
ORANGE BELT!

BEGINNING
JAVASCRIPT

2 Code Ninjas Beginning Javascript - v1r5

In this course, ninjas will learn real JavaScript starting
on day 1. They will progress through creating numer-
ous JavaScript applications that can run in a browser
or even on a server using node.js!

This course is not strictly game-based, so ninjas who
take this course should be looking for a deeper un-
derstanding of real coding.

WELCOME TO
BEGINNING JAVASCRIPT

So you’re getting ready for a Beginning Javascript camp, and you need
to know what to do next! What you are about to read is a guide that will
help you prep and plan for a full week of fun with your Code Senseis®
and ninjas. Before we get started, please keep in mind that you can feel
free to use it in its entirety, in pieces, or even not at all. This guide is
here to give you a few tips and tricks based on what works for certain
centers. In the end, you are going to know your center best. Want to
change the times around? Sure! Want to add an early pick up? Yeah!
Want to scrap the whole thing and do whatever you want? Be sure to
get it approved by corporate first, but that’s cool too!

Also, we are always here to answer any questions you might have
based on this camp or just running camps in general. Please email
askhq@codeninjas.com with any of your comments/questions/con-
cerns!

FOREWORD

Copyright © Code Ninjas, LLC 3

GENERAL SCHEDULEGENERAL SCHEDULE
TIME ACTIVITY DESCRIPTION
7:45 AM to 8:00 AM Drop Offs Parents drop kids off and sign

check-in sheet.
8:00 AM to 8:15 AM Ice Breakers See suggested ice breaker list.

8:15 AM to 8:45 AM Daily Kick Off Describe what’s going to hap-
pen today and get the kids
excited for having fun! The dojo
has rules...review. On day 1,
introduce the senseis.

9:00 AM to 10:00 AM Beginning JavaScript
Lessons

Every day will have new
JavaScript skills to learn.

10:00 AM to 10:30 AM Brain Breakers Select a STEM game from rec-
ommended list: rotate in groups
of 10-15 based on the size of the
camp.

10:30 AM to 12:00 PM Beginning JavaScript
Lessons Continued

Continue the day’s lessons on
JavaScript techniques.

12:00 PM Half-Day Pickup Sensei coordination: move stu-
dents that are on half-day into
the lobby or alternate dojo and
have them wait for their parents
to pick them up .

12:00 to 12:45 PM Lunch Lunch is in the dojo for full day
students. All computers and
equipment is put away. Drinks
are limited to designated areas
only.

12:45 PM to 1:00 PM Lunch Clean Up Students throw away trash and
wipe down the area.

1:00 PM to 2:30 PM STEM Enrichment Students pick from any STEM
based game or activity, includ-
ing building their own games.

2:45 PM to 4:00 PM Game Time! Students can play Minecraft,
Xbox, or build their own games!

4 Code Ninjas Beginning Javascript - v1r5

Over the next few days, you are going to learn the basics of
making games using Javascript. Javascript is easy to learn and
it is the primary programming language used for almost all of
the websites around.

To make things convenient, we’re going to be using Javascript
in our GAME DEVELOPMENT PLATFORM (GDP). This
platform is designed to simplify the process of creating and
manipulating objects for our games so we can focus on
building the games themselves. The next few pages explain
how the Game Development Platform is used. Review them
and then we’ll start learning how to make a game in Javascript.

BEGINNING JAVASCRIPT

DAY ONE

Copyright © Code Ninjas, LLC 5

Click on Paths in the Main Menu
at the top of the page.

Create A New Private Path, if
you don’t already have one.

Give your path a name like
“My Basic Javascript”.

Give your path a Description
like “Games that I built at Code
Ninjas”.

Click Create Path

1

2

3

4

5

CREATING A NEW PATH

6 Code Ninjas Beginning Javascript - v1r5

Click the Path to add a new
Scene from the paths screen.

Click “+ Scene”

Name Your Scene
HINT: Name it the same as the game
you are building.

HINT: You can say anything
you want here.

HINT: All of the activities
during this week will use code.

Describe Your Scene

Click on “code”

Click Create Scene

1

2

3

4

5

6

CREATING A NEW SCENE

Every Path can contain one or more Scenes. Each Scene is a separate game
that works by itself. Later, you will learn how to make multiple Scenes work
together. For now, follow these instructions to create a new Scene.

