Implement ViewROI and base classes (#287)

* Implement ViewROI and base classes

* Clean up Orientable header

* Move tgl to tgl subdirectory, and use target_include_directories

* Move classes to submodules

* Fix some missed references

* Fix/match UpdateWorldData

* Renaming / removing MxTypes / refactoring

* Consistent naming for Matrix

* Adjust format action

* Add Vector3/Vector4 to Data vector

* Add TGL comment

* Add a comment about Matrix4Impl

* Add ROI comment

---------

Co-authored-by: Anonymous Maarten <anonymous.maarten@gmail.com>
Co-authored-by: Christian Semmler <mail@csemmler.com>
This commit is contained in:
Nathan M Gilbert 2023-11-19 09:38:07 -05:00 committed by GitHub
parent 17b0eeddb4
commit 7fc1f8019f
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
27 changed files with 1645 additions and 316 deletions

View file

@ -17,4 +17,6 @@ jobs:
--style=file \
ISLE/*.cpp ISLE/*.h \
LEGO1/*.cpp LEGO1/*.h \
LEGO1/realtime/*.cpp LEGO1/realtime/*.h
LEGO1/realtime/*.cpp LEGO1/realtime/*.h \
LEGO1/tgl/*.h \
LEGO1/viewmanager/*.cpp LEGO1/viewmanager/*.h

View file

@ -145,7 +145,6 @@ add_library(lego1 SHARED
LEGO1/mxloopingflcpresenter.cpp
LEGO1/mxloopingmidipresenter.cpp
LEGO1/mxloopingsmkpresenter.cpp
LEGO1/mxmatrix.cpp
LEGO1/mxmediamanager.cpp
LEGO1/mxmediapresenter.cpp
LEGO1/mxmidipresenter.cpp
@ -184,7 +183,6 @@ add_library(lego1 SHARED
LEGO1/mxtype17notificationparam.cpp
LEGO1/mxvariable.cpp
LEGO1/mxvariabletable.cpp
LEGO1/mxvector.cpp
LEGO1/mxvideomanager.cpp
LEGO1/mxvideoparam.cpp
LEGO1/mxvideoparamflags.cpp
@ -202,23 +200,27 @@ add_library(lego1 SHARED
LEGO1/racestate.cpp
LEGO1/radio.cpp
LEGO1/radiostate.cpp
LEGO1/realtime/matrix.cpp
LEGO1/realtime/orientableroi.cpp
LEGO1/realtime/realtime.cpp
LEGO1/realtime/realtimeview.cpp
LEGO1/realtime/vector.cpp
LEGO1/registrationbook.cpp
LEGO1/score.cpp
LEGO1/scorestate.cpp
LEGO1/skateboard.cpp
LEGO1/towtrack.cpp
LEGO1/towtrackmissionstate.cpp
LEGO1/viewmanager.cpp
LEGO1/viewmanager/viewmanager.cpp
LEGO1/viewmanager/viewroi.cpp
)
if (MINGW)
target_compile_definitions(lego1 PRIVATE DIRECTINPUT_VERSION=0x0500)
endif()
# Additional include directories
include_directories("${CMAKE_SOURCE_DIR}/3rdparty/vec")
include_directories("${CMAKE_SOURCE_DIR}/3rdparty/smk")
target_include_directories(lego1 PUBLIC "${CMAKE_SOURCE_DIR}/3rdparty/vec")
target_include_directories(lego1 PRIVATE "${CMAKE_SOURCE_DIR}/3rdparty/smk")
if (ISLE_USE_SMARTHEAP)
add_library(SmartHeap::SmartHeap STATIC IMPORTED)

View file

@ -3,7 +3,7 @@
#include "helicopterstate.h"
#include "islepathactor.h"
#include "mxmatrix.h"
#include "realtime/matrix.h"
// VTABLE 0x100d40f8
// SIZE 0x230
@ -32,11 +32,11 @@ class Helicopter : public IslePathActor {
virtual ~Helicopter() override; // vtable+0x0
protected:
MxMatrixData m_unk160;
MxMatrixData m_unk1a8;
Matrix4Data m_unk160;
Matrix4Data m_unk1a8;
undefined4 m_unk1f0;
MxVector4Data m_unk1f4;
MxVector4Data m_unk20c;
Vector4Data m_unk1f4;
Vector4Data m_unk20c;
undefined4 m_unk224;
HelicopterState* m_state;
MxAtomId m_unk22c;

View file

@ -1,7 +1,7 @@
#ifndef LEGO3DVIEW_H
#define LEGO3DVIEW_H
#include "viewmanager.h"
#include "viewmanager/viewmanager.h"
class Lego3DView {
public:

View file

@ -36,7 +36,7 @@ void LegoEntity::ResetWorldTransform(MxBool p_inVehicle)
}
// OFFSET: LEGO1 0x10010790 STUB
void LegoEntity::SetWorldTransform(MxVector3& p_loc, MxVector3& p_dir, MxVector3& p_up)
void LegoEntity::SetWorldTransform(Vector3Impl& p_loc, Vector3Impl& p_dir, Vector3Impl& p_up)
{
// TODO
}

View file

@ -6,7 +6,7 @@
#include "legoroi.h"
#include "mxdsobject.h"
#include "mxentity.h"
#include "mxvector.h"
#include "realtime/vector.h"
// VTABLE 0x100d4858
// SIZE 0x68 (probably)
@ -32,12 +32,12 @@ class LegoEntity : public MxEntity {
return !strcmp(name, LegoEntity::ClassName()) || MxEntity::IsA(name);
}
virtual MxResult Create(MxDSObject& p_dsObject); // vtable+0x18
virtual void Destroy(MxBool p_fromDestructor); // vtable+0x1c
virtual void ParseAction(char*); // vtable+0x20
virtual void SetROI(LegoROI* p_roi, MxBool p_bool1, MxBool p_bool2); // vtable+0x24
virtual void SetWorldTransform(MxVector3& p_loc, MxVector3& p_dir, MxVector3& p_up); // vtable+0x28
virtual void ResetWorldTransform(MxBool p_inVehicle); // vtable+0x2c
virtual MxResult Create(MxDSObject& p_dsObject); // vtable+0x18
virtual void Destroy(MxBool p_fromDestructor); // vtable+0x1c
virtual void ParseAction(char*); // vtable+0x20
virtual void SetROI(LegoROI* p_roi, MxBool p_bool1, MxBool p_bool2); // vtable+0x24
virtual void SetWorldTransform(Vector3Impl& p_loc, Vector3Impl& p_dir, Vector3Impl& p_up); // vtable+0x28
virtual void ResetWorldTransform(MxBool p_inVehicle); // vtable+0x2c
// OFFSET: LEGO1 0x10001090
virtual void SetWorldSpeed(MxFloat p_worldSpeed) { m_worldSpeed = p_worldSpeed; } // vtable+0x30
virtual void VTable0x34(); // vtable+0x34
@ -54,12 +54,12 @@ class LegoEntity : public MxEntity {
undefined m_unk10;
undefined m_unk11;
MxVector3Data m_worldLocation; // 0x14
MxVector3Data m_worldDirection; // 0x28
MxVector3Data m_worldUp; // 0x3c
MxFloat m_worldSpeed; // 0x50
LegoROI* m_roi; // 0x54
MxBool m_cameraFlag; // 0x58
Vector3Data m_worldLocation; // 0x14
Vector3Data m_worldDirection; // 0x28
Vector3Data m_worldUp; // 0x3c
MxFloat m_worldSpeed; // 0x50
LegoROI* m_roi; // 0x54
MxBool m_cameraFlag; // 0x58
undefined m_unk59;
// For tokens from the extra string that look like this:
// "Action:openram;\lego\scripts\Race\CarRaceR;0"

View file

@ -3,7 +3,7 @@
#include "mxdsobject.h"
#include "mxtypes.h"
#include "mxvector.h"
#include "realtime/vector.h"
class MxOmni;
@ -62,7 +62,7 @@ class MxDSAction : public MxDSObject {
inline MxLong GetStartTime() const { return m_startTime; }
inline MxS32 GetLoopCount() { return m_loopCount; }
inline void SetLoopCount(MxS32 p_loopCount) { m_loopCount = p_loopCount; }
inline const MxVector3Data& GetLocation() const { return m_location; }
inline const Vector3Data& GetLocation() const { return m_location; }
inline void SetUnknown84(MxCore* p_unk84) { m_unk84 = p_unk84; }
inline MxCore* GetUnknown8c() { return m_unk8c; }
inline void SetUnknown8c(MxCore* p_unk8c) { m_unk8c = p_unk8c; }
@ -71,20 +71,20 @@ class MxDSAction : public MxDSObject {
inline MxBool IsBit3() const { return m_flags & Flag_Bit3; }
protected:
MxU32 m_sizeOnDisk; // 0x2c
MxU32 m_flags; // 0x30
MxLong m_startTime; // 0x34
MxLong m_duration; // 0x38
MxS32 m_loopCount; // 0x3c
MxVector3Data m_location; // 0x40
MxVector3Data m_direction; // 0x54
MxVector3Data m_up; // 0x68
char* m_extraData; // 0x7c
MxU16 m_extraLength; // 0x80
MxCore* m_unk84; // 0x84
undefined4 m_unk88; // 0x88
MxCore* m_unk8c; // 0x8c
MxLong m_unkTimingField; // 0x90
MxU32 m_sizeOnDisk; // 0x2c
MxU32 m_flags; // 0x30
MxLong m_startTime; // 0x34
MxLong m_duration; // 0x38
MxS32 m_loopCount; // 0x3c
Vector3Data m_location; // 0x40
Vector3Data m_direction; // 0x54
Vector3Data m_up; // 0x68
char* m_extraData; // 0x7c
MxU16 m_extraLength; // 0x80
MxCore* m_unk84; // 0x84
undefined4 m_unk88; // 0x88
MxCore* m_unk8c; // 0x8c
MxLong m_unkTimingField; // 0x90
};
#endif // MXDSACTION_H

