#ifndef VECTOR_H #define VECTOR_H #include "compat.h" #include #include // Note: Many functions most likely take const references/pointers instead of non-const. // The class needs to undergo a very careful refactoring to fix that (no matches should break). // VTABLE: LEGO1 0x100d4288 // VTABLE: BETA10 0x101b8440 // SIZE 0x08 class Vector2 { public: // FUNCTION: LEGO1 0x1000c0f0 // FUNCTION: BETA10 0x100116a0 Vector2(float* p_data) { SetData(p_data); } // Note: virtual function overloads appear in the virtual table // in reverse order of appearance. // FUNCTION: LEGO1 0x10001f80 virtual void AddImpl(float* p_value) { m_data[0] += p_value[0]; m_data[1] += p_value[1]; } // vtable+0x04 // FUNCTION: LEGO1 0x10001fa0 virtual void AddImpl(float p_value) { m_data[0] += p_value; m_data[1] += p_value; } // vtable+0x00 // FUNCTION: LEGO1 0x10001fc0 virtual void SubImpl(float* p_value) { m_data[0] -= p_value[0]; m_data[1] -= p_value[1]; } // vtable+0x08 // Those are also overloads in all likelihood, // but we need a type to do that. // FUNCTION: LEGO1 0x10002000 virtual void MulScalarImpl(float* p_value) { m_data[0] *= *p_value; m_data[1] *= *p_value; } // vtable+0x0c // FUNCTION: LEGO1 0x10001fe0 virtual void MulVectorImpl(float* p_value) { m_data[0] *= p_value[0]; m_data[1] *= p_value[1]; } // vtable+0x10 // FUNCTION: LEGO1 0x10002020 virtual void DivScalarImpl(float* p_value) { m_data[0] /= *p_value; m_data[1] /= *p_value; } // vtable+0x14 // FUNCTION: LEGO1 0x10002040 virtual float DotImpl(float* p_a, float* p_b) const { return p_b[0] * p_a[0] + p_b[1] * p_a[1]; } // vtable+0x18 // FUNCTION: LEGO1 0x10002060 // FUNCTION: BETA10 0x10010c90 virtual void SetData(float* p_data) { m_data = p_data; } // vtable+0x1c // FUNCTION: LEGO1 0x10002070 virtual void EqualsImpl(float* p_data) { memcpy(m_data, p_data, sizeof(float) * 2); } // vtable+0x20 // FUNCTION: LEGO1 0x10002090 virtual float* GetData() { return m_data; } // vtable+0x28 // FUNCTION: LEGO1 0x100020a0 virtual const float* GetData() const { return m_data; } // vtable+0x24 // FUNCTION: LEGO1 0x100020b0 virtual void Clear() { memset(m_data, 0, sizeof(float) * 2); } // vtable+0x2c // FUNCTION: LEGO1 0x100020d0 virtual float Dot(float* p_a, float* p_b) const { return DotImpl(p_a, p_b); } // vtable+0x3c // FUNCTION: LEGO1 0x100020f0 // FUNCTION: BETA10 0x100108c0 virtual float Dot(Vector2* p_a, Vector2* p_b) const { return DotImpl(p_a->m_data, p_b->m_data); } // vtable+0x38 // FUNCTION: LEGO1 0x10002110 virtual float Dot(float* p_a, Vector2* p_b) const { return DotImpl(p_a, p_b->m_data); } // vtable+0x34 // FUNCTION: LEGO1 0x10002130 virtual float Dot(Vector2* p_a, float* p_b) const { return DotImpl(p_a->m_data, p_b); } // vtable+0x30 // FUNCTION: LEGO1 0x10002150 virtual float LenSquared() const { return m_data[0] * m_data[0] + m_data[1] * m_data[1]; } // vtable+0x40 // FUNCTION: LEGO1 0x10002160 // FUNCTION: BETA10 0x10010900 virtual int Unitize() { float sq = LenSquared(); if (sq > 0.0f) { float root = sqrt(sq); if (root > 0.0f) { DivScalarImpl(&root); return 0; } } return -1; } // vtable+0x44 private: // FUNCTION: LEGO1 0x100021c0 virtual void Add(float p_value) { AddImpl(p_value); } // vtable+0x50 // FUNCTION: LEGO1 0x100021d0 virtual void Add(float* p_other) { AddImpl(p_other); } // vtable+0x4c // FUNCTION: LEGO1 0x100021e0 virtual void Add(const Vector2& p_other) { AddImpl((float*) p_other.m_data); } // vtable+0x48 // FUNCTION: LEGO1 0x100021f0 virtual void Sub(const