CODE i‘g@mm

Teacher Guide: Computer Science 2

Table of Contents
Summary: Computer Science 2

Concepts Covered in this Course

Basic Syntax
Arguments
Strings
Variables
Loops

If Statements
Arithmetic

Input Handling
Level Overview & Solutions

1.

Defense of Plainswood

. Winding Trail

. Patrol Buster

. Endangered Burl

. Thumb Biter
. Gems or Death

0 NS O]

. Village Guard

9.

Thornbush Farm

10.

Back to Back

11.

Ogre Encampment

12.

Woodland Cleaver

13.

Shield Rush

14.

Range Finder

15.

Peasant Protection

16.

Munchkin Swarm

17.

Stillness in Motion

18.

The Agrippa Defense

19.

Coinucopia

20.

Copper Meadows

21.

Drop the Flag

22.

Mind the Trap

23.

Signal Corpse

24.

Rich Forager

25.

Cross Bones

Common Problems in this Course

Last Updated: January 22, 2016

Teacher Guide: Computer Science 2 v0.3
Questions? Email team@codecombat.com



Summary: Computer Science 2

Armed with basic knowledge of the structure and syntax of simple programs, students are ready to tackle more
advanced topics. Conditionals, arithmetic, input handling, oh my! Computer Science 2 is where students move
past the programming-toy stage into writing code similar to that they would use in the next major software or
killer app!

In Computer Science 2, students will continue to learn the fundamentals, (basic syntax, arguments, strings,
variables, and loops) as well as being introduced to a second level of concepts for them to master. If
statements allow the student to perform different actions depending on the state of the battlefield. Arithmetic
will help players become more comfortable with using math in programming. All things in CodeCombat are
objects, (that's the ‘object’ part of object-oriented programming,) and these things have accessible attributes,
such as a Munchkin's position or a coin's value; both are important to begin visualizing the internal structure of
the objects that make up their game world. Near the end of the Course there are some levels dedicated to
input handling so the students can get introduced to the basic concept of events, and, well, its just great fun,
too!

As with Course 1, this guide covers both the Python and Javascript solutions.

Teacher Guide: Computer Science 2 v0.3
Questions? Email team@codecombat.com



New Concepts Covered in this Course

If Statements

This is the building block of modern programming, the conditional. It's named as such because of its ability to
check the conditions at the moment and perform different actions depending on the expression. The player is
no longer able to assume there will be an enemy to attack, or if there is a gem to grab. Now, they need to
check whether it exists, check if their abilities are ready, and check if an enemy is close enough to attack.

Arithmetic

Course 2 begins to ease the player into using math while coding. Levels catering to basic arithmetic address
how to use math as needed in order to perform different actions effectively.

Input Handling

Input handling allows players to finally interact with their hero in real-time. After submitting their code, the
player will be able to dynamically add flags to the battlefield to assist their hero in solving tough challenges. It
helps teach simple event handling as well as being quite fun!

Teacher Guide: Computer Science 2 v0.3
Questions? Email team@codecombat.com



Level Overview & Solutions

1. Defense of Plainswood
Use your buildXxy skills to build "fence"s and block out the ogres!

Remember to hover over the level map to find x and y coordinates for your buildXy method.
In this case, you want to build on the X marks at 40, 52 and 40, 20.

It is much, much easier to do this level by building type " fence" than by building type "fire-trap".

Defense of Plainswood Solution

Python

# Build two fences to keep the villagers safe!

# Hover your mouse over the world to get X,Y coordinates.
self.buildXY ("fence", 40, 53)

self.buildXY ("fence", 40, 21)

Javascript

// Build two fences to keep the villagers safe!

// Hover your mouse over the world to get X,Y coordinates.
this.buildXY ("fence", 40, 53);

this.buildXY ("fence", 40, 21);

2. Winding Trail

Forget those old simple moveRight boots!

Your new digs let you moveXY for continuous movement, wherever you want to go. They even have pathfinding built in.
Sweet, huh?

Just like with bui1dXY, you can hover over the level to find x and y coordinates for you to move to.

Move to each gem in turn, then stop the ogre from getting you by building a fence on the X marker!

Winding Trail Solution

Python
# Go to the end of the path and build a fence there.
# Use your moveXY (x, y) function.

self.moveXY (36, 59)

self.moveXY (37, 12)

Teacher Guide: Computer Science 2 v0.3
Questions? Email team@codecombat.com



self.moveXY (66, 17)
self.buildXY ("fence", 71, 24)

Javascript
// Go to the end of the path and build a fence there.
// Use your moveXY (x, y) function.

this.moveXY (36, 59);
this.moveXY (37, 12);
this.moveXY (66, 17);

this.buildXY ("fence", 71, 24);

3. Backwoods Ambush

An **if-statement** says, **if** some condition is true, then run some code (if it's not true then don't run the code!)

To complete this level, you should move to each of the X marks with moveXY.

At each X spot, there may or may not be an ogre (the ogres are spawned randomly each time you press the Submit button!).
So use findNearestEnemy and if statements to determine if an ogre is at each spot, like this:

python
enemy = self.findNearestEnemy ()
if enemy:

self.attack (enemy)

javascript
var enemy = this.findNearestEnemy () ;
if (enemy) {

this.attack (enemny) ;

When you use an if statement this way, you won't get an error by trying to attack an enemy when there is no one there!

