CODE iggmgm

Teacher Guide: Introduction to Computer Science

Last Updated: February 3, 2016

Table of Contents

Summary: Introduction to Computer Science

Concepts Covered in this Course

Basic Syntax
Arguments
Strings
Variables

While Loops
Level Overview & Solutions

1.

Dungeons of Kithgard

. Gems in the Deep

. Shadow Guard

. Enemy Mine

. True Names

o O [W IN

. Fire Dancing

7.

How To Use while-true Loops

Loop Da Loop

8.

Haunted Kithmaze

9.

The Second Kithmaze

10. Dread Door

11. Cupboards of Kithgard

12. Breakout
13. Known Enemy

14. Master of Names

15. A Mayhem of Munchkins

16. The Gauntlet

17. The Final Kithmaze

18. Kithgard Gates

19. Wakka Maul

Common Problems in this Course

Teacher Guide: Introduction to Computer Science v0.9
Questions? Email team@codecombat.com

Summary: Introduction to Computer Science

With the right environment, learning the basics of formal syntax and typing code can be fun and intuitive for
students as early as 3rd grade. Instead of block-based visual programming languages that hinder a student’s
proper understanding of code, CodeCombat introduces real coding from the very first level. By strengthening
their typing, syntax and debugging skills, we empower students to feel capable of building real programs
successfully.

In Course 1, students will learn the basic syntax of Python or Javascript, along with arguments, strings,
variables and while loops.

CodeCombat Courses use object-oriented programming. This guide covers both Python and Javascript
solutions, with Python code depicted in red and Javascript code depicted in blue.

Teacher Guide: Introduction to Computer Science v0.9
Questions? Email team@codecombat.com

Concepts Covered in this Course

Basic Syntax

Syntax is the basic spelling and grammar of a language, and must be carefully paid attention to in order for
code to properly execute. For example, while Python and Javascript are used to do similar things in Course 1,
the syntax for them is noticeably different, because they are different programming languages.

Arguments

An argument (also referred to as a parameter) is extra information passed into a method in order to modify
what the method does. In both Python and Javascript, arguments are represented by code that is inside the
parentheses after a method. In Course 1, arguments must be used to define enemies before the hero can
attack them, and can also be used to move multiple times without writing new lines of code.

Strings

A string is type of programming data that represents text. In both Python and Javascript, strings are
represented by text inside quotes. In Course 1, strings are used to identify objects for the hero to attack.

Variables

A variable is a symbol that represents data, and the value of the variable can change as you store new data in
it. In Course 1, variables are used to first define an enemy, and then passed along as an argument to the
attack method so that the hero can attack the right enemy.

While Loops

A while loop is used to repeat actions without the player needing to write the same lines of code over and over.
In Python, the code that is looped must be indented underneath the while true statement. In Javascript, the
code that is looped must be enclosed by curly brackets {}. In Course 1, while loops repeat forever, and are
used to navigate mazes made up of identical paths, as well as attack objects that take a lot of hits to defeat
(strong Doors, for example).

Teacher Guide: Introduction to Computer Science v0.9
Questions? Email team@codecombat.com

Level Overview & Solutions

1. Dungeons of Kithgard

Let's get started! To escape the dungeon, your hero has to move. You can tell them where to move by writing
code.

Type your code into the editor to give your hero instructions. Your hero will read and execute these instructions
for themself, so refer to the hero with:

Python: self

JavaScript: this

Now that you know how to refer to your hero, you can instruct them to move with moveDown and moveRight
commands:

Python:
self.moveDown ()
self.moveRight ()
JavaScript:
this.moveDown () ;

this.moveRight () ;
To succeed at this level: move right, down, and right again to grab the gem!
You only need three lines of code to beat this level.

The code you write here is very similar to the code you might write to tell a computer how to do all kinds of
things, from playing music to displaying a web page. You're taking your first steps towards being a coder!

Dungeons of Kithgard Solution

Python

Move to the gem.

Don't touch the walls!
Type your code below.

self.moveRight ()
self.moveDown ()
self.moveRight ()

Teacher Guide: Introduction to Computer Science v0.9
Questions? Email team@codecombat.com

Javascript

// Move to the gem.

// Don't touch the walls!
// Type your code below.

this.moveRight () ;

this.moveDown () ;

this.moveRight () ;

2. Gems in the Deep

Can you remember the lessons from the last level? This will be the same, but you will need to move a lot more.
Remember,

Python: self
JavaScript: this

refers to you, the hero.

