DEPTH_WRITE & _state) ? D3D11_DEPTH_WRITE_MASK_ALL : D3D11_DEPTH_WRITE_MASK_ZERO;
desc.DepthFunc = s_depthFunc[func];
DX_CHECK(m_device->CreateDepthStencilState(&desc, &dss) );
m_depthStencilStateCache.add(_state, dss);
}
m_deviceCtx->OMSetDepthStencilState(dss, 0);
}
void setRasterizerState(uint64_t _state, bool _wireframe = false)
{
_state &= BGFX_STATE_CULL_MASK;
ID3D11RasterizerState* rs = m_rasterizerStateCache.find(_state);
if (NULL == rs)
{
D3D11_RASTERIZER_DESC desc;
memset(&desc, 0, sizeof(desc) );
desc.FillMode = _wireframe ? D3D11_FILL_WIREFRAME : D3D11_FILL_SOLID;
uint32_t cull = (_state&BGFX_STATE_CULL_MASK)>>BGFX_STATE_CULL_SHIFT;
desc.CullMode = s_cullMode[cull];
DX_CHECK(m_device->CreateRasterizerState(&desc, &rs) );
m_rasterizerStateCache.add(_state, rs);
}
m_deviceCtx->RSSetState(rs);
}
void saveScreenShot(Memory* _mem)
{
ID3D11Texture2D* backBuffer;
DX_CHECK(m_swapChain->GetBuffer(0, __uuidof(ID3D11Texture2D), (void**)&backBuffer) );
D3D11_TEXTURE2D_DESC backBufferDesc;
backBuffer->GetDesc(&backBufferDesc);
ID3D11Texture2D *texture = backBuffer;
if (backBufferDesc.SampleDesc.Count > 1)
{
D3D11_TEXTURE2D_DESC desc;
memcpy(&desc, &backBufferDesc, sizeof(desc) );
desc.SampleDesc.Count = 1;
desc.SampleDesc.Quality = 0;
desc.Usage = D3D11_USAGE_DEFAULT;
desc.BindFlags = 0;
desc.CPUAccessFlags = 0;
ID3D11Texture2D* resolveTexture;
HRESULT hr = m_device->CreateTexture2D(&desc, NULL, &resolveTexture);
if (SUCCEEDED(hr) )
{
m_deviceCtx->ResolveSubresource(resolveTexture, 0, backBuffer, 0, backBufferDesc.Format);
texture = resolveTexture;
}
texture->GetDesc(&backBufferDesc);
// save texture
// saveTga( (const char*)_mem->data, m_params.BackBufferWidth, m_params.BackBufferHeight, rect.Pitch, &data[point.y*rect.Pitch+point.x*bpp]);
DX_RELEASE(resolveTexture, 0);
}
DX_RELEASE(backBuffer, 0);
}
HMODULE m_d3d11dll;
HMODULE m_dxgidll;
IDXGISwapChain* m_swapChain;
ID3D11Device* m_device;
ID3D11DeviceContext* m_deviceCtx;
ID3D11RenderTargetView* m_backBufferColor;
ID3D11DepthStencilView* m_backBufferDepthStencil;
DXGI_SWAP_CHAIN_DESC m_scd;
uint32_t m_flags;
IndexBuffer m_indexBuffers[BGFX_CONFIG_MAX_INDEX_BUFFERS];
VertexBuffer m_vertexBuffers[BGFX_CONFIG_MAX_VERTEX_BUFFERS];
Shader m_vertexShaders[BGFX_CONFIG_MAX_VERTEX_SHADERS];
Shader m_fragmentShaders[BGFX_CONFIG_MAX_FRAGMENT_SHADERS];
Material m_materials[BGFX_CONFIG_MAX_MATERIALS];
Texture m_textures[BGFX_CONFIG_MAX_TEXTURES];
VertexDecl m_vertexDecls[BGFX_CONFIG_MAX_VERTEX_DECLS];
RenderTarget m_renderTargets[BGFX_CONFIG_MAX_RENDER_TARGETS];
Uniform m_uniforms[BGFX_CONFIG_MAX_UNIFORMS];
Uniform m_predefinedUniforms[PredefinedUniform::Count];
UniformRegistry m_uniformReg;
StateCacheT<ID3D11BlendState> m_blendStateCache;
StateCacheT<ID3D11DepthStencilState> m_depthStencilStateCache;
StateCacheT<ID3D11InputLayout> m_inputLayoutCache;
StateCacheT<ID3D11RasterizerState> m_rasterizerStateCache;
StateCacheT<ID3D11SamplerState> m_samplerStateCache;
TextVideoMem m_textVideoMem;
RenderTargetHandle m_rt;
Material* m_currentMaterial;
uint8_t m_vsScratch[64<<10];
uint8_t m_fsScratch[64<<10];
uint32_t m_vsChanges;
uint32_t m_fsChanges;
};
static RendererContext s_renderCtx;
void IndexBuffer::create(uint32_t _size, void* _data)
{
m_size = _size;
m_dynamic = NULL == _data;
D3D11_BUFFER_DESC desc;
desc.ByteWidth = _size;
desc.BindFlags = D3D11_BIND_INDEX_BUFFER;
desc.MiscFlags = 0;
desc.StructureByteStride = 0;
if (m_dynamic)
{
desc.Usage = D3D11_USAGE_DYNAMIC;
desc.CPUAccessFlags = D3D11_CPU_ACCESS_WRITE;
DX_CHECK(s_renderCtx.m_device->CreateBuffer(&desc
, NULL
, &m_ptr
) );
}
else
{
desc.Usage = D3D11_USAGE_DEFAULT;
desc.CPUAccessFlags = 0;
D3D11_SUBRESOURCE_DATA srd;
srd.pSysMem = _data;
srd.SysMemPitch = 0;
srd.SysMemSlicePitch = 0;
DX_CHECK(s_renderCtx.m_device->CreateBuffer(&desc
, &srd
, &m_ptr
) );
}
}
void IndexBuffer::update(uint32_t _offset, uint32_t _size, void* _data)
{
ID3D11DeviceContext* deviceCtx = s_renderCtx.m_deviceCtx;
BX_CHECK(m_dynamic, "Must be dynamic!");
D3D11_MAPPED_SUBRESOURCE mapped;
D3D11_MAP type = m_dynamic && 0 == _offset && m_size == _size ? D3D11_MAP_WRITE_DISCARD : D3D11_MAP_WRITE_NO_OVERWRITE;
DX_CHECK(deviceCtx->Map(m_ptr, 0, type, 0, &mapped) );
memcpy( (uint8_t*)mapped.pData + _offset, _data, _size);