Backwoods Ambush Solution

Python
# Move to each checkpoint and take out each ogre.
self.moveXY (24, 42)
enemyl = self.findNearestEnemy ()
# Use an 1if statement to make sure an enemy is present before attacking.
if enemyl:
self.attack (enemyl)
self.attack (enemyl)

self.moveXY (27, 60)
enemy?2 = self.findNearestEnemy ()

Teacher Guide: Computer Science 2 v0.3
Questions? Email team@codecombat.com



if enemy2:
self.attack (enemy2)
self.attack (enemy2)

self.moveXY (42, 50)
# Add another if statement and attack!
enemy3 = self.findNearestEnemy ()
if enemy3:
self.attack (enemy3)
self.attack (enemy3)

# Keep moving and checking for enemies.
self.moveXY (39, 24)
enemy4 = self.findNearestEnemy ()
if enemy4:
self.attack (enemy4)
self.attack (enemy4)

# Keep moving and checking for enemies.
self.moveXY (55, 29)
enemy5 = self.findNearestEnemy ()
if enemyb:
self.attack (enemyb)
self.attack (enemyb)

Javascript
// Move to each checkpoint and take out each ogre.
this.moveXY (24, 42);
var enemyl = this.findNearestEnemy () ;
// Use an if statement to make sure an enemy is present before attacking.
if (enemyl) {
this.attack (enemyl) ;
this.attack (enemyl) ;

this.moveXY (27, 60);
var enemy2 = this.findNearestEnemy () ;
if (enemy2) {

this.attack (enemy?2) ;

this.attack (enemy?2) ;

this.moveXY (42, 50);
// Add another if statement and attack!
var enemy3 = this.findNearestEnemy () ;
if (enemy3) {

this.attack (enemy3) ;

this.attack (enemy3) ;

// Keep moving and checking for enemies.
this.moveXY (39, 24);

Teacher Guide: Computer Science 2 v0.3
Questions? Email team@codecombat.com



var enemy4 = this.findNearestEnemy () ;
if (enemy4) {

this.attack (enemy4) ;

this.attack (enemy4) ;

// Keep moving and checking for enemies.
this.moveXY (55, 29);
var enemy5 = this.findNearestEnemy () ;
if (enemy5) {
this.attack (enemyb) ;
this.attack (enemyb) ;

4. Patrol Buster

You now have the ability to use i f-statements. They let you run code only if a certain condition is true.

In this level, you want to attack the nearest enemy, but only if there is an enemy. Use an **if-statement** with enemy as the

condition to do that.

javascript
var enemy = this.findNearestEnemy () ;
if (enemy) {

this.attack (enemy) ;

python
enemy = self.findNearestEnemy ()
if enemy:

self.attack (enemy)

Remember to hover over the if/else and read the example code in the **lower right** to see what the syntax should be.

Patrol Buster Solution

Python

# Remember that enemies may not yet exist.

loop:
enemy = self.findNearestEnemy ()
# If there is an enemy, attack it!
if enemy:

self.attack (enemy)

Teacher Guide: Computer Science 2 v0.3
Questions? Email team@codecombat.com



Javascript
// Remember that enemies may not yet exist.
loop {
var enemy = this.findNearestEnemy () ;
// If there is an enemy, attack it!
if (enemy) {
this.attack (enemy) ;

5. Endangered Burl

Each enemy has a **property** named type, which is a **string** (a piece of data in quotes, like "thrower").

Using **if-statements** to check the type of an enemy allows you to decide to do different things when you see different
types of enemies!

In this level, you want to attack enemies of type "thrower™ and "munchkin".
You should ignore enemies of type "burl",
and run away from enemies of type "ogre".

You can check the enemy's type like this:

python
enemy = self.findNearestEnemy ()
if enemy.type is "munchkin":

self.attack (enemy)

javascript
var enemy = this.findNearestEnemy () ;
if (enemy.type == "munchkin") {

this.attack (enemy) ;

Note that type is a **property**, NOT a **method** like movexY (20, 20).Do notinclude () after type.

Be careful to get the syntax of the if-statements correct! Hover over the 1 f/else in the lower right to see examples.

Endangered Burl Solution

Python
# Only attack enemies of type "munchkin" and "thrower".
# Don't attack a "burl". Run away from an "ogre"!

Teacher Guide: Computer Science 2 v0.3
Questions? Email team@codecombat.com



loop:
enemy = self.findNearestEnemny ()

# Remember: don't attack type "burl"!
if enemy.type is "burl":
self.say("I'm not attacking that Burl!")

# The "type" property tells you what kind of creature it is.
if enemy.type is "munchkin":
self.attack (enemy)

# Use "if" to attack a "thrower".
if enemy.type is "thrower":
self.attack (enemy)
# If it's an "ogre", run away to the village gate!
if enemy.type is "ogre":
self.moveXY (41, 47)

Javascript
// Only attack enemies of type "munchkin" and "thrower".
// Don't attack a "burl". Run away from an "ogre"!
loop {
var enemy = this.findNearestEnemy () ;

// Remember: don't attack type "burl"!
if (enemy.type == "burl") {
this.say("I'm not attacking that Burl!");

// The "type" property tells you what kind of creature it is.
if (enemy.type == "munchkin") {
this.attack (enemy) ;
}
// Use "if" to attack a "thrower".
if (enemy.type == "thrower") {
this.attack (enemy) ;

// If it's an "ogre", run away to the village gate!
if (enemy.type == "ogre") {
this.moveXY (41, 47);

6. Thumb Biter

Teacher Guide: Computer Science 2 v0.3
Questions? Email team@codecombat.com



This level introduces many new things.

In order to succeed, you need to fix the if statements so that your hero says things to the ogre to trick him into the mines.

The block of code the i £ controls (its body) will only run if the condition (the mathy bit) works out to be True.

Enough working ifs and the ogre will blunder into the mines trying to get at you!

If that was confusing, read on! There's more detail below:

# Boolean
A **boolean** value means that something is either True or False.

Whether or not something is considered True or False is a complicated subject in programming, but for now we will start
you off with a simple example.

# Comparison: Equals
Use **comparison operators** to compare two values. The result of a comparison will be either True or False.

The first comparison operator we'll use is the **equality operator**. In Python and JavaScript, this is written as: ==.