float* p_other) { SubImpl((float*) p_other); } // vtable+0x58 // FUNCTION: LEGO1 0x10002200 virtual void Sub(const Vector2& p_other) { SubImpl((float*) p_other.m_data); } // vtable+0x54 // FUNCTION: LEGO1 0x10002210 virtual void Mul(float* p_other) { MulVectorImpl(p_other); } // vtable+0x64 // FUNCTION: LEGO1 0x10002220 virtual void Mul(Vector2* p_other) { MulVectorImpl(p_other->m_data); } // vtable+0x60 // FUNCTION: LEGO1 0x10002230 virtual void Mul(const float& p_value) { MulScalarImpl((float*) &p_value); } // vtable+0x5c // FUNCTION: LEGO1 0x10002240 virtual void Div(const float& p_value) { DivScalarImpl((float*) &p_value); } // vtable+0x68 public: // FUNCTION: LEGO1 0x10002250 virtual void SetVector(float* p_other) { EqualsImpl(p_other); } // vtable+0x70 // FUNCTION: LEGO1 0x10002260 // FUNCTION: BETA10 0x100110c0 virtual void SetVector(const Vector2* p_other) { EqualsImpl(p_other->m_data); } // vtable+0x6c // Note: it's unclear whether Vector3::operator= has been defined explicitly // with the same function body as Vector2& operator=. The BETA indicates that; // however, it makes LEGO1 0x10010be0 disappear and worsens matches in // at least these functions: // LEGO1 0x100109b0 // LEGO1 0x10023130 // LEGO1 0x1002de10 // LEGO1 0x10050a80 // LEGO1 0x10053980 // LEGO1 0x100648f0 // LEGO1 0x10064b50 // LEGO1 0x10084030 // LEGO1 0x100a9410 // However, defining it as in the BETA improves at least these functions: // LEGO1 0x10042300 // SYNTHETIC: LEGO1 0x10010be0 // SYNTHETIC: BETA10 0x100121e0 // Vector3::operator= // SYNTHETIC: BETA10 0x1004af40 // Vector4::operator= Vector2& operator=(const Vector2& p_other) { Vector2::SetVector(&p_other); return *this; } // FUNCTION: BETA10 0x1001d140 float& operator[](int idx) { return m_data[idx]; } // FUNCTION: BETA10 0x1001d170 const float& operator[](int idx) const { return m_data[idx]; } void operator+=(float p_value) { Add(p_value); } void operator+=(float* p_other) { Add(p_other); } void operator+=(const Vector2& p_other) { Add(p_other); } void operator-=(const float* p_other) { Sub(p_other); } void operator-=(const Vector2& p_other) { Sub(p_other); } void operator*=(float* p_other) { Mul(p_other); } void operator*=(Vector2* p_other) { Mul(p_other); } void operator*=(const float& p_value) { Mul(p_value); } void operator/=(const float& p_value) { Div(p_value); } protected: float* m_data; // 0x04 }; // VTABLE: LEGO1 0x100d4518 // VTABLE: BETA10 0x101b8398 // SIZE 0x08 class Vector3 : public Vector2 { public: // FUNCTION: LEGO1 0x1001d150 // FUNCTION: BETA10 0x10011660 Vector3(float* p_data) : Vector2(p_data) {} // Hack: Some code initializes a Vector3 from a (most likely) const float* source. // Example: LegoCameraController::GetWorldUp // Vector3 however is a class that can mutate its underlying source, making // initialization with a const source fundamentally incompatible. // FUNCTION: BETA10 0x100109a0 Vector3(const float* p_data) : Vector2((float*) p_data) {} // Note: virtual function overloads appear in the virtual table // in reverse order of appearance. // FUNCTION: LEGO1 0x10002270 // FUNCTION: BETA10 0x10011350 virtual void EqualsCrossImpl(float* p_a, float* p_b) { m_data[0] = p_a[1] * p_b[2] - p_a[2] * p_b[1]; m_data[1] = p_a[2] * p_b[0] - p_a[0] * p_b[2]; m_data[2] = p_a[0] * p_b[1] - p_a[1] * p_b[0]; } // vtable+0x74 // FUNCTION: LEGO1 0x100022c0 // FUNCTION: BETA10 0x10011430 virtual void EqualsCross(Vector3* p_a, Vector3* p_b) { EqualsCrossImpl(p_a->m_data, p_b->m_data); } // vtable+0x80 // FUNCTION: LEGO1 0x100022e0 virtual void EqualsCross(Vector3* p_a, float* p_b) { EqualsCrossImpl(p_a->m_data, p_b); } // vtable+0x7c // FUNCTION: LEGO1 0x10002300 virtual void EqualsCross(float* p_a, Vector3* p_b) { EqualsCrossImpl(p_a, p_b->m_data); } // vtable+0x78 // FUNCTION: LEGO1 0x10003bf0 virtual void Fill(const float& p_value) { m_data[0] = p_value; m_data[1] = p_value; m_data[2] = p_value; } // vtable+0x84 // Vector2 overrides // FUNCTION: LEGO1 0x10003a60 void AddImpl(float* p_value) override { m_data[0] += p_value[0]; m_data[1] += p_value[1]; m_data[2] += p_value[2]; } // vtable+0x04 // FUNCTION: LEGO1 0x10003a90 void AddImpl(float p_value) override { m_data[0] += p_value; m_data[1] += p_value; m_data[2] += p_value; } // vtable+0x00 // FUNCTION: LEGO1 0x10003ac0 void SubImpl(float* p_value) override { m_data[0] -= p_value[0]; m_data[1] -= p_value[1]; m_data[2] -= p_value[2]; } // vtable+0x08 // FUNCTION: LEGO1 0x10003b20 void MulScalarImpl(float* p_value) override { m_data[0] *= *p_value; m_data[1] *= *p_value; m_data[2] *= *p_value; } // vtable+0x0c // FUNCTION: LEGO1 0x10003af0 void MulVectorImpl(float* p_value) override { m_data[0] *= p_value[0]; m_data[1] *= p_value[1]; m_data[2] *= p_value[2]; } // vtable+0x10 // FUNCTION: LEGO1 0x10003b50 void DivScalarImpl(float* p_value) override { m_data[0] /= *p_value; m_data[1] /= *p_value; m_data[2] /= *p_value; } // vtable+0x14 // FUNCTION: LEGO1 0x10003b80 float DotImpl(float* p_a, float* p_b) const override { return p_a[0] * p_b[0] + p_a[2] * p_b[2] + p_a[1] * p_b[1]; } // vtable+0x18 // FUNCTION: LEGO1 0x10003ba0 // FUNCTION: BETA10 0x100113f0 void EqualsImpl(float* p_data) override { memcpy(m_data, p_data, sizeof(float) * 3); } // vtable+0x20 // FUNCTION: LEGO1 0x10003bc0 // FUNCTION: BETA10 0x100114f0 void Clear() override { memset(m_data, 0, sizeof(float) * 3); } // vtable+0x2c // FUNCTION: LEGO1 0x10003bd0 // FUNCTION: BETA10 0x10011530 float LenSquared() const override { return m_data[0] * m_data[0] + m_data[1] * m_data[1] + m_data[2] * m_data[2]; } // vtable+0x40 friend class Mx3DPointFloat; }; // VTABLE: LEGO1 0x100d45a0 // VTABLE: BETA10 0x101bac38 // SIZE 0x08 class Vector4 : public Vector3 { public: // FUNCTION: BETA10 0x10048780 Vector4(float* p_data) : Vector3(p_data) {} // Some code initializes a Vector4 from a `const float*` source. // Example: `LegoCarBuild::VTable0x6c` // Vector4 however is a class that can mutate its underlying source, making // initialization with a const source fundamentally incompatible. // BETA10 appears to have two separate constructors for Vector4 as well, // supporting the theory that this decompilation is correct. // FUNCTION: BETA10 0x100701b0 Vector4(const float* p_data) : Vector3((float*) p_data) {} // Note: virtual function overloads appear in the virtual table // in reverse order of appearance. // FUNCTION: LEGO1 0x10002a40 virtual void SetMatrixProduct(float* p_vec, float* p_mat) { m_data[0] = p_vec[0] * p_mat[0] + p_vec[1] * p_mat[4] + p_vec[2] * p_mat[8] + p_vec[3] * p_mat[12]; m_data[1] = p_vec[0] * p_mat[1] + p_vec[1] * p_mat[5] + p_vec[2] * p_mat[9] + p_vec[4] * p_mat[13]; m_data[2] = p_vec[0] * p_mat[2] + p_vec[1] * p_mat[6] + p_vec[2] * p_mat[10] + p_vec[4] * p_mat[14]; m_data[3] = p_vec[0] * p_mat[3] + p_vec[1] * p_mat[7] + p_vec[2] * p_mat[11] + p_vec[4] * p_mat[15]; } // vtable+0x8c // FUNCTION: LEGO1 0x10002ae0 virtual void SetMatrixProduct(Vector4* p_a, float* p_b) { SetMatrixProduct(p_a->m_data, p_b); } // vtable+0x88 