SIEdit/lib/interleaf.cpp

746 lines
18 KiB
C++

#include "interleaf.h"
#include <cmath>
#include <iostream>
#include <sstream>
#include "object.h"
#include "othertypes.h"
#include "sitypes.h"
#include "util.h"
namespace si {
static const uint32_t kMinimumChunkSize = 8;
Interleaf::Interleaf()
{
}
void Interleaf::Clear()
{
m_Info.clear();
m_BufferSize = 0;
m_JoiningProgress = 0;
m_JoiningSize = 0;
m_ObjectIDTable.clear();
m_ObjectList.clear();
DeleteChildren();
}
Interleaf::Error Interleaf::Read(const char *f)
{
File is;
if (!is.Open(f, File::Read)) {
return ERROR_IO;
}
return Read(&is);
}
Interleaf::Error Interleaf::Write(const char *f) const
{
File os;
if (!os.Open(f, File::Write)) {
return ERROR_IO;
}
return Write(&os);
}
#ifdef _WIN32
Interleaf::Error Interleaf::Read(const wchar_t *f)
{
File is;
if (!is.Open(f, File::Read)) {
return ERROR_IO;
}
return Read(&is);
}
Interleaf::Error Interleaf::Write(const wchar_t *f) const
{
File os;
if (!os.Open(f, File::Write)) {
return ERROR_IO;
}
return Write(&os);
}
#endif
Interleaf::Error Interleaf::ReadChunk(Core *parent, FileBase *f, Info *info)
{
uint32_t offset = f->pos();
uint32_t id = f->ReadU32();
uint32_t size = f->ReadU32();
uint32_t end = uint32_t(f->pos()) + size;
info->SetType(id);
info->SetOffset(offset);
info->SetSize(size);
std::stringstream desc;
switch (static_cast<RIFF::Type>(id)) {
case RIFF::RIFF_:
{
// Require RIFF type to be OMNI
uint32_t riff_type = f->ReadU32();
if (riff_type != RIFF::OMNI) {
return ERROR_INVALID_INPUT;
}
desc << "Type: " << RIFF::PrintU32AsString(riff_type);
break;
}
case RIFF::MxHd:
{
m_Version = f->ReadU32();
desc << "Version: " << m_Version << std::endl;
m_BufferSize = f->ReadU32();
desc << "Buffer Size: 0x" << std::hex << m_BufferSize;
if (m_Version == 0x00020002) {
m_BufferCount = f->ReadU32();
desc << std::endl << "Buffer Count: " << std::dec << m_BufferCount << std::endl;
}
break;
}
case RIFF::pad_:
f->seek(size, File::SeekCurrent);
break;
case RIFF::MxOf:
{
uint32_t offset_count = f->ReadU32();
desc << "Count: " << offset_count;
uint32_t real_count = (size - sizeof(uint32_t)) / sizeof(uint32_t);
m_ObjectList.resize(real_count);
for (uint32_t i = 0; i < real_count; i++) {
Object *o = new Object();
parent->AppendChild(o);
uint32_t choffset = f->ReadU32();
m_ObjectList[i] = choffset;
desc << std::endl << i << ": 0x" << std::hex << choffset;
}
break;
}
case RIFF::LIST:
{
uint32_t list_type = f->ReadU32();
desc << "Type: " << RIFF::PrintU32AsString(list_type) << std::endl;
uint32_t list_count = 0;
if (list_type == RIFF::MxCh) {
list_count = f->ReadU32();
if (list_count == LIST::Act_ || list_count == LIST::RAND) {
desc << "Extension: ";
if (list_count == LIST::RAND) {
uint32_t rand_upper = f->ReadU32();
uint64_t rand_val = uint64_t(rand_upper) << 32 | list_count;
f->seek(1, File::SeekCurrent);
desc << ((const char *) &rand_val);
} else if (list_count == LIST::Act_) {
desc << ((const char *) &list_count);
}
desc << std::endl;
// Re-read list count
list_count = f->ReadU32();
for (uint32_t i=0; i<list_count; i++) {
// Read every short
uint16_t val = f->ReadU16();
desc << " " << ((const char *) &val) << std::endl;
}
}
desc << "Count: " << list_count << std::endl;
}
break;
}
case RIFF::MxSt:
case RIFF::MxDa:
case RIFF::WAVE:
case RIFF::fmt_:
case RIFF::data:
case RIFF::OMNI:
// Types with no data
break;
case RIFF::MxOb:
{
Object *o = NULL;
for (size_t i=0; i<m_ObjectList.size(); i++) {
if (m_ObjectList[i] == offset-kMinimumChunkSize) {
o = static_cast<Object*>(GetChildAt(i));
break;
}
}
if (!o) {
o = new Object();
parent->AppendChild(o);
}
ReadObject(f, o, desc);
info->SetObjectID(o->id());
m_ObjectIDTable[o->id()] = o;
parent = o;
break;
}
case RIFF::MxCh:
{
uint16_t flags = f->ReadU16();
desc << "Flags: 0x" << std::hex << flags << std::endl;
uint32_t object = f->ReadU32();
desc << "Object: " << std::dec << object << std::endl;
uint32_t time = f->ReadU32();
desc << "Time: " << time << std::endl;
uint32_t data_sz = f->ReadU32();
desc << "Size: " << data_sz << std::endl;
bytearray data = f->ReadBytes(size - MxCh::HEADER_SIZE);
info->SetObjectID(object);
info->SetData(data);
if (!(flags & MxCh::FLAG_END)) {
std::map<uint32_t, Object*>::iterator it = m_ObjectIDTable.find(object);
if (it == m_ObjectIDTable.end()) {
LogError() << "Failed to find object " << object << " for chunk at " << std::hex << offset << std::dec << std::endl;
//return ERROR_INVALID_INPUT;
} else {
Object *o = it->second;
if (flags & MxCh::FLAG_SPLIT && m_JoiningSize > 0) {
o->data_.back().append(data);
m_JoiningProgress += data.size();
if (m_JoiningProgress == m_JoiningSize) {
m_JoiningProgress = 0;
m_JoiningSize = 0;
}
} else {
o->data_.push_back(data);
if (o->data_.size() == 2) {
o->time_offset_ = time;
}
if (flags & MxCh::FLAG_SPLIT) {
m_JoiningProgress = data.size();
m_JoiningSize = data_sz;
}
}
}
break;
}
}
}
// Assume any remaining data is this chunk's children
while (!f->atEnd() && (f->pos() + kMinimumChunkSize) < end) {
// Check alignment, if there's not enough room to for another segment, skip ahead
if (m_BufferSize > 0) {
uint32_t offset_in_buffer = f->pos()%m_BufferSize;
if (offset_in_buffer + kMinimumChunkSize > m_BufferSize) {
f->seek(m_BufferSize-offset_in_buffer, File::SeekCurrent);
}
}
// Read next child
Info *subinfo = new Info();
info->AppendChild(subinfo);
Error e = ReadChunk(parent, f, subinfo);
if (e != ERROR_SUCCESS) {
return e;
}
}
info->SetDescription(desc.str());
if (f->pos() < end) {
f->seek(end, File::SeekStart);
}
if (size%2 == 1) {
f->seek(1, File::SeekCurrent);
}
return ERROR_SUCCESS;
}
Object *Interleaf::ReadObject(FileBase *f, Object *o, std::stringstream &desc)
{
o->type_ = static_cast<MxOb::Type>(f->ReadU16());
desc << "Type: " << o->type_ << std::endl;
o->presenter_ = f->ReadString();
desc << "Presenter: " << o->presenter_ << std::endl;
o->unknown1_ = f->ReadU32();
desc << "Unknown1: " << o->unknown1_ << std::endl;
o->name_ = f->ReadString();
desc << "Name: " << o->name_ << std::endl;
o->id_ = f->ReadU32();
desc << "ID: " << o->id_ << std::endl;
o->flags_ = f->ReadU32();
desc << "Flags: 0x" << std::hex << o->flags_ << std::dec << std::endl;
o->unknown4_ = f->ReadU32();
desc << "Unknown4: " << o->unknown4_ << std::endl;
o->duration_ = f->ReadU32();
desc << "Duration: " << o->duration_ << std::endl;
o->loops_ = f->ReadU32();
desc << "Loops: " << o->loops_ << std::endl;
o->location_ = f->ReadVector3();
desc << "Location: " << o->location_.x << " " << o->location_.y << " " << o->location_.z << std::endl;
o->direction_ = f->ReadVector3();