View file

@ -1,68 +0,0 @@
#ifndef MXMATRIX_H
#define MXMATRIX_H
#include "mxvector.h"
// VTABLE 0x100d4350
// SIZE 0x8
class MxMatrix {
public:
inline MxMatrix(float* p_data) : m_data(p_data) {}
// vtable + 0x00
virtual void EqualsMxMatrix(const MxMatrix* p_other);
virtual void EqualsMatrixData(const float* p_matrix);
virtual void SetData(float* p_data);
virtual void AnotherSetData(float* p_data);
// vtable + 0x10
virtual float* GetData();
virtual const float* GetData() const;
virtual float* Element(int p_row, int p_col);
virtual const float* Element(int p_row, int p_col) const;
// vtable + 0x20
virtual void Clear();
virtual void SetIdentity();
virtual void operator=(const MxMatrix& p_other);
virtual MxMatrix* operator+=(const float* p_matrix);
// vtable + 0x30
virtual void TranslateBy(const float* p_x, const float* p_y, const float* p_z);
virtual void SetTranslation(const float* p_x, const float* p_y, const float* p_z);
virtual void EqualsMxProduct(const MxMatrix* p_a, const MxMatrix* p_b);
virtual void EqualsDataProduct(const float* p_a, const float* p_b);
// vtable + 0x40
virtual void ToQuaternion(MxVector4* p_resultQuat);
virtual MxResult FUN_10002710(const MxVector3* p_vec);
inline float& operator[](size_t idx) { return m_data[idx]; }
private:
float* m_data;
};
// VTABLE 0x100d4300
// SIZE 0x48
class MxMatrixData : public MxMatrix {
public:
inline MxMatrixData() : MxMatrix(e) {}
// No idea why there's another equals. Maybe to some other type like the
// DirectX Retained Mode Matrix type which is also a float* alias?
// vtable + 0x44
virtual void operator=(const MxMatrixData& p_other);
// Alias an easy way to access the translation part of the matrix, because
// various members / other functions benefit from the clarity.
union {
float e[16];
struct {
float _[12];
float x, y, z, w;
};
};
};
#endif // MXMATRIX_H

View file

@ -123,7 +123,7 @@ MxResult MxPresenter::StartAction(MxStreamController*, MxDSAction* p_action)
this->m_action = p_action;
const MxVector3Data& location = this->m_action->GetLocation();
const Vector3Data& location = this->m_action->GetLocation();
MxS32 previousTickleState = this->m_currentTickleState;
this->m_location = MxPoint32(this->m_action->GetLocation()[0], this->m_action->GetLocation()[1]);

View file

@ -33,8 +33,14 @@ typedef unsigned int MxULong;
typedef MxS32 MxTime;
typedef MxLong MxResult;
const MxResult SUCCESS = 0;
const MxResult FAILURE = -1;
#ifndef SUCCESS
#define SUCCESS 0
#endif
#ifndef FAILURE
#define FAILURE -1
#endif
typedef MxU8 MxBool;

180
LEGO1/realtime/lodlist.h Normal file
View file

@ -0,0 +1,180 @@
#ifndef LODLIST_H
#define LODLIST_H
#include "assert.h"
#include <stddef.h> // size_t
class LODObject;
// disable: identifier was truncated to '255' characters in the debug information
#pragma warning(disable : 4786)
//////////////////////////////////////////////////////////////////////////////
//
// LODListBase
//
// An LODListBase is an ordered list of LODObjects
// where each successive object in the list has a more complex
// geometric representation than the one preceeding it.
//
class LODListBase {
protected:
LODListBase(size_t capacity);
const LODObject* PushBack(const LODObject*);
const LODObject* PopBack();
public:
virtual ~LODListBase();
const LODObject* operator[](int) const;
// current number of LODObject* in LODListBase
size_t Size() const;
// maximum number of LODObject* LODListBase can hold
size_t Capacity() const;
#ifdef _DEBUG
virtual void Dump(void (*pTracer)(const char*, ...)) const;
#endif
private:
// not implemented
LODListBase(const LODListBase&);
LODListBase& operator=(const LODListBase&);
private:
const LODObject** m_ppLODObject;
size_t m_capacity;
size_t m_size;
};
//////////////////////////////////////////////////////////////////////////////
//
// LODList
//
template <class T>
class LODList : public LODListBase {
public:
LODList(size_t capacity);
const T* operator[](int) const;
const T* PushBack(const T*);
const T* PopBack();
};
//////////////////////////////////////////////////////////////////////////////
//
// LODListBase implementation
inline LODListBase::LODListBase(size_t capacity)
: m_capacity(capacity), m_size(0), m_ppLODObject(new const LODObject*[capacity])
{
#ifdef _DEBUG
int i;
for (i = 0; i < (int) m_capacity; i++) {
m_ppLODObject[i] = 0;
}
#endif
}
inline LODListBase::~LODListBase()
{
// all LODObject* should have been popped by client
assert(m_size == 0);
delete[] m_ppLODObject;
}
inline size_t LODListBase::Size() const
{
return m_size;
}
inline size_t LODListBase::Capacity() const
{
return m_capacity;
}
inline const LODObject* LODListBase::operator[](int i) const
{
assert((0 <= i) && (i < (int) m_size));
return m_ppLODObject[i];
}
inline const LODObject* LODListBase::PushBack(const LODObject* pLOD)
{
assert(m_size < m_capacity);
m_ppLODObject[m_size++] = pLOD;
return pLOD;
}
inline const LODObject* LODListBase::PopBack()
{
const LODObject* pLOD;
assert(m_size > 0);
pLOD = m_ppLODObject[--m_size];
#ifdef _DEBUG
m_ppLODObject[m_size] = 0;
#endif
return pLOD;
}
#ifdef _DEBUG
inline void LODListBase::Dump(void (*pTracer)(const char*, ...)) const
{
int i;
pTracer("LODListBase<0x%x>: Capacity=%d, Size=%d\n", (void*) this, m_capacity, m_size);
for (i = 0; i < (int) m_size; i++) {
pTracer(" [%d]: LOD<0x%x>\n", i, m_ppLODObject[i]);
}
for (i = (int) m_size; i < (int) m_capacity; i++) {
assert(m_ppLODObject[i] == 0);
}
}
#endif
//////////////////////////////////////////////////////////////////////////////
//
// LODList implementation
template <class T>
inline LODList<T>::LODList(size_t capacity) : LODListBase(capacity)
{
}
template <class T>
inline const T* LODList<T>::operator[](int i) const
{
return static_cast<const T*>(LODListBase::operator[](i));
}
template <class T>
inline const T* LODList<T>::PushBack(const T* pLOD)
{
return static_cast<const T*>(LODListBase::PushBack(pLOD));
}
template <class T>
inline const T* LODList<T>::PopBack()
{
return static_cast<const T*>(LODListBase::PopBack());
}
// re-enable: identifier was truncated to '255' characters in the debug information
#pragma warning(default : 4786)
#endif // LODLIST_H

View file

@ -1,137 +1,133 @@
#include "mxmatrix.h"
#include "matrix.h"
#include "decomp.h"
#include "../decomp.h"
#include "math.h"
#include <memory.h>
DECOMP_SIZE_ASSERT(MxMatrix, 0x8);
DECOMP_SIZE_ASSERT(MxMatrixData, 0x48);
// OFFSET: LEGO1 0x10002340
void MxMatrix::EqualsMxMatrix(const MxMatrix* p_other)
{
memcpy(m_data, p_other->m_data, 16 * sizeof(float));
}
DECOMP_SIZE_ASSERT(Matrix4, 0x40);
DECOMP_SIZE_ASSERT(Matrix4Impl, 0x8);
DECOMP_SIZE_ASSERT(Matrix4Data, 0x48);
// OFFSET: LEGO1 0x10002320
void MxMatrix::EqualsMatrixData(const float* p_matrix)
void Matrix4Impl::EqualsMatrixData(const Matrix4& p_matrix)
{
memcpy(m_data, p_matrix, 16 * sizeof(float));
*m_data = p_matrix;
}
// OFFSET: LEGO1 0x10002370
void MxMatrix::SetData(float* p_data)
// OFFSET: LEGO1 0x10002340
void Matrix4Impl::EqualsMatrixImpl(const Matrix4Impl* p_other)
{
m_data = p_data;
*m_data = *p_other->m_data;
}
// OFFSET: LEGO1 0x10002360
void MxMatrix::AnotherSetData(float* p_data)
void Matrix4Impl::AnotherSetData(Matrix4& p_data)
{
m_data = p_data;
m_data = &p_data;
}
// OFFSET: LEGO1 0x10002390
float* MxMatrix::GetData()
// OFFSET: LEGO1 0x10002370
void Matrix4Impl::SetData(Matrix4& p_data)
{
return m_data;
m_data = &p_data;
}
// OFFSET: LEGO1 0x10002380
const float* MxMatrix::GetData() const
const Matrix4* Matrix4Impl::GetData() const
{
return m_data;
}
// OFFSET: LEGO1 0x100023c0
float* MxMatrix::Element(int p_row, int p_col)
// OFFSET: LEGO1 0x10002390
Matrix4* Matrix4Impl::GetData()
{
return &m_data[p_row * 4 + p_col];
return m_data;
}
// OFFSET: LEGO1 0x100023a0
const float* MxMatrix::Element(int p_row, int p_col) const
const float* Matrix4Impl::Element(int p_row, int p_col) const
{
return &m_data[p_row * 4 + p_col];
return &(*m_data)[p_row][p_col];
}
// OFFSET: LEGO1 0x100023c0
float* Matrix4Impl::Element(int p_row, int p_col)
{
return &(*m_data)[p_row][p_col];
}
// OFFSET: LEGO1 0x100023e0
void MxMatrix::Clear()
void Matrix4Impl::Clear()
{
memset(m_data, 0, 16 * sizeof(float));
}
// OFFSET: LEGO1 0x100023f0
void MxMatrix::SetIdentity()
void Matrix4Impl::SetIdentity()
{
Clear();
m_data[0] = 1.0f;
m_data[5] = 1.0f;
m_data[10] = 1.0f;
m_data[15] = 1.0f;
}
// OFFSET: LEGO1 0x10002850
void MxMatrix::operator=(const MxMatrix& p_other)
{
EqualsMxMatrix(&p_other);
(*m_data)[0][0] = 1.0f;
(*m_data)[1][1] = 1.0f;
(*m_data)[2][2] = 1.0f;
(*m_data)[3][3] = 1.0f;
}
// OFFSET: LEGO1 0x10002430
MxMatrix* MxMatrix::operator+=(const float* p_matrix)
Matrix4Impl* Matrix4Impl::operator+=(const Matrix4& p_matrix)
{
for (int i = 0; i < 16; ++i)
m_data[i] += p_matrix[i];
((float*) m_data)[i] += ((float*) &p_matrix)[i];
return this;
}
// Matches but instructions are significantly out of order. Probably not wrong
// code given that the very similar SetTranslation does match.
// OFFSET: LEGO1 0x10002460
void MxMatrix::TranslateBy(const float* p_x, const float* p_y, const float* p_z)
void Matrix4Impl::TranslateBy(const float* p_x, const float* p_y, const float* p_z)
{
m_data[12] += *p_x;
m_data[13] += *p_y;
m_data[14] += *p_z;
((float*) m_data)[12] += *p_x;
((float*) m_data)[13] += *p_y;
((float*) m_data)[14] += *p_z;
}
// OFFSET: LEGO1 0x100024a0
void MxMatrix::SetTranslation(const float* p_x, const float* p_y, const float* p_z)
void Matrix4Impl::SetTranslation(const float* p_x, const float* p_y, const float* p_z)
{
m_data[12] = *p_x;
m_data[13] = *p_y;
m_data[14] = *p_z;
}
// OFFSET: LEGO1 0x10002530
void MxMatrix::EqualsMxProduct(const MxMatrix* p_a, const MxMatrix* p_b)
{
EqualsDataProduct(p_a->m_data, p_b->m_data);
(*m_data)[3][0] = *p_x;
(*m_data)[3][1] = *p_y;
(*m_data)[3][2] = *p_z;
}
// OFFSET: LEGO1 0x100024d0
void MxMatrix::EqualsDataProduct(const float* p_a, const float* p_b)
void Matrix4Impl::EqualsDataProduct(const Matrix4& p_a, const Matrix4& p_b)
{
float* cur = m_data;
float* cur = (float*) m_data;
for (int row = 0; row < 4; ++row) {
for (int col = 0; col < 4; ++col) {
*cur = 0.0f;
for (int k = 0; k < 4; ++k) {
*cur += p_a[row * 4 + k] * p_b[k * 4 + col];
*cur += p_a[row][k] * p_b[k][col];
}
cur++;
}
}
}
// OFFSET: LEGO1 0x10002530
void Matrix4Impl::EqualsMxProduct(const Matrix4Impl* p_a, const Matrix4Impl* p_b)
{
EqualsDataProduct(*p_a->m_data, *p_b->m_data);
}
// Not close, Ghidra struggles understinging this method so it will have to
// be manually worked out. Included since I at least figured out what it was
// doing with rotateIndex and what overall operation it's trying to do.
// OFFSET: LEGO1 0x10002550 STUB
void MxMatrix::ToQuaternion(MxVector4* p_outQuat)
void Matrix4Impl::ToQuaternion(Vector4Impl* p_outQuat)
{
/*
float trace = m_data[0] + m_data[5] + m_data[10];
if (trace > 0) {
trace = sqrt(trace + 1.0);
@ -166,18 +162,25 @@ void MxMatrix::ToQuaternion(MxVector4* p_outQuat)
p_outQuat->GetData()[3] = (m_data[next + 4 * nextNext] - m_data[nextNext + 4 * next]) * traceValue;
p_outQuat->GetData()[next] = (m_data[next + 4 * largest] + m_data[largest + 4 * next]) * traceValue;
p_outQuat->GetData()[nextNext] = (m_data[nextNext + 4 * largest] + m_data[largest + 4 * nextNext]) * traceValue;
*/
}
// No idea what this function is doing and it will be hard to tell until
// we have a confirmed usage site.
// OFFSET: LEGO1 0x10002710 STUB
MxResult MxMatrix::FUN_10002710(const MxVector3* p_vec)
int Matrix4Impl::FUN_10002710(const Vector3Impl* p_vec)
{
return FAILURE;
return -1;
}
// OFFSET: LEGO1 0x10002850
void Matrix4Impl::operator=(const Matrix4Impl& p_other)
{
EqualsMatrixImpl(&p_other);
}
// OFFSET: LEGO1 0x10002860
void MxMatrixData::operator=(const MxMatrixData& p_other)
void Matrix4Data::operator=(const Matrix4Data& p_other)
{
EqualsMxMatrix(&p_other);
EqualsMatrixImpl(&p_other);
}