Copyright © Code Ninjas, LLC 7

EXISTING SCENES

First, Click the Path that
contains the scenes

If you want to see scenes that you
have previously archived, click the
Archived filter at the bottom of the
scene list

Locate the Scene you want in the list of scenes

Play the scene
Click here to play the scene

Publish/Unpublish the scene
This Shows/Hides the scene
from others

Unarchive the Scene
If you accidentally archive a
scene, click here to get it back.

Archive the Scene
Click here if you don’t want
the scene to show up
anymore

Edit the Scene
Click here to aedit the scene

8 Code Ninjas Beginning Javascript - v1r5

1 - Edit the selected Game Object’s properties in the Properties Panel.
2- Always remember to Save Your Work!
3- Erase your progress and start over
4- Play the scene in a new window
5- Make a copy o f the scene
6- Edit Code for Selected Object

7 8 9 10

11

Copyright © Code Ninjas, LLC 9

1

2 3 4 5

6

7 -In this popup, you can select the different Game Objects that are in a 		
 Scene and see their properties and code on the right side panel.
8- Add Items to the Scene or to the selected Group
9- Runs the game in the editor to save time
10- Asset Search allows you to find assets that have been used in the past.
11- The Game Stage shows what your game looks like

10 Code Ninjas Beginning Javascript - v1r5

PROPERTIES PANEL

Breaks the connection to the asset so that it isn’t updated automati-
cally. You can’t see this icon unless the selected Game Object is creat-
ed from an asset.

Downloads the latest updates to the asset. You can’t see this icon
unless the selected Game Object is created from an asset.

Save the selected Game Object as an asset so that others can use it
later.

Play the Animation on the selected Game Object. This is only visible
for Sprites.

Change the visibility of the selected Game Object. You can always
change the visibility in code as well.

Locked Game Objects are not draggable in the editor or by the player.

Removes the selected Game Object from the scene. You cannot
undo this once it is done, so make sure this is what you want to do.

Copyright © Code Ninjas, LLC 11

SCENE EVENTS DESCRIPTIONS

This event will run every frame and allows the
user to put code in the object’s update cycle.
This event only runs when the scene state is
PLAY.

This event runs only once, at the moment
a game is started. This is the best place for
declaring variables and other information that
only needs to be acted on once.

Update Every Frame

Initialize When Scene Starts

12 Code Ninjas Beginning Javascript - v1r5

This event will run when the Left mouse button
is released over the event’s object.

This event will run when the Left mouse button
is pushed down over the event’s object.

This event will run when the mouse wheel is
scrolled over the event’s object.

This event will run when the mouse moves
anywhere over the event’s object.

This event will run when the Left mouse button
is released over the event’s object and is sen-
sitive to child elements. So, if the mouse exits
a child object and is still over this object, the
Mouse Over event will fire again.

This event will run when the mouse is no longer
hovering the event’s object.

This event will run when the mouse hovers the
event’s object or any of it’s children for the first
time. It will not fire again if hover is blocked by
children, unlike Mouse Over.

This event will run when the Left mouse button
is pushed down and up quickly over the event’s
object.

This event will run when the Left mouse button
is pushed down and up two times quickly
over the event’s object. If this is detected, the
Mouse Click event will not be run.

Mouse Button Up

Mouse Button Down

Mouse Wheel

Mouse Leave

Mouse Enter

Mouse Click

Mouse Double Click

Mouse Move

Mouse Over

MOUSE EVENT DESCRIPTIONS

Copyright © Code Ninjas, LLC 13

This event will run when the Left Mouse Button
is pressed down over an object and the mouse
is then moved without lifting the Left Mouse
Button. It only runs one time per drag.

This event will run while the mouse is moving
and the Left Mouse Button is still held down. It
only occurs after the Drag Start has executed
and before the Drag End executes.

This event will run when the Left Mouse But-
ton is released at the end of a drag. It is only
executed one time.

Drag Start

Drag Move

Drag End

DRAGGING EVENT DESCRIPTIONS

14 Code Ninjas Beginning Javascript - v1r5

To begin, we will open a scene that has already been set up for us.
Select the Beginning Javascript path. There are a few scenes available
under the “Activities” header. Open the first scene, “The Basics,” by
clicking on the “play” button:

In the scene, you will see something like this:

The large rectangle on the left is the game stage and everything
you build in this scene appears there. At the moment there is a red
rectangle in the stage. The rectangle is an object. An object can be
a shape like a square or a circle, an image, text or even a group of
objects. All objects have “properties” that can be defined using the
menu on the right of the stage. The scene itself is also an object and
can also be defined using properties.

