isle-portable/tools/reccmp/reccmp.py

586 lines
19 KiB
Python
Executable file

#!/usr/bin/env python3
import argparse
import base64
from capstone import *
import difflib
import struct
import subprocess
import logging
import os
import sys
import colorama
import json
import re
from isledecomp.dir import walk_source_dir
from isledecomp.parser import find_code_blocks
from pystache import Renderer
parser = argparse.ArgumentParser(allow_abbrev=False,
description='Recompilation Compare: compare an original EXE with a recompiled EXE + PDB.')
parser.add_argument('original', metavar='original-binary', help='The original binary')
parser.add_argument('recompiled', metavar='recompiled-binary', help='The recompiled binary')
parser.add_argument('pdb', metavar='recompiled-pdb', help='The PDB of the recompiled binary')
parser.add_argument('decomp_dir', metavar='decomp-dir', help='The decompiled source tree')
parser.add_argument('--total', '-T', metavar='<count>', help='Total number of expected functions (improves total accuracy statistic)')
parser.add_argument('--verbose', '-v', metavar='<offset>', help='Print assembly diff for specific function (original file\'s offset)')
parser.add_argument('--html', '-H', metavar='<file>', help='Generate searchable HTML summary of status and diffs')
parser.add_argument('--no-color', '-n', action='store_true', help='Do not color the output')
parser.add_argument('--svg', '-S', metavar='<file>', help='Generate SVG graphic of progress')
parser.add_argument('--svg-icon', metavar='icon', help='Icon to use in SVG (PNG)')
parser.add_argument('--print-rec-addr', action='store_true', help='Print addresses of recompiled functions too')
parser.set_defaults(loglevel=logging.INFO)
parser.add_argument('--debug', action='store_const', const=logging.DEBUG, dest='loglevel', help='Print script debug information')
args = parser.parse_args()
logging.basicConfig(level=args.loglevel, format='[%(levelname)s] %(message)s')
logger = logging.getLogger(__name__)
colorama.init()
verbose = None
found_verbose_target = False
if args.verbose:
try:
verbose = int(args.verbose, 16)
except ValueError:
parser.error('invalid verbose argument')
html_path = args.html
plain = args.no_color
original = args.original
if not os.path.isfile(original):
parser.error(f'Original binary {original} does not exist')
recomp = args.recompiled
if not os.path.isfile(recomp):
parser.error(f'Recompiled binary {recomp} does not exist')
syms = args.pdb
if not os.path.isfile(syms):
parser.error(f'Symbols PDB {syms} does not exist')
source = args.decomp_dir
if not os.path.isdir(source):
parser.error(f'Source directory {source} does not exist')
svg = args.svg
# Declare a class that can automatically convert virtual executable addresses
# to file addresses
class Bin:
def __init__(self, filename):
logger.debug(f'Parsing headers of "{filename}"... ')
self.file = open(filename, 'rb')
#HACK: Strictly, we should be parsing the header, but we know where
# everything is in these two files so we just jump straight there
# Read ImageBase
self.file.seek(0xB4)
self.imagebase, = struct.unpack('<i', self.file.read(4))
# Read .text VirtualAddress
self.file.seek(0x184)
self.textvirt, = struct.unpack('<i', self.file.read(4))
# Read .text PointerToRawData
self.file.seek(0x18C)
self.textraw, = struct.unpack('<i', self.file.read(4))
logger.debug('... Parsing finished')
def __del__(self):
if self.file:
self.file.close()
def get_addr(self, virt):
return virt - self.imagebase - self.textvirt + self.textraw
def read(self, offset, size):
self.file.seek(self.get_addr(offset))
return self.file.read(size)
class RecompiledInfo:
def __init__(self):
self.addr = None
self.size = None
self.name = None
self.start = None
class WinePathConverter:
def __init__(self, unix_cwd):
self.unix_cwd = unix_cwd
self.win_cwd = self._call_winepath_unix2win(self.unix_cwd)
def get_wine_path(self, unix_fn: str) -> str:
if unix_fn.startswith('./'):
return self.win_cwd + '\\' + unix_fn[2:].replace('/', '\\')
if unix_fn.startswith(self.unix_cwd):
return self.win_cwd + '\\' + unix_fn.removeprefix(self.unix_cwd).replace('/', '\\').lstrip('\\')
return self._call_winepath_unix2win(unix_fn)
def get_unix_path(self, win_fn: str) -> str:
if win_fn.startswith('.\\') or win_fn.startswith('./'):
return self.unix_cwd + '/' + win_fn[2:].replace('\\', '/')
if win_fn.startswith(self.win_cwd):
return self.unix_cwd + '/' + win_fn.removeprefix(self.win_cwd).replace('\\', '/')
return self._call_winepath_win2unix(win_fn)
@staticmethod
def _call_winepath_unix2win(fn: str) -> str:
return subprocess.check_output(['winepath', '-w', fn], text=True).strip()
@staticmethod
def _call_winepath_win2unix(fn: str) -> str:
return subprocess.check_output(['winepath', fn], text=True).strip()
def get_file_in_script_dir(fn):
return os.path.join(os.path.dirname(os.path.abspath(sys.argv[0])), fn)
# Declare a class that parses the output of cvdump for fast access later
class SymInfo:
funcs = {}
lines = {}
names = {}
def __init__(self, pdb, file, wine_path_converter):
call = [get_file_in_script_dir('cvdump.exe'), '-l', '-s']
if wine_path_converter:
# Run cvdump through wine and convert path to Windows-friendly wine path
call.insert(0, 'wine')
call.append(wine_path_converter.get_wine_path(pdb))
else:
call.append(pdb)
logger.info(f'Parsing {pdb} ...')