91
LEGO1/realtime/matrix.h Normal file
View file

@ -0,0 +1,91 @@
#ifndef MATRIX_H
#define MATRIX_H
#include "vector.h"
/*
* A simple array of four Vector4s that can be indexed into.
*/
class Matrix4 {
public:
float rows[4][4]; // storage is public for easy access
inline Matrix4() {}
/*
Matrix4(const Vector4& x_axis, const Vector4& y_axis, const Vector4& z_axis, const Vector4& position)
{
rows[0] = x_axis;
rows[1] = y_axis;
rows[2] = z_axis;
rows[3] = position;
}
Matrix4(const float m[4][4])
{
rows[0] = m[0];
rows[1] = m[1];
rows[2] = m[2];
rows[3] = m[3];
}
*/
const float* operator[](long i) const { return rows[i]; }
float* operator[](long i) { return rows[i]; }
};
// VTABLE 0x100d4350
// SIZE 0x8
class Matrix4Impl {
public:
inline Matrix4Impl(Matrix4& p_data) : m_data(&p_data) {}
// vtable + 0x00
virtual void EqualsMatrixImpl(const Matrix4Impl* p_other);
virtual void EqualsMatrixData(const Matrix4& p_matrix);
virtual void SetData(Matrix4& p_data);
virtual void AnotherSetData(Matrix4& p_data);
// vtable + 0x10
virtual Matrix4* GetData();
virtual const Matrix4* GetData() const;
virtual float* Element(int p_row, int p_col);
virtual const float* Element(int p_row, int p_col) const;
// vtable + 0x20
virtual void Clear();
virtual void SetIdentity();
virtual void operator=(const Matrix4Impl& p_other);
virtual Matrix4Impl* operator+=(const Matrix4& p_matrix);
// vtable + 0x30
virtual void TranslateBy(const float* p_x, const float* p_y, const float* p_z);
virtual void SetTranslation(const float* p_x, const float* p_y, const float* p_z);
virtual void EqualsMxProduct(const Matrix4Impl* p_a, const Matrix4Impl* p_b);
virtual void EqualsDataProduct(const Matrix4& p_a, const Matrix4& p_b);
// vtable + 0x40
virtual void ToQuaternion(Vector4Impl* p_resultQuat);
virtual int FUN_10002710(const Vector3Impl* p_vec);
inline float& operator[](size_t idx) { return ((float*) m_data)[idx]; }
protected:
// TODO: Currently unclear whether this class contains a Matrix4* or float*.
Matrix4* m_data;
};
// VTABLE 0x100d4300
// SIZE 0x48
class Matrix4Data : public Matrix4Impl {
public:
inline Matrix4Data() : Matrix4Impl(m_matrix) {}
inline Matrix4Data(Matrix4Data& p_other) : Matrix4Impl(m_matrix) { m_matrix = *p_other.m_data; }
inline Matrix4& GetMatrix() { return *m_data; }
// No idea why there's another equals. Maybe to some other type like the
// DirectX Retained Mode Matrix type which is also a float* alias?
// vtable + 0x44
virtual void operator=(const Matrix4Data& p_other);
Matrix4 m_matrix;
};
#endif // MATRIX_H

View file

@ -0,0 +1,68 @@
#include "orientableroi.h"
#include "../decomp.h"
DECOMP_SIZE_ASSERT(OrientableROI, 0xdc)
// OFFSET: LEGO1 0x100a5910
void OrientableROI::VTable0x1c()
{
UpdateWorldBoundingVolumes();
UpdateWorldVelocity();
}
// OFFSET: LEGO1 0x100a5930
void OrientableROI::SetLocalTransform(const Matrix4Impl& p_transform)
{
reinterpret_cast<Matrix4Impl&>(m_local2world) = p_transform;
UpdateWorldBoundingVolumes();
UpdateWorldVelocity();
}
// OFFSET: LEGO1 0x100a5960
void OrientableROI::VTable0x24(const Matrix4Data& p_transform)
{
Matrix4Data l_matrix(m_local2world);
m_local2world.EqualsMxProduct(&p_transform, &l_matrix);
UpdateWorldBoundingVolumes();
UpdateWorldVelocity();
}
// OFFSET: LEGO1 0x100a59b0
void OrientableROI::UpdateWorldData(const Matrix4Data& p_transform)
{
Matrix4Data l_matrix(m_local2world);
m_local2world.EqualsMxProduct(&l_matrix, &p_transform);
UpdateWorldBoundingVolumes();
UpdateWorldVelocity();
// iterate over comps
if (m_comp)
for (CompoundObject::iterator iter = m_comp->begin(); !(iter == m_comp->end()); iter++) {
ROI* child = *iter;
static_cast<OrientableROI*>(child)->UpdateWorldData(p_transform);
}
}
// OFFSET: LEGO1 0x100a5a50
void OrientableROI::UpdateWorldVelocity()
{
}
// OFFSET: LEGO1 0x100a5d80
const Vector3& OrientableROI::GetWorldVelocity() const
{
return (Vector3&) *m_world_velocity.GetData();
}
// OFFSET: LEGO1 0x100a5d90
const BoundingBox& OrientableROI::GetWorldBoundingBox() const
{
return m_world_bounding_box;
}
// OFFSET: LEGO1 0x100a5da0
const BoundingSphere& OrientableROI::GetWorldBoundingSphere() const
{
return m_world_bounding_sphere;
}

View file

@ -0,0 +1,49 @@
#ifndef ORIENTABLEROI_H
#define ORIENTABLEROI_H
#include "matrix.h"
#include "roi.h"
class OrientableROI : public ROI {
public:
// OFFSET: LEGO1 0x100a4420
OrientableROI()
{
FILLVEC3(m_world_bounding_box.Min(), 888888.8);
FILLVEC3(m_world_bounding_box.Max(), -888888.8);
ZEROVEC3(m_world_bounding_sphere.Center());
m_world_bounding_sphere.Radius() = 0.0;
ZEROVEC3(m_world_velocity);
IDENTMAT4(m_local2world.GetMatrix());
}
// OFFSET: LEGO1 0x100a4630 TEMPLATE
// OrientableROI::`scalar deleting destructor'
virtual const Vector3& GetWorldVelocity() const;
virtual const BoundingBox& GetWorldBoundingBox() const;
virtual const BoundingSphere& GetWorldBoundingSphere() const;
protected:
// vtable + 0x14
virtual void VTable0x14() { VTable0x1c(); }
virtual void UpdateWorldBoundingVolumes() = 0;
public:
virtual void VTable0x1c();
// vtable + 0x20
virtual void SetLocalTransform(const Matrix4Impl& p_transform);
virtual void VTable0x24(const Matrix4Data& p_transform);
virtual void UpdateWorldData(const Matrix4Data& p_transform);
virtual void UpdateWorldVelocity();
protected:
char m_unkc;
Matrix4Data m_local2world; // 0x10
BoundingBox m_world_bounding_box; // 0x58
BoundingSphere m_world_bounding_sphere; // 0xa8
Vector3Data m_world_velocity; // 0xc0
unsigned int m_unkd4;
unsigned int m_unkd8;
};
#endif // ORIENTABLEROI_H

