mirror of
https://github.com/isledecomp/isle.git
synced 2024-11-23 08:08:03 -05:00
74329d681b
* implement/match CalcLocalTransform * fix odd build error * address feedback move vec.h to thirdparty folder update vec.h move all realtime code to realtime folder move calclocaltransform out of legoutil and into realtime cast shift to MxS32 add additional unroll hack to CalcLocalTransform to prevent msvc entropy
1085 lines
36 KiB
C
1085 lines
36 KiB
C
/*
|
|
* vec.h -- Vector macros for 2,3, and 4 dimensions,
|
|
* for any combination of C scalar types.
|
|
*
|
|
* Author: Don Hatch (hatch@sgi.com)
|
|
* Last modified: Fri Dec 15 01:57:07 PST 1995
|
|
*
|
|
* General description:
|
|
*
|
|
* The macro name describes its arguments; e.g.
|
|
* MXS3 is "matrix times scalar in 3 dimensions";
|
|
* VMV2 is "vector minus vector in 2 dimensions".
|
|
*
|
|
* If the result of an operation is a scalar, then the macro "returns"
|
|
* the value; e.g.
|
|
* result = DOT3(v,w);
|
|
* result = DET4(m);
|
|
*
|
|
* If the result of an operation is a vector or matrix, then
|
|
* the first argument is the destination; e.g.
|
|
* SET2(tovec, fromvec);
|
|
* MXM3(result, m1, m2);
|
|
*
|
|
* WARNING: For the operations that are not done "componentwise"
|
|
* (e.g. vector cross products and matrix multiplies)
|
|
* the destination should not be either of the arguments,
|
|
* for obvious reasons. For example, the following is wrong:
|
|
* VXM2(v,v,m);
|
|
* For such "unsafe" macros, there are safe versions provided,
|
|
* but you have to specify a type for the temporary
|
|
* result vector or matrix. For example, the safe versions
|
|
* of VXM2 are:
|
|
* VXM2d(v,v,m) if v's scalar type is double or float
|
|
* VXM2i(v,v,m) if v's scalar type is int or char
|
|
* VXM2l(v,v,m) if v's scalar type is long
|
|
* VXM2r(v,v,m) if v's scalar type is real
|
|
* VXM2safe(type,v,v,m) for other scalar types.
|
|
*
|
|
* These "safe" macros and INVERTMAT do not evaluate to C expressions
|
|
* (so, for example, they can't be used inside the parentheses of
|
|
* a for(...)).
|
|
*
|
|
* Specific descriptions:
|
|
*
|
|
* The "?"'s in the following can be 2, 3, or 4.
|
|
*
|
|
* EXPAND?(v) comma-separated list of elements of v
|
|
*
|
|
* SET?(to,from) to = from
|
|
* SETMAT?(to,from) to = from
|
|
* ROUNDVEC?(to,from) to = from with entries rounded
|
|
* to nearest integer
|
|
* ROUNDMAT?(to,from) to = from with entries rounded
|
|
* to nearest integer
|
|
* FILLVEC?(v,s) set each entry of vector v to be s
|
|
* FILLMAT?(m,s) set each entry of matrix m to be s
|
|
* ZEROVEC?(v) v = 0
|
|
* ISZEROVEC?(v) v == 0
|
|
* EQVEC?(v,w) v == w
|
|
* EQMAT?(m1,m2) m1 == m2
|
|
* ZEROMAT?(m) m = 0
|
|
* IDENTMAT?(m) m = 1
|
|
* TRANSPOSE?(to,from) (matrix to) = (transpose of matrix from)
|
|
* ADJOINT?(to,from) (matrix to) = (adjoint of matrix from)
|
|
* i.e. its determinant times its inverse
|
|
* INVERTMAT?{d,i,l,r}(to,from) (matrix to) = (inverse of matrix from)
|
|
* with temp adjoint and determinant type
|
|
* double, int, long, or real respectively
|
|
*
|
|
* V{P,M}V?(to,v,w) to = v {+,-} w
|
|
* M{P,M}M?(to,m1,m2) to = m1 {+,-} m2
|
|
* SX{V,M}?(to,s,from) to = s * from
|
|
* VPSXV?(to,v,s,w) to = v + s*w
|
|
* VPVXS?(to,v,w,s) to = v + w*s
|
|
* M{V,M}?(to,from) to = -from
|
|
* {V,M}{X,D}S?(to,from,s) to = from {*,/} s
|
|
* MXM?(to,m1,m2) to = m1 * m2
|
|
* VXM?(to,v,m) (row vec to) = (row vec v) * m
|
|
* MXV?(to,m,v) (column vec to) = m * (column vec v)
|
|
* VMODS?(to,v,s) to = v mod s (always >= 0)
|
|
* VMODV?(to,v0,v1) to = v0 mod v1 componentwise
|
|
* VDIVS?(to,v,s) to = (v-(v mod s))/s
|
|
* VDIVV?(to,v0,v1) to = (v0-(v0 mod v1))/v1 componentwise
|
|
* V{MIN,MAX}S?(to,v,s) to = {MIN,MAX}(v, s)
|
|
* V{MIN,MAX}V?(to,v0,v1) to = {MIN,MAX}(v0, v1)
|
|
* LERP?(to,v0,v1,t) to = v0 + t*(v1-v0)
|
|
*
|
|
* DET?(m) determinant of m
|
|
* TRACE?(m) trace (sum of diagonal entries) of m
|
|
* DOT?(v,w) dot (scalar) product of v and w
|
|
* NORMSQRD?(v) square of |v|
|
|
* DISTSQRD?(v,w) square of |v-w|
|
|
*
|
|
* XV2(to,v) to = v rotated by 90 degrees
|
|
* VXV3(to,v1,v2) to = cross (vector) product of v1 and v2
|
|
* VXVXV4(to,v1,v2,v3) to = 4-dimensional vector cross product
|
|
* of v1,v2,v3 (a vector orthogonal to
|
|
* v1,v2,v3 whose length equals the
|
|
* volume of the spanned parallelotope)
|
|
* VXV2(v0,v1) determinant of matrix with rows v0,v1
|
|
* VXVXV3(v0,v1,v2) determinant of matrix with rows v0,v1,v2
|
|
* VXVXVXV4(v0,v1,v2,v3) determinant of matrix with rows v0,..,v3
|
|
*
|
|
* The following macros mix objects from different dimensions.
|
|
* For example, V3XM4 would be used to apply a composite
|
|
* 4x4 rotation-and-translation matrix to a 3d vector.
|
|
*
|
|
* SET3from2(to,from,pad) (3d vec to) = (2d vec from) with pad
|
|
* SET4from3(to,from,pad) (4d vec to) = (3d vec from) with pad
|
|
* SETMAT3from2(to,from,pad0,pad1) (3x3 mat to) = (2x2 mat from)
|
|
* padded with pad0 on the sides
|
|
* and pad1 in the corner
|
|
* SETMAT4from3(to,from,pad0,pad1) (4x4 mat to) = (3x3 mat from)
|
|
* padded with pad0 on the sides
|
|
* and pad1 in the corner
|
|
* V2XM3(to2,v2,m3) (2d row vec to2) = (2d row vec v2) * (3x3 mat m3)
|
|
* V3XM4(to3,v3,m4) (3d row vec to3) = (3d row vec v2) * (4x4 mat m4)
|
|
* M3XV2(to2,m3,v2) (2d col vec to2) = (3x3 mat m3) * (2d col vec v2)
|
|
* M4XV3(to3,m4,v3) (3d col vec to3) = (4x4 mat m4) * (3d col vec v3)
|
|
* M2XM3(to3,m2,m3) (3x3 mat to3) = (2x2 mat m2) * (3x3 mat m3)
|
|
* M3XM4(to4,m3,m4) (4x4 mat to4) = (3x3 mat m3) * (4x4 mat m4)
|
|
* M3XM2(to3,m3,m2) (3x3 mat to3) = (3x3 mat m3) * (2x2 mat m2)
|
|
* M4XM3(to4,m4,m3) (4x4 mat to4) = (4x4 mat m4) * (3x3 mat m3)
|
|
*
|
|
*
|
|
* This file is machine-generated and can be regenerated
|
|
* for any number of dimensions.
|
|
* The program that generated it is available upon request.