When you move, you only move as far as the next movement square (look for the small tiles on the ground), so
you might have to moveUp twice in a row to get to the top of this level from the bottom.

Or you can pass a humber as an argument to the movement command, to instruct your hero to move more
than one space at a time.

For example, you can move up twice by typing:

Python: self.moveUp (2)
JavaScript: this.moveUp (2) ;

Teacher Guide: Introduction to Computer Science v0.9
Questions? Email team@codecombat.com

Gems in the Deep Solution

Python

Grab all the gems using your movement commands.

self
self
self
self
self

.moveRight ()
.moveDown ()
.moveUp ()
.moveUp ()
.moveRight ()

Javascript
// Grab all the gems using your movement commands.

this
this
this
this
this

.moveRight () ;
.moveDown () ;
.moveUp () ;
.moveUp () ;
.moveRight () ;

3. Shadow Guard

You don't have a weapon yet, so you can't fight the ogre munchkin who guards the path.

Instead, try moving up, behind the statue, so he doesn't see you. Then you can get the gem undetected.

Shadow Guard Solution

Python

Stay out of sight of the ogre.

self
self
self
self
self

.moveRight ()
.moveUp ()
.moveRight ()
.moveDown ()
.moveRight ()

Grab the gems.

Teacher Guide: Introduction to Computer Science v0.9
Questions? Email team@codecombat.com

Javascript

// Stay out of sight of the ogre. Grab the gems.
this.moveRight () ;

this.moveUp () ;

this.moveRight () ;

this.moveDown () ;

this.moveRight () ;

4. Enemy Mine

The floor is littered with Fire Traps, but there's a safe path through to the gem.

When you call a method like moveRight () you can sometimes give extra information to the method to modify
what it does. This extra information is referred to as "arguments" or "parameters".

You can pass an argument to the moveRight () method like this: moveRight (3). This tells moveRight ()
to make your hero move 3 spaces to the right instead of 1.

Enemy Mine Solution

Python

Use arguments with move statements to move farther.
self.moveRight (3)

self.moveUp ()

self.moveRight ()

self.moveDown (3)

self.moveRight (2)

Javascript

// Use arguments with move statements to move farther.
this.moveRight (3) ;

this.moveUp () ;

this.moveRight () ;

this.moveDown (3) ;

this.moveRight (2) ;

Teacher Guide: Introduction to Computer Science v0.9
Questions? Email team@codecombat.com

5. True Names

Keep in mind a few things to beat this level:

1. You need to attack each ogre munchkin twice to defeat it.

2. Spell the names properly, with capitalization! "Brak™ and "Treg".

3. Put the names in quotes to make them into strings. Strings are a type of programming data. They
represent text.

4. After you kill "Brak" and "Treg", then move right to get the gem.

5. It's no problem if you die; you can always keep trying.

True Names Solution

Python
Defend against Brak and Treg!
You must attack small ogres twice.

self.moveRight ()
self.attack ("Brak")
self.attack ("Brak")
self.moveRight ()
self.attack ("Treg")
self.attack ("Treg")
self.moveRight ()
self.moveRight ()

Javascript
// Defend against Brak and Treg!
// You must attack small ogres twice.

this.moveRight () ;
this.attack ("Brak");
this.attack ("Brak");
this.moveRight () ;
this.attack ("Treg");
this.attack ("Treg");
this.moveRight () ;
this.moveRight () ;

6. Fire Dancing

Code normally executes in the order it's written. Loops allow you to repeat a block of code multiple times
without having to re-type it.

How To Use while-true Loops

Teacher Guide: Introduction to Computer Science v0.9
Questions? Email team@codecombat.com

First, we start a loop with the while keyword. This tells your program WHILE something is true, repeat the
body of the loop.

For now we want our loops to continue forever, so we'll use a while-true loop. Because true is always true!

Don't worry about this true stuff too much for now. We'll explain it more later. Just remember that a while-true
loop is a loop that never ends.

This is how you code a while-true loop:

Python:

while True:
self.moveRight ()
self.movelLeft ()

self.say("This line is not inside the loop!")

JavaScript:
while (true) {
this.moveRight (); this.moveLeft ();
}
this.say ("This line is not inside the loop!");
// Tip: the indentation (spaces at the start of the lines) is optional, but

makes your code easier to read!