View file

@ -2,19 +2,19 @@
// OFFSET: LEGO1 0x100a5b40
void CalcLocalTransform(
const MxVector3& p_posVec,
const MxVector3& p_dirVec,
const MxVector3& p_upVec,
MxMatrix& p_outMatrix
const Vector3Impl& p_posVec,
const Vector3Impl& p_dirVec,
const Vector3Impl& p_upVec,
Matrix4Impl& p_outMatrix
)
{
MxFloat x_axis[3], y_axis[3], z_axis[3];
float x_axis[3], y_axis[3], z_axis[3];
// This is an unrolled version of the "NORMVEC3" macro,
// used here to apply a silly hack to get a 100% match
{
const MxFloat dirVec1Operation = (p_dirVec)[1] * (p_dirVec)[1];
MxDouble len = sqrt(((p_dirVec)[0] * (p_dirVec)[0] + dirVec1Operation + (p_dirVec)[2] * (p_dirVec)[2]));
const float dirVec1Operation = (p_dirVec)[1] * (p_dirVec)[1];
double len = sqrt(((p_dirVec)[0] * (p_dirVec)[0] + dirVec1Operation + (p_dirVec)[2] * (p_dirVec)[2]));
((z_axis)[0] = (p_dirVec)[0] / (len), (z_axis)[1] = (p_dirVec)[1] / (len), (z_axis)[2] = (p_dirVec)[2] / (len));
}
@ -24,8 +24,8 @@ void CalcLocalTransform(
// Exact same thing as pointed out by the above comment
{
const MxFloat axis2Operation = (x_axis)[2] * (x_axis)[2];
MxDouble len = sqrt(((x_axis)[0] * (x_axis)[0] + axis2Operation + (x_axis)[1] * (x_axis)[1]));
const float axis2Operation = (x_axis)[2] * (x_axis)[2];
double len = sqrt(((x_axis)[0] * (x_axis)[0] + axis2Operation + (x_axis)[1] * (x_axis)[1]));
((x_axis)[0] = (x_axis)[0] / (len), (x_axis)[1] = (x_axis)[1] / (len), (x_axis)[2] = (x_axis)[2] / (len));
}
@ -33,8 +33,8 @@ void CalcLocalTransform(
// Again, the same thing
{
const MxFloat axis2Operation = (y_axis)[2] * (y_axis)[2];
MxDouble len = sqrt(((y_axis)[0] * (y_axis)[0] + axis2Operation + (y_axis)[1] * (y_axis)[1]));
const float axis2Operation = (y_axis)[2] * (y_axis)[2];
double len = sqrt(((y_axis)[0] * (y_axis)[0] + axis2Operation + (y_axis)[1] * (y_axis)[1]));
((y_axis)[0] = (y_axis)[0] / (len), (y_axis)[1] = (y_axis)[1] / (len), (y_axis)[2] = (y_axis)[2] / (len));
}

View file

@ -1,19 +1,19 @@
#ifndef REALTIME_H
#define REALTIME_H
#include "../mxmatrix.h"
#include "matrix.h"
#define NORMVEC3(dst, src) \
{ \
MxDouble len = sqrt(NORMSQRD3(src)); \
double len = sqrt(NORMSQRD3(src)); \
VDS3(dst, src, len); \
}
void CalcLocalTransform(
const MxVector3& p_posVec,
const MxVector3& p_dirVec,
const MxVector3& p_upVec,
MxMatrix& p_outMatrix
const Vector3Impl& p_posVec,
const Vector3Impl& p_dirVec,
const Vector3Impl& p_upVec,
Matrix4Impl& p_outMatrix
);
#endif // REALTIME_H

107
LEGO1/realtime/roi.h Normal file
View file

@ -0,0 +1,107 @@
#ifndef ROI_H
#define ROI_H
// ROI stands for Region of Interest.
#include "../compat.h"
#include "../mxstl.h"
#include "../realtime/realtime.h"
#include "lodlist.h"
#include "vector.h"
/*
* A simple bounding box object with Min and Max accessor methods.
*/
class BoundingBox {
public:
const Vector3Data& Min() const { return min; }
Vector3Data& Min() { return min; }
const Vector3Data& Max() const { return max; }
Vector3Data& Max() { return max; }
private:
Vector3Data min;
Vector3Data max;
Vector3Data m_unk28;
Vector3Data m_unk3c;
};
/*
* A simple bounding sphere object with center and radius accessor methods.
*/
class BoundingSphere {
public:
const Vector3Data& Center() const { return center; }
Vector3Data& Center() { return center; }
const float& Radius() const { return radius; }
float& Radius() { return radius; }
private:
Vector3Data center;
float radius;
};
/*
* Abstract base class representing a single LOD version of
* a geometric object.
*/
class LODObject {
public:
// LODObject();
virtual ~LODObject() {}
virtual float Cost(float pixels_covered) const = 0;
virtual float AveragePolyArea() const = 0;
virtual int NVerts() const = 0;
};
/*
* A CompoundObject is simply a set of ROI objects which
* all together represent a single object with sub-parts.
*/
class ROI;
// typedef std::set<ROI*, std::less<const ROI*> > CompoundObject;
typedef list<ROI*> CompoundObject;
/*
* A ROIList is a list of ROI objects.
*/
typedef vector<const ROI*> ROIList;
/*
* A simple list of integers.
* Returned by RealtimeView::SelectLODs as indices into an ROIList.
*/
typedef vector<int> IntList;
class ROI {
public:
ROI()
{
m_comp = 0;
m_lods = 0;
}
virtual ~ROI()
{
// if derived class set the comp and lods, it should delete them
assert(!m_comp);
assert(!m_lods);
}
virtual float IntrinsicImportance() const = 0;
virtual const Vector3& GetWorldVelocity() const = 0;
virtual const BoundingBox& GetWorldBoundingBox() const = 0;
virtual const BoundingSphere& GetWorldBoundingSphere() const = 0;
const LODListBase* GetLODs() const { return m_lods; }
const LODObject* GetLOD(int i) const
{
assert(m_lods);
return (*m_lods)[i];
}
int GetLODCount() const { return m_lods ? m_lods->Size() : 0; }
const CompoundObject* GetComp() const { return m_comp; }
protected:
CompoundObject* m_comp;
LODListBase* m_lods;
};
#endif // ROI_H