Note that this is **two equal-signs together** ==, as opposed to = which is the **assignment operator** used to assign a
value to a variable! *Confusing these two is a common mistake by new programmers!*

We use == like this:

4 == (this is **True**)
4 == (this is **False**)

We can also combine this with other mathematical operators like +:
2 + 2 == 4 (thisis **True**)

2 + 2 == (this is **False*™*)

# Conditional Statement: if
The if statement says: "**if** *this* is True, **then** do *that*"

python
if 2 +2 == 4:

self.say ("2 + 2 equals 4!") # Happens all the time, because 2 + 2 is 4!
if 2 + 3 == 4:

self.say ("2 + 3 equals 4!") # Will never happen, because 2 + 3 isn't 4!
javascript

Teacher Guide: Computer Science 2 v0.3
Questions? Email team@codecombat.com



if(2 + 2 == 4) {
this.say ("2 + 2 equals 4!"); // Happens all the time, because 2 + 2 is 4!

if(2 + 3 == 4) {
this.say ("2 + 3 equals 4!"™); // Will never happen, because 2 + 3 isn't 4!

Thumb Biter Solution

Python
# The commands below an if statement only run when the if&€™s condition is true.
# In a condition, == means "is equal to."
if 2 + 2 ==
self.say("Hey!")
if 2 + 2 == 5:
self.say("Yes, you!")

# Change the condition here to make your hero say "Come at me!"
if 3 + 3 == 6: # &°f Make this true.
self.say("Come at me!")

if 20 == 20: # 4"t Make this true.
# Add one more taunt to lure the ogre. Be creative!
self.say ("I double dog dare you!")

Javascript

// The commands below an if statement only run when the if&€™s condition is true.
// In a condition, == means "is equal to."

if(2 + 2 == 4) {

this.say ("Hey!");

}

if(2 + 2 == 5) {
this.say("Yes, you!");

// Change the condition here to make your hero say "Come at me!"
if(3 + 3 ==6) { // & 1t Make this true.
this.say("Come at me!");

if (20 == 20) { # &°t Make this true.
# Add one more taunt to lure the ogre. Be creative!
this.say ("I double dog dare you!");

Teacher Guide: Computer Science 2 v0.3
Questions? Email team@codecombat.com



7. Gems or Death

This level is all about the if statement. As a matter of fact, you don't have to write any code at all. Your job is debugging.

All you have to do is fix the if statements so that the actions you want your hero to take happen and the ones you don't want

don't happen.

The block of code the if controls (its body) will only get run if the condition (the mathy bit) works out to be true.

Let's take for example the first i f:

python
ifl1+1+4+1-==
self.moveXY (5, 15) # Move to the first mines.
javascript
if(1 + 1+ 1 ==3) {
this.moveXY (5, 15) # Move to the first mines.

Since1 + 1 + 1doesequal 3itis true. So, off into the mines we run...

If you don't want to die, change eitherthe 1 + 1 + 1 orthe 3 so that it is no longer true (further down in the code you will

see that you can also change the ==).

Then continue with each if statement, making it true or false depending on whether or not you wish its body to happen.

Gems or Death Solution

Python

# The commands below an if statement only run when the if's condition is true.

# Fix all the if-statements to beat the level.

# == means "is equal to".
if 1 + 1+ 1 ==

self.moveXY (5, 15) # Move to the first mines.
if 2 + 2 ==

self.moveXY (15, 40) # Move to the first gem.

# != means "is not equal to".
if 2 + 2 !I=5:

self.moveXY (25, 15) # Move to the second_gem.

# < means "is less than".
if 2 + 2 < 5:

Teacher Guide: Computer Science 2 v0.3
Questions? Email team@codecombat.com



enemy = self.findNearestEnemy ()
self.attack (enemy)

if 2 < 1:
self.moveXY (40, 55)

if not True:
self.moveXY (50, 10)

if not False:
self.moveXY (55, 25)

Javascript
// The commands below an if statement only run when the if's condition is true.
// Fix all the if-statements to beat the level.

// == means "is equal to".
if(1 +1 4+ 1 == 14) {
this.moveXY (5, 15); // Move to the first mines.

1if(2 + 2 == 4) {
this.moveXY (15, 40); // Move to the first gem.

// '= means "is not equal to".
if(2+2 '= 5) {
this.moveXY (25, 15); // Move to the second gem.

// < means "is less than".

if (2 + 2 < 5) {
var enemy = this.findNearestEnemy () ;
this.attack (enemny) ;

if(2 < 1) {
this.moveXY (40, 55);

if (false) {
this.moveXY (50, 10);

if (true) {
this.moveXY (55, 25);

Teacher Guide: Computer Science 2 v0.3
Questions? Email team@codecombat.com



8. Village Guard

You can do this level with two **if-statements**.

The first one, with 1eftEnemy, is in the default code as an example, so reload the sample code if you get off track.

Move to the X on the right, then define a rightEnemy variable with your findNearestEnemy method.

Then, write an **if-statement** to check if rightEnemy exists. If there is an enemy, attack it!

Make sure that you define the rightEnemy variable when you would be able to see an enemy coming on the right.

Village Guard Solution

Python
# Patrol the village entrances.
# If you find an enemy, attack it.
loop:
self.moveXY (35, 34)
leftEnemy = self.findNearestEnemy ()
if leftEnemy:
self.attack (leftEnemy)
self.attack (leftEnemy)
# Now move to the right entrance.
self.moveXY (60, 31)
# Use "if" to attack if there is an enemy.
rightEnemy = self.findNearestEnemnmy ()
if rightEnemy:
self.attack (rightEnemy)
self.attack (rightEnemy)

Javascript
// Patrol the village entrances.
// If you find an enemy, attack it.
loop {
this.moveXY (35, 34);
var leftEnemy = this.findNearestEnemy () ;
if (leftEnemy) {
this.attack (leftEnemy) ;
this.attack(leftEnemy) ;

// Now move to the right entrance.
this.moveXY (60, 31);
// Use "if" to attack if there is an enemy.
var rightEnemy = this.findNearestEnemy () ;
if (rightEnemy) {

this.attack (rightEnemny) ;

this.attack (rightEnemy) ;

Teacher Guide: Computer Science 2 v0.3
Questions? Email team@codecombat.com



9. Thornbush Farm

Ogres are coming from the top, left, and bottom, so you need three sets of commands in your **loop™**:

one for topEnemy, one for 1eftEnemy, and one for bot tomEnemy.