Click on the red rectangle inside the stage. Now look at the
properties for the rectangle. This rectangle has a name, (“rect”), a
width, a height and many other properties.

1

2

3

4

Activity 1

The Basics

Copyright © Code Ninjas, LLC 15

You can change the object by changing its properties. Let’s change
the height of the rectangle. Click on the number underneath height
and change the number from 100 to 150 and press “Enter.”

You can also change the rectangle’s position on the stage. Scroll
down in properties until you see “Position.” Currently it says the
rectangle is at x:78 and y:360. What does that mean? The stage has
two dimensions: left and right and up and down. These dimensions
are represented by numbers, starting at 0 in the upper left corner.
The farther you get from the corner, the larger the x and y numbers
become. The x value is how far the rectangle is from the left edge and
the y value is how far the rectangle is from the top edge.

5

6

800x-axis

x:78 y:360

y-axis

600

0

16 Code Ninjas Beginning Javascript - v1r5

The rectangle is currently at x:78. What number do you think it
should be if you want it to be on the right side of the stage? We know
the left side of the stage is 0. Let’s add 400 to the x value. Click on
the number of 78 and change it to 478 and hit enter.

What happened? Now the rectangle is on the right side of the stage.
What would you do if you wanted to move it higher on the stage?

Remember, the top of the stage is y:0. The rectangle is currently at
y:360, so changing the number from 360 to a smaller number should
move it higher on the stage.

Change the y number from 360 to 100 and press enter.

Now the rectangle is in the upper right of the stage at x:478, y:100.

7

8

9

10

11

Copyright © Code Ninjas, LLC 17

So what does all of this have to do with javascript? By using
javascript, we can change the properties of the objects on the stage.
We can also send commands to the objects and get information from
the objects as well. Using javascript and the objects in our scene, we
can make a game!

See what changing the other properties for the rectangle does.
Some of the properties like speed X and speed Y do not appear to do
anything. All of the properties have a purpose as we shall soon see.

12

13

18 Code Ninjas Beginning Javascript - v1r5

Let’s open a new scene. Go back to the Beginning Javascript path.
The next scene is called “Moving Things.” Open it by clicking on the
“play” button:

This scene looks a lot like the scene we were using in The Basics.
The rectangle now looks like a square because the width and height
are the same. At the moment, this scene contains two objects: the
rectangle and the scene itself.

So far, we’ve been modifying the objects using the properties
menu. Now let’s take a look at events. Make sure the scene object is
selected by double clicking on the rectangle and click on the Events
tab.

When the game is being played, the scene “listens” for certain events
and when an event happens, it executes all of the code listed for that
event. Click on “Update Every Frame.” You will see a list of all of the
events That you can use. Most of the time you will only use a couple
of events for a game.

1

2

3

4

Activity 2

Moving Things

Copyright © Code Ninjas, LLC 19

Every object has the same options for events and it is likely that
as events happen, several opjects will each be executing their own
commands at the same time.

For now, make sure that Initialize When Scene Starts is selected. This
event only happens once when the game is started. We’re going to
add code to move the rectangle to another location. Type in the text
below and save your scene.

We can change the y property of the rectangle as well. Click on
Events and select Initialize When Scene Starts and add this to the
code you’ve already written:

“rect” is the name given to the rectangle when it was added to the
scene. The very first thing we do is identify which object is getting
a command. The period is there to separate the name from the
properties we want to change on the object. In this case, we’re
changing the x position of the rectangle. The last part is known as the
parameters. This is the value that we want to assign to the x property
of the rectangle. The semicolon at the end is so that the program
knows you’re at the end of a line.

Click on and see what happens.

Click on

5

6

9

7

8

//this is a comment. Anything that follows 2 foward slashes is ignored
//by the computer. Comments are useful for leaving notes without
//disrupting the code.
rect.x(50);	 //set the x value of the rectangle’s location to 50

rect.y(250);		 //set the y value of the rectangle’s location to 250

20 Code Ninjas Beginning Javascript - v1r5

While we can change the rectangle’s location on the stage, it’s not
really moving. To do that, we need a different event.

Click on the rectangle and click on properties. In the middle of the
position properties is speed x and speed y. These properties are the
default speed for the object and if we hadn’t specified a number for
the speed parameter, then the speed would have been 50.