View file

@ -1,183 +1,183 @@
#include "mxvector.h"
#include "vector.h"
#include "decomp.h"
#include "../decomp.h"
#include <math.h>
#include <memory.h>
DECOMP_SIZE_ASSERT(MxVector2, 0x8);
DECOMP_SIZE_ASSERT(MxVector3, 0x8);
DECOMP_SIZE_ASSERT(MxVector4, 0x8);
DECOMP_SIZE_ASSERT(MxVector3Data, 0x14);
DECOMP_SIZE_ASSERT(MxVector4Data, 0x18);
DECOMP_SIZE_ASSERT(Vector2Impl, 0x8);
DECOMP_SIZE_ASSERT(Vector3Impl, 0x8);
DECOMP_SIZE_ASSERT(Vector4Impl, 0x8);
DECOMP_SIZE_ASSERT(Vector3Data, 0x14);
DECOMP_SIZE_ASSERT(Vector4Data, 0x18);
// OFFSET: LEGO1 0x100020a0
const float* MxVector2::GetData() const
const float* Vector2Impl::GetData() const
{
return m_data;
}
// OFFSET: LEGO1 0x10002090
float* MxVector2::GetData()
float* Vector2Impl::GetData()
{
return m_data;
}
// OFFSET: LEGO1 0x10002130
float MxVector2::Dot(MxVector2* p_a, float* p_b) const
float Vector2Impl::Dot(Vector2Impl* p_a, float* p_b) const
{
return DotImpl(p_a->m_data, p_b);
}
// OFFSET: LEGO1 0x10002110
float MxVector2::Dot(float* p_a, MxVector2* p_b) const
float Vector2Impl::Dot(float* p_a, Vector2Impl* p_b) const
{
return DotImpl(p_a, p_b->m_data);
}
// OFFSET: LEGO1 0x100020f0
float MxVector2::Dot(MxVector2* p_a, MxVector2* p_b) const
float Vector2Impl::Dot(Vector2Impl* p_a, Vector2Impl* p_b) const
{
return DotImpl(p_a->m_data, p_b->m_data);
}
// OFFSET: LEGO1 0x100020d0
float MxVector2::Dot(float* p_a, float* p_b) const
float Vector2Impl::Dot(float* p_a, float* p_b) const
{
return DotImpl(p_a, p_b);
}
// OFFSET: LEGO1 0x10002160
MxResult MxVector2::Unitize()
int Vector2Impl::Unitize()
{
float sq = LenSquared();
if (sq > 0.0f) {
float root = sqrt(sq);
if (root > 0) {
DivScalarImpl(&root);
return SUCCESS;
return 0;
}
}
return FAILURE;
return -1;
}
// OFFSET: LEGO1 0x100021e0
void MxVector2::AddVector(MxVector2* p_other)
void Vector2Impl::AddVector(Vector2Impl* p_other)
{
AddVectorImpl(p_other->m_data);
}
// OFFSET: LEGO1 0x100021d0
void MxVector2::AddVector(float* p_other)
void Vector2Impl::AddVector(float* p_other)
{
AddVectorImpl(p_other);
}
// OFFSET: LEGO1 0x100021c0
void MxVector2::AddScalar(float p_value)
void Vector2Impl::AddScalar(float p_value)
{
AddScalarImpl(p_value);
}
// OFFSET: LEGO1 0x10002200
void MxVector2::SubVector(MxVector2* p_other)
void Vector2Impl::SubVector(Vector2Impl* p_other)
{
SubVectorImpl(p_other->m_data);
}
// OFFSET: LEGO1 0x100021f0
void MxVector2::SubVector(float* p_other)
void Vector2Impl::SubVector(float* p_other)
{
SubVectorImpl(p_other);
}
// OFFSET: LEGO1 0x10002230
void MxVector2::MullScalar(float* p_value)
void Vector2Impl::MullScalar(float* p_value)
{
MullScalarImpl(p_value);
}
// OFFSET: LEGO1 0x10002220
void MxVector2::MullVector(MxVector2* p_other)
void Vector2Impl::MullVector(Vector2Impl* p_other)
{
MullVectorImpl(p_other->m_data);
}
// OFFSET: LEGO1 0x10002210
void MxVector2::MullVector(float* p_other)
void Vector2Impl::MullVector(float* p_other)
{
MullVectorImpl(p_other);
}
// OFFSET: LEGO1 0x10002240
void MxVector2::DivScalar(float* p_value)
void Vector2Impl::DivScalar(float* p_value)
{
DivScalarImpl(p_value);
}
// OFFSET: LEGO1 0x10002260
void MxVector2::SetVector(MxVector2* p_other)
void Vector2Impl::SetVector(Vector2Impl* p_other)
{
EqualsImpl(p_other->m_data);
}
// OFFSET: LEGO1 0x10002250
void MxVector2::SetVector(float* p_other)
void Vector2Impl::SetVector(float* p_other)
{
EqualsImpl(p_other);
}
// OFFSET: LEGO1 0x10001fa0
void MxVector2::AddScalarImpl(float p_value)
void Vector2Impl::AddScalarImpl(float p_value)
{
m_data[0] += p_value;
m_data[1] += p_value;
}
// OFFSET: LEGO1 0x10001f80
void MxVector2::AddVectorImpl(float* p_value)
void Vector2Impl::AddVectorImpl(float* p_value)
{
m_data[0] += p_value[0];
m_data[1] += p_value[1];
}
// OFFSET: LEGO1 0x10001fc0
void MxVector2::SubVectorImpl(float* p_value)
void Vector2Impl::SubVectorImpl(float* p_value)
{
m_data[0] -= p_value[0];
m_data[1] -= p_value[1];
}
// OFFSET: LEGO1 0x10002000
void MxVector2::MullScalarImpl(float* p_value)
void Vector2Impl::MullScalarImpl(float* p_value)
{
m_data[0] *= *p_value;
m_data[1] *= *p_value;
}
// OFFSET: LEGO1 0x10001fe0
void MxVector2::MullVectorImpl(float* p_value)
void Vector2Impl::MullVectorImpl(float* p_value)
{
m_data[0] *= p_value[0];
m_data[1] *= p_value[1];
}
// OFFSET: LEGO1 0x10002020
void MxVector2::DivScalarImpl(float* p_value)
void Vector2Impl::DivScalarImpl(float* p_value)
{
m_data[0] /= *p_value;
m_data[1] /= *p_value;
}
// OFFSET: LEGO1 0x10002040
float MxVector2::DotImpl(float* p_a, float* p_b) const
float Vector2Impl::DotImpl(float* p_a, float* p_b) const
{
return p_b[0] * p_a[0] + p_b[1] * p_a[1];
}
// OFFSET: LEGO1 0x10002070
void MxVector2::EqualsImpl(float* p_data)
void Vector2Impl::EqualsImpl(float* p_data)
{
float* vec = m_data;
vec[0] = p_data[0];
@ -185,7 +185,7 @@ void MxVector2::EqualsImpl(float* p_data)
}
// OFFSET: LEGO1 0x100020b0
void MxVector2::Clear()
void Vector2Impl::Clear()
{
float* vec = m_data;
vec[0] = 0.0f;
@ -193,13 +193,13 @@ void MxVector2::Clear()
}
// OFFSET: LEGO1 0x10002150
float MxVector2::LenSquared() const
float Vector2Impl::LenSquared() const
{
return m_data[0] * m_data[0] + m_data[1] * m_data[1];
}
// OFFSET: LEGO1 0x10003a90
void MxVector3::AddScalarImpl(float p_value)
void Vector3Impl::AddScalarImpl(float p_value)
{
m_data[0] += p_value;
m_data[1] += p_value;
@ -207,7 +207,7 @@ void MxVector3::AddScalarImpl(float p_value)
}
// OFFSET: LEGO1 0x10003a60
void MxVector3::AddVectorImpl(float* p_value)
void Vector3Impl::AddVectorImpl(float* p_value)
{
m_data[0] += p_value[0];
m_data[1] += p_value[1];
@ -215,7 +215,7 @@ void MxVector3::AddVectorImpl(float* p_value)
}
// OFFSET: LEGO1 0x10003ac0
void MxVector3::SubVectorImpl(float* p_value)
void Vector3Impl::SubVectorImpl(float* p_value)
{
m_data[0] -= p_value[0];
m_data[1] -= p_value[1];
@ -223,7 +223,7 @@ void MxVector3::SubVectorImpl(float* p_value)
}
// OFFSET: LEGO1 0x10003b20
void MxVector3::MullScalarImpl(float* p_value)
void Vector3Impl::MullScalarImpl(float* p_value)
{
m_data[0] *= *p_value;
m_data[1] *= *p_value;
@ -231,7 +231,7 @@ void MxVector3::MullScalarImpl(float* p_value)
}
// OFFSET: LEGO1 0x10003af0
void MxVector3::MullVectorImpl(float* p_value)
void Vector3Impl::MullVectorImpl(float* p_value)
{
m_data[0] *= p_value[0];
m_data[1] *= p_value[1];
@ -239,7 +239,7 @@ void MxVector3::MullVectorImpl(float* p_value)
}
// OFFSET: LEGO1 0x10003b50
void MxVector3::DivScalarImpl(float* p_value)
void Vector3Impl::DivScalarImpl(float* p_value)
{
m_data[0] /= *p_value;
m_data[1] /= *p_value;
@ -247,13 +247,13 @@ void MxVector3::DivScalarImpl(float* p_value)
}
// OFFSET: LEGO1 0x10003b80
float MxVector3::DotImpl(float* p_a, float* p_b) const
float Vector3Impl::DotImpl(float* p_a, float* p_b) const
{
return p_a[0] * p_b[0] + p_a[2] * p_b[2] + p_a[1] * p_b[1];
}
// OFFSET: LEGO1 0x10003ba0
void MxVector3::EqualsImpl(float* p_data)
void Vector3Impl::EqualsImpl(float* p_data)
{
float* vec = m_data;
vec[0] = p_data[0];
@ -262,7 +262,7 @@ void MxVector3::EqualsImpl(float* p_data)
}
// OFFSET: LEGO1 0x10003bc0
void MxVector3::Clear()
void Vector3Impl::Clear()
{
float* vec = m_data;
vec[0] = 0.0f;
@ -271,13 +271,13 @@ void MxVector3::Clear()
}
// OFFSET: LEGO1 0x10003bd0
float MxVector3::LenSquared() const
float Vector3Impl::LenSquared() const
{
return m_data[1] * m_data[1] + m_data[0] * m_data[0] + m_data[2] * m_data[2];
}
// OFFSET: LEGO1 0x10002270
void MxVector3::EqualsCrossImpl(float* p_a, float* p_b)
void Vector3Impl::EqualsCrossImpl(float* p_a, float* p_b)
{
m_data[0] = p_a[1] * p_b[2] - p_a[2] * p_b[1];
m_data[1] = p_a[2] * p_b[0] - p_a[0] * p_b[2];
@ -285,25 +285,25 @@ void MxVector3::EqualsCrossImpl(float* p_a, float* p_b)
}
// OFFSET: LEGO1 0x10002300
void MxVector3::EqualsCross(float* p_a, MxVector3* p_b)
void Vector3Impl::EqualsCross(float* p_a, Vector3Impl* p_b)
{
EqualsCrossImpl(p_a, p_b->m_data);
}
// OFFSET: LEGO1 0x100022e0
void MxVector3::EqualsCross(MxVector3* p_a, float* p_b)
void Vector3Impl::EqualsCross(Vector3Impl* p_a, float* p_b)
{
EqualsCrossImpl(p_a->m_data, p_b);
}
// OFFSET: LEGO1 0x100022c0
void MxVector3::EqualsCross(MxVector3* p_a, MxVector3* p_b)
void Vector3Impl::EqualsCross(Vector3Impl* p_a, Vector3Impl* p_b)
{
EqualsCrossImpl(p_a->m_data, p_b->m_data);
}
// OFFSET: LEGO1 0x10003bf0
void MxVector3::EqualsScalar(float* p_value)
void Vector3Impl::EqualsScalar(float* p_value)
{
m_data[0] = *p_value;
m_data[1] = *p_value;
@ -311,7 +311,7 @@ void MxVector3::EqualsScalar(float* p_value)
}
// OFFSET: LEGO1 0x100028b0
void MxVector4::AddScalarImpl(float p_value)
void Vector4Impl::AddScalarImpl(float p_value)
{
m_data[0] += p_value;
m_data[1] += p_value;
@ -320,7 +320,7 @@ void MxVector4::AddScalarImpl(float p_value)
}
// OFFSET: LEGO1 0x10002870
void MxVector4::AddVectorImpl(float* p_value)
void Vector4Impl::AddVectorImpl(float* p_value)
{
m_data[0] += p_value[0];
m_data[1] += p_value[1];
@ -329,7 +329,7 @@ void MxVector4::AddVectorImpl(float* p_value)
}
// OFFSET: LEGO1 0x100028f0
void MxVector4::SubVectorImpl(float* p_value)
void Vector4Impl::SubVectorImpl(float* p_value)
{
m_data[0] -= p_value[0];
m_data[1] -= p_value[1];
@ -338,7 +338,7 @@ void MxVector4::SubVectorImpl(float* p_value)
}
// OFFSET: LEGO1 0x10002970
void MxVector4::MullScalarImpl(float* p_value)
void Vector4Impl::MullScalarImpl(float* p_value)
{
m_data[0] *= *p_value;
m_data[1] *= *p_value;
@ -347,7 +347,7 @@ void MxVector4::MullScalarImpl(float* p_value)
}
// OFFSET: LEGO1 0x10002930
void MxVector4::MullVectorImpl(float* p_value)
void Vector4Impl::MullVectorImpl(float* p_value)
{
m_data[0] *= p_value[0];
m_data[1] *= p_value[1];
@ -356,7 +356,7 @@ void MxVector4::MullVectorImpl(float* p_value)
}
// OFFSET: LEGO1 0x100029b0
void MxVector4::DivScalarImpl(float* p_value)
void Vector4Impl::DivScalarImpl(float* p_value)
{
m_data[0] /= *p_value;
m_data[1] /= *p_value;
@ -365,13 +365,13 @@ void MxVector4::DivScalarImpl(float* p_value)
}
// OFFSET: LEGO1 0x100029f0
float MxVector4::DotImpl(float* p_a, float* p_b) const
float Vector4Impl::DotImpl(float* p_a, float* p_b) const
{
return p_a[0] * p_b[0] + p_a[2] * p_b[2] + (p_a[1] * p_b[1] + p_a[3] * p_b[3]);
}
// OFFSET: LEGO1 0x10002a20
void MxVector4::EqualsImpl(float* p_data)
void Vector4Impl::EqualsImpl(float* p_data)
{
float* vec = m_data;
vec[0] = p_data[0];
@ -381,7 +381,7 @@ void MxVector4::EqualsImpl(float* p_data)
}
// OFFSET: LEGO1 0x10002b00
void MxVector4::Clear()
void Vector4Impl::Clear()
{
float* vec = m_data;
vec[0] = 0.0f;
@ -391,13 +391,13 @@ void MxVector4::Clear()
}
// OFFSET: LEGO1 0x10002b20
float MxVector4::LenSquared() const
float Vector4Impl::LenSquared() const
{
return m_data[1] * m_data[1] + m_data[0] * m_data[0] + m_data[2] * m_data[2] + m_data[3] * m_data[3];
}
// OFFSET: LEGO1 0x10002b40
void MxVector4::EqualsScalar(float* p_value)
void Vector4Impl::EqualsScalar(float* p_value)
{
m_data[0] = *p_value;
m_data[1] = *p_value;
@ -406,13 +406,13 @@ void MxVector4::EqualsScalar(float* p_value)
}
// OFFSET: LEGO1 0x10002ae0
void MxVector4::SetMatrixProduct(MxVector4* p_a, float* p_b)
void Vector4Impl::SetMatrixProduct(Vector4Impl* p_a, float* p_b)
{
SetMatrixProductImpl(p_a->m_data, p_b);
}
// OFFSET: LEGO1 0x10002a40
void MxVector4::SetMatrixProductImpl(float* p_vec, float* p_mat)
void Vector4Impl::SetMatrixProductImpl(float* p_vec, float* p_mat)
{
m_data[0] = p_vec[0] * p_mat[0] + p_vec[1] * p_mat[4] + p_vec[2] * p_mat[8] + p_vec[3] * p_mat[12];
m_data[1] = p_vec[0] * p_mat[1] + p_vec[1] * p_mat[5] + p_vec[2] * p_mat[9] + p_vec[4] * p_mat[13];
@ -423,7 +423,7 @@ void MxVector4::SetMatrixProductImpl(float* p_vec, float* p_mat)
// Note close yet, included because I'm at least confident I know what operation
// it's trying to do.
// OFFSET: LEGO1 0x10002b70 STUB
MxResult MxVector4::NormalizeQuaternion()
int Vector4Impl::NormalizeQuaternion()
{
float* v = m_data;
float magnitude = v[1] * v[1] + v[2] * v[2] + v[0] * v[0];
@ -435,16 +435,16 @@ MxResult MxVector4::NormalizeQuaternion()
v[0] *= magnitude;
v[1] *= magnitude;
v[2] *= magnitude;
return SUCCESS;
return 0;
}
return FAILURE;
return -1;
}
// OFFSET: LEGO1 0x10002bf0
void MxVector4::UnknownQuaternionOp(MxVector4* p_a, MxVector4* p_b)
void Vector4Impl::UnknownQuaternionOp(Vector4Impl* p_a, Vector4Impl* p_b)
{
MxFloat* bDat = p_b->m_data;
MxFloat* aDat = p_a->m_data;
float* bDat = p_b->m_data;
float* aDat = p_a->m_data;
this->m_data[3] = aDat[3] * bDat[3] - (bDat[0] * aDat[0] + aDat[2] * bDat[2] + aDat[1] * aDat[1]);
this->m_data[0] = bDat[2] * aDat[1] - bDat[1] * aDat[2];

