#ifndef MATRIX_H #define MATRIX_H #include "vector.h" #include struct UnknownMatrixType { float m_data[4][4]; }; // Note: Many functions most likely take const references/pointers instead of non-const. // The class needs to undergo a very careful refactoring to fix that (no matches should break). // VTABLE: LEGO1 0x100d4350 // SIZE 0x08 class Matrix4 { public: inline Matrix4(float (*p_data)[4]) { SetData(p_data); } // Note: virtual function overloads appear in the virtual table // in reverse order of appearance. // FUNCTION: LEGO1 0x10002320 virtual void Equals(float (*p_data)[4]) { memcpy(m_data, p_data, sizeof(float) * 4 * 4); } // vtable+0x04 // FUNCTION: LEGO1 0x10002340 virtual void Equals(const Matrix4& p_matrix) { memcpy(m_data, p_matrix.m_data, sizeof(float) * 4 * 4); } // vtable+0x00 // FUNCTION: LEGO1 0x10002360 virtual void SetData(float (*p_data)[4]) { m_data = p_data; } // vtable+0x0c // FUNCTION: LEGO1 0x10002370 virtual void SetData(UnknownMatrixType& p_matrix) { m_data = p_matrix.m_data; } // vtable+0x08 // FUNCTION: LEGO1 0x10002380 virtual float (*GetData())[4] { return m_data; } // vtable+0x14 // FUNCTION: LEGO1 0x10002390 virtual float (*GetData() const)[4] { return m_data; } // vtable+0x10 // FUNCTION: LEGO1 0x100023a0 virtual float* Element(int p_row, int p_col) { return &m_data[p_row][p_col]; } // vtable+0x1c // FUNCTION: LEGO1 0x100023c0 virtual const float* Element(int p_row, int p_col) const { return &m_data[p_row][p_col]; } // vtable+0x18 // FUNCTION: LEGO1 0x100023e0 virtual void Clear() { memset(m_data, 0, 16 * sizeof(float)); } // vtable+0x20 // FUNCTION: LEGO1 0x100023f0 virtual void SetIdentity() { Clear(); m_data[0][0] = 1.0f; m_data[1][1] = 1.0f; m_data[2][2] = 1.0f; m_data[3][3] = 1.0f; } // vtable+0x24 // FUNCTION: LEGO1 0x10002420 virtual void operator=(const Matrix4& p_matrix) { Equals(p_matrix); } // vtable+0x28 // FUNCTION: LEGO1 0x10002430 virtual Matrix4& operator+=(float (*p_data)[4]) { for (int i = 0; i < 16; i++) { ((float*) m_data)[i] += ((float*) p_data)[i]; } return *this; } // vtable+0x2c // FUNCTION: LEGO1 0x10002460 virtual void TranslateBy(const float* p_x, const float* p_y, const float* p_z) { m_data[3][0] += *p_x; m_data[3][1] += *p_y; m_data[3][2] += *p_z; } // vtable+0x30 // FUNCTION: LEGO1 0x100024a0 virtual void SetTranslation(const float* p_x, const float* p_y, const float* p_z) { m_data[3][0] = *p_x; m_data[3][1] = *p_y; m_data[3][2] = *p_z; } // vtable+0x34 // FUNCTION: LEGO1 0x100024d0 virtual void Product(float (*p_a)[4], float (*p_b)[4]) { float* cur = (float*) m_data; for (int row = 0; row < 4; row++) { for (int col = 0; col < 4; col++) { *cur = 0.0f; for (int k = 0; k < 4; k++) { *cur += p_a[row][k] * p_b[k][col]; } cur++; } } } // vtable+0x3c // FUNCTION: LEGO1 0x10002530 virtual void Product(const Matrix4& p_a, const Matrix4& p_b) { Product(p_a.m_data, p_b.m_data); } // vtable+0x38 // FUNCTION: LEGO1 0x100a0ff0 inline void Scale(const float& p_x, const float& p_y, const float& p_z) { for (int i = 0; i < 4; i++) { m_data[i][0] *= p_x; m_data[i][1] *= p_y; m_data[i][2] *= p_z; } } inline void RotateX(const float& p_angle) { float s = sin(p_angle); float c = cos(p_angle); float matrix[4][4]; memcpy(matrix, m_data, sizeof(float) * 16); for (int i = 0; i < 4; i++) { m_data[i][1] = matrix[i][1] * c - matrix[i][2] * s; m_data[i][2] = matrix[i][2] * c + matrix[i][1] * s; } } inline void RotateZ(const float& p_angle) { float s = sin(p_angle); float c = cos(p_angle); float matrix[4][4]; memcpy(matrix, m_data, sizeof(float) * 16); for (int i = 0; i < 4; i++) { m_data[i][0] = matrix[i][0] * c - matrix[i][1] * s; m_data[i][1] = matrix[i][1] * c + matrix[i][0] * s; } } inline virtual void ToQuaternion(Vector4& p_resultQuat); // vtable+0x40 inline virtual int FromQuaternion(const Vector4& p_vec); // vtable+0x44 float* operator[](size_t idx) { return m_data[idx]; } const float* operator[](size_t idx) const { return m_data[idx]; } protected: float (*m_data)[4]; }; // Not close, Ghidra struggles understinging this method so it will have to // be manually worked out. Included since I at least figured out what it was // doing with rotateIndex and what overall operation it's trying to do. // STUB: LEGO1 0x10002550 inline void Matrix4::ToQuaternion(Vector4& p_outQuat) { /* float trace = m_data[0] + m_data[5] + m_data[10]; if (trace > 0) { trace = sqrt(trace + 1.0); p_outQuat->GetData()[3] = trace * 0.5f; p_outQuat->GetData()[0] = (m_data[9] - m_data[6]) * trace; p_outQuat->GetData()[1] = (m_data[2] - m_data[8]) * trace; p_outQuat->GetData()[2] = (m_data[4] - m_data[1]) * trace; return; } // ~GLOBAL: LEGO1 0x100d4090 static int rotateIndex[] = {1, 2, 0}; // Largest element along the trace int largest = m_data[0] < m_data[5]; if (*Element(largest, largest) < m_data[10]) largest = 2; int next = rotateIndex[largest]; int nextNext = rotateIndex[next]; float valueA = *Element(nextNext, nextNext); float valueB = *Element(next, next); float valueC = *Element(largest, largest); // Above is somewhat decomped, below is pure speculation since the automatic // decomp becomes very garbled. float traceValue = sqrt(valueA - valueB - valueC + 1.0); p_outQuat->GetData()[largest] = traceValue * 0.5f; traceValue = 0.5f / traceValue; p_outQuat->GetData()[3] = (m_data[next + 4 * nextNext] - m_data[nextNext + 4 * next]) * traceValue; p_outQuat->GetData()[next] = (m_data[next + 4 * largest] + m_data[largest + 4 * next]) * traceValue; p_outQuat->GetData()[nextNext] = (m_data[nextNext + 4 * largest] + m_data[largest + 4 * nextNext]) * traceValue; */ } // No idea what this function is doing and it will be hard to tell until // we have a confirmed usage site. // STUB: LEGO1 0x10002710 inline int Matrix4::FromQuaternion(const Vector4& p_vec) { return -1; } #endif // MATRIX_H