|
|
*/
|
|
|
|
#ifndef VEC_H
|
|
#define VEC_H 4
|
|
#include <math.h> /* for definition of floor() */
|
|
#define EXPAND2(v) (v)[0], (v)[1]
|
|
#define EXPAND3(v) (v)[0], (v)[1], (v)[2]
|
|
#define EXPAND4(v) (v)[0], (v)[1], (v)[2], (v)[3]
|
|
#define SET2(to,from) \
|
|
((to)[0] = (from)[0], \
|
|
(to)[1] = (from)[1])
|
|
#define SETMAT2(to,from) \
|
|
(SET2((to)[0], (from)[0]), \
|
|
SET2((to)[1], (from)[1]))
|
|
#define ROUNDVEC2(to,from) \
|
|
((to)[0] = floor((from)[0]+.5), \
|
|
(to)[1] = floor((from)[1]+.5))
|
|
#define ROUNDMAT2(to,from) \
|
|
(ROUNDVEC2((to)[0], (from)[0]), \
|
|
ROUNDVEC2((to)[1], (from)[1]))
|
|
#define FILLVEC2(v,s) \
|
|
((v)[0] = (s), \
|
|
(v)[1] = (s))
|
|
#define FILLMAT2(m,s) \
|
|
(FILLVEC2((m)[0], s), \
|
|
FILLVEC2((m)[1], s))
|
|
#define ZEROVEC2(v) \
|
|
((v)[0] = 0, \
|
|
(v)[1] = 0)
|
|
#define ISZEROVEC2(v) \
|
|
((v)[0] == 0 && \
|
|
(v)[1] == 0)
|
|
#define EQVEC2(v,w) \
|
|
((v)[0] == (w)[0] && \
|
|
(v)[1] == (w)[1])
|
|
#define EQMAT2(m1,m2) \
|
|
(EQVEC2((m1)[0], (m2)[0]) && \
|
|
EQVEC2((m1)[1], (m2)[1]))
|
|
#define ZEROMAT2(m) \
|
|
(ZEROVEC2((m)[0]), \
|
|
ZEROVEC2((m)[1]))
|
|
#define IDENTMAT2(m) \
|
|
(ZEROVEC2((m)[0]), (m)[0][0]=1, \
|
|
ZEROVEC2((m)[1]), (m)[1][1]=1)
|
|
#define TRANSPOSE2(to,from) \
|
|
(_SETcol2((to)[0], from, 0), \
|
|
_SETcol2((to)[1], from, 1))
|
|
#define VPSXV2(to,v,s,w) \
|
|
((to)[0] = (v)[0] + (s) * (w)[0], \
|
|
(to)[1] = (v)[1] + (s) * (w)[1])
|
|
#define VPVXS2(to,v,w,s) \
|
|
((to)[0] = (v)[0] + (w)[0] * (s), \
|
|
(to)[1] = (v)[1] + (w)[1] * (s))
|
|
#define VPV2(to,v,w) \
|
|
((to)[0] = (v)[0] + (w)[0], \
|
|
(to)[1] = (v)[1] + (w)[1])
|
|
#define VMV2(to,v,w) \
|
|
((to)[0] = (v)[0] - (w)[0], \
|
|
(to)[1] = (v)[1] - (w)[1])
|
|
#define MPM2(to,m1,m2) \
|
|
(VPV2((to)[0], (m1)[0], (m2)[0]), \
|
|
VPV2((to)[1], (m1)[1], (m2)[1]))
|
|
#define MMM2(to,m1,m2) \
|
|
(VMV2((to)[0], (m1)[0], (m2)[0]), \
|
|
VMV2((to)[1], (m1)[1], (m2)[1]))
|
|
#define SXV2(to,s,from) \
|
|
((to)[0] = (s) * (from)[0], \
|
|
(to)[1] = (s) * (from)[1])
|
|
#define SXM2(to,s,from) \
|
|
(SXV2((to)[0], s, (from)[0]), \
|
|
SXV2((to)[1], s, (from)[1]))
|
|
#define MV2(to,from) \
|
|
((to)[0] = -(from)[0], \
|
|
(to)[1] = -(from)[1])
|
|
#define MM2(to,from) \
|
|
(MV2((to)[0], (from)[0]), \
|
|
MV2((to)[1], (from)[1]))
|
|
#define VXS2(to,from,s) \
|
|
((to)[0] = (from)[0] * (s), \
|
|
(to)[1] = (from)[1] * (s))
|
|
#define VDS2(to,from,s) \
|
|
((to)[0] = (from)[0] / (s), \
|
|
(to)[1] = (from)[1] / (s))
|
|
#define MXS2(to,from,s) \
|
|
(VXS2((to)[0], (from)[0], s), \
|
|
VXS2((to)[1], (from)[1], s))
|
|
#define MDS2(to,from,s) \
|
|
(VDS2((to)[0], (from)[0], s), \
|
|
VDS2((to)[1], (from)[1], s))
|
|
#define MXM2(to,m1,m2) \
|
|
(VXM2((to)[0], (m1)[0], m2), \
|
|
VXM2((to)[1], (m1)[1], m2))
|
|
#define VXM2(to,v,m) \
|
|
((to)[0] = _DOTcol2(v, m, 0), \
|
|
(to)[1] = _DOTcol2(v, m, 1))
|
|
#define MXV2(to,m,v) \
|
|
((to)[0] = DOT2((m)[0], v), \
|
|
(to)[1] = DOT2((m)[1], v))
|
|
#define VMODS2(to,v,s) \
|
|
((to)[0] = SMODS1((v)[0], s), \
|
|
(to)[1] = SMODS1((v)[1], s))
|
|
#define VMODV2(to,v0,v1) \
|
|
((to)[0] = SMODS1((v0)[0], (v1)[0]), \
|
|
(to)[1] = SMODS1((v0)[1], (v1)[1]))
|
|
#define VDIVS2(to,v,s) \
|
|
((to)[0] = SDIVS1((v)[0], s), \
|
|
(to)[1] = SDIVS1((v)[1], s))
|
|
#define VDIVV2(to,v0,v1) \
|
|
((to)[0] = SDIVS1((v0)[0], (v1)[0]), \
|
|
(to)[1] = SDIVS1((v0)[1], (v1)[1]))
|
|
#define VMINS2(to,v,s) \
|
|
((to)[0] = SMINS1((v)[0], s), \
|
|
(to)[1] = SMINS1((v)[1], s))
|
|
#define VMINV2(to,v0,v1) \
|
|
((to)[0] = SMINS1((v0)[0], (v1)[0]), \
|
|
(to)[1] = SMINS1((v0)[1], (v1)[1]))
|
|
#define VMAXS2(to,v,s) \
|
|
((to)[0] = SMAXS1((v)[0], s), \
|
|
(to)[1] = SMAXS1((v)[1], s))
|
|
#define VMAXV2(to,v0,v1) \
|
|
((to)[0] = SMAXS1((v0)[0], (v1)[0]), \
|
|
(to)[1] = SMAXS1((v0)[1], (v1)[1]))
|
|
#define LERP2(to,v0,v1,t) \
|
|
((to)[0]=(v0)[0]+(t)*((v1)[0]-(v0)[0]), \
|
|
(to)[1]=(v0)[1]+(t)*((v1)[1]-(v0)[1]))
|
|
#define TRACE2(m) \
|
|
((m)[0][0] + \
|
|
(m)[1][1])
|
|
#define DOT2(v,w) \
|
|
((v)[0] * (w)[0] + \
|
|
(v)[1] * (w)[1])
|
|
#define NORMSQRD2(v) \
|
|
((v)[0] * (v)[0] + \
|
|
(v)[1] * (v)[1])
|
|
#define DISTSQRD2(v,w) \
|
|
(((v)[0]-(w)[0])*((v)[0]-(w)[0]) + \
|
|
((v)[1]-(w)[1])*((v)[1]-(w)[1]))
|
|
#define _DOTcol2(v,m,j) \
|
|
((v)[0] * (m)[0][j] + \
|
|
(v)[1] * (m)[1][j])
|
|
#define _SETcol2(v,m,j) \
|
|
((v)[0] = (m)[0][j], \
|
|
(v)[1] = (m)[1][j])
|
|
#define _MXVcol2(to,m,M,j) \
|
|
((to)[0][j] = _DOTcol2((m)[0],M,j), \
|
|
(to)[1][j] = _DOTcol2((m)[1],M,j))
|
|
#define _DET2(v0,v1,i0,i1) \
|
|
((v0)[i0]* _DET1(v1,i1) + \
|
|
(v0)[i1]*-_DET1(v1,i0))
|
|
#define XV2(to,v1) \
|
|
((to)[0] = -_DET1(v1, 1), \
|
|
(to)[1] = _DET1(v1, 0))
|
|
#define V2XM3(to2,v2,m3) \
|
|
((to2)[0] = _DOTcol2(v2,m3,0) + (m3)[2][0], \
|
|
(to2)[1] = _DOTcol2(v2,m3,1) + (m3)[2][1])