Write the 1eftEnemy and bottomEnemy code based on the topEnemy sample code.

Make sure that in each set of commands, you:

1. First, moveXY to the X marker

2. Define a new enemy variable with findNearestEnemy **after** you get to the marker

3. Write an if statement: *if* there is an enemy, *then* build a "fire-trap" on the X marker

After that, your loop will repeat to patrol all three entrances several times.

You only want to build a fire trap if you see an ogre coming, because otherwise a peasant will try to get into the village only to

be blown to smithereens by your fire trap!

If you are getting stuck, look very closely at the topEnemy part to make sure your code is formatted the same way for

leftEnemy and bottomEnemy.

Thornbush Farm Solution

Python
# Patrol the village entrances.

# Build a "fire-trap" when you see an ogre.

# Don't blow up any peasants!

loop:
self.moveXY (43, 50)
topEnemy = self.findNearestEnemy ()
if topEnemy:
self.buildXY ("fire-trap", 43,

self.moveXY (25, 34)

leftEnemy = self.findNearestEnemy ()

if leftEnemy:
self.buildXY ("fire-trap", 25,

self.moveXY (43, 20)

bottomEnemy = self.findNearestEnemy ()

if bottomEnemy:
self.buildXY ("fire-trap", 43,

Teacher Guide: Computer Science 2 v0.3
Questions? Email team@codecombat.com



Javascript

// Patrol the village entrances.

// Build a "fire-trap" when you see an ogre.
// Don't blow up any peasants!

loop {
this.moveXY (43, 50);
var topEnemy = this.findNearestEnemy () ;
if (topEnemy) {
this.buildXY ("fire-trap", 43, 50);

this.moveXY (25, 34);
var leftEnemy = this.findNearestEnemy () ;
if (leftEnemy) {

this.buildXY ("fire-trap", 25, 34);

this.moveXY (43, 20);
var bottomEnemy = this.findNearestEnemy () ;
if (bottomEnemy) {

this.buildXY ("fire-trap", 43, 20);

10. Back to Back

This level introduces the else part of if/else.
When you add an else clause, you choose what to do both when the condition is true and when it is not true.
So you can say, *if* there is an enemy, *then* attack it, *else* move to the X.

To show you how it works, the if and the else are set up for you, and you need to put in the attack and moveXyY methods
so that your hero attacks enemies on sight, but when there are no enemies, moves back to the X marker to defend the
peasants.

Make sure you get the coordinates for the X marker correct, or you might not be able to defend both your peasants in time.

Back to Back Solution

Python

Teacher Guide: Computer Science 2 v0.3
Questions? Email team@codecombat.com



# Stay in the middle and defend!
while True:
enemy = self.findNearestEnemy ()
# Either attack the enemy...
if enemy:
self.attack (enemy)
self.attack (enemy)
else:
# ... or move back to your defensive position.
self.moveXY (40, 34)

Javascript
// Stay in the middle and defend!
while (true) {
var enemy = this.findNearestEnemy () ;
// Either attack the enemy...
if (enemy) {
this.attack (enemy) ;
this.attack (enemy) ;
}
// ... or move back to your defense position
else {
this.moveXY (40, 34);

11. Ogre Encampment

For this level, you'll need to use both if and else. Remember that the e1se block executes when the if condition is not
true.

When the ogres attack you, you want to fight back, but when there are no ogres, you can keep attacking the "Chest" to
open it.
So in your if condition, check whether there is an enemy. If there is, attack it. Else, attack the "Chest".

To remember the if/else syntax, either hover over the if/else examples in the lower right, from your Programmaticon II.

Ogre Encampment Solution

Python
# If there is an enemy, attack it.
# Otherwise, attack the chest!

loop:
# Use if/else.
enemy = self.findNearestEnemy ()
if enemy:
self.attack (enemy)
else:

Teacher Guide: Computer Science 2 v0.3
Questions? Email team@codecombat.com



self.attack ("Chest")

Javascript
// if there is an enemy, attack it.
// Otherwise, attack the chest!

loop {
// Use if/else.
var enemy = this.findNearestEnemy () ;
if (enemy) {
this.attack (enemy) ;
} else {
this.attack ("Chest") ;

12. Woodland Cleaver

The woods are swarming with ogre munchkins, but you have a new Long Sword, and its c1eave ability will make short work

of them! cleave hits every enemy within ten meters of your hero.

Special abilities like cleave have cooldown periods, which means you can't use them all the time. (You can only cleave

every ten seconds.) You need to check if they are ready to use first. Fortunately, your Sundial Wristwatch gives you the

isReady method. It tells you whether special abilities are ready to be used yet.

Putting everything together, your code should go like this:

* loop
* find an enemy
**if* "cleave" is ready, *then*
* cleave the enemy
* *else*
* attack the enemy

Hover over the isReady and cleave documentation in the lower right to see the syntax for how to use them.