desc << "Direction: " << o->direction_.x << " " << o->direction_.y << " " << o->direction_.z << std::endl;
o->up_ = f->ReadVector3();
desc << "Up: " << o->up_.x << " " << o->up_.y << " " << o->up_.z << std::endl;
uint16_t extra_sz = f->ReadU16();
desc << "Extra Size: " << extra_sz << std::endl;
o->extra_ = f->ReadBytes(extra_sz);
desc << "Extra Data: " << o->extra_.data() << std::endl;
if (o->type_ != MxOb::Presenter && o->type_ != MxOb::World && o->type_ != MxOb::Animation) {
o->filename_ = f->ReadString();
desc << "Filename: " << o->filename_ << std::endl;
o->unknown26_ = f->ReadU32();
desc << "Unknown26: " << o->unknown26_ << std::endl;
o->unknown27_ = f->ReadU32();
desc << "Unknown27: " << o->unknown27_ << std::endl;
o->unknown28_ = f->ReadU32();
desc << "Unknown28: " << o->unknown28_ << std::endl;
o->filetype_ = static_cast<MxOb::FileType>(f->ReadU32());
desc << "File Type: " << RIFF::PrintU32AsString(o->filetype_) << std::endl;
o->unknown29_ = f->ReadU32();
desc << "Unknown29: " << o->unknown29_ << std::endl;
o->unknown30_ = f->ReadU32();
desc << "Unknown30: " << o->unknown30_ << std::endl;
if (o->filetype_ == MxOb::WAV) {
o->volume_ = f->ReadU32();
desc << "Unknown31: " << o->volume_ << std::endl;
}
}
return o;
}
Interleaf::Error Interleaf::Read(FileBase *f)
{
Clear();
return ReadChunk(this, f, &m_Info);
}
void RecursivelyAddObjectToList(std::vector<Object*> *list, Object *o)
{
list->push_back(o);
for (size_t j=0; j<o->GetChildCount(); j++) {
RecursivelyAddObjectToList(list, static_cast<Object*>(o->GetChildAt(j)));
}
}
Interleaf::Error Interleaf::Write(FileBase *f) const
{
if (m_BufferSize == 0) {
LogError() << "Buffer size must be set to write" << std::endl;
return ERROR_INVALID_BUFFER_SIZE;
}
RIFF::Chk riff = RIFF::BeginChunk(f, RIFF::RIFF_);
f->WriteU32(RIFF::OMNI);
size_t offset_table_pos;
{
// MxHd
RIFF::Chk mxhd = RIFF::BeginChunk(f, RIFF::MxHd);
f->WriteU32(m_Version);
f->WriteU32(m_BufferSize);
if (m_Version == 0x00020002) {
f->WriteU32(m_BufferCount);
}
RIFF::EndChunk(f, mxhd);
}
{
// MxOf
RIFF::Chk mxof = RIFF::BeginChunk(f, RIFF::MxOf);
f->WriteU32(GetChildCount());
offset_table_pos = f->pos();
for (size_t i = 0; i < GetChildCount(); i++) {
f->WriteU32(0);
}
RIFF::EndChunk(f, mxof);
}
{
// LIST
RIFF::Chk list_mxst = RIFF::BeginChunk(f, RIFF::LIST);
f->WriteU32(RIFF::MxSt);
for (size_t i = 0; i < GetChildCount(); i++) {
Object *child = static_cast<Object*>(GetChildAt(i));
if (child->type() == MxOb::Null) {
continue;
}
uint32_t mxst_offset = f->pos();
f->seek(size_t(offset_table_pos) + i * sizeof(uint32_t));
f->WriteU32(mxst_offset);
f->seek(mxst_offset);
// MxSt
RIFF::Chk mxst = RIFF::BeginChunk(f, RIFF::MxSt);
{
// MxOb
WriteObject(f, child);
}
{
// LIST
RIFF::Chk list_mxda = RIFF::BeginChunk(f, RIFF::LIST);
f->WriteU32(RIFF::MxDa);
// First, interleave headers
std::vector<Object*> objects;
objects.reserve(child->GetChildCount() + 1);
RecursivelyAddObjectToList(&objects, child);
InterleaveObjects(f, objects);
RIFF::EndChunk(f, list_mxda);
}
RIFF::EndChunk(f, mxst);
}
// Fill remainder with padding
if (f->pos()%m_BufferSize != 0) {
uint32_t current_buf = f->pos() / m_BufferSize;
uint32_t target_sz = (current_buf + 1) * m_BufferSize;
WritePadding(f, target_sz - f->pos());
}
RIFF::EndChunk(f, list_mxst);
}