|
|
#define M3XV2(to2,m3,v2) \
|
|
((to2)[0] = DOT2((m3)[0],v2) + (m3)[0][2], \
|
|
(to2)[1] = DOT2((m3)[1],v2) + (m3)[1][2])
|
|
#define _DET1(v0,i0) \
|
|
((v0)[i0])
|
|
#define VXV2(v0,v1) \
|
|
(_DET2(v0,v1,0,1))
|
|
#define DET2(m) \
|
|
(VXV2((m)[0],(m)[1]))
|
|
#define SMODS1(a,b) \
|
|
((((a)%(b)+(b))%(b)))
|
|
#define SDIVS1(a,b) \
|
|
((((a)-SMODS1(a,b))/(b)))
|
|
#define SMINS1(a,b) \
|
|
(((a) < (b) ? (a) : (b)))
|
|
#define SMAXS1(a,b) \
|
|
(((a) > (b) ? (a) : (b)))
|
|
#define ADJOINT2(to,m) \
|
|
( _ADJOINTcol2(to,0,m,1), \
|
|
__ADJOINTcol2(to,1,m,0))
|
|
#define _ADJOINTcol2(to,col,m,i1) \
|
|
((to)[0][col] = _DET1(m[i1], 1), \
|
|
(to)[1][col] = -_DET1(m[i1], 0))
|
|
#define __ADJOINTcol2(to,col,m,i1) \
|
|
((to)[0][col] = -_DET1(m[i1], 1), \
|
|
(to)[1][col] = _DET1(m[i1], 0))
|
|
#define SET3(to,from) \
|
|
((to)[0] = (from)[0], \
|
|
(to)[1] = (from)[1], \
|
|
(to)[2] = (from)[2])
|
|
#define SETMAT3(to,from) \
|
|
(SET3((to)[0], (from)[0]), \
|
|
SET3((to)[1], (from)[1]), \
|
|
SET3((to)[2], (from)[2]))
|
|
#define ROUNDVEC3(to,from) \
|
|
((to)[0] = floor((from)[0]+.5), \
|
|
(to)[1] = floor((from)[1]+.5), \
|
|
(to)[2] = floor((from)[2]+.5))
|
|
#define ROUNDMAT3(to,from) \
|
|
(ROUNDVEC3((to)[0], (from)[0]), \
|
|
ROUNDVEC3((to)[1], (from)[1]), \
|
|
ROUNDVEC3((to)[2], (from)[2]))
|
|
#define FILLVEC3(v,s) \
|
|
((v)[0] = (s), \
|
|
(v)[1] = (s), \
|
|
(v)[2] = (s))
|
|
#define FILLMAT3(m,s) \
|
|
(FILLVEC3((m)[0], s), \
|
|
FILLVEC3((m)[1], s), \
|
|
FILLVEC3((m)[2], s))
|
|
#define ZEROVEC3(v) \
|
|
((v)[0] = 0, \
|
|
(v)[1] = 0, \
|
|
(v)[2] = 0)
|
|
#define ISZEROVEC3(v) \
|
|
((v)[0] == 0 && \
|
|
(v)[1] == 0 && \
|
|
(v)[2] == 0)
|
|
#define EQVEC3(v,w) \
|
|
((v)[0] == (w)[0] && \
|
|
(v)[1] == (w)[1] && \
|
|
(v)[2] == (w)[2])
|
|
#define EQMAT3(m1,m2) \
|
|
(EQVEC3((m1)[0], (m2)[0]) && \
|
|
EQVEC3((m1)[1], (m2)[1]) && \
|
|
EQVEC3((m1)[2], (m2)[2]))
|
|
#define ZEROMAT3(m) \
|
|
(ZEROVEC3((m)[0]), \
|
|
ZEROVEC3((m)[1]), \
|
|
ZEROVEC3((m)[2]))
|
|
#define IDENTMAT3(m) \
|
|
(ZEROVEC3((m)[0]), (m)[0][0]=1, \
|
|
ZEROVEC3((m)[1]), (m)[1][1]=1, \
|
|
ZEROVEC3((m)[2]), (m)[2][2]=1)
|
|
#define TRANSPOSE3(to,from) \
|
|
(_SETcol3((to)[0], from, 0), \
|
|
_SETcol3((to)[1], from, 1), \
|
|
_SETcol3((to)[2], from, 2))
|
|
#define VPSXV3(to,v,s,w) \
|
|
((to)[0] = (v)[0] + (s) * (w)[0], \
|
|
(to)[1] = (v)[1] + (s) * (w)[1], \
|
|
(to)[2] = (v)[2] + (s) * (w)[2])
|
|
#define VPVXS3(to,v,w,s) \
|
|
((to)[0] = (v)[0] + (w)[0] * (s), \
|
|
(to)[1] = (v)[1] + (w)[1] * (s), \
|
|
(to)[2] = (v)[2] + (w)[2] * (s))
|
|
#define VPV3(to,v,w) \
|
|
((to)[0] = (v)[0] + (w)[0], \
|
|
(to)[1] = (v)[1] + (w)[1], \
|
|
(to)[2] = (v)[2] + (w)[2])
|
|
#define VMV3(to,v,w) \
|
|
((to)[0] = (v)[0] - (w)[0], \
|
|
(to)[1] = (v)[1] - (w)[1], \
|
|
(to)[2] = (v)[2] - (w)[2])
|
|
#define MPM3(to,m1,m2) \
|
|
(VPV3((to)[0], (m1)[0], (m2)[0]), \
|
|
VPV3((to)[1], (m1)[1], (m2)[1]), \
|
|
VPV3((to)[2], (m1)[2], (m2)[2]))
|
|
#define MMM3(to,m1,m2) \
|
|
(VMV3((to)[0], (m1)[0], (m2)[0]), \
|
|
VMV3((to)[1], (m1)[1], (m2)[1]), \
|
|
VMV3((to)[2], (m1)[2], (m2)[2]))
|
|
#define SXV3(to,s,from) \
|
|
((to)[0] = (s) * (from)[0], \
|
|
(to)[1] = (s) * (from)[1], \
|
|
(to)[2] = (s) * (from)[2])
|
|
#define SXM3(to,s,from) \
|
|
(SXV3((to)[0], s, (from)[0]), \
|
|
SXV3((to)[1], s, (from)[1]), \
|
|
SXV3((to)[2], s, (from)[2]))
|
|
#define MV3(to,from) \
|
|
((to)[0] = -(from)[0], \
|
|
(to)[1] = -(from)[1], \
|
|
(to)[2] = -(from)[2])
|
|
#define MM3(to,from) \
|
|
(MV3((to)[0], (from)[0]), \
|
|
MV3((to)[1], (from)[1]), \
|
|
MV3((to)[2], (from)[2]))
|
|
#define VXS3(to,from,s) \
|
|
((to)[0] = (from)[0] * (s), \
|
|
(to)[1] = (from)[1] * (s), \
|
|
(to)[2] = (from)[2] * (s))
|
|
#define VDS3(to,from,s) \
|
|
((to)[0] = (from)[0] / (s), \
|
|
(to)[1] = (from)[1] / (s), \
|
|
(to)[2] = (from)[2] / (s))
|
|
#define MXS3(to,from,s) \
|
|
(VXS3((to)[0], (from)[0], s), \
|
|
VXS3((to)[1], (from)[1], s), \
|
|
VXS3((to)[2], (from)[2], s))
|
|
#define MDS3(to,from,s) \
|
|
(VDS3((to)[0], (from)[0], s), \
|
|
VDS3((to)[1], (from)[1], s), \
|
|
VDS3((to)[2], (from)[2], s))
|
|
#define MXM3(to,m1,m2) \
|
|
(VXM3((to)[0], (m1)[0], m2), \
|
|
VXM3((to)[1], (m1)[1], m2), \
|
|
VXM3((to)[2], (m1)[2], m2))
|
|
#define VXM3(to,v,m) \
|
|
((to)[0] = _DOTcol3(v, m, 0), \
|
|
(to)[1] = _DOTcol3(v, m, 1), \
|
|
(to)[2] = _DOTcol3(v, m, 2))
|
|
#define MXV3(to,m,v) \
|
|
((to)[0] = DOT3((m)[0], v), \
|
|
(to)[1] = DOT3((m)[1], v), \
|
|
(to)[2] = DOT3((m)[2], v))
|
|
#define VMODS3(to,v,s) \
|
|
((to)[0] = SMODS1((v)[0], s), \
|
|
(to)[1] = SMODS1((v)[1], s), \
|
|
(to)[2] = SMODS1((v)[2], s))
|
|
#define VMODV3(to,v0,v1) \
|
|
((to)[0] = SMODS1((v0)[0], (v1)[0]), \
|
|
(to)[1] = SMODS1((v0)[1], (v1)[1]), \
|
|
(to)[2] = SMODS1((v0)[2], (v1)[2]))
|
|
#define VDIVS3(to,v,s) \