View file

@ -1,16 +1,67 @@
#ifndef MXVECTOR_H
#define MXVECTOR_H
#include "mxtypes.h"
#ifndef VECTOR_H
#define VECTOR_H
#include <vec.h>
/*
* A simple array of three floats that can be indexed into.
*/
class Vector3 {
public:
float elements[3]; // storage is public for easy access
Vector3() {}
Vector3(float x, float y, float z)
{
elements[0] = x;
elements[1] = y;
elements[2] = z;
}
Vector3(const float v[3])
{
elements[0] = v[0];
elements[1] = v[1];
elements[2] = v[2];
}
const float& operator[](long i) const { return elements[i]; }
float& operator[](long i) { return elements[i]; }
};
/*
* A simple array of four floats that can be indexed into.
*/
struct Vector4 {
public:
float elements[4]; // storage is public for easy access
inline Vector4() {}
Vector4(float x, float y, float z, float w)
{
elements[0] = x;
elements[1] = y;
elements[2] = z;
elements[3] = w;
}
Vector4(const float v[4])
{
elements[0] = v[0];
elements[1] = v[1];
elements[2] = v[2];
elements[3] = v[3];
}
const float& operator[](long i) const { return elements[i]; }
float& operator[](long i) { return elements[i]; }
};
// VTABLE 0x100d4288
// SIZE 0x8
class MxVector2 {
class Vector2Impl {
public:
// OFFSET: LEGO1 0x1000c0f0
inline MxVector2(float* p_data) { this->SetData(p_data); }
inline Vector2Impl(float* p_data) { this->SetData(p_data); }
// vtable + 0x00 (no virtual destructor)
virtual void AddScalarImpl(float p_value) = 0;
@ -28,37 +79,37 @@ class MxVector2 {
// vtable + 0x20
virtual void EqualsImpl(float* p_data) = 0;
virtual const float* GetData() const;
virtual float* GetData();
virtual const float* GetData() const;
virtual void Clear() = 0;
// vtable + 0x30
virtual float Dot(MxVector2* p_a, float* p_b) const;
virtual float Dot(float* p_a, MxVector2* p_b) const;
virtual float Dot(MxVector2* p_a, MxVector2* p_b) const;
virtual float Dot(Vector2Impl* p_a, float* p_b) const;
virtual float Dot(float* p_a, Vector2Impl* p_b) const;
virtual float Dot(Vector2Impl* p_a, Vector2Impl* p_b) const;
virtual float Dot(float* p_a, float* p_b) const;
// vtable + 0x40
virtual float LenSquared() const = 0;
virtual MxResult Unitize();
virtual int Unitize();
// vtable + 0x48
virtual void AddVector(MxVector2* p_other);
virtual void AddVector(Vector2Impl* p_other);
virtual void AddVector(float* p_other);
virtual void AddScalar(float p_value);
// vtable + 0x54
virtual void SubVector(MxVector2* p_other);
virtual void SubVector(Vector2Impl* p_other);
virtual void SubVector(float* p_other);
// vtable + 0x5C
virtual void MullScalar(float* p_value);
virtual void MullVector(MxVector2* p_other);
virtual void MullVector(Vector2Impl* p_other);
virtual void MullVector(float* p_other);
virtual void DivScalar(float* p_value);
// vtable + 0x6C
virtual void SetVector(MxVector2* p_other);
virtual void SetVector(Vector2Impl* p_other);
virtual void SetVector(float* p_other);
inline float& operator[](size_t idx) { return m_data[idx]; }
@ -70,9 +121,9 @@ class MxVector2 {
// VTABLE 0x100d4518
// SIZE 0x8
class MxVector3 : public MxVector2 {
class Vector3Impl : public Vector2Impl {
public:
inline MxVector3(float* p_data) : MxVector2(p_data) {}
inline Vector3Impl(float* p_data) : Vector2Impl(p_data) {}
void AddScalarImpl(float p_value);
@ -92,9 +143,9 @@ class MxVector3 : public MxVector2 {
// vtable + 0x74
virtual void EqualsCrossImpl(float* p_a, float* p_b);
virtual void EqualsCross(float* p_a, MxVector3* p_b);
virtual void EqualsCross(MxVector3* p_a, float* p_b);
virtual void EqualsCross(MxVector3* p_a, MxVector3* p_b);
virtual void EqualsCross(float* p_a, Vector3Impl* p_b);
virtual void EqualsCross(Vector3Impl* p_a, float* p_b);
virtual void EqualsCross(Vector3Impl* p_a, Vector3Impl* p_b);
virtual void EqualsScalar(float* p_value);
inline void Fill(float p_value) { EqualsScalar(&p_value); }
@ -102,9 +153,9 @@ class MxVector3 : public MxVector2 {
// VTABLE 0x100d45a0
// SIZE 0x8
class MxVector4 : public MxVector3 {
class Vector4Impl : public Vector3Impl {
public:
inline MxVector4(float* p_data) : MxVector3(p_data) {}
inline Vector4Impl(float* p_data) : Vector3Impl(p_data) {}
void AddScalarImpl(float p_value);
@ -125,53 +176,41 @@ class MxVector4 : public MxVector3 {
void EqualsScalar(float* p_value);
// vtable + 0x84
virtual void SetMatrixProduct(MxVector4* p_a, float* p_b);
virtual void SetMatrixProduct(Vector4Impl* p_a, float* p_b);
virtual void SetMatrixProductImpl(float* p_vec, float* p_mat);
virtual MxResult NormalizeQuaternion();
virtual void UnknownQuaternionOp(MxVector4* p_a, MxVector4* p_b);
virtual int NormalizeQuaternion();
virtual void UnknownQuaternionOp(Vector4Impl* p_a, Vector4Impl* p_b);
};
// VTABLE 0x100d4488
// SIZE 0x14
class MxVector3Data : public MxVector3 {
class Vector3Data : public Vector3Impl {
public:
inline MxVector3Data() : MxVector3(storage) {}
inline MxVector3Data(float p_x, float p_y, float p_z) : MxVector3(storage), x(p_x), y(p_y), z(p_z) {}
inline Vector3Data() : Vector3Impl(m_vector.elements) {}
inline Vector3Data(float p_x, float p_y, float p_z) : Vector3Impl(m_vector.elements), m_vector(p_x, p_y, p_z) {}
union {
float storage[3];
struct {
float x;
float y;
float z;
};
};
void CopyFrom(MxVector3Data& p_other)
void CopyFrom(Vector3Data& p_other)
{
EqualsImpl(p_other.m_data);
float* dest = this->storage;
float* src = p_other.storage;
for (size_t i = sizeof(storage) / sizeof(float); i > 0; --i)
float* dest = m_vector.elements;
float* src = p_other.m_vector.elements;
for (size_t i = sizeof(m_vector) / sizeof(float); i > 0; --i)
*dest++ = *src++;
}
private:
Vector3 m_vector;
};
// VTABLE 0x100d41e8
// SIZE 0x18
class MxVector4Data : public MxVector4 {
class Vector4Data : public Vector4Impl {
public:
inline MxVector4Data() : MxVector4(storage) {}
union {
float storage[4];
struct {
float x;
float y;
float z;
float w;
};
};
inline Vector4Data() : Vector4Impl(m_vector.elements) {}
private:
Vector4 m_vector;
};
#endif // MXVECTOR_H
#endif // VECTOR_H