inline virtual int NormalizeQuaternion(); // vtable+0x90 inline virtual int EqualsHamiltonProduct(Vector4* p_a, Vector4* p_b); // vtable+0x94 // Vector3 overrides // FUNCTION: LEGO1 0x10002870 void AddImpl(float* p_value) override { m_data[0] += p_value[0]; m_data[1] += p_value[1]; m_data[2] += p_value[2]; m_data[3] += p_value[3]; } // vtable+0x04 // FUNCTION: LEGO1 0x100028b0 void AddImpl(float p_value) override { m_data[0] += p_value; m_data[1] += p_value; m_data[2] += p_value; m_data[3] += p_value; } // vtable+0x00 // FUNCTION: LEGO1 0x100028f0 void SubImpl(float* p_value) override { m_data[0] -= p_value[0]; m_data[1] -= p_value[1]; m_data[2] -= p_value[2]; m_data[3] -= p_value[3]; } // vtable+0x08 // FUNCTION: LEGO1 0x10002970 void MulScalarImpl(float* p_value) override { m_data[0] *= *p_value; m_data[1] *= *p_value; m_data[2] *= *p_value; m_data[3] *= *p_value; } // vtable+0x0c // FUNCTION: LEGO1 0x10002930 void MulVectorImpl(float* p_value) override { m_data[0] *= p_value[0]; m_data[1] *= p_value[1]; m_data[2] *= p_value[2]; m_data[3] *= p_value[3]; } // vtable+0x10 // FUNCTION: LEGO1 0x100029b0 void DivScalarImpl(float* p_value) override { m_data[0] /= *p_value; m_data[1] /= *p_value; m_data[2] /= *p_value; m_data[3] /= *p_value; } // vtable+0x14 // FUNCTION: LEGO1 0x100029f0 float DotImpl(float* p_a, float* p_b) const override { return p_a[0] * p_b[0] + p_a[2] * p_b[2] + (p_a[1] * p_b[1] + p_a[3] * p_b[3]); } // vtable+0x18 // FUNCTION: LEGO1 0x10002a20 void EqualsImpl(float* p_data) override { memcpy(m_data, p_data, sizeof(float) * 4); } // vtable+0x20 // FUNCTION: LEGO1 0x10002b00 void Clear() override { memset(m_data, 0, sizeof(float) * 4); } // vtable+0x2c // FUNCTION: LEGO1 0x10002b20 float LenSquared() const override { return m_data[1] * m_data[1] + m_data[0] * m_data[0] + m_data[2] * m_data[2] + m_data[3] * m_data[3]; } // vtable+0x40 // FUNCTION: LEGO1 0x10002b40 void Fill(const float& p_value) override { m_data[0] = p_value; m_data[1] = p_value; m_data[2] = p_value; m_data[3] = p_value; } // vtable+0x84 float& operator[](int idx) { return m_data[idx]; } // FUNCTION: BETA10 0x10010890 const float& operator[](int idx) const { return m_data[idx]; } friend class Mx4DPointFloat; }; // FUNCTION: LEGO1 0x10002b70 // FUNCTION: BETA10 0x10048ad0 inline int Vector4::NormalizeQuaternion() { float* v = m_data; float magnitude = v[0] * v[0] + v[2] * v[2] + v[1] * v[1]; if (magnitude > 0.0f) { float theta = v[3] * 0.5f; v[3] = cos(theta); magnitude = sin(theta) / sqrt(magnitude); Vector3::MulScalarImpl(&magnitude); return 0; } return -1; } inline static float QuaternionProductScalarPart(float* bDat, float* aDat) { // We have no indication from the beta that this function exists, // but it helps with the stack layout of Vector4::EqualsHamiltonProduct() return aDat[3] * bDat[3] - (aDat[0] * bDat[0] + aDat[2] * bDat[2] + aDat[1] * bDat[1]); } // FUNCTION: LEGO1 0x10002bf0 // FUNCTION: BETA10 0x10048c20 inline int Vector4::EqualsHamiltonProduct(Vector4* p_a, Vector4* p_b) { m_data[3] = QuaternionProductScalarPart(p_a->m_data, p_b->m_data); Vector3::EqualsCrossImpl(p_a->m_data, p_b->m_data); m_data[0] = p_b->m_data[3] * p_a->m_data[0] + p_a->m_data[3] * p_b->m_data[0] + m_data[0]; m_data[1] = p_b->m_data[1] * p_a->m_data[3] + p_a->m_data[1] * p_b->m_data[3] + m_data[1]; m_data[2] = p_b->m_data[2] * p_a->m_data[3] + p_a->m_data[2] * p_b->m_data[3] + m_data[2]; return 0; } #endif // VECTOR_H