|
|
((to)[0] = SDIVS1((v)[0], s), \
|
|
(to)[1] = SDIVS1((v)[1], s), \
|
|
(to)[2] = SDIVS1((v)[2], s))
|
|
#define VDIVV3(to,v0,v1) \
|
|
((to)[0] = SDIVS1((v0)[0], (v1)[0]), \
|
|
(to)[1] = SDIVS1((v0)[1], (v1)[1]), \
|
|
(to)[2] = SDIVS1((v0)[2], (v1)[2]))
|
|
#define VMINS3(to,v,s) \
|
|
((to)[0] = SMINS1((v)[0], s), \
|
|
(to)[1] = SMINS1((v)[1], s), \
|
|
(to)[2] = SMINS1((v)[2], s))
|
|
#define VMINV3(to,v0,v1) \
|
|
((to)[0] = SMINS1((v0)[0], (v1)[0]), \
|
|
(to)[1] = SMINS1((v0)[1], (v1)[1]), \
|
|
(to)[2] = SMINS1((v0)[2], (v1)[2]))
|
|
#define VMAXS3(to,v,s) \
|
|
((to)[0] = SMAXS1((v)[0], s), \
|
|
(to)[1] = SMAXS1((v)[1], s), \
|
|
(to)[2] = SMAXS1((v)[2], s))
|
|
#define VMAXV3(to,v0,v1) \
|
|
((to)[0] = SMAXS1((v0)[0], (v1)[0]), \
|
|
(to)[1] = SMAXS1((v0)[1], (v1)[1]), \
|
|
(to)[2] = SMAXS1((v0)[2], (v1)[2]))
|
|
#define LERP3(to,v0,v1,t) \
|
|
((to)[0]=(v0)[0]+(t)*((v1)[0]-(v0)[0]), \
|
|
(to)[1]=(v0)[1]+(t)*((v1)[1]-(v0)[1]), \
|
|
(to)[2]=(v0)[2]+(t)*((v1)[2]-(v0)[2]))
|
|
#define TRACE3(m) \
|
|
((m)[0][0] + \
|
|
(m)[1][1] + \
|
|
(m)[2][2])
|
|
#define DOT3(v,w) \
|
|
((v)[0] * (w)[0] + \
|
|
(v)[1] * (w)[1] + \
|
|
(v)[2] * (w)[2])
|
|
#define NORMSQRD3(v) \
|
|
((v)[0] * (v)[0] + \
|
|
(v)[1] * (v)[1] + \
|
|
(v)[2] * (v)[2])
|
|
#define DISTSQRD3(v,w) \
|
|
(((v)[0]-(w)[0])*((v)[0]-(w)[0]) + \
|
|
((v)[1]-(w)[1])*((v)[1]-(w)[1]) + \
|
|
((v)[2]-(w)[2])*((v)[2]-(w)[2]))
|
|
#define _DOTcol3(v,m,j) \
|
|
((v)[0] * (m)[0][j] + \
|
|
(v)[1] * (m)[1][j] + \
|
|
(v)[2] * (m)[2][j])
|
|
#define _SETcol3(v,m,j) \
|
|
((v)[0] = (m)[0][j], \
|
|
(v)[1] = (m)[1][j], \
|
|
(v)[2] = (m)[2][j])
|
|
#define _MXVcol3(to,m,M,j) \
|
|
((to)[0][j] = _DOTcol3((m)[0],M,j), \
|
|
(to)[1][j] = _DOTcol3((m)[1],M,j), \
|
|
(to)[2][j] = _DOTcol3((m)[2],M,j))
|
|
#define _DET3(v0,v1,v2,i0,i1,i2) \
|
|
((v0)[i0]* _DET2(v1,v2,i1,i2) + \
|
|
(v0)[i1]*-_DET2(v1,v2,i0,i2) + \
|
|
(v0)[i2]* _DET2(v1,v2,i0,i1))
|
|
#define VXV3(to,v1,v2) \
|
|
((to)[0] = _DET2(v1,v2, 1,2), \
|
|
(to)[1] = -_DET2(v1,v2, 0,2), \
|
|
(to)[2] = _DET2(v1,v2, 0,1))
|
|
#define SET3from2(to,from,pad) \
|
|
((to)[0] = (from)[0], \
|
|
(to)[1] = (from)[1], \
|
|
(to)[2] = (pad))
|
|
#define SETMAT3from2(to,from,pad0,pad1) \
|
|
(SET3from2((to)[0], (from)[0], pad0), \
|
|
SET3from2((to)[1], (from)[1], pad0), \
|
|
FILLVEC2((to)[2], (pad0)), (to)[2][2] = (pad1))
|
|
#define M2XM3(to3,m2,m3) \
|
|
(_MXVcol2(to3,m2,m3,0), (to3)[2][0]=(m3)[2][0], \
|
|
_MXVcol2(to3,m2,m3,1), (to3)[2][1]=(m3)[2][1], \
|
|
_MXVcol2(to3,m2,m3,2), (to3)[2][2]=(m3)[2][2])
|
|
#define M3XM2(to3,m3,m2) \
|
|
(VXM2((to3)[0],(m3)[0],m2), (to3)[0][2]=(m3)[0][2], \
|
|
VXM2((to3)[1],(m3)[1],m2), (to3)[1][2]=(m3)[1][2], \
|
|
VXM2((to3)[2],(m3)[2],m2), (to3)[2][2]=(m3)[2][2])
|
|
#define V3XM4(to3,v3,m4) \
|
|
((to3)[0] = _DOTcol3(v3,m4,0) + (m4)[3][0], \
|
|
(to3)[1] = _DOTcol3(v3,m4,1) + (m4)[3][1], \
|
|
(to3)[2] = _DOTcol3(v3,m4,2) + (m4)[3][2])
|
|
#define M4XV3(to3,m4,v3) \
|
|
((to3)[0] = DOT3((m4)[0],v3) + (m4)[0][3], \
|
|
(to3)[1] = DOT3((m4)[1],v3) + (m4)[1][3], \
|
|
(to3)[2] = DOT3((m4)[2],v3) + (m4)[2][3])
|
|
#define VXVXV3(v0,v1,v2) \
|
|
(_DET3(v0,v1,v2,0,1,2))
|
|
#define DET3(m) \
|
|
(VXVXV3((m)[0],(m)[1],(m)[2]))
|
|
#define ADJOINT3(to,m) \
|
|
( _ADJOINTcol3(to,0,m,1,2), \
|
|
__ADJOINTcol3(to,1,m,0,2), \
|
|
_ADJOINTcol3(to,2,m,0,1))
|
|
#define _ADJOINTcol3(to,col,m,i1,i2) \
|
|
((to)[0][col] = _DET2(m[i1],m[i2], 1,2), \
|
|
(to)[1][col] = -_DET2(m[i1],m[i2], 0,2), \
|
|
(to)[2][col] = _DET2(m[i1],m[i2], 0,1))
|
|
#define __ADJOINTcol3(to,col,m,i1,i2) \
|
|
((to)[0][col] = -_DET2(m[i1],m[i2], 1,2), \
|
|
(to)[1][col] = _DET2(m[i1],m[i2], 0,2), \
|
|
(to)[2][col] = -_DET2(m[i1],m[i2], 0,1))
|
|
#define SET4(to,from) \
|
|
((to)[0] = (from)[0], \
|
|
(to)[1] = (from)[1], \
|
|
(to)[2] = (from)[2], \
|
|
(to)[3] = (from)[3])
|
|
#define SETMAT4(to,from) \
|
|
(SET4((to)[0], (from)[0]), \
|
|
SET4((to)[1], (from)[1]), \
|
|
SET4((to)[2], (from)[2]), \
|
|
SET4((to)[3], (from)[3]))
|
|
#define ROUNDVEC4(to,from) \
|
|
((to)[0] = floor((from)[0]+.5), \
|
|
(to)[1] = floor((from)[1]+.5), \
|
|
(to)[2] = floor((from)[2]+.5), \
|
|
(to)[3] = floor((from)[3]+.5))
|
|
#define ROUNDMAT4(to,from) \
|
|
(ROUNDVEC4((to)[0], (from)[0]), \
|
|
ROUNDVEC4((to)[1], (from)[1]), \
|
|
ROUNDVEC4((to)[2], (from)[2]), \
|
|
ROUNDVEC4((to)[3], (from)[3]))
|
|
#define FILLVEC4(v,s) \
|
|
((v)[0] = (s), \
|
|
(v)[1] = (s), \
|
|
(v)[2] = (s), \
|
|
(v)[3] = (s))
|
|
#define FILLMAT4(m,s) \
|
|
(FILLVEC4((m)[0], s), \
|
|
FILLVEC4((m)[1], s), \
|
|
FILLVEC4((m)[2], s), \
|
|
FILLVEC4((m)[3], s))
|
|
#define ZEROVEC4(v) \
|
|
((v)[0] = 0, \
|
|
(v)[1] = 0, \
|
|
(v)[2] = 0, \
|
|
(v)[3] = 0)
|
|
#define ISZEROVEC4(v) \
|
|
((v)[0] == 0 && \
|
|
(v)[1] == 0 && \
|
|
(v)[2] == 0 && \
|
|
(v)[3] == 0)
|
|
#define EQVEC4(v,w) \