Tip: You can put whatever you want inside a while-true loop! But for this level, we only need to repeat two
commands: moveRight () and moveLeft ()!

Fire Dancing Solution

Python

Code normally executes in the order it's written.

Loops repeat a block of code multiple times.

Use tab or 4 spaces to indent the move lines under the loop.

while True:
self.moveRight ()
Add a moveleft command to the loop here
self.moveleft ()

Javascript
// Code normally executes in the order it's written.
// Loops repeat a block of code multiple times.

Teacher Guide: Introduction to Computer Science v0.9
Questions? Email team@codecombat.com

while (true) {
this.moveRight () ;
// Add a movelLeft command to the loop here
this.moveleft () ;

7. Loop Da Loop

You can survive this level using one while-true loop containing just 4 commands!
Make sure the commands you add are inside the while-true loop. Double check your indentation!

Loop Da Loop Solution

Python
The code in this loop will repeat forever.

while True:
Move right
self.moveRight ()
Move up
self.moveUp ()
Move left
self.movelLeft ()
Move down
self.moveDown ()

Javascript
// The code in this loop will repeat forever.

while (true) {
// Move right
this.moveRight () ;
// Move up
this.moveUp () ;
// Move left
this.moveLeft ();
// Move down
this.moveDown () ;

Teacher Guide: Introduction to Computer Science v0.9
Questions? Email team@codecombat.com

8. Haunted Kithmaze

Loops let you repeat the same code over and over. You can do this level in just four commands with a
while-true loop.

Tip: the hallway needs two movements to the right, and then two movements up. From there, you can just
let the while-true loop repeat to do the rest.

Make sure that your movement commands are inside the loop so that they repeat!

Haunted Kithmaze Solution

Python

Loops are a better way of doing repetitive things.

while True:
Add commands in here to repeat.
self.moveRight ()
self.moveRight ()
self.moveUp ()
self.moveUp ()

Javascript
// Loops are a better way of doing repetitive things.

while (true) {
// Add commands in here to repeat.
this.moveRight () ;
this.moveRight () ;
this.moveUp () ;
this.moveUp () ;

9. The Second Kithmaze

Carefully count how many movements you need inside your while-true loop to solve the maze!
Remember, you should only use one while-true loop per level, and make sure all your code is inside the loop.
Hover over the while-true loop documentation in the lower right to see an example.

Teacher Guide: Introduction to Computer Science v0.9
Questions? Email team@codecombat.com

The Second Kithmaze Solution

Python
Use a while-true loop to navigate the maze!

while True:
this.moveRight ()
this.moveUp ()
this.moveRight ()
this.moveDown ()

Javascript
// Use a while-true loop to navigate the maze!

while (true) {
this.moveRight () ;
this.moveUp () ;
this.moveRight () ;
this.moveDown () ;

10. Dread Door

You can combine while-true loops and attack to easily kill things that take more than one hit. Like this door.

Python:
while True:
self.attack ("Door")
JavaScript:
while (true) {

this.attack ("Door") ;

You can attack the door by its name, which is "Door".
With looping and attacking, you can do this level in just two lines of code.

Teacher Guide: Introduction to Computer Science v0.9
Questions? Email team@codecombat.com

Dread Door Solution

Python
Attack the door!
It will take many hits, so use a while-true loop.

while True:
self.attack ("Door")

Javascript
// Attack the door!
// It will take many hits, so use a while-true loop.

while (true) {
this.attack ("Door");

11. Cupboards of Kithgard

The ogre guards might be too much for you to handle. Maybe you'll find something useful in the
"Cupboard"?

First, move close to the "Cupboard" (stand on the red X). It looks locked, so you'll have to attack it
repeatedly using a while-true loop to break it open.

Cupboards of Kithgard Solution

Python
There may be something around to help you!

First, move to the Cupboard.
self.moveUp ()
self.moveRight (2)
self.moveDown (2)

Then, attack the "Cupboard" inside a while-true loop.
while True:
self.attack ("Cupboard")

Teacher Guide: Introduction to Computer Science v0.9
Questions? Email team@codecombat.com

Javascript
// There may be something around to help you!