deviceCtx->Unmap(m_ptr, 0);
}
void VertexBuffer::create(uint32_t _size, void* _data, VertexDeclHandle _declHandle)
{
m_size = _size;
m_decl = _declHandle;
m_dynamic = NULL == _data;
D3D11_BUFFER_DESC desc;
desc.ByteWidth = _size;
desc.BindFlags = D3D11_BIND_VERTEX_BUFFER;
desc.MiscFlags = 0;
if (m_dynamic)
{
desc.Usage = D3D11_USAGE_DYNAMIC;
desc.CPUAccessFlags = D3D11_CPU_ACCESS_WRITE;
desc.StructureByteStride = 0;
DX_CHECK(s_renderCtx.m_device->CreateBuffer(&desc
, NULL
, &m_ptr
) );
}
else
{
desc.Usage = D3D11_USAGE_DEFAULT;
desc.CPUAccessFlags = 0;
desc.StructureByteStride = 0;
D3D11_SUBRESOURCE_DATA srd;
srd.pSysMem = _data;
srd.SysMemPitch = 0;
srd.SysMemSlicePitch = 0;
DX_CHECK(s_renderCtx.m_device->CreateBuffer(&desc
, &srd
, &m_ptr
) );
}
}
void VertexBuffer::update(uint32_t _offset, uint32_t _size, void* _data)
{
ID3D11DeviceContext* deviceCtx = s_renderCtx.m_deviceCtx;
BX_CHECK(m_dynamic, "Must be dynamic!");
D3D11_MAPPED_SUBRESOURCE mapped;
D3D11_MAP type = m_dynamic && 0 == _offset && m_size == _size ? D3D11_MAP_WRITE_DISCARD : D3D11_MAP_WRITE_NO_OVERWRITE;
DX_CHECK(deviceCtx->Map(m_ptr, 0, type, 0, &mapped) );
memcpy( (uint8_t*)mapped.pData + _offset, _data, _size);
deviceCtx->Unmap(m_ptr, 0);
}
void ConstantBuffer::commit()
{
ID3D11DeviceContext* deviceCtx = s_renderCtx.m_deviceCtx;
reset();
do
{
uint32_t opcode = read();
if (ConstantType::End == opcode)
{
break;
}
ConstantType::Enum type;
uint16_t loc;
uint16_t num;
uint16_t copy;
decodeOpcode(opcode, type, loc, num, copy);
const char* data;
if (copy)
{
data = read(g_constantTypeSize[type]*num);
}
else
{
memcpy(&data, read(sizeof(void*) ), sizeof(void*) );
}
#define CASE_IMPLEMENT_UNIFORM(_uniform, _glsuffix, _dxsuffix, _type) \
case ConstantType::_uniform: \
case ConstantType::_uniform|BGFX_UNIFORM_FRAGMENTBIT: \
{ \
s_renderCtx.setShaderConstant(type, loc, data, num); \
} \
break;
switch ((int32_t)type)
{
CASE_IMPLEMENT_UNIFORM(Uniform1i, 1iv, I, int);
CASE_IMPLEMENT_UNIFORM(Uniform1f, 1fv, F, float);
CASE_IMPLEMENT_UNIFORM(Uniform1iv, 1iv, I, int);
CASE_IMPLEMENT_UNIFORM(Uniform1fv, 1fv, F, float);
CASE_IMPLEMENT_UNIFORM(Uniform2fv, 2fv, F, float);
CASE_IMPLEMENT_UNIFORM(Uniform3fv, 3fv, F, float);
CASE_IMPLEMENT_UNIFORM(Uniform4fv, 4fv, F, float);
CASE_IMPLEMENT_UNIFORM(Uniform3x3fv, Matrix3fv, F, float);
CASE_IMPLEMENT_UNIFORM(Uniform4x4fv, Matrix4fv, F, float);
case ConstantType::End:
break;
default:
BX_TRACE("%4d: INVALID 0x%08x, t %d, l %d, n %d, c %d", m_pos, opcode, type, loc, num, copy);
break;
}
#undef CASE_IMPLEMENT_UNIFORM
} while (true);
}
void TextVideoMemBlitter::setup()
{
ID3D11DeviceContext* deviceCtx = s_renderCtx.m_deviceCtx;
uint32_t width = s_renderCtx.m_scd.BufferDesc.Width;
uint32_t height = s_renderCtx.m_scd.BufferDesc.Width;
RenderTargetHandle rt = BGFX_INVALID_HANDLE;
s_renderCtx.setRenderTarget(rt, false);
D3D11_VIEWPORT vp;
vp.TopLeftX = 0;
vp.TopLeftY = 0;
vp.Width = (float)width;
vp.Height = (float)height;
vp.MinDepth = 0.0f;
vp.MaxDepth = 1.0f;
deviceCtx->RSSetViewports(1, &vp);
uint64_t state = BGFX_STATE_RGB_WRITE
| BGFX_STATE_ALPHA_WRITE
| BGFX_STATE_DEPTH_TEST_ALWAYS
;
s_renderCtx.setBlendState(state);
s_renderCtx.setDepthStencilState(state);
s_renderCtx.setRasterizerState(state);
#if 0
DX_CHECK(s_renderCtx.m_device->SetRenderState(D3DRS_ZENABLE, FALSE) );
DX_CHECK(s_renderCtx.m_device->SetRenderState(D3DRS_ZFUNC, D3DCMP_ALWAYS) );
DX_CHECK(s_renderCtx.m_device->SetRenderState(D3DRS_CULLMODE, D3DCULL_NONE) );
DX_CHECK(s_renderCtx.m_device->SetRenderState(D3DRS_ALPHABLENDENABLE, FALSE) );
DX_CHECK(s_renderCtx.m_device->SetRenderState(D3DRS_ALPHAFUNC, D3DCMP_GREATER) );
DX_CHECK(s_renderCtx.m_device->SetRenderState(D3DRS_COLORWRITEENABLE, D3DCOLORWRITEENABLE_RED|D3DCOLORWRITEENABLE_GREEN|D3DCOLORWRITEENABLE_BLUE) );
DX_CHECK(s_renderCtx.m_device->SetRenderState(D3DRS_FILLMODE, D3DFILL_SOLID) );
#endif // 0
Material& material = s_renderCtx.m_materials[m_material.idx];
s_renderCtx.m_currentMaterial = &material;
deviceCtx->VSSetShader( (ID3D11VertexShader*)material.m_vsh->m_ptr, NULL, 0);
deviceCtx->VSSetConstantBuffers(0, 1, &material.m_vsh->m_buffer);
deviceCtx->PSSetShader( (ID3D11PixelShader*)material.m_fsh->m_ptr, NULL, 0);
deviceCtx->PSSetConstantBuffers(0, 1, &material.m_fsh->m_buffer);
