isle-portable/tools/reccmp/reccmp.py

401 lines
12 KiB
Python
Raw Normal View History

#!/usr/bin/env python3
import argparse
from capstone import *
import difflib
import struct
import subprocess
import os
import sys
import colorama
parser = argparse.ArgumentParser(allow_abbrev=False,
description='Recompilation Compare: compare an original EXE with a recompiled EXE + PDB.')
parser.add_argument('original', metavar='original-binary', help='The original binary')
parser.add_argument('recompiled', metavar='recompiled-binary', help='The recompiled binary')
parser.add_argument('pdb', metavar='recompiled-pdb', help='The PDB of the recompiled binary')
parser.add_argument('decomp_dir', metavar='decomp-dir', help='The decompiled source tree')
parser.add_argument('--verbose', '-v', metavar='offset', help='Print assembly diff for specific function (original file\'s offset)')
parser.add_argument('--html', '-H', metavar='output-file', help='Generate searchable HTML summary of status and diffs')
parser.add_argument('--no-color', '-n', action='store_true', help='Do not color the output')
args = parser.parse_args()
colorama.init()
verbose = None
found_verbose_target = False
if args.verbose:
try:
verbose = int(args.verbose, 16)
except ValueError:
parser.error('invalid verbose argument')
html = args.html
plain = args.no_color
original = args.original
if not os.path.isfile(original):
parser.error('Original binary does not exist')
recomp = args.recompiled
if not os.path.isfile(recomp):
parser.error('Recompiled binary does not exist')
syms = args.pdb
if not os.path.isfile(syms):
parser.error('Symbols PDB does not exist')
source = args.decomp_dir
if not os.path.isdir(source):
parser.error('Source directory does not exist')
# Declare a class that can automatically convert virtual executable addresses
# to file addresses
class Bin:
def __init__(self, filename):
self.file = open(filename, 'rb')
#HACK: Strictly, we should be parsing the header, but we know where
# everything is in these two files so we just jump straight there
# Read ImageBase
self.file.seek(0xB4)
self.imagebase = struct.unpack('i', self.file.read(4))[0]
# Read .text VirtualAddress
self.file.seek(0x184)
self.textvirt = struct.unpack('i', self.file.read(4))[0]
# Read .text PointerToRawData
self.file.seek(0x18C)
self.textraw = struct.unpack('i', self.file.read(4))[0]
def __del__(self):
if self.file:
self.file.close()
def get_addr(self, virt):
return virt - self.imagebase - self.textvirt + self.textraw
def read(self, offset, size):
self.file.seek(self.get_addr(offset))
return self.file.read(size)
class RecompiledInfo:
addr = None
size = None
name = None
start = None
def get_wine_path(fn):
return subprocess.check_output(['winepath', '-w', fn]).decode('utf-8').strip()
def get_unix_path(fn):
return subprocess.check_output(['winepath', fn]).decode('utf-8').strip()
def get_file_in_script_dir(fn):
return os.path.join(os.path.dirname(os.path.abspath(sys.argv[0])), fn)
# Declare a class that parses the output of cvdump for fast access later
class SymInfo:
funcs = {}
lines = {}
def __init__(self, pdb, file):
call = [get_file_in_script_dir('cvdump.exe'), '-l', '-s']
if os.name != 'nt':
# Run cvdump through wine and convert path to Windows-friendly wine path
call.insert(0, 'wine')
call.append(get_wine_path(pdb))
else:
call.append(pdb)
print('Parsing %s...' % pdb)
line_dump = subprocess.check_output(call).decode('utf-8').split('\r\n')
current_section = None
for i, line in enumerate(line_dump):
if line.startswith('***'):
current_section = line[4:]
if current_section == 'SYMBOLS' and 'S_GPROC32' in line:
addr = int(line[26:34], 16)
2023-06-21 20:01:48 -04:00
info = RecompiledInfo()
info.addr = addr + recompfile.imagebase + recompfile.textvirt
2023-06-21 20:01:48 -04:00
use_dbg_offs = False
if use_dbg_offs:
debug_offs = line_dump[i + 2]
debug_start = int(debug_offs[22:30], 16)
debug_end = int(debug_offs[43:], 16)
info.start = debug_start
info.size = debug_end - debug_start
else:
info.start = 0
info.size = int(line[41:49], 16)
info.name = line[77:]
self.funcs[addr] = info
elif current_section == 'LINES' and line.startswith(' ') and not line.startswith(' '):
sourcepath = line.split()[0]
if os.name != 'nt':
# Convert filename to Unix path for file compare
sourcepath = get_unix_path(sourcepath)
if sourcepath not in self.lines:
self.lines[sourcepath] = {}
j = i + 2
while True:
ll = line_dump[j].split()
if len(ll) == 0:
break
k = 0
while k < len(ll):
linenum = int(ll[k + 0])
address = int(ll[k + 1], 16)
if linenum not in self.lines[sourcepath]:
self.lines[sourcepath][linenum] = address
k += 2
j += 1
def get_recompiled_address(self, filename, line):
addr = None
found = False
#print('Looking for ' + filename + ' line ' + str(line))
for fn in self.lines:
# Sometimes a PDB is compiled with a relative path while we always have
# an absolute path. Therefore we must
if os.path.samefile(fn, filename):
filename = fn
break
if filename in self.lines and line in self.lines[fn]:
addr = self.lines[fn][line]
if addr in self.funcs:
return self.funcs[addr]
else:
print('Failed to find function symbol with address: %s' % hex(addr))
else:
print('Failed to find function symbol with filename and line: %s:%s' % (filename, str(line)))
origfile = Bin(original)
recompfile = Bin(recomp)
syminfo = SymInfo(syms, recompfile)
print()
md = Cs(CS_ARCH_X86, CS_MODE_32)
def sanitize(file, mnemonic, op_str):
offsetplaceholder = '<OFFSET>'
2023-06-22 03:44:28 -04:00
op_str_is_number = False
try:
int(op_str, 16)
op_str_is_number = True
except ValueError:
pass
if (mnemonic == 'call' or mnemonic == 'jmp') and op_str_is_number:
# Filter out "calls" because the offsets we're not currently trying to
# match offsets. As long as there's a call in the right place, it's
# probably accurate.
op_str = offsetplaceholder
else:
def filter_out_ptr(ptype, op_str):
try:
ptrstr = ptype + ' ptr ['
start = op_str.index(ptrstr) + len(ptrstr)
end = op_str.index(']', start)
# This will throw ValueError if not hex
inttest = int(op_str[start:end], 16)
return op_str[0:start] + offsetplaceholder + op_str[end:]
except ValueError:
return op_str
# Filter out dword ptrs where the pointer is to an offset
op_str = filter_out_ptr('dword', op_str)
op_str = filter_out_ptr('word', op_str)
op_str = filter_out_ptr('byte', op_str)
# Use heuristics to filter out any args that look like offsets
words = op_str.split(' ')
for i, word in enumerate(words):
try:
inttest = int(word, 16)
if inttest >= file.imagebase + file.textvirt:
words[i] = offsetplaceholder
except ValueError:
pass
op_str = ' '.join(words)
return mnemonic, op_str
def parse_asm(file, addr, size):
asm = []
data = file.read(addr, size)
for i in md.disasm(data, 0):
# Use heuristics to disregard some differences that aren't representative
# of the accuracy of a function (e.g. global offsets)
mnemonic, op_str = sanitize(file, i.mnemonic, i.op_str)
if op_str is None:
asm.append(mnemonic)
else:
asm.append("%s %s" % (mnemonic, op_str))
return asm
function_count = 0
total_accuracy = 0
htmlinsert = []
# Generate basename of original file, used in locating OFFSET lines
basename = os.path.basename(os.path.splitext(original)[0])
pattern = '// OFFSET:'
for subdir, dirs, files in os.walk(source):
for file in files:
srcfilename = os.path.join(os.path.abspath(subdir), file)
srcfile = open(srcfilename, 'r')
line_no = 0
while True:
try:
line = srcfile.readline()
line_no += 1
if not line:
break
line = line.strip()
if line.startswith(pattern):
par = line[len(pattern):].strip().split()
module = par[0]
if module != basename:
continue
addr = int(par[1], 16)
# Verbose flag handling
if verbose:
if addr == verbose:
found_verbose_target = True
else:
continue
find_open_bracket = line
while '{' not in find_open_bracket:
find_open_bracket = srcfile.readline()
line_no += 1
recinfo = syminfo.get_recompiled_address(srcfilename, line_no)
if not recinfo:
continue
if recinfo.size:
origasm = parse_asm(origfile, addr + recinfo.start, recinfo.size)
recompasm = parse_asm(recompfile, recinfo.addr + recinfo.start, recinfo.size)
diff = difflib.SequenceMatcher(None, origasm, recompasm)
ratio = diff.ratio()
else:
ratio = 0
percenttext = "%.2f%%" % (ratio * 100)
if not plain:
if ratio == 1.0:
percenttext = colorama.Fore.GREEN + percenttext + colorama.Style.RESET_ALL
elif ratio > 0.8:
percenttext = colorama.Fore.YELLOW + percenttext + colorama.Style.RESET_ALL
else:
percenttext = colorama.Fore.RED + percenttext + colorama.Style.RESET_ALL
if not verbose:
print(' %s (%s / %s) is %s similar to the original' % (recinfo.name, hex(addr), hex(recinfo.addr), percenttext))
function_count += 1
total_accuracy += ratio
if recinfo.size:
udiff = difflib.unified_diff(origasm, recompasm, n=10)
# If verbose, print the diff for that funciton to the output
if verbose:
if ratio == 1.0:
print("%s: %s 100%% match.\n\nOK!" % (hex(addr), recinfo.name))
else:
for line in udiff:
if line.startswith("++") or line.startswith("@@") or line.startswith("--"):
# Skip unneeded parts of the diff for the brief view
pass
elif line.startswith("+"):
if plain:
print(line)
else:
print(colorama.Fore.GREEN + line)
elif line.startswith("-"):
if plain:
print(line)
else:
print(colorama.Fore.RED + line)
else:
print(line)
if not plain:
print(colorama.Style.RESET_ALL, end='')
print("\n%s is only %s similar to the original, diff above" % (recinfo.name, percenttext))
# If html, record the diffs to an HTML file
if html:
htmlinsert.append('{address: "%s", name: "%s", matching: %s, diff: "%s"}' % (hex(addr), recinfo.name, str(ratio), '\\n'.join(udiff).replace('"', '\\"').replace('\n', '\\n')))
except UnicodeDecodeError:
break
def gen_html(html, data):
templatefile = open(get_file_in_script_dir('template.html'), 'r')
if not templatefile:
print('Failed to find HTML template file, can\'t generate HTML summary')
return
templatedata = templatefile.read()
templatefile.close()
templatedata = templatedata.replace('/* INSERT DATA HERE */', ','.join(data), 1)
htmlfile = open(html, 'w')
if not htmlfile:
print('Failed to write to HTML file %s' % html)
return
htmlfile.write(templatedata)
htmlfile.close()
if html:
gen_html(html, htmlinsert)
if verbose:
if not found_verbose_target:
print('Failed to find the function with address %s' % hex(verbose))
else:
if function_count > 0:
print('\nTotal accuracy %.2f%% across %i functions' % (total_accuracy / function_count * 100, function_count))