Woodland Cleaver Solution

Python

# Use your new "cleave" skill as often as you can.

self.moveXY (23, 23)
loop:
enemy = self.findNearestEnemy ()
if self.isReady("cleave"):
# Cleave the enemy!
self.cleave (enemy)
else:

Teacher Guide: Computer Science 2 v0.3
Questions? Email team@codecombat.com



# Else (if cleave isn't ready),
self.attack (enemy)

Javascript

// Use your new "cleave" skill as often as you can.

this.moveXY (23, 23);
loop {
var enemy = this.findNearestEnemy () ;
if (this.isReady ("cleave")) {
// Cleave the enemy!
this.cleave (enemy) ;
} else {
// Else (if cleave isn't ready),
this.attack (enemy) ;

13. Shield Rush

do your normal attack.

do your normal attack.

Your shield gives you the shield () ability, which blocks some of the damage you take while you are shielding.
You can't do anything else while shielding, but it's a useful ability to help you stay alive until you can use cleave () again.

Remember that special abilities like c1leave have cooldown periods, which means you can't use them all the time.
(You can only cleave every ten seconds.) You need to check if they are ready to use with your Sundial Wristwatch's

isReady () method.

You'll need to use if/else like this:
javascript
while (true) {

var enemy = this.findNearestEnemy () ;

if (this.isReady ("cleave™)) {
// Cleave!
} else {

// Shield yourself!

python

while True:
enemy = self.findNearestEnemy ()
if self.isReady ("cleave")

# Cleave!

else
# Shield!

Teacher Guide: Computer Science 2 v0.3
Questions? Email team@codecombat.com



Hover over the isReady, cleave, shield, and if/else documentation in the lower right if you need a reminder on the
syntax.

Tip: **use a loop**! The sample code won't always give you the while statement.
You need a loop so that you can decide what to do over and over instead of just once in the beginning.

Shield Rush Solution

Python
# Survive both waves by shielding and cleaving.
# When "cleave" is not ready, use your shield skill.
# You'll need at least 142 health to survive.
loop:
enemy = self.findNearestEnemnmy ()
if self.isReady ("cleave"):
self.cleave (enemy)
else
self.shield()

Javascript
// Survive both waves by shielding and cleaving.
// When "cleave" is not ready, use your shield skill.
// You'll need at least 142 health to survive.
loop {
var enemy = this.findNearestEnemy () ;
if (this.isReady ("cleave")) {
this.cleave (enemy) ;
} else {
this.shield();

14. Range Finder

You've been asked to test special glasses that can see through trees! This time, you don't need to go out and deal with the
ogres personally.

Your artillery can't sight through the trees, so use distanceTo () and say () to call out the range to each target.
Be careful, though! There are peaceful woodsmen living in these woods.
Range Finder Solution

Python

Teacher Guide: Computer Science 2 v0.3
Questions? Email team@codecombat.com



enemyl = "Gort"

enemy2 = "Smasher"

enemy3 = "Charles"

enemy4 = "Gorgnub"

distancel = self.distanceTo (enemyl)

self.say(distancel)

# The artillery will destroy Gort!

# Find the distance to the other two ogres.

# Give the command to fire by saying the distance.
distance2 = self.distanceTo (enemy2)
self.say(distance?2)

distance3 = self.distanceTo (enemy4)
self.say(distance3)

Javascript

var enemyl = "Gort";
var enemy2 = "Smasher";
var enemy3 = "Charles";
var enemy4 = "Gorgnub";

var distancel = this.distanceTo (enemyl) ;
this.say(distancel);

// The artillery will destroy Gort!

// Find the distance to the other two ogres.

// Give the command to fire by saying the distance.
var distance2 = this.distanceTo (enemy2) ;
this.say(distance?2);

var distance3 = this.distanceTo (enemy4) ;
this.say(distance3);

15. Peasant Protection

You can use distanceTo to measure the distance, in meters, to a target.
In this level, you'll use that to make sure you stay close to vulnerable peasant Victor.

You can see a new piece of syntax here, the **less-than** operator: <

You can read it like this: *if* the distance is *less than* 10 meters, *then* attack the enemy, *else* move back to the X

marker.
Fill in the else to move back to the X so that no ogres can get to Victor while you're far away.

**Tip**: make sure that you are moving to the correct defensive position —the Xis at {x: 40, y: 37}.

Peasant Protection Solution

Python

Teacher Guide: Computer Science 2 v0.3
Questions? Email team@codecombat.com



loop:
enemy = self.findNearestEnemny ()
distance = self.distanceTo (enemy)
if distance < 10:
# Attack if they get too close to the peasant.
self.attack (enemy)

# Else, stay close to the peasant! Use else.
else:
self.moveXY (40, 37)

Javascript
loop {
var enemy = this.findNearestEnemy () ;
var distance = this.distanceTo (enemy) ;
if (distance < 10) {
// Attack if they get too close to the peasant.
this.attack (enemy) ;

}

// Else, stay close to the peasant! Use else.

else {
this.moveXY (40, 37);

16. Munchkin Swarm

In this level, you put together everything you've learned over the past few levels in order to use if/else, distanceTo, <,
and cleave to defeat vast numbers of ogre munchkins while looting a giant treasure chest.

These munchkins have become suitably terrified of you and your mighty Long Sword, so they will only approach when there
are a lot of them together in a pack. Check the distance to the nearest munchkin and only cleave if the munchkin is closer

than ten meters. Use an else clause to attack the "Chest" otherwise.

**Tip**: make sure to use a **while-true loop**.

**Tip**: you'll know that your distance check is working when your hero never chases any munchkins away from the chest.

Munchkin Swarm Solution

Python
loop:
# Check the distance to the nearest enemy.
enemy = self.findNearestEnemy ()
distance = self.distanceTo (enemy)
# If it comes closer than 10 meters, cleave it!
if distance < 10:
self.cleave (enemy)

Teacher Guide: Computer Science 2 v0.3
Questions? Email team@codecombat.com



else:
# Else, attack the "Chest" by name.
self.attack ("Chest")

Javascript
loop {
// Check the distance to the nearest enemy.
var enemy = this.findNearestEnemy () ;
var distance = this.distanceTo (enemny) ;
//If it comes closer than 10 meters, cleave it!
if (distance < 10) {
this.cleave (enemy) ;
} else {
// Else, attack the "Chest" by name.
this.attack ("Chest");

17. Stillness in Motion

For this level, you want to stay in the middle where the Headhunters can't see you!