|
|
((v)[0] == (w)[0] && \
|
|
(v)[1] == (w)[1] && \
|
|
(v)[2] == (w)[2] && \
|
|
(v)[3] == (w)[3])
|
|
#define EQMAT4(m1,m2) \
|
|
(EQVEC4((m1)[0], (m2)[0]) && \
|
|
EQVEC4((m1)[1], (m2)[1]) && \
|
|
EQVEC4((m1)[2], (m2)[2]) && \
|
|
EQVEC4((m1)[3], (m2)[3]))
|
|
#define ZEROMAT4(m) \
|
|
(ZEROVEC4((m)[0]), \
|
|
ZEROVEC4((m)[1]), \
|
|
ZEROVEC4((m)[2]), \
|
|
ZEROVEC4((m)[3]))
|
|
#define IDENTMAT4(m) \
|
|
(ZEROVEC4((m)[0]), (m)[0][0]=1, \
|
|
ZEROVEC4((m)[1]), (m)[1][1]=1, \
|
|
ZEROVEC4((m)[2]), (m)[2][2]=1, \
|
|
ZEROVEC4((m)[3]), (m)[3][3]=1)
|
|
#define TRANSPOSE4(to,from) \
|
|
(_SETcol4((to)[0], from, 0), \
|
|
_SETcol4((to)[1], from, 1), \
|
|
_SETcol4((to)[2], from, 2), \
|
|
_SETcol4((to)[3], from, 3))
|
|
#define VPSXV4(to,v,s,w) \
|
|
((to)[0] = (v)[0] + (s) * (w)[0], \
|
|
(to)[1] = (v)[1] + (s) * (w)[1], \
|
|
(to)[2] = (v)[2] + (s) * (w)[2], \
|
|
(to)[3] = (v)[3] + (s) * (w)[3])
|
|
#define VPVXS4(to,v,w,s) \
|
|
((to)[0] = (v)[0] + (w)[0] * (s), \
|
|
(to)[1] = (v)[1] + (w)[1] * (s), \
|
|
(to)[2] = (v)[2] + (w)[2] * (s), \
|
|
(to)[3] = (v)[3] + (w)[3] * (s))
|
|
#define VPV4(to,v,w) \
|
|
((to)[0] = (v)[0] + (w)[0], \
|
|
(to)[1] = (v)[1] + (w)[1], \
|
|
(to)[2] = (v)[2] + (w)[2], \
|
|
(to)[3] = (v)[3] + (w)[3])
|
|
#define VMV4(to,v,w) \
|
|
((to)[0] = (v)[0] - (w)[0], \
|
|
(to)[1] = (v)[1] - (w)[1], \
|
|
(to)[2] = (v)[2] - (w)[2], \
|
|
(to)[3] = (v)[3] - (w)[3])
|
|
#define MPM4(to,m1,m2) \
|
|
(VPV4((to)[0], (m1)[0], (m2)[0]), \
|
|
VPV4((to)[1], (m1)[1], (m2)[1]), \
|
|
VPV4((to)[2], (m1)[2], (m2)[2]), \
|
|
VPV4((to)[3], (m1)[3], (m2)[3]))
|
|
#define MMM4(to,m1,m2) \
|
|
(VMV4((to)[0], (m1)[0], (m2)[0]), \
|
|
VMV4((to)[1], (m1)[1], (m2)[1]), \
|
|
VMV4((to)[2], (m1)[2], (m2)[2]), \
|
|
VMV4((to)[3], (m1)[3], (m2)[3]))
|
|
#define SXV4(to,s,from) \
|
|
((to)[0] = (s) * (from)[0], \
|
|
(to)[1] = (s) * (from)[1], \
|
|
(to)[2] = (s) * (from)[2], \
|
|
(to)[3] = (s) * (from)[3])
|
|
#define SXM4(to,s,from) \
|
|
(SXV4((to)[0], s, (from)[0]), \
|
|
SXV4((to)[1], s, (from)[1]), \
|
|
SXV4((to)[2], s, (from)[2]), \
|
|
SXV4((to)[3], s, (from)[3]))
|
|
#define MV4(to,from) \
|
|
((to)[0] = -(from)[0], \
|
|
(to)[1] = -(from)[1], \
|
|
(to)[2] = -(from)[2], \
|
|
(to)[3] = -(from)[3])
|
|
#define MM4(to,from) \
|
|
(MV4((to)[0], (from)[0]), \
|
|
MV4((to)[1], (from)[1]), \
|
|
MV4((to)[2], (from)[2]), \
|
|
MV4((to)[3], (from)[3]))
|
|
#define VXS4(to,from,s) \
|
|
((to)[0] = (from)[0] * (s), \
|
|
(to)[1] = (from)[1] * (s), \
|
|
(to)[2] = (from)[2] * (s), \
|
|
(to)[3] = (from)[3] * (s))
|
|
#define VDS4(to,from,s) \
|
|
((to)[0] = (from)[0] / (s), \
|
|
(to)[1] = (from)[1] / (s), \
|
|
(to)[2] = (from)[2] / (s), \
|
|
(to)[3] = (from)[3] / (s))
|
|
#define MXS4(to,from,s) \
|
|
(VXS4((to)[0], (from)[0], s), \
|
|
VXS4((to)[1], (from)[1], s), \
|
|
VXS4((to)[2], (from)[2], s), \
|
|
VXS4((to)[3], (from)[3], s))
|
|
#define MDS4(to,from,s) \
|
|
(VDS4((to)[0], (from)[0], s), \
|
|
VDS4((to)[1], (from)[1], s), \
|
|
VDS4((to)[2], (from)[2], s), \
|
|
VDS4((to)[3], (from)[3], s))
|
|
#define MXM4(to,m1,m2) \
|
|
(VXM4((to)[0], (m1)[0], m2), \
|
|
VXM4((to)[1], (m1)[1], m2), \
|
|
VXM4((to)[2], (m1)[2], m2), \
|
|
VXM4((to)[3], (m1)[3], m2))
|
|
#define VXM4(to,v,m) \
|
|
((to)[0] = _DOTcol4(v, m, 0), \
|
|
(to)[1] = _DOTcol4(v, m, 1), \
|
|
(to)[2] = _DOTcol4(v, m, 2), \
|
|
(to)[3] = _DOTcol4(v, m, 3))
|
|
#define MXV4(to,m,v) \
|
|
((to)[0] = DOT4((m)[0], v), \
|
|
(to)[1] = DOT4((m)[1], v), \
|
|
(to)[2] = DOT4((m)[2], v), \
|
|
(to)[3] = DOT4((m)[3], v))
|
|
#define VMODS4(to,v,s) \
|
|
((to)[0] = SMODS1((v)[0], s), \
|
|
(to)[1] = SMODS1((v)[1], s), \
|
|
(to)[2] = SMODS1((v)[2], s), \
|
|
(to)[3] = SMODS1((v)[3], s))
|
|
#define VMODV4(to,v0,v1) \
|
|
((to)[0] = SMODS1((v0)[0], (v1)[0]), \
|
|
(to)[1] = SMODS1((v0)[1], (v1)[1]), \
|
|
(to)[2] = SMODS1((v0)[2], (v1)[2]), \
|
|
(to)[3] = SMODS1((v0)[3], (v1)[3]))
|
|
#define VDIVS4(to,v,s) \
|
|
((to)[0] = SDIVS1((v)[0], s), \
|
|
(to)[1] = SDIVS1((v)[1], s), \
|
|
(to)[2] = SDIVS1((v)[2], s), \
|
|
(to)[3] = SDIVS1((v)[3], s))
|
|
#define VDIVV4(to,v0,v1) \
|
|
((to)[0] = SDIVS1((v0)[0], (v1)[0]), \
|
|
(to)[1] = SDIVS1((v0)[1], (v1)[1]), \
|
|
(to)[2] = SDIVS1((v0)[2], (v1)[2]), \
|
|
(to)[3] = SDIVS1((v0)[3], (v1)[3]))
|
|
#define VMINS4(to,v,s) \
|
|
((to)[0] = SMINS1((v)[0], s), \
|
|
(to)[1] = SMINS1((v)[1], s), \
|
|
(to)[2] = SMINS1((v)[2], s), \
|
|
(to)[3] = SMINS1((v)[3], s))
|
|
#define VMINV4(to,v0,v1) \
|
|
((to)[0] = SMINS1((v0)[0], (v1)[0]), \
|
|
(to)[1] = SMINS1((v0)[1], (v1)[1]), \
|
|
(to)[2] = SMINS1((v0)[2], (v1)[2]), \
|
|
(to)[3] = SMINS1((v0)[3], (v1)[3]))
|
|
#define VMAXS4(to,v,s) \
|
|
((to)[0] = SMAXS1((v)[0], s), \
|
|
(to)[1] = SMAXS1((v)[1], s), \
|
|
(to)[2] = SMAXS1((v)[2], s), \
|
|
(to)[3] = SMAXS1((v)[3], s))
|
|
#define VMAXV4(to,v0,v1) \