// First, move to the Cupboard.
this.moveUp () ;
this.moveRight (2) ;
this.moveDown (2) ;

// Then, attack the "Cupboard" inside a while-true loop.
while (true) {
this.attack ("Cupboard");

12. Breakout

You'll need that soldier to protect you, so first attack the "Weak Door" to free her.
Then use a while-true loop to attack the "Door" while your new friend holds off the munchkins.

Breakout Solution

Python
Free your ally, then clear a path to escape!

self.moveRight ()
self.attack ("Weak Door")
self.moveRight ()
self.moveDown ()
while True:

self.attack ("Door")

Javascript
// Free your ally, then clear a path to escape!

Teacher Guide: Introduction to Computer Science v0.9
Questions? Email team@codecombat.com

this.moveRight () ;

this.attack ("Weak Door");

this.moveRight () ;

this.moveDown () ;

while (true)
this.attack ("Door") ;

13. Known Enemy

Up until now, you have been doing three things:

1. Calling methods (commands like moveRight)
2. Passing strings (quoted pieces of text like "Treg") as arguments to the methods
3. Using while-true loops to repeat your methods over and over.

Now you are learning how to use variables: symbols that represent data. The variable's value can vary as you
store new data in it, which is why it's called a variable.

It's a pain to type the names of ogres multiple times, so in this level you use three variables to store the ogre
names. Then when you go to attack, you can use the variable (enemy1) to represent the string that is stored in
it ("Kratt").

Declare variables like so:

Python: enemyl = "Kratt"

JavaScript: var enemyl = "Kratt";

When you use quotes: "Kratt", you are making a string.

When you don't use quotes: enemy1, you are referencing the enemy1 variable.

Known Enemy Solution

Python
You can use a variable like a nametag.

enemyl = "Kratt"
enemy?2 = "Gert"
enemy3 = "Ursa"

self.attack (enemyl)
self.attack (enemyl)
self.attack (enemy?2)

Teacher Guide: Introduction to Computer Science v0.9
Questions? Email team@codecombat.com

self.attack (enemy?2)

self.attack (enemy3)
self.attack (enemy3)

Javascript

// You can use a variable like a nametag.

var enemyl = "Kratt";
var enemy2 = "Gert";
var enemy3 = "Ursa";

this.attack (enemyl) ;
this.attack (enemyl) ;

this.attack (enemy2);
this.attack (enemy2) ;

this.attack (enemy3) ;
this.attack (enemy3);

14. Master of Names

Remember from the last level, variables are symbols that represent data. The variable's value can vary as
you store new data in it, which is why it's called a variable.

Now instead of using the names of the enemies, you can use the findNearestEnemy () method to store
references to the ogres in variables. You don't need to use their names.

When you call the findNearestEnemy () method, you must store the result in a variable, like enemy3
(you can name it whatever you want). The variable will remember what the nearest enemy was when you

called the findNearestEnemy () method, so make sure to call it when you see a nearby enemy.

Remember: when you use quotes, like "Kratt", you are making a string. When you don't use quotes, like
enemy1, you are referencing the enemy1 variable.

Ogre munchkins still take two hits to defeat.

Teacher Guide: Introduction to Computer Science v0.9
Questions? Email team@codecombat.com

Master of Names Solution

Python
Your hero doesn't know these enemy's names!
The glasses give you the findNearestEnemy ability.

enemyl = self.findNearestEnemy ()
self.attack (enemyl)
self.attack(enemyl)

enemy2 = self.findNearestEnemy ()
self.attack (enemy?2)
self.attack (enemy?2)

enemy3 = self.findNearestEnemy ()
self.attack (enemy3)
self.attack (enemy3)

Javascript
// Your hero doesn't know these enemy's names!
// The glasses give you the findNearestEnemy ability.

var enemyl = this.findNearestEnemy ()
this.attack (enemyl) ;
this.attack (enemyl) ;

var enemy2 = this.findNearestEnemy ()
this.attack (enemy2) ;
this.attack (enemy?2) ;

var enemy3 = this.findNearestEnemy () ;
this.attack (enemy3) ;
this.attack (enemy3) ;

15. A Mayhem of Munchkins

In this level, you use a while-true loop to do two things:

First, use findNearestEnemy () to find an ogre. Remember to store the result in an enemy variable. Hover
overthe findNearestEnemy () method to see an example.

Teacher Guide: Introduction to Computer Science v0.9
Questions? Email team@codecombat.com

Then, attack using the enemy variable.