You will use **nested-if-statements**.

When dealing with nested if statements, you need to pay close attention to how you set up the flow of your program.

If your if statements are complicated, it's often easier to build them up one at a time, using comments to fill in the future
statements.
For example, in this level we could begin by writing the following:

python
# If there is an enemy, then...
# Do something
# Otherwise (there is no enemy)...

# Move back to the X

javascript
// If there is an enemy, then...
// Do something
// Otherwise (there is no enemy)...

// Move back to the X

Next, fill in the outer if/else statements, and the move, for real:

python

if enemy:

Teacher Guide: Computer Science 2 v0.3
Questions? Email team@codecombat.com



# Do something
else:
self.moveXY (40, 34)

javascript
if (enemy) {
// Do something
} else {

this.moveXY (40, 34)

Now, let's detail the "Do something" :

python

if enemy:
# If the enemy is less than 5 meters away, then attack
# Otherwise (the enemy is far away), shield()

else:
self.moveXY (40, 34)

javascript
if (enemy) {
// If the enemy is less than 5 meters away, then attack
// Otherwise (the enemy is far away), shield()
} else {

this.moveXY (40, 34)

Finally, fill in the actual code for the inner if/else, making sure everything is indented correctly:

python
if enemy:
if self.distanceTo (enemy) < 5:
self.attack (enemy)
else:
self.shield()
else:
self.moveXY (40, 34)

javascript
if (enemy) {
if (this.distanceTo (enemy) < 5) {

this.attack (enemy) ;

Teacher Guide: Computer Science 2 v0.3
Questions? Email team@codecombat.com



} else {
this.shield();
}
} else {
this.moveXY (40, 34)

And, this entire block of if-s and else-s has to be indented under the **while-true loop** like:

python
while True:
enemy = self.findNearestEnemy ()

if enemy:
if self.distanceTo(enemy) < 5:
self.attack (enemy)
else:
self.shield()
else:
self.moveXY (40, 34)

javascript
while (true) {
var enemy = self.findNearestEnemy () ;

if (enemy) {

if (this.distanceTo (enemy) < 5) {
this.attack (enemy) ;

} else {
this.shield();

}

} else {
this.moveXY (40, 34)

**Hint:** You can highlight several lines of code and press *Tab* to indent all of those lines, or *Shift+Tab* to un-indent all of

those lines!

Teacher Guide: Computer Science 2 v0.3
Questions? Email team@codecombat.com



Stillness in Motion Solution

Python
# You can put one if-statement within another if-statement.
# However, doing so can be tricky, so you have to pay close attention to how the if
statements interact with each other.
# Make sure the indentation is correct!
# Use comments to describe your logic in plain language!
# It's helpful to start with one outer if/else, using comments as placeholders for the inner
if/else, like so:
loop:
enemy = self.findNearestEnemnmy ()
# If there is an enemy, then...
if enemy:
# If the enemy is less than 5 meters away, then attack
if self.distanceTo (enemy) < 5:
self.attack (enemy)
# Otherwise (the enemy is far away), shield()
else:
self.shield()
# Otherwise (there is no enemy)...
else:
# Move back to the X
self.moveXY (40, 34)

Javascript
// You can put one if-statement within another if-statement.
// However, doing so can be tricky, so you have to pay close attention to how the if
statements interact with each other.
// Make sure the indentation is correct!
// Use comments to describe your logic in plain language!
// It's helpful to start with one outer if/else, using comments as placeholders for the
inner if/else, like so:
loop {
var enemy = this.findNearestEnemy () ;

// If there is an enemy, then...
if (enemy) {
// If the enemy is less than 5 meters away, then attack
if (this.distanceTo (enemy) < 5) {
this.attack (enemy) ;
}
// Otherwise (the enemy is far away), shield()
else {
this.shield();

}
// Otherwise (there is no enemy)...
else {
// Move back to the X.
this.moveXY (40, 34);

Teacher Guide: Computer Science 2 v0.3
Questions? Email team@codecombat.com



18. The Agrippa Defense

Sometimes it's best not to open with your strongest attack immediately. If you cleave at the first sight of the enemy, you may
only catch the first few, leaving their friends to finish you off!

Try using distanceTo () to wait until the enemy is closer before you cleave. You can experiment to find the best range at
which to strike; in this level, around **5 meters** works well.

**Hint:** If your cleave isn't ready, don't just stand there! Use a normal attack () while you wait for it to be ready again.
The Agrippa Defense Solution

Python
loop:
enemy = self.findNearestEnemy ()
if enemy:
# Find the distance to the enemy with distanceTo.
distance = self.distanceTo (enemy)
# If the distance is less than 5 meters...
if distance < 5:
# ... 1if "cleave" is ready, cleave!
if self.isReady ("cleave"):
self.cleave (enemy)
# ... else, just attack.
else:
self.attack (enemy)

Javascript
loop {
var enemy = this.findNearestEnemy () ;
if (enemy) {
// Find the distance to the enemy with distanceTo.
var = this.distanceTo (enemy) ;
// If the distance is less than 5 meters...
if (distance < 5) {
// ... if "cleave" is ready, cleave!
if (this.isReady("cleave")) {
this.cleave (enemy) ;
}
// ... else, just attack.
else {
this.attack (enemy) ;

Teacher Guide: Computer Science 2 v0.3
Questions? Email team@codecombat.com



19. Coinucopia

Now that you have basic flags, you can submit your code to try to beat the level in real-time. As the level is running, you can
control your hero by placing flags that your code can respond to.