VertexBuffer& vb = s_renderCtx.m_vertexBuffers[m_vb->handle.idx];
VertexDecl& vertexDecl = s_renderCtx.m_vertexDecls[m_vb->decl.idx];
uint32_t stride = vertexDecl.m_stride;
uint32_t offset = 0;
deviceCtx->IASetVertexBuffers(0, 1, &vb.m_ptr, &stride, &offset);
s_renderCtx.setInputLayout(vertexDecl, material);
IndexBuffer& ib = s_renderCtx.m_indexBuffers[m_ib->handle.idx];
deviceCtx->IASetIndexBuffer(ib.m_ptr, DXGI_FORMAT_R16_UINT, 0);
float proj[16];
matrix_ortho(proj, 0.0f, (float)width, (float)height, 0.0f, 0.0f, 1000.0f);
PredefinedUniform& predefined = material.m_predefined[0];
uint8_t flags = predefined.m_type;
s_renderCtx.setShaderConstant(flags, predefined.m_loc, proj, 4);
s_renderCtx.commitShaderConstants();
s_renderCtx.m_textures[m_texture.idx].commit(0);
}
void TextVideoMemBlitter::render(uint32_t _numIndices)
{
ID3D11DeviceContext* deviceCtx = s_renderCtx.m_deviceCtx;
IndexBuffer& ib = s_renderCtx.m_indexBuffers[m_ib->handle.idx];
ib.update(0, _numIndices*2, m_ib->data);
uint32_t numVertices = _numIndices*4/6;
s_renderCtx.m_vertexBuffers[m_vb->handle.idx].update(0, numVertices*m_decl.m_stride, m_vb->data);
deviceCtx->IASetPrimitiveTopology(D3D11_PRIMITIVE_TOPOLOGY_TRIANGLELIST);
deviceCtx->DrawIndexed(_numIndices, 0, 0);
}
void Shader::create(bool _fragment, const Memory* _mem)
{
m_constantBuffer = ConstantBuffer::create(1024);
StreamRead stream(_mem->data, _mem->size);
uint16_t count;
stream.read(count);
uint16_t size;
stream.read(size);
if (0 < size)
{
D3D11_BUFFER_DESC desc;
desc.ByteWidth = size;
desc.Usage = D3D11_USAGE_DEFAULT;
desc.BindFlags = D3D11_BIND_CONSTANT_BUFFER;
desc.CPUAccessFlags = 0;
desc.MiscFlags = 0;
desc.StructureByteStride = 0;
DX_CHECK(s_renderCtx.m_device->CreateBuffer(&desc, NULL, &m_buffer) );
}
m_numPredefined = 0;
m_numUniforms = count;
BX_TRACE("Shader consts %d", count);
uint8_t fragmentBit = _fragment ? BGFX_UNIFORM_FRAGMENTBIT : 0;
for (uint32_t ii = 0; ii < count; ++ii)
{
uint8_t nameSize;
stream.read(nameSize);
char name[256];
stream.read(&name, nameSize);
name[nameSize] = '\0';
uint8_t type;
stream.read(type);
uint8_t num;
stream.read(num);
uint16_t regIndex;
stream.read(regIndex);
uint16_t regCount;
stream.read(regCount);
const char* kind = "invalid";
const void* data = NULL;
PredefinedUniform::Enum predefined = nameToPredefinedUniformEnum(name);
if (PredefinedUniform::Count != predefined)
{
kind = "predefined";
m_predefined[m_numPredefined].m_loc = regIndex;
m_predefined[m_numPredefined].m_count = regCount;
m_predefined[m_numPredefined].m_type = predefined|fragmentBit;
m_numPredefined++;
}
else
{
const UniformInfo* info = s_renderCtx.m_uniformReg.find(name);
Uniform* uniform = info != NULL ? (Uniform*)info->m_data : NULL;
if (NULL != uniform)
{
kind = "user";
data = uniform->m_data;
m_constantBuffer->writeUniformRef( (ConstantType::Enum)(type|fragmentBit), regIndex, data, regCount);
}
}
BX_TRACE("\t%s: %s, type %2d, num %2d, r.index %3d, r.count %2d"
, kind
, name
, type
, num
, regIndex
, regCount
);
BX_UNUSED(kind);
}
uint16_t shaderSize;
stream.read(shaderSize);
m_constantBuffer->finish();
const DWORD* code = (const DWORD*)stream.getDataPtr();
if (_fragment)
{
DX_CHECK(s_renderCtx.m_device->CreatePixelShader(code, shaderSize, NULL, (ID3D11PixelShader**)&m_ptr) );
}
else
{
m_hash = hash(code, shaderSize);
m_code = alloc(shaderSize);
memcpy(m_code->data, code, shaderSize);
DX_CHECK(s_renderCtx.m_device->CreateVertexShader(code, shaderSize, NULL, (ID3D11VertexShader**)&m_ptr) );
}
}
void Texture::create(const Memory* _mem, uint32_t _flags)
{
2012-07-24 01:29:20 -04:00
_flags &= BGFX_TEXTURE_U_MASK|BGFX_TEXTURE_V_MASK|BGFX_TEXTURE_W_MASK;
2012-07-23 00:08:58 -04:00
m_sampler = s_renderCtx.m_samplerStateCache.find(_flags);
if (NULL == m_sampler)
{
D3D11_SAMPLER_DESC desc;
desc.Filter = D3D11_FILTER_MIN_MAG_MIP_LINEAR;
desc.AddressU = s_textureAddress[(_flags&BGFX_TEXTURE_U_MASK)>>BGFX_TEXTURE_U_SHIFT];
desc.AddressV = s_textureAddress[(_flags&BGFX_TEXTURE_V_MASK)>>BGFX_TEXTURE_V_SHIFT];
desc.AddressW = s_textureAddress[(_flags&BGFX_TEXTURE_W_MASK)>>BGFX_TEXTURE_W_SHIFT];
desc.MipLODBias = 0.0f;
desc.MaxAnisotropy = 1;
desc.ComparisonFunc = D3D11_COMPARISON_ALWAYS;
2012-07-23 23:55:27 -04:00
desc.BorderColor[0] = 0.0f;