365
LEGO1/tgl/tgl.h Normal file
View file

@ -0,0 +1,365 @@
#ifndef TGL_H
#define TGL_H
#ifdef _WIN32
#define NOMINMAX // to avoid conflict with STL
#include <d3d.h>
#include <ddraw.h>
#include <windows.h> // HWND
#endif /* _WIN32 */
#include "tglVector.h"
namespace Tgl
{
// ???
enum ColorModel {
Ramp,
RGB
};
// ???
enum ShadingModel {
Wireframe,
UnlitFlat,
Flat,
Gouraud,
Phong
};
// ?????
enum LightType {
Ambient,
Point,
Spot,
Directional,
ParallelPoint
};
// ???
enum ProjectionType {
Perspective,
Orthographic
};
enum TextureMappingMode {
Linear,
PerspectiveCorrect
};
struct PaletteEntry {
unsigned char m_red;
unsigned char m_green;
unsigned char m_blue;
};
#ifdef _WIN32
struct DeviceDirectDrawCreateData {
const GUID* m_driverGUID;
HWND m_hWnd; // ??? derive from m_pDirectDraw
IDirectDraw* m_pDirectDraw;
IDirectDrawSurface* m_pFrontBuffer; // ??? derive from m_pDirectDraw
IDirectDrawSurface* m_pBackBuffer;
IDirectDrawPalette* m_pPalette; // ??? derive from m_pDirectDraw
int m_isFullScreen; // ??? derive from m_pDirectDraw
};
struct DeviceDirect3DCreateData {
IDirect3D* m_pDirect3D;
IDirect3DDevice* m_pDirect3DDevice;
};
#else
struct DeviceDirectDrawCreateData {};
#endif
//////////////////////////////////////////////////////////////////////////////
//
// Result (return value type)
enum Result {
Error = 0,
Success = 1
};
inline int Succeeded(Result result)
{
return (result == Success);
}
//////////////////////////////////////////////////////////////////////////////
//
// Forward declarations
class Renderer;
class Object;
class Device;
class View;
class Light;
class Camera;
class Group;
class Mesh;
class Texture;
//////////////////////////////////////////////////////////////////////////////
//
// Object
class Object {
public:
virtual ~Object() {}
// returns pointer to implementation data
virtual void* ImplementationDataPtr() = 0;
};
//////////////////////////////////////////////////////////////////////////////
//
// Renderer
// ??? for now until we figured out how an app should pass the Renderer around
Renderer* CreateRenderer();
class Renderer : public Object {
public:
virtual Device* CreateDevice(const DeviceDirectDrawCreateData&) = 0;
virtual Device* CreateDevice(const DeviceDirect3DCreateData&) = 0;
virtual View* CreateView(
const Device*,
const Camera*,
unsigned long x,
unsigned long y,
unsigned long width,
unsigned long height
) = 0;
virtual Camera* CreateCamera() = 0;
virtual Light* CreateLight(LightType, double r, double g, double b) = 0;
virtual Group* CreateGroup(const Group* pParent = 0) = 0;
// pTextureCoordinates is pointer to array of vertexCount elements
// (each element being two floats), or NULL
// pFaceData is faceCount tuples, each of format
// [vertex1index, ... vertexNindex], where N = vertexPerFaceCount
virtual Mesh* CreateMesh(
unsigned long vertexCount,
const float (*pVertices)[3],
const float (*pTextureCoordinates)[2],
unsigned long faceCount,
unsigned long vertexPerFaceCount,
unsigned long* pFaceData
) = 0;
// pTextureCoordinates is pointer to array of vertexCount elements
// (each element being two floats), or NULL
// pFaceData is:
// [face1VertexCount face1Vertex1index, ... face1VertexMindex
// face2VertexCount face2Vertex1index, ... face2VertexNindex
// ...
// 0]
virtual Mesh* CreateMesh(
unsigned long vertexCount,
const float (*pVertices)[3],
const float (*pTextureCoordinates)[2],
unsigned long* pFaceData
) = 0;
virtual Texture* CreateTexture(
int width,
int height,
int bitsPerTexel,
const void* pTexels,
int pTexelsArePersistent,
int paletteEntryCount,
const PaletteEntry* pEntries
) = 0;
virtual Texture* CreateTexture() = 0;
virtual Result SetTextureDefaultShadeCount(unsigned long) = 0;
virtual Result SetTextureDefaultColorCount(unsigned long) = 0;
};
//////////////////////////////////////////////////////////////////////////////
//
// Device
class Device : public Object {
public:
virtual unsigned long GetWidth() = 0;
virtual unsigned long GetHeight() = 0;
virtual Result SetColorModel(ColorModel) = 0;
virtual Result SetShadingModel(ShadingModel) = 0;
virtual Result SetShadeCount(unsigned long) = 0;
virtual Result SetDither(int) = 0;
virtual Result Update() = 0;
// ??? should this be handled by app ???
// ??? this needs to be called when the window on which the device is ...
// is being activated
virtual void HandleActivate(int bActivate) = 0;
// ??? this needs to be called when the window on which this device is based
// needs to be repainted
virtual void HandlePaint(void*) = 0;
#ifdef _DEBUG
virtual unsigned long GetDrawnTriangleCount() = 0;
#endif
};
//////////////////////////////////////////////////////////////////////////////
//
// View
class View : public Object {
public:
virtual Result Add(const Light*) = 0;
virtual Result Remove(const Light*) = 0;
virtual Result SetCamera(const Camera*) = 0;
virtual Result SetProjection(ProjectionType) = 0;
virtual Result SetFrustrum(double frontClippingDistance, double backClippingDistance, double degrees) = 0;
virtual Result SetBackgroundColor(double r, double g, double b) = 0;
virtual Result Clear() = 0;
virtual Result Render(const Group*) = 0;
// ??? needed for fine grain control when using DirectDraw/D3D ???
virtual Result ForceUpdate(unsigned long x, unsigned long y, unsigned long width, unsigned long height) = 0;
// ??? for now: used by Mesh Cost calculation
virtual Result TransformWorldToScreen(const double world[3], double screen[4]) = 0;
// Pick():
// x, y:
// view coordinates
//
// ppGroupsToPickFrom:
// array of (Group*) in any order
// Groups to pick from
//
// groupsToPickFromCount:
// size of ppGroupsToPickFrom
//
// rppPickedGroups:
// output parameter
// array of (Group*) representing a Group hierarchy
// top-down order (element 0 is root/scene)
// caller must deallocate array
// ref count of each element (Group*) has not been increased
// an element will be 0, if a corresponding Group was not found in ppGroupsToPickFrom
//
// rPickedGroupCount:
// output parameter
// size of rppPickedGroups
virtual Result Pick(
unsigned long x,
unsigned long y,
const Group** ppGroupsToPickFrom,
int groupsToPickFromCount,
const Group**& rppPickedGroups,
int& rPickedGroupCount
) = 0;
};
//////////////////////////////////////////////////////////////////////////////
//
// Camera
class Camera : public Object {
public:
#if 0
virtual Result SetPosition(const double[3]) = 0;
virtual Result SetOrientation(const double direction[3],
const double up[3]) = 0;
#endif
virtual Result SetTransformation(const FloatMatrix4&) = 0;
};
//////////////////////////////////////////////////////////////////////////////
//
// Light
class Light : public Object {
public:
#if 0
virtual Result SetPosition(const double[3]) = 0;
virtual Result SetOrientation(const double direction[3],
const double up[3]) = 0;
#endif
virtual Result SetTransformation(const FloatMatrix4&) = 0;
};
//////////////////////////////////////////////////////////////////////////////
//
// Group
class Group : public Object {
public:
#if 0
virtual Result SetPosition(const double[3]) = 0;
virtual Result SetOrientation(const double direction[3],
const double up[3]) = 0;
#endif
// TODO: The type was changed from `FloatMatrix` to `Matrix` to make code in UpdateWorldData match.
// However, this is unlikely to be correct and will have to be figured out at some point.
virtual Result SetTransformation(const Matrix4&) = 0;
// ??? not yet fully implemented
virtual Result SetColor(double r, double g, double b) = 0;
virtual Result SetTexture(const Texture*) = 0;
virtual Result Add(const Group*) = 0;
virtual Result Add(const Mesh*) = 0;
virtual Result Remove(const Group*) = 0;
virtual Result Remove(const Mesh*) = 0;
virtual Result RemoveAll() = 0;
// ??? for now: used by Mesh Cost calculation
virtual Result TransformLocalToWorld(const double local[3], double world[3]) = 0;
};
//////////////////////////////////////////////////////////////////////////////
//
// Mesh
class Mesh : public Object {
public:
// ??? also on Group
virtual Result SetColor(double r, double g, double b) = 0;
virtual Result SetTexture(const Texture*) = 0;
virtual Result SetTextureMappingMode(TextureMappingMode) = 0;
virtual Result SetShadingModel(ShadingModel) = 0;
#ifdef _DEBUG
virtual Result GetBoundingBox(float min[3], float max[3]) = 0;
virtual unsigned long GetFaceCount() = 0;
virtual unsigned long GetVertexCount() = 0;
#endif
};
//////////////////////////////////////////////////////////////////////////////
//
// Texture
class Texture : public Object {
public:
virtual Result SetTexels(
int width,
int height,
int bitsPerTexel,
const void* pTexels,
int pTexelsArePersistent
) = 0;
virtual Result SetPalette(int entryCount, const PaletteEntry* pEntries) = 0;
};
//////////////////////////////////////////////////////////////////////////////
} // namespace Tgl
#endif // TGL_H