|
|
((to)[0] = SMAXS1((v0)[0], (v1)[0]), \
|
|
(to)[1] = SMAXS1((v0)[1], (v1)[1]), \
|
|
(to)[2] = SMAXS1((v0)[2], (v1)[2]), \
|
|
(to)[3] = SMAXS1((v0)[3], (v1)[3]))
|
|
#define LERP4(to,v0,v1,t) \
|
|
((to)[0]=(v0)[0]+(t)*((v1)[0]-(v0)[0]), \
|
|
(to)[1]=(v0)[1]+(t)*((v1)[1]-(v0)[1]), \
|
|
(to)[2]=(v0)[2]+(t)*((v1)[2]-(v0)[2]), \
|
|
(to)[3]=(v0)[3]+(t)*((v1)[3]-(v0)[3]))
|
|
#define TRACE4(m) \
|
|
((m)[0][0] + \
|
|
(m)[1][1] + \
|
|
(m)[2][2] + \
|
|
(m)[3][3])
|
|
#define DOT4(v,w) \
|
|
((v)[0] * (w)[0] + \
|
|
(v)[1] * (w)[1] + \
|
|
(v)[2] * (w)[2] + \
|
|
(v)[3] * (w)[3])
|
|
#define NORMSQRD4(v) \
|
|
((v)[0] * (v)[0] + \
|
|
(v)[1] * (v)[1] + \
|
|
(v)[2] * (v)[2] + \
|
|
(v)[3] * (v)[3])
|
|
#define DISTSQRD4(v,w) \
|
|
(((v)[0]-(w)[0])*((v)[0]-(w)[0]) + \
|
|
((v)[1]-(w)[1])*((v)[1]-(w)[1]) + \
|
|
((v)[2]-(w)[2])*((v)[2]-(w)[2]) + \
|
|
((v)[3]-(w)[3])*((v)[3]-(w)[3]))
|
|
#define _DOTcol4(v,m,j) \
|
|
((v)[0] * (m)[0][j] + \
|
|
(v)[1] * (m)[1][j] + \
|
|
(v)[2] * (m)[2][j] + \
|
|
(v)[3] * (m)[3][j])
|
|
#define _SETcol4(v,m,j) \
|
|
((v)[0] = (m)[0][j], \
|
|
(v)[1] = (m)[1][j], \
|
|
(v)[2] = (m)[2][j], \
|
|
(v)[3] = (m)[3][j])
|
|
#define _MXVcol4(to,m,M,j) \
|
|
((to)[0][j] = _DOTcol4((m)[0],M,j), \
|
|
(to)[1][j] = _DOTcol4((m)[1],M,j), \
|
|
(to)[2][j] = _DOTcol4((m)[2],M,j), \
|
|
(to)[3][j] = _DOTcol4((m)[3],M,j))
|
|
#define _DET4(v0,v1,v2,v3,i0,i1,i2,i3) \
|
|
((v0)[i0]* _DET3(v1,v2,v3,i1,i2,i3) + \
|
|
(v0)[i1]*-_DET3(v1,v2,v3,i0,i2,i3) + \
|
|
(v0)[i2]* _DET3(v1,v2,v3,i0,i1,i3) + \
|
|
(v0)[i3]*-_DET3(v1,v2,v3,i0,i1,i2))
|
|
#define VXVXV4(to,v1,v2,v3) \
|
|
((to)[0] = -_DET3(v1,v2,v3, 1,2,3), \
|
|
(to)[1] = _DET3(v1,v2,v3, 0,2,3), \
|
|
(to)[2] = -_DET3(v1,v2,v3, 0,1,3), \
|
|
(to)[3] = _DET3(v1,v2,v3, 0,1,2))
|
|
#define SET4from3(to,from,pad) \
|
|
((to)[0] = (from)[0], \
|
|
(to)[1] = (from)[1], \
|
|
(to)[2] = (from)[2], \
|
|
(to)[3] = (pad))
|
|
#define SETMAT4from3(to,from,pad0,pad1) \
|
|
(SET4from3((to)[0], (from)[0], pad0), \
|
|
SET4from3((to)[1], (from)[1], pad0), \
|
|
SET4from3((to)[2], (from)[2], pad0), \
|
|
FILLVEC3((to)[3], (pad0)), (to)[3][3] = (pad1))
|
|
#define M3XM4(to4,m3,m4) \
|
|
(_MXVcol3(to4,m3,m4,0), (to4)[3][0]=(m4)[3][0], \
|
|
_MXVcol3(to4,m3,m4,1), (to4)[3][1]=(m4)[3][1], \
|
|
_MXVcol3(to4,m3,m4,2), (to4)[3][2]=(m4)[3][2], \
|
|
_MXVcol3(to4,m3,m4,3), (to4)[3][3]=(m4)[3][3])
|
|
#define M4XM3(to4,m4,m3) \
|
|
(VXM3((to4)[0],(m4)[0],m3), (to4)[0][3]=(m4)[0][3], \
|
|
VXM3((to4)[1],(m4)[1],m3), (to4)[1][3]=(m4)[1][3], \
|
|
VXM3((to4)[2],(m4)[2],m3), (to4)[2][3]=(m4)[2][3], \
|
|
VXM3((to4)[3],(m4)[3],m3), (to4)[3][3]=(m4)[3][3])
|
|
#define VXVXVXV4(v0,v1,v2,v3) \
|
|
(_DET4(v0,v1,v2,v3,0,1,2,3))
|
|
#define DET4(m) \
|
|
(VXVXVXV4((m)[0],(m)[1],(m)[2],(m)[3]))
|
|
#define ADJOINT4(to,m) \
|
|
( _ADJOINTcol4(to,0,m,1,2,3), \
|
|
__ADJOINTcol4(to,1,m,0,2,3), \
|
|
_ADJOINTcol4(to,2,m,0,1,3), \
|
|
__ADJOINTcol4(to,3,m,0,1,2))
|
|
#define _ADJOINTcol4(to,col,m,i1,i2,i3) \
|
|
((to)[0][col] = _DET3(m[i1],m[i2],m[i3], 1,2,3), \
|
|
(to)[1][col] = -_DET3(m[i1],m[i2],m[i3], 0,2,3), \
|
|
(to)[2][col] = _DET3(m[i1],m[i2],m[i3], 0,1,3), \
|
|
(to)[3][col] = -_DET3(m[i1],m[i2],m[i3], 0,1,2))
|
|
#define __ADJOINTcol4(to,col,m,i1,i2,i3) \
|
|
((to)[0][col] = -_DET3(m[i1],m[i2],m[i3], 1,2,3), \
|
|
(to)[1][col] = _DET3(m[i1],m[i2],m[i3], 0,2,3), \
|
|
(to)[2][col] = -_DET3(m[i1],m[i2],m[i3], 0,1,3), \
|
|
(to)[3][col] = _DET3(m[i1],m[i2],m[i3], 0,1,2))
|
|
#define TRANSPOSE2safe(type,to,from) \
|
|
do {type _vec_h_temp_[2][2]; \
|
|
TRANSPOSE2(_vec_h_temp_,from); \
|
|
SETMAT2(to, _vec_h_temp_); \
|
|
} while (0)
|
|
#define TRANSPOSE2d(to,from) TRANSPOSE2safe(double,to,from)
|
|
#define TRANSPOSE2i(to,from) TRANSPOSE2safe(int,to,from)
|
|
#define TRANSPOSE2l(to,from) TRANSPOSE2safe(long,to,from)
|
|
#define TRANSPOSE2r(to,from) TRANSPOSE2safe(real,to,from)
|
|
#define MXM2safe(type,to,m1,m2) \
|
|
do {type _vec_h_temp_[2][2]; \
|
|
MXM2(_vec_h_temp_,m1,m2); \
|
|
SETMAT2(to, _vec_h_temp_); \
|
|
} while (0)
|
|
#define MXM2d(to,m1,m2) MXM2safe(double,to,m1,m2)
|
|
#define MXM2i(to,m1,m2) MXM2safe(int,to,m1,m2)
|
|
#define MXM2l(to,m1,m2) MXM2safe(long,to,m1,m2)
|
|
#define MXM2r(to,m1,m2) MXM2safe(real,to,m1,m2)
|
|
#define VXM2safe(type,to,v,m) \
|
|
do {type _vec_h_temp_[2]; \
|
|
VXM2(_vec_h_temp_,v,m); \
|
|
SET2(to, _vec_h_temp_); \
|
|
} while (0)
|
|
#define VXM2d(to,v,m) VXM2safe(double,to,v,m)
|
|
#define VXM2i(to,v,m) VXM2safe(int,to,v,m)
|
|
#define VXM2l(to,v,m) VXM2safe(long,to,v,m)
|
|
#define VXM2r(to,v,m) VXM2safe(real,to,v,m)
|
|
#define MXV2safe(type,to,m,v) \
|
|
do {type _vec_h_temp_[2]; \
|
|
MXV2(_vec_h_temp_,m,v); \
|
|
SET2(to, _vec_h_temp_); \
|
|
} while (0)
|
|
#define MXV2d(to,m,v) MXV2safe(double,to,m,v)
|
|
#define MXV2i(to,m,v) MXV2safe(int,to,m,v)
|
|