2012-07-23 00:08:58 -04:00
desc.BorderColor[1] = 0.0f;
desc.BorderColor[2] = 0.0f;
desc.BorderColor[3] = 0.0f;
2012-07-23 23:55:27 -04:00
desc.MinLOD = 0;
2012-07-23 00:08:58 -04:00
desc.MaxLOD = D3D11_FLOAT32_MAX;
s_renderCtx.m_device->CreateSamplerState(&desc, &m_sampler);
// D3D11_TEXTURE_ADDRESS_WRAP
// D3D11_FILTER_MIN_MAG_MIP_POINT
// desc. = s_textureFilter[(_flags&BGFX_TEXTURE_MIN_MASK)>>BGFX_TEXTURE_MIN_SHIFT];
// m_magFilter = s_textureFilter[(_flags&BGFX_TEXTURE_MAG_MASK)>>BGFX_TEXTURE_MAG_SHIFT];
// m_mipFilter = s_textureFilter[(_flags&BGFX_TEXTURE_MIP_MASK)>>BGFX_TEXTURE_MIP_SHIFT];
// m_srgb = (_flags&BGFX_TEXTURE_SRGB) == BGFX_TEXTURE_SRGB;
s_renderCtx.m_samplerStateCache.add(_flags, m_sampler);
}
Dds dds;
if (parseDds(dds, _mem) )
{
uint8_t bpp = dds.m_bpp;
bool decompress = false;
if (dds.m_cubeMap)
{
// createCubeTexture(dds.m_width, dds.m_numMips, s_textureFormat[dds.m_type].m_fmt);
}
else if (dds.m_depth > 1)
{
// createVolumeTexture(dds.m_width, dds.m_height, dds.m_depth, dds.m_numMips, s_textureFormat[dds.m_type].m_fmt);
}
else
{
// createTexture(dds.m_width, dds.m_height, dds.m_numMips, s_textureFormat[dds.m_type].m_fmt);
}
}
else
{
StreamRead stream(_mem->data, _mem->size);
uint32_t magic;
stream.read(magic);
if (BGFX_MAGIC == magic)
{
uint16_t width;
stream.read(width);
uint16_t height;
stream.read(height);
uint8_t bpp;
stream.read(bpp);
uint8_t numMips;
stream.read(numMips);
stream.align(16);
DXGI_FORMAT fmt = 1 == bpp ? DXGI_FORMAT_R8_UNORM : DXGI_FORMAT_R8G8B8A8_UNORM;
D3D11_TEXTURE2D_DESC desc;
desc.Width = width;
desc.Height = height;
desc.MipLevels = numMips;
desc.ArraySize = 1;
desc.Format = fmt;
desc.SampleDesc.Count = 1;
desc.SampleDesc.Quality = 0;
desc.Usage = D3D11_USAGE_DEFAULT;
desc.BindFlags = D3D11_BIND_SHADER_RESOURCE;
desc.CPUAccessFlags = 0;
desc.MiscFlags = 0;
D3D11_SUBRESOURCE_DATA* srd = (D3D11_SUBRESOURCE_DATA*)alloca(numMips*sizeof(D3D11_SUBRESOURCE_DATA) );
for (uint8_t mip = 0; mip < numMips; ++mip)
{
width = uint32_max(width, 1);
height = uint32_max(height, 1);
srd[mip].pSysMem = stream.getDataPtr();
srd[mip].SysMemPitch = width*bpp;
srd[mip].SysMemSlicePitch = 0;
stream.skip(width*height*bpp);
width >>= 1;
height >>= 1;
}
ID3D11Texture2D* texture;
DX_CHECK(s_renderCtx.m_device->CreateTexture2D(&desc, srd, &texture) );
D3D11_SHADER_RESOURCE_VIEW_DESC srv;
memset(&srv, 0, sizeof(srv) );
srv.ViewDimension = D3D11_SRV_DIMENSION_TEXTURE2D;
srv.Texture2D.MipLevels = numMips;
DX_CHECK(s_renderCtx.m_device->CreateShaderResourceView(texture, &srv, &m_ptr) );
DX_RELEASE(texture, 0);
}
else
{
//
}
}
}
void Texture::commit(uint8_t _stage)
{
s_renderCtx.m_deviceCtx->PSSetShaderResources(0, 1, &m_ptr);
s_renderCtx.m_deviceCtx->PSSetSamplers(0, 1, &m_sampler);
}
void RenderTarget::create(uint16_t _width, uint16_t _height, uint32_t _flags, uint32_t _textureFlags)
{
}
void RenderTarget::commit(uint8_t _stage)
{
}
void Uniform::create(ConstantType::Enum _type, uint16_t _num, bool _alloc)
{
uint32_t size = BX_ALIGN_16(g_constantTypeSize[_type]*_num);
if (_alloc)
{
m_data = g_realloc(NULL, size);
}
D3D11_BUFFER_DESC desc;
desc.ByteWidth = size;
desc.Usage = D3D11_USAGE_DEFAULT;
desc.BindFlags = D3D11_BIND_CONSTANT_BUFFER;
desc.CPUAccessFlags = 0;
desc.MiscFlags = 0;
desc.StructureByteStride = 0;
DX_CHECK(s_renderCtx.m_device->CreateBuffer(&desc, NULL, &m_ptr) );
}
void Uniform::destroy()
{
if (NULL != m_data)
{
g_free(m_data);
m_data = NULL;
}
2012-07-24 01:29:20 -04:00
DX_RELEASE(m_ptr, 0);
2012-07-23 00:08:58 -04:00
}
void Context::flip()
{
s_renderCtx.flip();
}
void Context::rendererInit()
{
s_renderCtx.init();
}
void Context::rendererShutdown()
{
s_renderCtx.shutdown();
}
void Context::rendererCreateIndexBuffer(IndexBufferHandle _handle, Memory* _mem)
{
s_renderCtx.m_indexBuffers[_handle.idx].create(_mem->size, _mem->data);
}
void Context::rendererDestroyIndexBuffer(IndexBufferHandle _handle)
{
s_renderCtx.m_indexBuffers[_handle.idx].destroy();
}
void Context::rendererCreateVertexDecl(VertexDeclHandle _handle, const VertexDecl& _decl)
{
VertexDecl& decl = s_renderCtx.m_vertexDecls[_handle.idx];
memcpy(&decl, &_decl, sizeof(VertexDecl) );
dump(decl);
}
void Context::rendererDestroyVertexDecl(VertexDeclHandle /*_handle*/)
{
}