A Mayhem of Munchkins Solution

Python
Inside a while-true loop, use findNearestEnemy () and attack!

while True:
enemy = self.findNearestEnemy ()
self.attack (enemy)
self.attack (enemy)

Javascript

// Inside a while-true loop, use findNearestEnemy () and attack!

while (true) {
var enemy = this.findNearestEnemy () ;
this.attack (enenmy) ;

this.attack (enenmy) ;

16. The Gauntlet

With your powers of looping and variables, it should be no sweat to take down all these munchkins. In fact,
with the while-true loop, you can do it in just five lines of code:

one to start the while-true loop,

one to move to where you can see an enemy,

one to store the nearest enemy into a variable,

and two to attack,

because munchkins take two hits with your current sword

ok wbd =

Teacher Guide: Introduction to Computer Science v0.9
Questions? Email team@codecombat.com

The Gauntlet Solution

Python
Use what you've learned to defeat the ogres.
Remember: it takes two attacks to defeat an ogre munchkin!

while True:
self.moveRight ()
enemy = self.findNearestEnemy ()
self.attack (enemy)
self.attack (enemy)

Javascript
// Use what you've learned to defeat the ogres.
// Remember: it takes two attacks to defeat an ogre munchkin!

while (true) {
this.moveRight () ;
var enemy = this.findNearestEnemy () ;
this.attack (enemy) ;
this.attack (enenmy) ;

17. The Final Kithmaze

This level combines while-true loops and variables to both solve a maze and attack enemies.

Now you see why you need variables, because you're actually going to vary the data in the variable. Inside
your while-true loop, if you define an enemy variable, it will refer to each of the three ogre munchkins in the
level as the loop repeats. Cool, huh?

Pay attention to where your while-true loop should repeat so that you don't move further than you need to.

Make sure that you call findNearestEnemy () when you can actually see the ogre munchkin with clear line
of sight.

Teacher Guide: Introduction to Computer Science v0.9
Questions? Email team@codecombat.com

The Final Kithmaze Solution

Python
Use a while-true loop to both move and attack.

while True:
self.moveRight ()
self.moveUp ()
enemy = self.findNearestEnemy ()
self.attack (enemy)
self.attack (enemy)
self.moveRight ()
self.moveDown (2)
self.moveUp ()

Javascript
// Use a while-true loop to both move and attack.

while (true) {
this.moveRight () ;
this.moveUp () ;
var enemy = this.findNearestEnemy () ;
this.attack (enemy) ;
this.attack (enenmy) ;
this.moveRight () ;
this.moveDown (2) ;
this.moveUp () ;

18. Kithgard Gates

When you use a builder's hammer, instead of the attack method, you get the buildXy method. buildXy
takes three arguments, instead of one: buildType, x, and y. So you can decide what to build and where to
build it.

e buildType: either the string "fence", to build fences, or the string "fire-trap", to build fire traps.
e x: the horizontal position at which to build. You can hover over the map to find coordinates.
e v: the vertical position at which to build. x and y are both in meters.

Teacher Guide: Introduction to Computer Science v0.9
Questions? Email team@codecombat.com

buildXy ("fence", x, y) allows you to build a fence at a certain spot, like this:

Python: self.buildXY ("fence", 40, 20)
JavaScript: this.buildXY ("fence", 40, 20);

This level is much easier to beat with "fence" than with "fire-trap". It's almost impossible to use fire
traps to kill the ogres. If you want to try it, fine, but it took us fifteen minutes to figure it out, and we built the
level.

You only need to build three fences to stop the ogres and escape the dungeon to the right.

Kithgard Gates Solution

Python
Build 3 fences to keep the ogres at bay!

self.moveDown ()

self.buildXY ("fence", 36, 34)
self.buildXY ("fence", 36, 30)
self.buildXY ("fence", 36, 26)
self.moveRight (3)

Javascript
// Build 3 fences to keep the ogres at bay!

this.moveDown () ;

this.buildXY ("fence", 36, 34);
this.buildXY ("fence", 36, 30);
this.buildXY ("fence", 36, 26);
this.moveRight (3) ;

19. Wakka Maul

Battle your friends, coworkers and classmates in this all out brawl through the Kithgard dungeons!

Break out allies, summon more units, and evade the enemy's advances!

The doors are labelled "a", "b", "c","d","e","£","g", "h","i", "j". Use these strings to attack the
specific door you want!