RIFF::EndChunk(f, riff);
return ERROR_SUCCESS;
}
void Interleaf::WriteObject(FileBase *f, const Object *o) const
{
size_t projected_end = f->pos() + o->CalculateMaximumDiskSize();
size_t this_buf = f->pos()/m_BufferSize;
size_t end_buf = projected_end/m_BufferSize;
if (this_buf != end_buf) {
WritePadding(f, (end_buf * m_BufferSize) - f->pos());
}
RIFF::Chk mxob = RIFF::BeginChunk(f, RIFF::MxOb);
f->WriteU16(o->type_);
f->WriteString(o->presenter_);
f->WriteU32(o->unknown1_);
f->WriteString(o->name_);
f->WriteU32(o->id_);
f->WriteU32(o->flags_);
f->WriteU32(o->unknown4_);
f->WriteU32(o->duration_);
f->WriteU32(o->loops_);
f->WriteVector3(o->location_);
f->WriteVector3(o->direction_);
f->WriteVector3(o->up_);
f->WriteU16(o->extra_.size());
f->WriteBytes(o->extra_);
if (o->type_ != MxOb::Presenter && o->type_ != MxOb::World && o->type_ != MxOb::Animation) {
f->WriteString(o->filename_);
f->WriteU32(o->unknown26_);
f->WriteU32(o->unknown27_);
f->WriteU32(o->unknown28_);
f->WriteU32(o->filetype_);
f->WriteU32(o->unknown29_);
f->WriteU32(o->unknown30_);
if (o->filetype_ == MxOb::WAV) {
f->WriteU32(o->volume_);
}
}
if (o->HasChildren()) {
// Child list
RIFF::Chk list_mxch = RIFF::BeginChunk(f, RIFF::LIST);
f->WriteU32(RIFF::MxCh);
f->WriteU32(o->GetChildCount());
for (size_t i = 0; i < o->GetChildCount(); i++) {
WriteObject(f, static_cast<Object*>(o->GetChildAt(i)));
}
RIFF::EndChunk(f, list_mxch);
}
RIFF::EndChunk(f, mxob);
}
struct ChunkStatus
{
Object *object;
size_t index;
uint32_t time;
};
bool HasChildrenThatNeedPriority(Object *parent, uint32_t parent_time, const std::vector<ChunkStatus> &other_jobs)
{
for (size_t i=0; i<other_jobs.size(); i++) {
Object *other_obj = other_jobs.at(i).object;
if (parent->ContainsChild(other_obj) && other_jobs.at(i).time <= parent_time) {
return true;
}
}
return false;
}
void Interleaf::InterleaveObjects(FileBase *f, const std::vector<Object *> &objects) const
{
std::vector<ChunkStatus> status(objects.size());
// Set up status vector
for (size_t i=0; i<objects.size(); i++) {
status[i].object = objects.at(i);
status[i].index = 0;
status[i].time = status[i].object->time_offset_;
}
// First, interleave headers
for (std::vector<ChunkStatus>::iterator it = status.begin(); it != status.end(); ) {
ChunkStatus &s = *it;
Object *o = s.object;
bool proceed = true;
if (!o->data().empty()) {
WriteSubChunk(f, 0, o->id(), 0xFFFFFFFF, o->data().front());
s.index++;
// If we've already reached the end, write the end chunk now
if (o->data().size() == s.index) {
WriteSubChunk(f, MxCh::FLAG_END, o->id(), 0xFFFFFFFF);
it = status.erase(it);
proceed = false;
}
}
if (proceed) {
it++;
}
}
// Next, interleave the rest based on time
while (true) {
// Update parent time too
bool done = false;
while (!done) {
done = true;
for (size_t j=0; j<status.size(); j++) {
ChunkStatus &s = status.at(j);
Object *obj = s.object;
for (size_t i=0; i<status.size(); i++) {
ChunkStatus &p = status.at(i);
if (p.object != obj) {
if (p.object->ContainsChild(obj)) {
if (p.time < s.time) {
p.time = s.time;
done = false;
}
}
}
}
}
}
// Find next chunk
std::vector<ChunkStatus>::iterator s = status.begin();
if (s == status.end()) {
break;
}
while (HasChildrenThatNeedPriority(s->object, s->time, status)) {
s++;
}
if (s == status.end()) {
break;
}