void Context::rendererCreateVertexBuffer(VertexBufferHandle _handle, Memory* _mem, VertexDeclHandle _declHandle)
{
s_renderCtx.m_vertexBuffers[_handle.idx].create(_mem->size, _mem->data, _declHandle);
}
void Context::rendererDestroyVertexBuffer(VertexBufferHandle _handle)
{
s_renderCtx.m_vertexBuffers[_handle.idx].destroy();
}
void Context::rendererCreateDynamicIndexBuffer(IndexBufferHandle _handle, uint32_t _size)
{
s_renderCtx.m_indexBuffers[_handle.idx].create(_size, NULL);
}
void Context::rendererUpdateDynamicIndexBuffer(IndexBufferHandle _handle, uint32_t _offset, uint32_t _size, Memory* _mem)
{
s_renderCtx.m_indexBuffers[_handle.idx].update(_offset, uint32_min(_size, _mem->size), _mem->data);
}
void Context::rendererDestroyDynamicIndexBuffer(IndexBufferHandle _handle)
{
s_renderCtx.m_indexBuffers[_handle.idx].destroy();
}
void Context::rendererCreateDynamicVertexBuffer(VertexBufferHandle _handle, uint32_t _size)
{
VertexDeclHandle decl = BGFX_INVALID_HANDLE;
s_renderCtx.m_vertexBuffers[_handle.idx].create(_size, NULL, decl);
}
void Context::rendererUpdateDynamicVertexBuffer(VertexBufferHandle _handle, uint32_t _offset, uint32_t _size, Memory* _mem)
{
s_renderCtx.m_vertexBuffers[_handle.idx].update(_offset, uint32_min(_size, _mem->size), _mem->data);
}
void Context::rendererDestroyDynamicVertexBuffer(VertexBufferHandle _handle)
{
s_renderCtx.m_vertexBuffers[_handle.idx].destroy();
}
void Context::rendererCreateVertexShader(VertexShaderHandle _handle, Memory* _mem)
{
s_renderCtx.m_vertexShaders[_handle.idx].create(false, _mem);
}
void Context::rendererDestroyVertexShader(VertexShaderHandle _handle)
{
s_renderCtx.m_vertexShaders[_handle.idx].destroy();
}
void Context::rendererCreateFragmentShader(FragmentShaderHandle _handle, Memory* _mem)
{
s_renderCtx.m_fragmentShaders[_handle.idx].create(true, _mem);
}
void Context::rendererDestroyFragmentShader(FragmentShaderHandle _handle)
{
s_renderCtx.m_fragmentShaders[_handle.idx].destroy();
}
void Context::rendererCreateMaterial(MaterialHandle _handle, VertexShaderHandle _vsh, FragmentShaderHandle _fsh)
{
s_renderCtx.m_materials[_handle.idx].create(s_renderCtx.m_vertexShaders[_vsh.idx], s_renderCtx.m_fragmentShaders[_fsh.idx]);
}
void Context::rendererDestroyMaterial(FragmentShaderHandle _handle)
{
s_renderCtx.m_materials[_handle.idx].destroy();
}
void Context::rendererCreateTexture(TextureHandle _handle, Memory* _mem, uint32_t _flags)
{
s_renderCtx.m_textures[_handle.idx].create(_mem, _flags);
}
void Context::rendererDestroyTexture(TextureHandle _handle)
{
s_renderCtx.m_textures[_handle.idx].destroy();
}
void Context::rendererCreateRenderTarget(RenderTargetHandle _handle, uint16_t _width, uint16_t _height, uint32_t _flags, uint32_t _textureFlags)
{
s_renderCtx.m_renderTargets[_handle.idx].create(_width, _height, _flags, _textureFlags);
}
void Context::rendererDestroyRenderTarget(RenderTargetHandle _handle)
{
s_renderCtx.m_renderTargets[_handle.idx].destroy();
}
void Context::rendererCreateUniform(UniformHandle _handle, ConstantType::Enum _type, uint16_t _num, const char* _name)
{
s_renderCtx.m_uniforms[_handle.idx].create(_type, _num);
s_renderCtx.m_uniformReg.reg(_name, &s_renderCtx.m_uniforms[_handle.idx]);
}
void Context::rendererDestroyUniform(UniformHandle _handle)
{
s_renderCtx.m_uniforms[_handle.idx].destroy();
}
void Context::rendererSaveScreenShot(Memory* _mem)
{
s_renderCtx.saveScreenShot(_mem);
}
void Context::rendererUpdateUniform(uint16_t _loc, const void* _data, uint32_t _size)
{
memcpy(s_renderCtx.m_uniforms[_loc].m_data, _data, _size);
}
void Context::rendererSubmit()
{
ID3D11DeviceContext* deviceCtx = s_renderCtx.m_deviceCtx;
s_renderCtx.updateResolution(m_render->m_resolution);
if (0 < m_render->m_iboffset)
{
TransientIndexBuffer* ib = m_render->m_transientIb;
s_renderCtx.m_indexBuffers[ib->handle.idx].update(0, m_render->m_iboffset, ib->data);
}
if (0 < m_render->m_vboffset)
{
TransientVertexBuffer* vb = m_render->m_transientVb;
s_renderCtx.m_vertexBuffers[vb->handle.idx].update(0, m_render->m_vboffset, vb->data);
}
m_render->sort();
RenderState currentState;
currentState.reset();
currentState.m_flags = BGFX_STATE_NONE;
Matrix4 viewProj[BGFX_CONFIG_MAX_VIEWS];
for (uint32_t ii = 0; ii < BGFX_CONFIG_MAX_VIEWS; ++ii)
{