#define MXV2l(to,m,v) MXV2safe(long,to,m,v)
|
|
#define MXV2r(to,m,v) MXV2safe(real,to,m,v)
|
|
#define XV2safe(type,to,v1) \
|
|
do {type _vec_h_temp_[2]; \
|
|
XV2(_vec_h_temp_,v1); \
|
|
SET2(to, _vec_h_temp_); \
|
|
} while (0)
|
|
#define XV2d(to,v1) XV2safe(double,to,v1)
|
|
#define XV2i(to,v1) XV2safe(int,to,v1)
|
|
#define XV2l(to,v1) XV2safe(long,to,v1)
|
|
#define XV2r(to,v1) XV2safe(real,to,v1)
|
|
#define V2XM3safe(type,to2,v2,m3) \
|
|
do {type _vec_h_temp_[2]; \
|
|
V2XM3(_vec_h_temp_,v2,m3); \
|
|
SET2(to2, _vec_h_temp_); \
|
|
} while (0)
|
|
#define V2XM3d(to2,v2,m3) V2XM3safe(double,to2,v2,m3)
|
|
#define V2XM3i(to2,v2,m3) V2XM3safe(int,to2,v2,m3)
|
|
#define V2XM3l(to2,v2,m3) V2XM3safe(long,to2,v2,m3)
|
|
#define V2XM3r(to2,v2,m3) V2XM3safe(real,to2,v2,m3)
|
|
#define M3XV2safe(type,to2,m3,v2) \
|
|
do {type _vec_h_temp_[2]; \
|
|
M3XV2(_vec_h_temp_,m3,v2); \
|
|
SET2(to2, _vec_h_temp_); \
|
|
} while (0)
|
|
#define M3XV2d(to2,m3,v2) M3XV2safe(double,to2,m3,v2)
|
|
#define M3XV2i(to2,m3,v2) M3XV2safe(int,to2,m3,v2)
|
|
#define M3XV2l(to2,m3,v2) M3XV2safe(long,to2,m3,v2)
|
|
#define M3XV2r(to2,m3,v2) M3XV2safe(real,to2,m3,v2)
|
|
#define ADJOINT2safe(type,to,m) \
|
|
do {type _vec_h_temp_[2][2]; \
|
|
ADJOINT2(_vec_h_temp_,m); \
|
|
SETMAT2(to, _vec_h_temp_); \
|
|
} while (0)
|
|
#define ADJOINT2d(to,m) ADJOINT2safe(double,to,m)
|
|
#define ADJOINT2i(to,m) ADJOINT2safe(int,to,m)
|
|
#define ADJOINT2l(to,m) ADJOINT2safe(long,to,m)
|
|
#define ADJOINT2r(to,m) ADJOINT2safe(real,to,m)
|
|
#define INVERTMAT2safe(type,to,from) \
|
|
do {type _vec_h_temp_[2][2]; \
|
|
ADJOINT2(_vec_h_temp_, from); \
|
|
type _vec_h_temp_invdet_ = (type)1/(type)DET2(from); \
|
|
SXM2(to, _vec_h_temp_invdet_, _vec_h_temp_); \
|
|
} while (0)
|
|
#define INVERTMAT2d(to,from) INVERTMAT2safe(double,to,from)
|
|
#define INVERTMAT2i(to,from) INVERTMAT2safe(int,to,from)
|
|
#define INVERTMAT2l(to,from) INVERTMAT2safe(long,to,from)
|
|
#define INVERTMAT2r(to,from) INVERTMAT2safe(real,to,from)
|
|
#define TRANSPOSE3safe(type,to,from) \
|
|
do {type _vec_h_temp_[3][3]; \
|
|
TRANSPOSE3(_vec_h_temp_,from); \
|
|
SETMAT3(to, _vec_h_temp_); \
|
|
} while (0)
|
|
#define TRANSPOSE3d(to,from) TRANSPOSE3safe(double,to,from)
|
|
#define TRANSPOSE3i(to,from) TRANSPOSE3safe(int,to,from)
|
|
#define TRANSPOSE3l(to,from) TRANSPOSE3safe(long,to,from)
|
|
#define TRANSPOSE3r(to,from) TRANSPOSE3safe(real,to,from)
|
|
#define MXM3safe(type,to,m1,m2) \
|
|
do {type _vec_h_temp_[3][3]; \
|
|
MXM3(_vec_h_temp_,m1,m2); \
|
|
SETMAT3(to, _vec_h_temp_); \
|
|
} while (0)
|
|
#define MXM3d(to,m1,m2) MXM3safe(double,to,m1,m2)
|
|
#define MXM3i(to,m1,m2) MXM3safe(int,to,m1,m2)
|
|
#define MXM3l(to,m1,m2) MXM3safe(long,to,m1,m2)
|
|
#define MXM3r(to,m1,m2) MXM3safe(real,to,m1,m2)
|
|
#define VXM3safe(type,to,v,m) \
|
|
do {type _vec_h_temp_[3]; \
|
|
VXM3(_vec_h_temp_,v,m); \
|
|
SET3(to, _vec_h_temp_); \
|
|
} while (0)
|
|
#define VXM3d(to,v,m) VXM3safe(double,to,v,m)
|
|
#define VXM3i(to,v,m) VXM3safe(int,to,v,m)
|
|
#define VXM3l(to,v,m) VXM3safe(long,to,v,m)
|
|
#define VXM3r(to,v,m) VXM3safe(real,to,v,m)
|
|
#define MXV3safe(type,to,m,v) \
|
|
do {type _vec_h_temp_[3]; \
|
|
MXV3(_vec_h_temp_,m,v); \
|
|
SET3(to, _vec_h_temp_); \
|
|
} while (0)
|
|
#define MXV3d(to,m,v) MXV3safe(double,to,m,v)
|
|
#define MXV3i(to,m,v) MXV3safe(int,to,m,v)
|
|
#define MXV3l(to,m,v) MXV3safe(long,to,m,v)
|
|
#define MXV3r(to,m,v) MXV3safe(real,to,m,v)
|
|
#define VXV3safe(type,to,v1,v2) \
|
|
do {type _vec_h_temp_[3]; \
|
|
VXV3(_vec_h_temp_,v1,v2); \
|
|
SET3(to, _vec_h_temp_); \
|
|
} while (0)
|
|
#define VXV3d(to,v1,v2) VXV3safe(double,to,v1,v2)
|
|
#define VXV3i(to,v1,v2) VXV3safe(int,to,v1,v2)
|
|
#define VXV3l(to,v1,v2) VXV3safe(long,to,v1,v2)
|
|
#define VXV3r(to,v1,v2) VXV3safe(real,to,v1,v2)
|
|
#define M2XM3safe(type,to3,m2,m3) \
|
|
do {type _vec_h_temp_[3][3]; \
|
|
M2XM3(_vec_h_temp_,m2,m3); \
|
|
SETMAT3(to3, _vec_h_temp_); \
|
|
} while (0)
|
|
#define M2XM3d(to3,m2,m3) M2XM3safe(double,to3,m2,m3)
|
|
#define M2XM3i(to3,m2,m3) M2XM3safe(int,to3,m2,m3)
|
|
#define M2XM3l(to3,m2,m3) M2XM3safe(long,to3,m2,m3)
|
|
#define M2XM3r(to3,m2,m3) M2XM3safe(real,to3,m2,m3)
|
|
#define M3XM2safe(type,to3,m3,m2) \
|
|
do {type _vec_h_temp_[3][3]; \
|
|
M3XM2(_vec_h_temp_,m3,m2); \
|
|
SETMAT3(to3, _vec_h_temp_); \
|
|
} while (0)
|
|
#define M3XM2d(to3,m3,m2) M3XM2safe(double,to3,m3,m2)
|
|
#define M3XM2i(to3,m3,m2) M3XM2safe(int,to3,m3,m2)
|
|
#define M3XM2l(to3,m3,m2) M3XM2safe(long,to3,m3,m2)
|
|
#define M3XM2r(to3,m3,m2) M3XM2safe(real,to3,m3,m2)
|
|
#define V3XM4safe(type,to3,v3,m4) \
|
|
do {type _vec_h_temp_[3]; \
|
|
V3XM4(_vec_h_temp_,v3,m4); \
|
|
SET3(to3, _vec_h_temp_); \
|
|
} while (0)
|
|
#define V3XM4d(to3,v3,m4) V3XM4safe(double,to3,v3,m4)
|
|
#define V3XM4i(to3,v3,m4) V3XM4safe(int,to3,v3,m4)