277
LEGO1/tgl/tglvector.h Normal file
View file

@ -0,0 +1,277 @@
#ifndef TGLVECTOR_H
#define TGLVECTOR_H
#include "math.h" // ??? sin() in RotateAroundY()
#include <stddef.h> // offsetof()
namespace Tgl
{
namespace Constant
{
const float Pi = 3.14159265358979323846;
};
inline float DegreesToRadians(float degrees)
{
return Constant::Pi * (degrees / 180.0);
}
inline float RadiansToDegrees(float radians)
{
return (radians / Constant::Pi) * 180.0;
}
//////////////////////////////////////////////////////////////////////////////
//
// Array<T, N>
template <class T, int N>
class Array {
public:
Array() {}
Array(const Array& rArray) { *this = rArray; }
~Array() {}
const T& operator[](int i) const { return m_elements[i]; };
T& operator[](int i) { return m_elements[i]; };
Array<T, N>& operator=(const Array<T, N>&);
void operator+=(const Array<T, N>&);
protected:
T m_elements[N];
};
//////////////////////////////////////////////////////////////////////////////
//
// Array<T, N> implementation
template <class T, int N>
inline Array<T, N>& Array<T, N>::operator=(const Array<T, N>& rArray)
{
int i;
for (i = 0; i < N; i++) {
m_elements[i] = rArray.m_elements[i];
}
return *this;
}
template <class T, int N>
inline void Array<T, N>::operator+=(const Array<T, N>& rArray)
{
int i;
for (i = 0; i < N; i++) {
m_elements[i] += rArray.m_elements[i];
}
}
//////////////////////////////////////////////////////////////////////////////
//
// FloatMatrix4
class FloatMatrix4 : public Array<Array<float, 4>, 4> {
public:
FloatMatrix4() {}
FloatMatrix4(const FloatMatrix4& rMatrix) { *this = rMatrix; }
FloatMatrix4(const FloatMatrix4&, const FloatMatrix4&);
void operator*=(const FloatMatrix4&);
};
//////////////////////////////////////////////////////////////////////////////
//
// FloatMatrix4 implementation
inline FloatMatrix4::FloatMatrix4(const FloatMatrix4& rMatrix1, const FloatMatrix4& rMatrix2)
{
for (int row = 0; row < 4; row++) {
for (int column = 0; column < 4; column++) {
float element = 0;
for (int i = 0; i < 4; i++) {
element += rMatrix1[row][i] * rMatrix2[i][column];
}
m_elements[row][column] = element;
}
}
}
inline void FloatMatrix4::operator*=(const FloatMatrix4& rMatrix)
{
FloatMatrix4 temp(*this, rMatrix);
// *this = FloatMatrix4(*this, rMatrix);
*this = temp;
}
//////////////////////////////////////////////////////////////////////////////
//
// Transformation matrices
class Translation : public FloatMatrix4 {
public:
Translation(const float[3]);
Translation(float x, float y, float z);
protected:
void Init(float x, float y, float z);
};
class Scale : public FloatMatrix4 {
public:
Scale(const float[3]);
Scale(float x, float y, float z);
Scale(float);
protected:
void Init(float x, float y, float z);
};
class RotationX : public FloatMatrix4 {
public:
RotationX(float radians);
};
class RotationY : public FloatMatrix4 {
public:
RotationY(float radians);
};
//////////////////////////////////////////////////////////////////////////////
//
// Transformation matrices implementation
inline Translation::Translation(const float vector[3])
{
Init(vector[0], vector[1], vector[2]);
}
inline Translation::Translation(float x, float y, float z)
{
Init(x, y, z);
}
inline void Translation::Init(float x, float y, float z)
{
m_elements[0][0] = 1;
m_elements[0][1] = 0;
m_elements[0][2] = 0;
m_elements[0][3] = 0;
m_elements[1][0] = 0;
m_elements[1][1] = 1;
m_elements[1][2] = 0;
m_elements[1][3] = 0;
m_elements[2][0] = 0;
m_elements[2][1] = 0;
m_elements[2][2] = 1;
m_elements[2][3] = 0;
m_elements[3][0] = x;
m_elements[3][1] = y;
m_elements[3][2] = z;
m_elements[3][3] = 1;
}
inline Scale::Scale(const float vector[3])
{
Init(vector[0], vector[1], vector[2]);
}
inline Scale::Scale(float x, float y, float z)
{
Init(x, y, z);
}
inline Scale::Scale(float scale)
{
Init(scale, scale, scale);
}
inline void Scale::Init(float x, float y, float z)
{
m_elements[0][0] = x;
m_elements[0][1] = 0;
m_elements[0][2] = 0;
m_elements[0][3] = 0;
m_elements[1][0] = 0;
m_elements[1][1] = y;
m_elements[1][2] = 0;
m_elements[1][3] = 0;
m_elements[2][0] = 0;
m_elements[2][1] = 0;
m_elements[2][2] = z;
m_elements[2][3] = 0;
m_elements[3][0] = 0;
m_elements[3][1] = 0;
m_elements[3][2] = 0;
m_elements[3][3] = 1;
}
inline RotationX::RotationX(float radians)
{
float cosRadians = cos(radians);
float sinRadians = sin(radians);
m_elements[0][0] = 1;
m_elements[0][1] = 0;
m_elements[0][2] = 0;
m_elements[0][3] = 0;
m_elements[1][0] = 0;
m_elements[1][1] = cosRadians;
m_elements[1][2] = -sinRadians;
m_elements[1][3] = 0;
m_elements[2][0] = 0;
m_elements[2][1] = sinRadians;
m_elements[2][2] = cosRadians;
m_elements[2][3] = 0;
m_elements[3][0] = 0;
m_elements[3][1] = 0;
m_elements[3][2] = 0;
m_elements[3][3] = 1;
}
inline RotationY::RotationY(float radians)
{
float cosRadians = cos(radians);
float sinRadians = sin(radians);
m_elements[0][0] = cosRadians;
m_elements[0][1] = 0;
m_elements[0][2] = sinRadians;
m_elements[0][3] = 0;
m_elements[1][0] = 0;
m_elements[1][1] = 1;
m_elements[1][2] = 0;
m_elements[1][3] = 0;
m_elements[2][0] = -sinRadians;
m_elements[2][1] = 0;
m_elements[2][2] = cosRadians;
m_elements[2][3] = 0;
m_elements[3][0] = 0;
m_elements[3][1] = 0;
m_elements[3][2] = 0;
m_elements[3][3] = 1;
}
//////////////////////////////////////////////////////////////////////////////
} // namespace Tgl
#endif // TLGVECTOR_H

View file

@ -0,0 +1,116 @@
#ifndef VIEWLODLIST_H
#define VIEWLODLIST_H
#include "../compat.h"
#include "../realtime/lodlist.h"
#include "assert.h"
#pragma warning(disable : 4786)
class ViewLOD;
class ViewLODListManager;
//////////////////////////////////////////////////////////////////////////////
// ViewLODList
//
// An ViewLODList is an LODList that is shared among instances of the "same ROI".
//
// ViewLODLists are managed (created and destroyed) by ViewLODListManager.
//
class ViewLODList : public LODList<ViewLOD> {
friend ViewLODListManager;
protected:
ViewLODList(size_t capacity);
~ViewLODList();
public:
inline int AddRef();
inline int Release();
#ifdef _DEBUG
void Dump(void (*pTracer)(const char*, ...)) const;
#endif
private:
int m_refCount;
ViewLODListManager* m_owner;
};
//////////////////////////////////////////////////////////////////////////////
//
// ??? for now, until we have symbol management
typedef const char* ROIName;
struct ROINameComparator {
bool operator()(const ROIName& rName1, const ROIName& rName2) const
{
return strcmp((const char*) rName1, (const char*) rName2) > 0;
}
};
//////////////////////////////////////////////////////////////////////////////
//
// ViewLODListManager
//
// ViewLODListManager manages creation and sharing of ViewLODLists.
// It stores ViewLODLists under a name, the name of the ROI where
// the ViewLODList belongs.
class ViewLODListManager {
typedef map<ROIName, ViewLODList*, ROINameComparator> ViewLODListMap;
public:
ViewLODListManager();
virtual ~ViewLODListManager();
// ??? should LODList be const
// creates an LODList with room for lodCount LODs for a named ROI
// returned LODList has a refCount of 1, i.e. caller must call Release()
// when it no longer holds on to the list
ViewLODList* Create(const ROIName&, int lodCount);
// returns an LODList for a named ROI
// returned LODList's refCount is increased, i.e. caller must call Release()
// when it no longer holds on to the list
ViewLODList* Lookup(const ROIName&) const;
void Destroy(ViewLODList* lodList);
#ifdef _DEBUG
void Dump(void (*pTracer)(const char*, ...)) const;
#endif
private:
ViewLODListMap m_map;
};
//////////////////////////////////////////////////////////////////////////////
//
// ViewLODList implementation
inline ViewLODList::ViewLODList(size_t capacity) : LODList<ViewLOD>(capacity), m_refCount(0)
{
}
inline ViewLODList::~ViewLODList()
{
assert(m_refCount == 0);
}
inline int ViewLODList::AddRef()
{
return ++m_refCount;
}
inline int ViewLODList::Release()
{
assert(m_refCount > 0);
if (!--m_refCount)
m_owner->Destroy(this);
return m_refCount;
}
#endif // VIEWLODLIST_H

View file

@ -0,0 +1,45 @@
#include "viewroi.h"
#include "../decomp.h"
DECOMP_SIZE_ASSERT(ViewROI, 0xe0)
// OFFSET: LEGO1 0x100a9eb0
float ViewROI::IntrinsicImportance() const
{
return .5;
} // for now
// OFFSET: LEGO1 0x100a9ec0
const Tgl::Group* ViewROI::GetGeometry() const
{
return geometry;
}
// OFFSET: LEGO1 0x100a9ed0
Tgl::Group* ViewROI::GetGeometry()
{
return geometry;
}
// OFFSET: LEGO1 0x100a9ee0
void ViewROI::UpdateWorldData(const Matrix4Data& parent2world)
{
OrientableROI::UpdateWorldData(parent2world);
if (geometry) {
// Tgl::FloatMatrix4 tgl_mat;
Matrix4 mat;
SETMAT4(mat, m_local2world.GetMatrix());
Tgl::Result result = geometry->SetTransformation(mat);
// assert(Tgl::Succeeded(result));
}
}
// OFFSET: LEGO1 0x100aa250 TEMPLATE
// ViewROI::`scalar deleting destructor'
inline ViewROI::~ViewROI()
{
// SetLODList() will decrease refCount of LODList
SetLODList(0);
delete geometry;
}

View file

@ -0,0 +1,47 @@
#ifndef VIEWROI_H
#define VIEWROI_H
#include "../realtime/orientableroi.h"
#include "../tgl/tgl.h"
#include "viewlodlist.h"
/*
ViewROI objects represent view objects, collections of view objects,
etc. Basically, anything which can be placed in a scene and manipilated
by the view manager is a ViewROI.
*/
class ViewROI : public OrientableROI {
public:
inline ViewROI(Tgl::Renderer* pRenderer, ViewLODList* lodList)
{
SetLODList(lodList);
geometry = pRenderer->CreateGroup();
}
inline ~ViewROI();
inline void SetLODList(ViewLODList* lodList)
{
// ??? inherently type unsafe - kind of... because, now, ROI
// does not expose SetLODs() ...
// solution: create pure virtual LODListBase* ROI::GetLODList()
// and let derived ROI classes hold the LODList
if (m_lods) {
reinterpret_cast<ViewLODList*>(m_lods)->Release();
}
m_lods = lodList;
if (m_lods) {
reinterpret_cast<ViewLODList*>(m_lods)->AddRef();
}
}
virtual float IntrinsicImportance() const;
virtual Tgl::Group* GetGeometry();
virtual const Tgl::Group* GetGeometry() const;
protected:
Tgl::Group* geometry;
void UpdateWorldData(const Matrix4Data& parent2world);
};
#endif // VIEWROI_H