matrix_mul(viewProj[ii].val, m_render->m_view[ii].val, m_render->m_proj[ii].val);
}
// DX_CHECK(s_renderCtx.m_device->SetRenderState(D3DRS_FILLMODE, m_render->m_debug&BGFX_DEBUG_WIREFRAME ? D3DFILL_WIREFRAME : D3DFILL_SOLID) );
uint16_t materialIdx = bgfx::invalidHandle;
SortKey key;
uint8_t view = 0xff;
RenderTargetHandle rt = BGFX_INVALID_HANDLE;
float alphaRef = 0.0f;
D3D11_PRIMITIVE_TOPOLOGY primType = D3D11_PRIMITIVE_TOPOLOGY_TRIANGLELIST;
deviceCtx->IASetPrimitiveTopology(primType);
uint32_t primNumVerts = 3;
uint32_t statsNumPrimsSubmitted = 0;
uint32_t statsNumIndices = 0;
uint32_t statsNumInstances = 0;
uint32_t statsNumPrimsRendered = 0;
int64_t elapsed = -bx::getHPCounter();
if (0 == (m_render->m_debug&BGFX_DEBUG_IFH) )
{
for (uint32_t item = 0, numItems = m_render->m_num; item < numItems; ++item)
{
key.decode(m_render->m_sortKeys[item]);
const RenderState& state = m_render->m_renderState[m_render->m_sortValues[item] ];
const uint64_t newFlags = state.m_flags;
uint64_t changedFlags = currentState.m_flags ^ state.m_flags;
currentState.m_flags = newFlags;
if (key.m_view != view)
{
currentState.clear();
changedFlags = BGFX_STATE_MASK;
currentState.m_flags = newFlags;
view = key.m_view;
materialIdx = bgfx::invalidHandle;
if (m_render->m_rt[view].idx != rt.idx)
{
rt = m_render->m_rt[view];
s_renderCtx.setRenderTarget(rt);
}
Rect& rect = m_render->m_rect[view];
D3D11_VIEWPORT vp;
vp.TopLeftX = rect.m_x;
vp.TopLeftY = rect.m_y;
vp.Width = rect.m_width;
vp.Height = rect.m_height;
vp.MinDepth = 0.0f;
vp.MaxDepth = 1.0f;
deviceCtx->RSSetViewports(1, &vp);
Clear& clear = m_render->m_clear[view];
if (BGFX_CLEAR_NONE != clear.m_flags)
{
s_renderCtx.clear(rect, clear);
}
s_renderCtx.setBlendState(BGFX_STATE_DEFAULT);
s_renderCtx.setDepthStencilState(BGFX_STATE_DEFAULT);
s_renderCtx.setRasterizerState(BGFX_STATE_DEFAULT);
uint8_t primIndex = uint8_t( (newFlags&BGFX_STATE_PT_MASK)>>BGFX_STATE_PT_SHIFT);
if (primType != s_primType[primIndex])
{
primType = s_primType[primIndex];
primNumVerts = s_primNumVerts[primIndex];
deviceCtx->IASetPrimitiveTopology(primType);
}
}
if ( (BGFX_STATE_CULL_MASK|BGFX_STATE_DEPTH_WRITE|BGFX_STATE_DEPTH_TEST_MASK
|BGFX_STATE_ALPHA_MASK|BGFX_STATE_ALPHA_WRITE|BGFX_STATE_RGB_WRITE
|BGFX_STATE_BLEND_MASK|BGFX_STATE_ALPHA_REF_MASK|BGFX_STATE_PT_MASK
|BGFX_STATE_POINT_SIZE_MASK|BGFX_STATE_SRGBWRITE|BGFX_STATE_MSAA) & changedFlags)
{
if ( (BGFX_STATE_DEPTH_WRITE|BGFX_STATE_DEPTH_TEST_MASK) & changedFlags)
{
s_renderCtx.setDepthStencilState(newFlags);
}
if ( (BGFX_STATE_BLEND_MASK|BGFX_STATE_ALPHA_WRITE|BGFX_STATE_RGB_WRITE) & changedFlags)
{
s_renderCtx.setBlendState(newFlags);
}
if ( (BGFX_STATE_CULL_MASK) & changedFlags)
{
s_renderCtx.setRasterizerState(newFlags);
}
}
bool materialChanged = false;
bool constantsChanged = state.m_constBegin < state.m_constEnd;
rendererUpdateUniforms(m_render->m_constantBuffer, state.m_constBegin, state.m_constEnd);
if (key.m_material != materialIdx)
{
materialIdx = key.m_material;
if (bgfx::invalidHandle == materialIdx)
{
s_renderCtx.m_currentMaterial = NULL;
deviceCtx->VSSetShader(NULL, 0, 0);
deviceCtx->PSSetShader(NULL, 0, 0);
}
else
{
Material& material = s_renderCtx.m_materials[materialIdx];
s_renderCtx.m_currentMaterial = &material;
deviceCtx->VSSetShader( (ID3D11VertexShader*)material.m_vsh->m_ptr, NULL, 0);
deviceCtx->VSSetConstantBuffers(0, 1, &material.m_vsh->m_buffer);
deviceCtx->PSSetShader( (ID3D11PixelShader*)material.m_fsh->m_ptr, NULL, 0);
deviceCtx->PSSetConstantBuffers(0, 1, &material.m_fsh->m_buffer);
}
materialChanged =
constantsChanged = true;
}
if (bgfx::invalidHandle != materialIdx)
{
Material& material = s_renderCtx.m_materials[materialIdx];
if (constantsChanged)
{
Material& material = s_renderCtx.m_materials[materialIdx];
material.m_vsh->m_constantBuffer->commit();
material.m_fsh->m_constantBuffer->commit();
}
for (uint32_t ii = 0, num = material.m_numPredefined; ii < num; ++ii)
{
PredefinedUniform& predefined = material.m_predefined[ii];
uint8_t flags = predefined.m_type&BGFX_UNIFORM_FRAGMENTBIT;
switch (predefined.m_type&(~BGFX_UNIFORM_FRAGMENTBIT) )
{
case PredefinedUniform::ViewRect:
{
float rect[4];
rect[0] = m_render->m_rect[view].m_x;
rect[1] = m_render->m_rect[view].m_y;
rect[2] = m_render->m_rect[view].m_width;