Read the sample code in this level to understand how flags work, then press Submit and start placing flags where the coins
are. You'll have to be quick to get 20 gold in 40 seconds.

The flag buttons will show up in the lower left after you press Submit.
Copper coins are worth 1 gold, silver coins are worth 2 gold, and gold coins are worth 3 gold.

*Tip*: you don't need to change the sample code to beat this level, just place flags after hitting Submit.

Coinucopia Solution

Python
# Press Submit when you are ready to place flags.
# Flag buttons appear in the lower left after pressing Submit.
while True:
flag = self.findFlag()
if flag:
self.pickUpFlag(flaqg)
else:
self.say("Place a flag for me to go to.")

Javascript
// Press Submit when you are ready to place flags.
// Flag buttons appear in th elower left after pressing Submit.
while (true) {
var flag = this.findFlag();
if(flag) {
this.pickUpFlag (flagqg);
} else {
this.say("Place a flag for me to go to.");

20. Copper Meadows

Use your pickUpFlag method to go to and pick up flags that you place.

Your new glasses have the findNearestltem method, which lets your hero automatically pick up coins, but only when in line of
sight.

Use flags to guide your hero to each meadow full of coins.

You can move to an item's position like this:

Teacher Guide: Computer Science 2 v0.3
Questions? Email team@codecombat.com



javascript

var item = this.findNearestItem() ;

if (item) {
var position = item.pos;
var x = position.x;
var y = position.y;

this.moveXY (x, Vy);

python
item = self.findNearestItem/()
if item:

position = item.pos

b position.x

% position.y

self.moveXY (x, vy)

Each item is an **object**, which is a type of data, like a **string** or a **number**. Objects contain other pieces of data,

known as **properties**.

Each item object (and each unit) has a pos property, which stands for its position.

And each pos is itself an object, which has x and y properties that you can use with movexy and buildxy.

*Tip*: remember that you need to press Submit before you can place flags. The meadows are randomized, so the layout will

change each time.

Python

# Collect all the coins in each meadow.
# Use flags to move between meadows.
# Press Submit when you are ready to place flags.

loop:
flag = self.findFlag()
if flag:

pass # pass 1s a placeholder,

# Pick up the flag.
self.pickUpFlag(flaqg)
else:

# Automatically move to the nearest item you see.
item = self.findNearestItem/()

if item:
position = item.pos
X = position.x
y = position.y
self.moveXY (x, V)

Copper Meadows Solution

it has no effect.

Teacher Guide: Computer Science 2 v0.3
Questions? Email team@codecombat.com



Javascript

// Collect all the coins in each meadow.

// Use flags to move between meadows.

// Press Submit when you are ready to place flags.

loop {
var flag = this.findFlag();
if(flag) {
// Pick up the flag.
this.pickUpFlag(flaqg);
} else {
var item = this.findNearestItem() ;
if(item) {
var position = item.pos;
var x = position.x;
var y = position.y;
this.moveXY (x, y);

21. Drop the Flag

Use your pickUpFlag method to go to and pick up flags that you place — but first, use buildxy to build a "fire-trap"
where the flag is.

Just like in the last level, where each coin item is an object, each flag is also an object. Each flag and item object has a pos
property, which stands for its position. And each pos is itself an object, which has x and y properties that you can use with
moveXY and buildXyY.

Code your hero to build traps where she sees flags, and then when you see an ogre coming, place a flag on the X so your
hero responds. When there is no flag, your hero will collect coins. **Wait for your hero to pick up the flag** before placing
another one, or she won't place the fire-trap at the second flag.

*Tip*: remember that you need to press Submit before you can place flags. The ogres are randomized, so they'll come from
different paths each time.

Drop the Flag Solution

Python
# Put flags where you want to build traps.
# When you're not building traps, pick up coins!

loop:
flag = self.findFlag()
if flag:
# How do we get fx and fy from the flag's pos?
# (Look below at how to get x and y from items.)

Teacher Guide: Computer Science 2 v0.3
Questions? Email team@codecombat.com



flagbPos = flag.pos
flagX = flagPos.x
flagY = flagPos.y

self.buildXy ("fire-trap", fx, fy)
self.pickUpFlag(flaqg)
else:
item = self.findNearestItem/()
if item:
itemPos = item.pos
itemX = itemPos.x
itemY = itemPos.y
self.moveXY (itemX, itemY)

Javascript
// Put flags where you want to build traps.
// When you're not building traps, pick up coins!
loop {
var flag = this.findFlag();
if (flag) {
// How do we get fx and fy from the flag's pos?
// (Look below at how to get x and y from items.)
var flagbPos = flag.pos;
var flagX = flagPos.x;
var flagY = flagPos.y;

this.buildXY ("fire-trap", flagX, flag¥);
this.pickUpFlag (flagqg);
} else {
var item = this.findNearestItem()
if(item) {
var itemPos = item.pos;
var itemX = itemPos.x;
var itemY = itemPos.y;
this.moveXY (itemX, itemY);

22. Mind the Trap

Some actions your hero takes will pause the rest of your program while they happen. One of these is attack.

When you do an attack against an enemy that's far away, your program will stop responding to other commands (like
pickUpFlag) while your hero runs toward the enemy.

In this level, that means your hero will run straight into the mines! (**boom!**)

To avoid this, you'll use distanceTo, and only attack enemies if they are within 10 meters of you.

Teacher Guide: Computer Science 2 v0.3
Questions? Email team@codecombat.com



Then, use your flags to move close to any enemy you want to attack!

Mind the Trap Solution

Python
# If you try to attack a distant enemy, your hero will charge toward it, ignoring all flags.
# You'll need to make sure you only attack enemies who are close to you!

loop:
flag = self.findFlag()
enemy = self.findNearestEnemy ()

if flag:
# Pick up the flag.
self.pickUpFlag(flag)
elif enemy:
# Only attack if the enemy distance is < 10 meters
if self.distanceTo(enemy) < 10:
self.attack (enemy)

Javascript

// If you try to attack a distant enemy, your hero will charge toward it, ignoring all
flags.