|
|
#define V3XM4l(to3,v3,m4) V3XM4safe(long,to3,v3,m4)
|
|
#define V3XM4r(to3,v3,m4) V3XM4safe(real,to3,v3,m4)
|
|
#define M4XV3safe(type,to3,m4,v3) \
|
|
do {type _vec_h_temp_[3]; \
|
|
M4XV3(_vec_h_temp_,m4,v3); \
|
|
SET3(to3, _vec_h_temp_); \
|
|
} while (0)
|
|
#define M4XV3d(to3,m4,v3) M4XV3safe(double,to3,m4,v3)
|
|
#define M4XV3i(to3,m4,v3) M4XV3safe(int,to3,m4,v3)
|
|
#define M4XV3l(to3,m4,v3) M4XV3safe(long,to3,m4,v3)
|
|
#define M4XV3r(to3,m4,v3) M4XV3safe(real,to3,m4,v3)
|
|
#define ADJOINT3safe(type,to,m) \
|
|
do {type _vec_h_temp_[3][3]; \
|
|
ADJOINT3(_vec_h_temp_,m); \
|
|
SETMAT3(to, _vec_h_temp_); \
|
|
} while (0)
|
|
#define ADJOINT3d(to,m) ADJOINT3safe(double,to,m)
|
|
#define ADJOINT3i(to,m) ADJOINT3safe(int,to,m)
|
|
#define ADJOINT3l(to,m) ADJOINT3safe(long,to,m)
|
|
#define ADJOINT3r(to,m) ADJOINT3safe(real,to,m)
|
|
#define INVERTMAT3safe(type,to,from) \
|
|
do {type _vec_h_temp_[3][3]; \
|
|
ADJOINT3(_vec_h_temp_, from); \
|
|
type _vec_h_temp_invdet_ = (type)1/(type)DET3(from); \
|
|
SXM3(to, _vec_h_temp_invdet_, _vec_h_temp_); \
|
|
} while (0)
|
|
#define INVERTMAT3d(to,from) INVERTMAT3safe(double,to,from)
|
|
#define INVERTMAT3i(to,from) INVERTMAT3safe(int,to,from)
|
|
#define INVERTMAT3l(to,from) INVERTMAT3safe(long,to,from)
|
|
#define INVERTMAT3r(to,from) INVERTMAT3safe(real,to,from)
|
|
#define TRANSPOSE4safe(type,to,from) \
|
|
do {type _vec_h_temp_[4][4]; \
|
|
TRANSPOSE4(_vec_h_temp_,from); \
|
|
SETMAT4(to, _vec_h_temp_); \
|
|
} while (0)
|
|
#define TRANSPOSE4d(to,from) TRANSPOSE4safe(double,to,from)
|
|
#define TRANSPOSE4i(to,from) TRANSPOSE4safe(int,to,from)
|
|
#define TRANSPOSE4l(to,from) TRANSPOSE4safe(long,to,from)
|
|
#define TRANSPOSE4r(to,from) TRANSPOSE4safe(real,to,from)
|
|
#define MXM4safe(type,to,m1,m2) \
|
|
do {type _vec_h_temp_[4][4]; \
|
|
MXM4(_vec_h_temp_,m1,m2); \
|
|
SETMAT4(to, _vec_h_temp_); \
|
|
} while (0)
|
|
#define MXM4d(to,m1,m2) MXM4safe(double,to,m1,m2)
|
|
#define MXM4i(to,m1,m2) MXM4safe(int,to,m1,m2)
|
|
#define MXM4l(to,m1,m2) MXM4safe(long,to,m1,m2)
|
|
#define MXM4r(to,m1,m2) MXM4safe(real,to,m1,m2)
|
|
#define VXM4safe(type,to,v,m) \
|
|
do {type _vec_h_temp_[4]; \
|
|
VXM4(_vec_h_temp_,v,m); \
|
|
SET4(to, _vec_h_temp_); \
|
|
} while (0)
|
|
#define VXM4d(to,v,m) VXM4safe(double,to,v,m)
|
|
#define VXM4i(to,v,m) VXM4safe(int,to,v,m)
|
|
#define VXM4l(to,v,m) VXM4safe(long,to,v,m)
|
|
#define VXM4r(to,v,m) VXM4safe(real,to,v,m)
|
|
#define MXV4safe(type,to,m,v) \
|
|
do {type _vec_h_temp_[4]; \
|
|
MXV4(_vec_h_temp_,m,v); \
|
|
SET4(to, _vec_h_temp_); \
|
|
} while (0)
|
|
#define MXV4d(to,m,v) MXV4safe(double,to,m,v)
|
|
#define MXV4i(to,m,v) MXV4safe(int,to,m,v)
|
|
#define MXV4l(to,m,v) MXV4safe(long,to,m,v)
|
|
#define MXV4r(to,m,v) MXV4safe(real,to,m,v)
|
|
#define VXVXV4safe(type,to,v1,v2,v3) \
|
|
do {type _vec_h_temp_[4]; \
|
|
VXVXV4(_vec_h_temp_,v1,v2,v3); \
|
|
SET4(to, _vec_h_temp_); \
|
|
} while (0)
|
|
#define VXVXV4d(to,v1,v2,v3) VXVXV4safe(double,to,v1,v2,v3)
|
|
#define VXVXV4i(to,v1,v2,v3) VXVXV4safe(int,to,v1,v2,v3)
|
|
#define VXVXV4l(to,v1,v2,v3) VXVXV4safe(long,to,v1,v2,v3)
|
|
#define VXVXV4r(to,v1,v2,v3) VXVXV4safe(real,to,v1,v2,v3)
|
|
#define M3XM4safe(type,to4,m3,m4) \
|
|
do {type _vec_h_temp_[4][4]; \
|
|
M3XM4(_vec_h_temp_,m3,m4); \
|
|
SETMAT4(to4, _vec_h_temp_); \
|
|
} while (0)
|
|
#define M3XM4d(to4,m3,m4) M3XM4safe(double,to4,m3,m4)
|
|
#define M3XM4i(to4,m3,m4) M3XM4safe(int,to4,m3,m4)
|
|
#define M3XM4l(to4,m3,m4) M3XM4safe(long,to4,m3,m4)
|
|
#define M3XM4r(to4,m3,m4) M3XM4safe(real,to4,m3,m4)
|
|
#define M4XM3safe(type,to4,m4,m3) \
|
|
do {type _vec_h_temp_[4][4]; \
|
|
M4XM3(_vec_h_temp_,m4,m3); \
|
|
SETMAT4(to4, _vec_h_temp_); \
|
|
} while (0)
|
|
#define M4XM3d(to4,m4,m3) M4XM3safe(double,to4,m4,m3)
|
|
#define M4XM3i(to4,m4,m3) M4XM3safe(int,to4,m4,m3)
|
|
#define M4XM3l(to4,m4,m3) M4XM3safe(long,to4,m4,m3)
|
|
#define M4XM3r(to4,m4,m3) M4XM3safe(real,to4,m4,m3)
|
|
#define ADJOINT4safe(type,to,m) \
|
|
do {type _vec_h_temp_[4][4]; \
|
|
ADJOINT4(_vec_h_temp_,m); \
|
|
SETMAT4(to, _vec_h_temp_); \
|
|
} while (0)
|
|
#define ADJOINT4d(to,m) ADJOINT4safe(double,to,m)
|
|
#define ADJOINT4i(to,m) ADJOINT4safe(int,to,m)
|
|
#define ADJOINT4l(to,m) ADJOINT4safe(long,to,m)
|
|
#define ADJOINT4r(to,m) ADJOINT4safe(real,to,m)
|
|
#define INVERTMAT4safe(type,to,from) \
|
|
do {type _vec_h_temp_[4][4]; \
|
|
ADJOINT4(_vec_h_temp_, from); \
|
|
type _vec_h_temp_invdet_ = (type)1/(type)DET4(from); \
|
|
SXM4(to, _vec_h_temp_invdet_, _vec_h_temp_); \
|
|
} while (0)
|
|
#define INVERTMAT4d(to,from) INVERTMAT4safe(double,to,from)
|
|
#define INVERTMAT4i(to,from) INVERTMAT4safe(int,to,from)
|
|
#define INVERTMAT4l(to,from) INVERTMAT4safe(long,to,from)
|
|
#define INVERTMAT4r(to,from) INVERTMAT4safe(real,to,from)
|
|
#endif /* VEC_H */
|