logger.debug(f'Command = {call}')
line_dump = subprocess.check_output(call).decode('utf-8').split('\r\n')
current_section = None
logger.debug('Parsing output of cvdump.exe ...')
for i, line in enumerate(line_dump):
if line.startswith('***'):
current_section = line[4:]
if current_section == 'SYMBOLS' and 'S_GPROC32' in line:
addr = int(line[26:34], 16)
info = RecompiledInfo()
info.addr = addr + recompfile.imagebase + recompfile.textvirt
use_dbg_offs = False
if use_dbg_offs:
debug_offs = line_dump[i + 2]
debug_start = int(debug_offs[22:30], 16)
debug_end = int(debug_offs[43:], 16)
info.start = debug_start
info.size = debug_end - debug_start
else:
info.start = 0
info.size = int(line[41:49], 16)
info.name = line[77:]
self.names[info.name] = info
self.funcs[addr] = info
elif current_section == 'LINES' and line.startswith(' ') and not line.startswith(' '):
sourcepath = line.split()[0]
if wine_path_converter:
# Convert filename to Unix path for file compare
sourcepath = wine_path_converter.get_unix_path(sourcepath)
if sourcepath not in self.lines:
self.lines[sourcepath] = {}
j = i + 2
while True:
ll = line_dump[j].split()
if len(ll) == 0:
break
k = 0
while k < len(ll):
linenum = int(ll[k + 0])
address = int(ll[k + 1], 16)
if linenum not in self.lines[sourcepath]:
self.lines[sourcepath][linenum] = address
k += 2
j += 1
logger.debug('... Parsing output of cvdump.exe finished')
def get_recompiled_address(self, filename, line):
addr = None
found = False
logger.debug(f'Looking for {filename}:{line}')
filename_basename = os.path.basename(filename).lower()
for fn in self.lines:
# Sometimes a PDB is compiled with a relative path while we always have
# an absolute path. Therefore we must
try:
if (os.path.basename(fn).lower() == filename_basename and
os.path.samefile(fn, filename)):
filename = fn
break
except FileNotFoundError as e:
continue
if filename in self.lines and line in self.lines[fn]:
addr = self.lines[fn][line]
if addr in self.funcs:
return self.funcs[addr]
else:
logger.error(f'Failed to find function symbol with address: 0x{addr:x}')
else:
logger.error(f'Failed to find function symbol with filename and line: {filename}:{line}')
def get_recompiled_address_from_name(self, name):
logger.debug('Looking for %s', name)
if name in self.names:
return self.names[name]
else:
logger.error(f'Failed to find function symbol with name: {name}')
wine_path_converter = None
if os.name != 'nt':
wine_path_converter = WinePathConverter(source)
origfile = Bin(original)
recompfile = Bin(recomp)
syminfo = SymInfo(syms, recompfile, wine_path_converter)
print()
md = Cs(CS_ARCH_X86, CS_MODE_32)
class OffsetPlaceholderGenerator:
def __init__(self):
self.counter = 0
self.replacements = {}
def get(self, addr):
if addr in self.replacements:
return self.replacements[addr]
else:
self.counter += 1
replacement = f'<OFFSET{self.counter}>'
self.replacements[addr] = replacement
return replacement
def sanitize(file, placeholderGenerator, mnemonic, op_str):
op_str_is_number = False
try:
int(op_str, 16)
op_str_is_number = True
except ValueError:
pass
if (mnemonic == 'call' or mnemonic == 'jmp') and op_str_is_number:
# Filter out "calls" because the offsets we're not currently trying to
# match offsets. As long as there's a call in the right place, it's
# probably accurate.
op_str = placeholderGenerator.get(int(op_str, 16))
else:
def filter_out_ptr(ptype, op_str):
try:
ptrstr = ptype + ' ptr ['
start = op_str.index(ptrstr) + len(ptrstr)
end = op_str.index(']', start)
# This will throw ValueError if not hex
inttest = int(op_str[start:end], 16)
return op_str[0:start] + placeholderGenerator.get(inttest) + op_str[end:]
except ValueError:
return op_str
# Filter out dword ptrs where the pointer is to an offset
op_str = filter_out_ptr('dword', op_str)
op_str = filter_out_ptr('word', op_str)
op_str = filter_out_ptr('byte', op_str)
# Use heuristics to filter out any args that look like offsets
words = op_str.split(' ')
for i, word in enumerate(words):
try:
inttest = int(word, 16)
if inttest >= file.imagebase + file.textvirt:
words[i] = placeholderGenerator.get(inttest)
except ValueError:
pass
op_str = ' '.join(words)
return mnemonic, op_str
def parse_asm(file, addr, size):
asm = []
data = file.read(addr, size)
placeholderGenerator = OffsetPlaceholderGenerator()
for i in md.disasm(data, 0):
# Use heuristics to disregard some differences that aren't representative
# of the accuracy of a function (e.g. global offsets)
mnemonic, op_str = sanitize(file, placeholderGenerator, i.mnemonic, i.op_str)
if op_str is None:
asm.append(mnemonic)
else:
asm.append(f'{mnemonic} {op_str}')
return asm
REGISTER_LIST = set([
'ax',
'bp',
'bx',
'cx',
'di',
'dx',
'eax',
'ebp',
'ebx',
'ecx',
'edi',
'edx',
'esi',
'esp',
'si',
'sp',
])
WORDS = re.compile(r'\w+')
def get_registers(line: str):
to_replace = []
# use words regex to find all matching positions:
for match in WORDS.finditer(line):
reg = match.group(0)
if reg in REGISTER_LIST:
to_replace.append((reg, match.start()))
return to_replace
def replace_register(lines: list[str], start_line: int, reg: str, replacement: str) -> list[str]:
return [line.replace(reg, replacement) if i >= start_line else line for i, line in enumerate(lines)]
# Is it possible to make new_asm the same as original_asm by swapping registers?
def can_resolve_register_differences(original_asm, new_asm):
# Split the ASM on spaces to get more granularity, and so
# that we don't modify the original arrays passed in.
original_asm = [part for line in original_asm for part in line.split()]
new_asm = [part for line in new_asm for part in line.split()]
# Swapping ain't gonna help if the lengths are different
if len(original_asm) != len(new_asm):
return False
# Look for the mismatching lines
for i in range(len(original_asm)):
new_line = new_asm[i]
original_line = original_asm[i]
if new_line != original_line:
# Find all the registers to replace
to_replace = get_registers(original_line)
for j in range(len(to_replace)):
(reg, reg_index) = to_replace[j]
replacing_reg = new_line[reg_index:reg_index + len(reg)]
if replacing_reg in REGISTER_LIST:
if replacing_reg != reg:
# Do a three-way swap replacing in all the subsequent lines
temp_reg = '&' * len(reg)
new_asm = replace_register(new_asm, i, replacing_reg, temp_reg)
new_asm = replace_register(new_asm, i, reg, replacing_reg)
new_asm = replace_register(new_asm, i, temp_reg, reg)
else:
# No replacement to do, different code, bail out
return False
# Check if the lines are now the same
for i in range(len(original_asm)):
if new_asm[i] != original_asm[i]:
return False
return True
function_count = 0
total_accuracy = 0
total_effective_accuracy = 0
htmlinsert = []
# Generate basename of original file, used in locating OFFSET lines
basename = os.path.basename(os.path.splitext(original)[0])
for srcfilename in walk_source_dir(source):
with open(srcfilename, 'r') as srcfile:
blocks = find_code_blocks(srcfile)
for block in blocks:
if block.is_stub:
continue
if block.module != basename:
continue
addr = block.offset
# Verbose flag handling
if verbose:
if addr == verbose:
found_verbose_target = True
else:
continue
if block.is_template:
recinfo = syminfo.get_recompiled_address_from_name(block.signature)
if not recinfo:
continue
else:
recinfo = syminfo.get_recompiled_address(srcfilename, block.start_line)
if not recinfo:
continue
# The effective_ratio is the ratio when ignoring differing register
# allocation vs the ratio is the true ratio.
ratio = 0.0
effective_ratio = 0.0
if recinfo.size:
origasm = parse_asm(origfile, addr + recinfo.start, recinfo.size)
recompasm = parse_asm(recompfile, recinfo.addr + recinfo.start, recinfo.size)
diff = difflib.SequenceMatcher(None, origasm, recompasm)
ratio = diff.ratio()
effective_ratio = ratio
if ratio != 1.0:
# Check whether we can resolve register swaps which are actually
# perfect matches modulo compiler entropy.
if can_resolve_register_differences(origasm, recompasm):
effective_ratio = 1.0
else:
ratio = 0
percenttext = f'{(effective_ratio * 100):.2f}%'
if not plain:
if effective_ratio == 1.0:
percenttext = colorama.Fore.GREEN + percenttext + colorama.Style.RESET_ALL
elif effective_ratio > 0.8:
percenttext = colorama.Fore.YELLOW + percenttext + colorama.Style.RESET_ALL
else:
percenttext = colorama.Fore.RED + percenttext + colorama.Style.RESET_ALL
if effective_ratio == 1.0 and ratio != 1.0:
if plain:
percenttext += '*'
else:
percenttext += colorama.Fore.RED + '*' + colorama.Style.RESET_ALL
if args.print_rec_addr:
addrs = f'0x{addr:x} / 0x{recinfo.addr:x}'
else:
addrs = hex(addr)
if not verbose:
print(f' {recinfo.name} ({addrs}) is {percenttext} similar to the original')
function_count += 1
total_accuracy += ratio
total_effective_accuracy += effective_ratio
if recinfo.size:
udiff = difflib.unified_diff(origasm, recompasm, n=10)
# If verbose, print the diff for that function to the output
if verbose:
if effective_ratio == 1.0:
ok_text = 'OK!' if plain else (colorama.Fore.GREEN + '✨ OK! ✨' + colorama.Style.RESET_ALL)
if ratio == 1.0:
print(f'{addrs}: {recinfo.name} 100% match.\n\n{ok_text}\n\n')
else:
print(f'{addrs}: {recinfo.name} Effective 100%% match. (Differs in register allocation only)\n\n{ok_text} (still differs in register allocation)\n\n')
else:
for line in udiff:
if line.startswith('++') or line.startswith('@@') or line.startswith('--'):
# Skip unneeded parts of the diff for the brief view
pass
elif line.startswith('+'):
if plain:
print(line)
else:
print(colorama.Fore.GREEN + line)
elif line.startswith('-'):
if plain:
print(line)
else:
print(colorama.Fore.RED + line)
else:
print(line)
if not plain:
print(colorama.Style.RESET_ALL, end='')
print(f'\n{recinfo.name} is only {percenttext} similar to the original, diff above')
# If html, record the diffs to an HTML file
if html_path:
htmlinsert.append({"address": f"0x{addr:x}",
"name": recinfo.name,
"matching": effective_ratio,
"diff": '\n'.join(udiff)})
def gen_html(html_file, data):
output_data = Renderer().render_path(get_file_in_script_dir('template.html'),
{
"data": data,
}
)
with open(html_file, 'w') as htmlfile:
htmlfile.write(output_data)
def gen_svg(svg_file, name_svg, icon, svg_implemented_funcs, total_funcs, raw_accuracy):
icon_data = None
if icon:
with open(icon, 'rb') as iconfile:
icon_data = base64.b64encode(iconfile.read()).decode('utf-8')
total_statistic = raw_accuracy / total_funcs
full_percentbar_width = 127.18422
output_data = Renderer().render_path(get_file_in_script_dir('template.svg'),
{
"name": name_svg,
"icon": icon_data,
"implemented": f'{(svg_implemented_funcs / total_funcs * 100):.2f}% ({svg_implemented_funcs}/{total_funcs})',
"accuracy": f'{(raw_accuracy / svg_implemented_funcs * 100):.2f}%',
"progbar": total_statistic * full_percentbar_width,
"percent": f'{(total_statistic * 100):.2f}%',
}
)
with open(svg_file, 'w') as svgfile:
svgfile.write(output_data)
if html_path:
gen_html(html_path, json.dumps(htmlinsert))
if verbose:
if not found_verbose_target:
print(f'Failed to find the function with address 0x{verbose:x}')
else:
implemented_funcs = function_count
if args.total:
function_count = int(args.total)
if function_count > 0:
effective_accuracy = total_effective_accuracy / function_count * 100
actual_accuracy = total_accuracy / function_count * 100
print(f'\nTotal effective accuracy {effective_accuracy:.2f}% across {function_count} functions ({actual_accuracy:.2f}% actual accuracy)')
if svg:
gen_svg(svg, os.path.basename(original), args.svg_icon, implemented_funcs, function_count, total_effective_accuracy)