// You'll need to make sure you only attack enemies who are close to you!

loop {

var flag = this.findFlag();

var enemy = this.findNearestFlag();

if(flag) {
// Pick up the flag.
this.pickUpFlag(flag);

}

else if (enemy) {
// Only attack if the enemy distance is < 10 meters
if (this.distanceTo (enemy) < 10) {

this.attack (enemny) ;

23. Signal Corpse

Previously, you used distanceTo to attack only nearby enemies, and you used flags to move closer.

Now, we'll do the same thing, but we use a "green" flag to move toward (or run away from!) enemies and the "black" flag
to tell our hero to use a 'cleave' attack.

This way, we can save the cleave attack for the right moment, when there are many enemies nearby.

Teacher Guide: Computer Science 2 v0.3
Questions? Email team@codecombat.com



*Tip:* use cleave with no arguments to cleave where you're standing, instead of chasing an enemy to cleave.

Signal Corpse Solution

Python

# You can use flags to choose different tactics.

# In this level, the green flag will mean you want to move to the flag.
# The black flag means you want to cleave at the flag.

# The doctor will heal you at the Red X

loop:
green = self.findFlag("green")
black = self.findFlag("black")
nearest = self.findNearestEnemy ()

if green:
self.pickUpFlag (green)
elif black:
self.pickUpFlag(black)
# If cleave isReady, do a cleave!
if self.isReady("cleave"):
self.cleave ()
elif nearest:
if self.distanceTo (nearest) < 10:
# Attack!
self.attack(nearest)

Javascript
// You can use flags to choose different tactics.
// In this level, the green flag will mean you want to move to the flag.
// The black flag means you want to cleave at the flag.
// The doctor will heal you at the Red X
loop {
var green = this.findFlag("green");
var black = this.findFlag("black");

var nearest = this.findNearestEnemy () ;

if (green) {
this.pickUpFlag(green) ;
} else if (black) {
this.pickUpFlag (black);
// If cleave isReady, do a cleave!
if (this.isReady ("cleave") {
this.cleave();
}
} else if (nearest)
if (this.distanceTo (nearest) < 10) {
# Attack!
this.attack (nearest);

Teacher Guide: Computer Science 2 v0.3
Questions? Email team@codecombat.com



24. Rich Forager

Combine everything you know about if/else, using flags, your special abilities, and accessing x and y coordinates from pos
objects to clear all the meadows of coins and enemies.

You'll need to use pickUpFlag to move your hero between meadows, attack and cleave to kill enemies, and moveXy to
move to the position of coin items that you see.

*Tip*: remember that you need to press Submit before you can place flags. The layouts are randomized, so they'll change
each time.

Rich Forager Solution

Python

# Use "if" and "else if" to handle any situation.

# Put it all together to defeat enemies and pick up coins!

# Make sure you bought great armor from the item shop! 400 health recommended.

loop:
flag = self.findFlag()
enemy = self.findNearestEnemnmy ()
item = self.findNearestItem()

if flag:
# What happens when I find a flag?
self.pickUpFlag(flaqg)
elif enemy:
# What happens when I find an enemy?
if self.isReady("cleave"):
self.cleave (enemy)
else:
self.attack (enemy)
elif item:
# What happens when I find an item?
self.moveXY (item.pos.x, item.pos.y)

Javascript

# Use "if" and "else if" to handle any situation.

# Put it all together to defeat enemies and pick up coins!

# Make sure you bought great armor from the item shop! 400 health recommended.

loop {
var flag = this.findFlag();
var enemy = this.findNearestEnemy () ;
var item = this.findNearestItem() ;
if(flag) {
// What happens when I find a flag?
this.pickUpFlag (flagqg);

Teacher Guide: Computer Science 2 v0.3
Questions? Email team@codecombat.com



} else if (enemy) {
// What happens when I find an enemy?
if (this.isReady("cleave")) {
this.cleave (enemy) ;
} else {
this.attack (enemny) ;
}
} else if (item) {
// What happens when I find an item?
this.moveXY (item.pos.x, item.pos.y);

25. Cross Bones

# Cross Bones
Welcome to the entrance of the Sarven Desert. A valuable piece of terrain which could shifts the battle between Ogres and
Humans significantly.

Collect coins to fund the effort. Summon mercenaries by stepping on the corresponding X-mark in front of the tents.

### Heros
The fair knight **Tharin Thunderfist** is leading the charge, seeking to turn the tide of the war!

The merciless headhunter **Deadtooth** eager to halt humanity's advance into the desert.

### Guardians
Both sides are defended by a lumbering unit which helps deter initial waves, but, even they can run out of steam. Be sure to
**support** and **heal** them when you can!

The humans are protected by the not-so-gentle goliath **Okar Stompfoot**.
The ogres are protected by the powerful brawler **Grul'Thok**.

## Units
Simply run over X-mark in front of the tents to summon troops.

The human side has access to the standard fare soldier and archer to recruit.
* Soldiers cost **20 gold™**.
* Archers cost **25 gold**.

The ogre side has access to the desert-hardened scout and regular thrower.
* 2 Scouts cost **30 gold**.
* 2 Throwers cost **20 gold**.

### Potion
Running over and collecting the potion heals both you and your guardian substantially. **Don't use it too early!**

Teacher Guide: Computer Science 2 v0.3
Questions? Email team@codecombat.com



### Flags

Occasionally certain events happen which cause your guardian to toss down a flag, signalling help from your hero.
* The guardian will place a "green" flag when **he is under 50% health**.

* The guardian will place a "black" flag when **being assaulted by a large quantity of enemy units**.

Teacher Guide: Computer Science 2 v0.3
Questions? Email team@codecombat.com