Teacher Guide: Introduction to Computer Science v0.9
Questions? Email team@codecombat.com

The human side can summon soldier and archer while the ogre side can summon scout and thrower.
All either side needs to do is to say the unit name, and have enough gems, to summon the units. To summon
units you'll want to say their name:

*Python**:
If on the human side:
self.say("soldier")

To summon a soldier for 20 gold.

self.say("archer")

To summon an archer for 25 gold.

#If on the ogre side:
self.say("scout")

To summon a scout for 18 gold.

self.say("thrower")

To summon 2 throwers for 9 gold each.

JavaScript:
// If on the human side:
this.say("soldiexr");

// To summon a soldier for 20 gold.

this.say ("archer");

// To summon an archer for 25 gold.

// If on the ogre side:
this.say ("scout") ;

// To summon a scout for 18 gold.

this.say ("thrower") ;

// To summon 2 throwers for 9 gold each.

Teacher Guide: Introduction to Computer Science v0.9
Questions? Email team@codecombat.com

Common Problems in this Course

While loops in Python require indentation

When students are first learning about while loops, it's sometimes challenging for them to understand that in
order for something to be looped, it needs to be nested inside a while loop by indenting the line with four
spaces or a tab.

This is not as much of an issue in JavaScript because JavaScript uses brackets { } to signify when loops
occur, but it’s still good practice to indent because it makes code easier to read.

Your hero needs to be told what to attack (using parameters)
When students use an attack function, they need to specify what will be attacked by putting a parameter inside
the parentheses that comes after the “attack” function.

In Python, it looks like this:

self.attack (enemy)

This tells the hero to attack the variable named enemy.

In earlier levels, before variables are introduced, students attack enemies by name using strings (pieces of text
in quotes):
self.attack ("Treg")

Sometimes it takes more than one attack to defeat an enemy
Ogre munchkins each take two attack actions to defeat.

Weak doors (ones that are labeled “Weak Door”) take one attack action to defeat, so don’t use a while loop to
attack them.

A strong door (labeled “Door”) takes a lot of hits, so students should use a while loop to attack the door
indefinitely.

You need line-of-sight to use findNearestEnemy()

If you can’t see an enemy around a corner, then findNearestEnemy() will not return the enemy, so when you
then attack the enemy variable you created with it, the attack will fail. Make sure that you move to within line of
sight of the enemy before trying to attack it on levels like The Gauntlet and The Final Kithmaze.

If you don’t update your enemy variables, you might keep attacking the first, dead enemy

In order to attack a second enemy, you need to call findNearestEnemy() again after the first one is dead so
that you store the new enemy when the second enemy is the nearest one. Otherwise, you might keep
attacking the first enemy, because you called findNearestEnemy() twice when the nearest enemy was still the
same, first enemy. So do this:

enemyl = self.findNearestEnemy ()

self.attack (enemyl)

self.attack (enemyl)

enemy2 = self.findNearestEnemy ()

self.attack (enemy2)

Teacher Guide: Introduction to Computer Science v0.9
Questions? Email team@codecombat.com

self.attack (enemy?2)

And not this:
enemyl = self.findNearestEnemy ()
enemy2 = self.findNearestEnemy () # Bug: this is the same as enemyl

self.attack (enemyl)
self.attack (enemyl)
self.attack (enemy2)

()

self.attack (enemy2

Some levels limit how many code statements you can use

This is to encourage players to learn how to use while loops instead of repeating their code by hand.
Sometimes it can be hard for a player to know what counts as a statement, though. It is not the same as a line
of code, but rather it's each unique piece of information in the code the compiler sees. For example, this
program is five statements:

while True: # 1 for the while loop
enemy = self.findNearestEnemy() # 1 for the findNearestEnemy ()
self.attack (enemy) # 1 for the attack
self.moveRight (3) # 1 for the moveRight and 1 for the number 3

Sometimes students will use extra statements they don’t need with code like this:
self.moveRight (1) # The 1 counts as an extra statement

Or they will not store the variable and call findNearestEnemy() an extra time:

self.attack (findNearestEnemy()) # 2 statements

self.attack (findNearestEnemy()) # 2 more statements

A level won't be finished until it's done under the required number of statements, so help students who are
using too many statements understand concepts like while loops and variables before moving forward.

Teacher Guide: Introduction to Computer Science v0.9
Questions? Email team@codecombat.com