rect[3] = m_render->m_rect[view].m_height;
s_renderCtx.setShaderConstant(flags, predefined.m_loc, &rect[0], 1);
}
break;
case PredefinedUniform::ViewTexel:
{
float rect[4];
rect[0] = 1.0f/float(m_render->m_rect[view].m_width);
rect[1] = 1.0f/float(m_render->m_rect[view].m_height);
s_renderCtx.setShaderConstant(flags, predefined.m_loc, &rect[0], 1);
}
break;
case PredefinedUniform::View:
{
s_renderCtx.setShaderConstant(flags, predefined.m_loc, m_render->m_view[view].val, uint32_min(4, predefined.m_count) );
}
break;
case PredefinedUniform::ViewProj:
{
s_renderCtx.setShaderConstant(flags, predefined.m_loc, viewProj[view].val, uint32_min(4, predefined.m_count) );
}
break;
case PredefinedUniform::Model:
{
const Matrix4& model = m_render->m_matrixCache.m_cache[state.m_matrix];
s_renderCtx.setShaderConstant(flags, predefined.m_loc, model.val, uint32_min(state.m_num*4, predefined.m_count) );
}
break;
case PredefinedUniform::ModelViewProj:
{
Matrix4 modelViewProj;
const Matrix4& model = m_render->m_matrixCache.m_cache[state.m_matrix];
matrix_mul(modelViewProj.val, model.val, viewProj[view].val);
s_renderCtx.setShaderConstant(flags, predefined.m_loc, modelViewProj.val, uint32_min(4, predefined.m_count) );
}
break;
case PredefinedUniform::ModelViewProjX:
{
const Matrix4& model = m_render->m_matrixCache.m_cache[state.m_matrix];
static const BX_ALIGN_STRUCT_16(float) s_bias[16] =
{
0.5f, 0.0f, 0.0f, 0.0f,
0.0f, 0.5f, 0.0f, 0.0f,
0.0f, 0.0f, 0.5f, 0.0f,
0.5f, 0.5f, 0.5f, 1.0f,
};
uint8_t other = m_render->m_other[view];
Matrix4 viewProjBias;
matrix_mul(viewProjBias.val, viewProj[other].val, s_bias);
Matrix4 modelViewProj;
matrix_mul(modelViewProj.val, model.val, viewProjBias.val);
s_renderCtx.setShaderConstant(flags, predefined.m_loc, modelViewProj.val, uint32_min(4, predefined.m_count) );
}
break;
case PredefinedUniform::ViewProjX:
{
static const BX_ALIGN_STRUCT_16(float) s_bias[16] =
{
0.5f, 0.0f, 0.0f, 0.0f,
0.0f, 0.5f, 0.0f, 0.0f,
0.0f, 0.0f, 0.5f, 0.0f,
0.5f, 0.5f, 0.5f, 1.0f,
};
uint8_t other = m_render->m_other[view];
Matrix4 viewProjBias;
matrix_mul(viewProjBias.val, viewProj[other].val, s_bias);
s_renderCtx.setShaderConstant(flags, predefined.m_loc, viewProjBias.val, uint32_min(4, predefined.m_count) );
}
break;
case PredefinedUniform::AlphaRef:
{
s_renderCtx.setShaderConstant(flags, predefined.m_loc, &alphaRef, 1);
}
break;
default:
BX_CHECK(false, "predefined %d not handled", predefined.m_type);
break;
}
}
if (constantsChanged)
{
s_renderCtx.commitShaderConstants();
}
}
// if (BGFX_STATE_TEX_MASK & changedFlags)
{
uint64_t flag = BGFX_STATE_TEX0;
for (uint32_t stage = 0; stage < BGFX_STATE_TEX_COUNT; ++stage)
{
const Sampler& sampler = state.m_sampler[stage];
Sampler& current = currentState.m_sampler[stage];
if (current.m_idx != sampler.m_idx
|| current.m_flags != sampler.m_flags
|| materialChanged)
{
if (bgfx::invalidHandle != sampler.m_idx)
{
switch (sampler.m_flags&BGFX_SAMPLER_TYPE_MASK)
{
case BGFX_SAMPLER_TEXTURE:
// s_renderCtx.m_textures[sampler.m_idx].commit(stage);
break;
case BGFX_SAMPLER_RENDERTARGET_COLOR:
// s_renderCtx.m_renderTargets[sampler.m_idx].commit(stage);
break;
case BGFX_SAMPLER_RENDERTARGET_DEPTH:
// id = s_renderCtx.m_renderTargets[sampler.m_idx].m_depth.m_id;
break;
}
}
else
{
// DX_CHECK(device->SetTexture(stage, NULL) );
}
}
current = sampler;
flag <<= 1;
}
}
if (currentState.m_vertexBuffer.idx != state.m_vertexBuffer.idx || materialChanged)
{
currentState.m_vertexBuffer = state.m_vertexBuffer;
uint16_t handle = state.m_vertexBuffer.idx;
if (bgfx::invalidHandle != handle)
{
const VertexBuffer& vb = s_renderCtx.m_vertexBuffers[handle];
uint16_t decl = vb.m_decl.idx == bgfx::invalidHandle ? state.m_vertexDecl.idx : vb.m_decl.idx;
const VertexDecl& vertexDecl = s_renderCtx.m_vertexDecls[decl];
uint32_t stride = vertexDecl.m_stride;
uint32_t offset = 0;
deviceCtx->IASetVertexBuffers(0, 1, &vb.m_ptr, &stride, &offset);
s_renderCtx.setInputLayout(vertexDecl, s_renderCtx.m_materials[materialIdx]);
if (invalidHandle != state.m_instanceDataBuffer.idx)
{
// const VertexBuffer& inst = s_renderCtx.m_vertexBuffers[state.m_instanceDataBuffer.idx];
// DX_CHECK(device->SetStreamSourceFreq(0, D3DSTREAMSOURCE_INDEXEDDATA|state.m_numInstances) );