std::vector<ChunkStatus>::iterator it = s;
it++;
for (; it!=status.end(); it++) {
// Find earliest chunk to write
if (it->time < s->time && !HasChildrenThatNeedPriority(it->object, it->time, status)) {
s = it;
}
}
if (s->index == s->object->data_.size()) {
WriteSubChunk(f, MxCh::FLAG_END, s->object->id(), s->time);
status.erase(s);
continue;
}
Object *obj = s->object;
const bytearray &data = obj->data().at(s->index);
WriteSubChunk(f, 0, obj->id(), s->time, data);
s->index++;
// Increment time
switch (obj->filetype()) {
case MxOb::WAV:
{
const WAVFmt *fmt = obj->GetFileHeader().cast<WAVFmt>();
s->time += round(double(data.size() * 1000) / (fmt->BitsPerSample/8) / fmt->Channels / fmt->SampleRate);
break;
}
case MxOb::SMK:
{
int32_t frame_rate = obj->GetFileHeader().cast<SMK2>()->FrameRate;
int32_t fps;
if (frame_rate > 0) {
fps = 1000/frame_rate;
} else if (frame_rate < 0) {
fps = 100000/-frame_rate;
} else {
fps = 10;
}
s->time += 1000/fps;
break;
}
case MxOb::FLC:
s->time += obj->GetFileHeader().cast<FLIC>()->speed;
break;
case MxOb::STL:
case MxOb::OBJ:
// Unaffected by time
break;
}
}
}
void Interleaf::WriteSubChunk(FileBase *f, uint16_t flags, uint32_t object, uint32_t time, const bytearray &data) const
{
static const uint32_t total_hdr = MxCh::HEADER_SIZE + kMinimumChunkSize;
uint32_t data_offset = 0;
while (data_offset < data.size() || data.size() == 0) {
uint32_t data_sz = data.size() - data_offset;
// Calculate whether this chunk will overrun the buffer
uint32_t start_buffer = f->pos() / m_BufferSize;
uint32_t stop_buffer = (uint32_t(f->pos()) - 1 + data_sz + total_hdr) / m_BufferSize;
size_t max_chunk = data_sz;
if (start_buffer != stop_buffer) {
size_t remaining = ((start_buffer + 1) * m_BufferSize) - f->pos();
if (remaining < total_hdr) {
if (remaining < kMinimumChunkSize) {
// There isn't enough space for another chunk, just jump ahead
f->seek(remaining, File::SeekCurrent);
} else {
// This chunk won't fit in our buffer alignment. We must make a decision to either insert
// padding or split the clip.
WritePadding(f, remaining);
}
continue;
}
max_chunk = remaining - total_hdr;
if (!(flags & MxCh::FLAG_SPLIT)) {
// FIXME: Not sure exactly what this value is yet, likely to be smaller than this
static const uint32_t MAX_PADDING = 9882;
if (remaining < MAX_PADDING) {
// This chunk won't fit in our buffer alignment. We must make a decision to either insert
// padding or split the clip.
WritePadding(f, remaining);
// Do loop over again
continue;
} else {
flags |= MxCh::FLAG_SPLIT;
}
}
}
bytearray chunk = data.mid(data_offset, max_chunk);
WriteSubChunkInternal(f, flags, object, time, data_sz, chunk);
data_offset += chunk.size();
if (data.size() == 0) {
break;
}
}
}
void Interleaf::WriteSubChunkInternal(FileBase *f, uint16_t flags, uint32_t object, uint32_t time, uint32_t data_sz, const bytearray &data) const
{
RIFF::Chk mxch = RIFF::BeginChunk(f, RIFF::MxCh);
f->WriteU16(flags);
f->WriteU32(object);
f->WriteU32(time);
f->WriteU32(data_sz);
f->WriteBytes(data);
RIFF::EndChunk(f, mxch);
}
void Interleaf::WritePadding(FileBase *f, uint32_t size) const
{
if (size < kMinimumChunkSize) {
return;
}
size -= kMinimumChunkSize;
f->WriteU32(RIFF::pad_);
f->WriteU32(size);
bytearray b(size);
b.fill(0xCD);
f->WriteBytes(b);
}
}