isle-portable/LEGO1/mxgeometry/mxgeometry3d.h
Christian Semmler f88f7b115e
Implement/match LegoPathController::ReadBoundaries (#908)
* Implement/match LegoPathController::ReadBoundaries

* Allow spawn
2024-05-11 19:55:28 +02:00

169 lines
3.7 KiB
C++

#ifndef MXGEOMETRY3D_H
#define MXGEOMETRY3D_H
#include "decomp.h"
#include "realtime/matrix.h"
#include "realtime/vector.h"
// VTABLE: LEGO1 0x100d4488
// SIZE 0x14
class Mx3DPointFloat : public Vector3 {
public:
inline Mx3DPointFloat() : Vector3(m_elements) {}
inline Mx3DPointFloat(float p_x, float p_y, float p_z) : Vector3(m_elements)
{
m_elements[0] = p_x;
m_elements[1] = p_y;
m_elements[2] = p_z;
}
// FUNCTION: LEGO1 0x100343a0
inline Mx3DPointFloat(const Mx3DPointFloat& p_other) : Vector3(m_elements) { EqualsImpl(p_other.m_data); }
inline Mx3DPointFloat(const Vector3& p_other) : Vector3(m_elements) { EqualsImpl(p_other.m_data); }
// SYNTHETIC: LEGO1 0x1001d170
// Mx3DPointFloat::Mx3DPointFloat
// FUNCTION: LEGO1 0x10003c10
virtual void operator=(const Vector3& p_impl) { EqualsImpl(p_impl.m_data); } // vtable+0x88
inline float GetX() { return m_data[0]; }
inline float GetY() { return m_data[1]; }
inline float GetZ() { return m_data[2]; }
inline float& operator[](int idx) { return m_data[idx]; }
inline const float& operator[](int idx) const { return m_data[idx]; }
// SYNTHETIC: LEGO1 0x10010c00
// Mx3DPointFloat::operator=
private:
float m_elements[3]; // 0x08
};
// VTABLE: LEGO1 0x100d41e8
// SIZE 0x18
class Mx4DPointFloat : public Vector4 {
public:
// FUNCTION: LEGO1 0x10048290
inline Mx4DPointFloat() : Vector4(m_elements) {}
inline Mx4DPointFloat(float p_x, float p_y, float p_z, float p_a) : Vector4(m_elements)
{
m_elements[0] = p_x;
m_elements[1] = p_y;
m_elements[2] = p_z;
m_elements[3] = p_a;
}
// FUNCTION: LEGO1 0x10003200
virtual void operator=(const Vector4& p_impl) { EqualsImpl(p_impl.m_data); } // vtable+0x98
inline float& operator[](int idx) { return m_data[idx]; }
inline const float& operator[](int idx) const { return m_data[idx]; }
private:
float m_elements[4]; // 0x08
};
// SIZE 0x34
class UnknownMx4DPointFloat {
public:
enum {
c_bit1 = 0x01,
c_bit2 = 0x02
};
UnknownMx4DPointFloat() : m_unk0x30(0) {}
inline void Unknown1(Vector4& p_v)
{
m_unk0x00 = p_v;
m_unk0x30 |= c_bit1;
}
inline void Unknown2(Vector4& p_v)
{
m_unk0x18 = p_v;
m_unk0x30 |= c_bit2;
}
inline int Unknown_100040a0(Matrix4& p_matrix, float p_f);
inline int FUN_100040a0(Vector4& p_v, float p_f);
private:
Mx4DPointFloat m_unk0x00; // 0x00
Mx4DPointFloat m_unk0x18; // 0x18
undefined4 m_unk0x30; // 0x30
};
int UnknownMx4DPointFloat::Unknown_100040a0(Matrix4& p_matrix, float p_f)
{
float data[4];
Vector4 v(data);
if (FUN_100040a0(v, p_f) == 0) {
return p_matrix.FromQuaternion(v);
}
else {
return -1;
}
}
// FUNCTION: LEGO1 0x100040a0
inline int UnknownMx4DPointFloat::FUN_100040a0(Vector4& p_v, float p_f)
{
undefined4 state = m_unk0x30;
if (state == 1) {
p_v = m_unk0x00;
p_v[3] = (1.0 - p_f) * acos(p_v[3]) * 2.0;
return p_v.NormalizeQuaternion();
}
else if (state == 2) {
p_v = m_unk0x18;
p_v[3] = p_f * acos(p_v[3]) * 2.0;
return p_v.NormalizeQuaternion();
}
else if (state == 3) {
double d1 = p_v.Dot(&m_unk0x00, &m_unk0x18);
double d2;
if (d1 + 1.0 > 0.00001) {
if (1.0 - d1 > 0.00001) {
double d = acos(d1);
sin(d);
d1 = sin((1 - p_f) * d) / sin(d);
d2 = sin(p_f * d) / sin(d);
}
else {
d1 = 1.0 - p_f;
d2 = p_f;
}
for (int i = 0; i < 4; i++) {
p_v[i] = m_unk0x18[i] * d2 + m_unk0x00[i] * d1;
}
}
else {
p_v[0] = -m_unk0x00[1];
p_v[1] = m_unk0x00[1];
p_v[2] = -m_unk0x00[3];
p_v[3] = m_unk0x00[2];
d1 = sin((1.0 - p_f) * 1.570796326794895);
d2 = sin(p_f * 1.570796326794895);
for (int i = 0; i < 3; i++) {
p_v[i] = m_unk0x00[i] * d1 + p_v[i] * d2;
}
}
return 0;
}
else {
return -1;
}
}
#endif // MXGEOMETRY3D_H