// DX_CHECK(device->SetStreamSourceFreq(1, D3DSTREAMSOURCE_INSTANCEDATA|1) );
// DX_CHECK(device->SetStreamSource(1, inst.m_ptr, state.m_instanceDataOffset, state.m_instanceDataStride) );
//
// IDirect3DVertexDeclaration9* ptr = createVertexDecl(vertexDecl.m_decl, state.m_instanceDataStride/16);
// DX_CHECK(device->SetVertexDeclaration(ptr) );
// DX_RELEASE(ptr, 0);
}
else
{
// DX_CHECK(device->SetStreamSourceFreq(0, 1) );
// DX_CHECK(device->SetStreamSource(1, NULL, 0, 0) );
// DX_CHECK(device->SetVertexDeclaration(vertexDecl.m_ptr) );
}
}
else
{
deviceCtx->IASetVertexBuffers(0, 0, NULL, NULL, NULL);
}
}
if (currentState.m_indexBuffer.idx != state.m_indexBuffer.idx)
{
currentState.m_indexBuffer = state.m_indexBuffer;
uint16_t handle = state.m_indexBuffer.idx;
if (bgfx::invalidHandle != handle)
{
const IndexBuffer& ib = s_renderCtx.m_indexBuffers[handle];
deviceCtx->IASetIndexBuffer(ib.m_ptr, DXGI_FORMAT_R16_UINT, 0);
}
else
{
deviceCtx->IASetIndexBuffer(NULL, DXGI_FORMAT_R16_UINT, 0);
}
}
if (bgfx::invalidHandle != currentState.m_vertexBuffer.idx)
{
uint32_t numVertices = state.m_numVertices;
if (UINT32_C(0xffffffff) == numVertices)
{
const VertexBuffer& vb = s_renderCtx.m_vertexBuffers[currentState.m_vertexBuffer.idx];
uint16_t decl = vb.m_decl.idx == bgfx::invalidHandle ? state.m_vertexDecl.idx : vb.m_decl.idx;
const VertexDecl& vertexDecl = s_renderCtx.m_vertexDecls[decl];
numVertices = vb.m_size/vertexDecl.m_stride;
}
uint32_t numIndices = 0;
uint32_t numPrimsSubmitted = 0;
uint32_t numInstances = 0;
uint32_t numPrimsRendered = 0;
if (bgfx::invalidHandle != state.m_indexBuffer.idx)
{
if (BGFX_DRAW_WHOLE_INDEX_BUFFER == state.m_startIndex)
{
numIndices = s_renderCtx.m_indexBuffers[state.m_indexBuffer.idx].m_size/2;
numPrimsSubmitted = numIndices/primNumVerts;
numInstances = state.m_numInstances;
numPrimsRendered = numPrimsSubmitted*state.m_numInstances;
deviceCtx->DrawIndexed(numIndices, 0, 0);
}
else if (primNumVerts <= state.m_numIndices)
{
numIndices = state.m_numIndices;
numPrimsSubmitted = numIndices/primNumVerts;
numInstances = state.m_numInstances;
numPrimsRendered = numPrimsSubmitted*state.m_numInstances;
deviceCtx->DrawIndexed(numIndices, state.m_startIndex, 0);
}
}
else
{
numPrimsSubmitted = numVertices/primNumVerts;
numInstances = state.m_numInstances;
numPrimsRendered = numPrimsSubmitted*state.m_numInstances;
deviceCtx->Draw(numVertices, state.m_startVertex);
}
statsNumPrimsSubmitted += numPrimsSubmitted;
statsNumIndices += numIndices;
statsNumInstances += numInstances;
statsNumPrimsRendered += numPrimsRendered;
}
}
}
int64_t now = bx::getHPCounter();
elapsed += now;
static int64_t last = now;
int64_t frameTime = now - last;
last = now;
if (m_render->m_debug & (BGFX_DEBUG_IFH|BGFX_DEBUG_STATS) )
{
// PIX_BEGINEVENT(D3DCOLOR_RGBA(0x40, 0x40, 0x40, 0xff), "debugstats");
TextVideoMem& tvm = s_renderCtx.m_textVideoMem;
static int64_t next = now;
if (now >= next)
{
next = now + bx::getHPFrequency();
double freq = double(bx::getHPFrequency() );
double toMs = 1000.0/freq;
double elapsedCpuMs = double(elapsed)*toMs;
tvm.clear();
uint16_t pos = 10;
tvm.printf(0, 0, 0x8f, " " BGFX_RENDERER_NAME " ");
tvm.printf(10, pos++, 0x8e, " Frame: %3.4f [ms] / %3.2f", frameTime*toMs, freq/frameTime);
tvm.printf(10, pos++, 0x8e, " Draw calls: %4d / CPU %3.4f [ms]"
, m_render->m_num
, elapsedCpuMs
);
tvm.printf(10, pos++, 0x8e, " Prims: %7d (#inst: %5d), submitted: %7d"
, statsNumPrimsRendered
, statsNumInstances
, statsNumPrimsSubmitted
);
tvm.printf(10, pos++, 0x8e, " Indices: %7d", statsNumIndices);
tvm.printf(10, pos++, 0x8e, " DVB size: %7d", m_render->m_vboffset);
tvm.printf(10, pos++, 0x8e, " DIB size: %7d", m_render->m_iboffset);
uint8_t attr[2] = { 0x89, 0x8a };
uint8_t attrIndex = m_render->m_waitSubmit < m_render->m_waitRender;
tvm.printf(10, pos++, attr[attrIndex&1], "Submit wait: %3.4f [ms]", m_render->m_waitSubmit*toMs);
tvm.printf(10, pos++, attr[(attrIndex+1)&1], "Render wait: %3.4f [ms]", m_render->m_waitRender*toMs);
}
m_textVideoMemBlitter.blit(tvm);
// PIX_ENDEVENT();
}
else if (m_render->m_debug & BGFX_DEBUG_TEXT)
{
// PIX_BEGINEVENT(D3DCOLOR_RGBA(0x40, 0x40, 0x40, 0xff), "debugtext");
m_textVideoMemBlitter.blit(m_render->m_textVideoMem);
// PIX_ENDEVENT();
}
}
}
#endif // BGFX_CONFIG_RENDERER_DIRECT3D11