Click on the Events tab, and select Update Every Frame. Add this
code:

If we had placed the code in Initialize When Scene Starts, it would
have been executed exactly once. By placing it in the Update Every
Frame event, the command is executed over and over again until
the scene stops. As before, we are sending the command to the
“rect” object. Instead of just giving it an X location, we are telling
it to moveX, which is along the X axis. The number given in the
parameters is the speed at which we want the rectangle to move. As
we go from left to right, the x value is larger. The speed is telling the
rectangle to move by 100 units to the right over and over again. If we
wanted the rectangle to move to the left, we would use a negative
number for the speed.

12

16

13
//move the rectangle along the x-axis at a speed of 100
rect.moveX(100);		

Click on and see what happens.

Click on and see what happens.

Click on

Click on

10

14

11

15

Copyright © Code Ninjas, LLC 21

To test this, make sure the scene object is still selected. Click on
Events and Update Every Frame and modify the code so that it looks
like this:

Even though we had not specified a number for the speed in the
parameters, the rectangle still moved, using the default speed of 50.
Just like the other properties, we can change the speed x in code.

Go ahead and try different values for the x, y and speedX of the
rectangle. Remember, if you want the rectangle to go from right to
left, you need a negative number for your speed.

We are telling the rectangle to change the speed x property from 50
to 200. What do you think will happen?

Click on Events and select Initialize When Scene Starts. Add this
code:

17

20

24

21

//move the rectangle along the x-axis at the default speed
rect.moveX();

//change the default speed of the rectangle to 200
rect.speedX(200);

Click on and see what happens.

Click on and see what happens.

Click on

Click on

18

22

19

23

22 Code Ninjas Beginning Javascript - v1r5

Let’s open a new scene. Go back to the Beginning Javascript path.
The next scene is called “Round and round” Open it by clicking on the
“play” button:

When we’re done, your activity will look like the image below with
three stars. We’re going to make them spin in different ways.

To make an object spin is very similar to making it move, except that
the object is rotating around its origin point, which for the star, is it’s
center.

1

2

3

Activity 3

Round and Round

Copyright © Code Ninjas, LLC 23

Click on the yellow star and select Events and Update Every Frame.
Add this code:

Select the “Things” menu on the left and search for the “Yellow Star”
and click on “add” and close the Search Assets menu by clicking on
the X in the upper right corner. The star is placed right where we want
it, in the middle of the stage.

Right now, the stage is empty. Let’s add our first object. Click on the
Search Assets menu You will see something like this:

The first word, “$this,” is another way of telling the code that we
want to send the command to our selected object, which is the
yellow star. We could also use the name of the star and the code
would still work. We’ll explain more about this later. Next is the word
“spin”, which is the command to have the star rotate around the star’s
origin point at the rate we specify. In this case, the rate is “40.” Just
like move, a positive number moves to the right (or clockwise) while a
negative number moves to the left (or counter clockwise).

6

5

4

$this.spin(40);	 //make this object rotate at a speed of 40

24 Code Ninjas Beginning Javascript - v1r5

Click on and see what happens.

Click on

13

14

Click on the blue star and select Events and Update Every Frame.
Add this code:

The yellow star spins. Let’s move on to the next star.

The blue star appears below the yellow star.

What do you think will happen?

12

9

11

$this.spin(-50);	 //make this object rotate at a speed of -50

Click on and see what happens.

Click on

7

8

What happened? The blue star was spinning, but it was spinning
around the yellow star! 15

Click on the Search Assets menu Again, click on things and
search for the blue star and add it to your scene and close the Search
Assets menu.

10

Copyright © Code Ninjas, LLC 25

Let’s take a closer look at the blue star. Select it and click on
Properties. Scroll down and look at the property for OFFSET Y:

Remember, the object spins around its origin point and by changing
the value of offset y, we’ve moved the origin point 150 pixels above
the center of the star! Both the yellow star and the blue star are
located at the same point on the stage (x:400, y:300), but because
we have moved the origin point, the blue star is moving in a large
circle around the yellow star.

16

Click on the Search Assets menu Again, click on things and
search for the red star group and add it to your scene and close the
Search Assets menu.

17

Now let’s look at the red star. The red star is part of a group
called redStarGroup. When you double-click on the red star, the
redStarGroup is selected.

18

It looks like the redStarGroup will rotate clokwise, but where is the
origin point? Click on Properties and take a look:20

Click on the redStarGroup and select Events and Update Every
Frame. Add this code:19

$this.spin(70);	 //make this object rotate at a speed of 70

26 Code Ninjas Beginning Javascript - v1r5

With the red star selected, select Events and Update Every Frame.
Add this code:

Make sure that you have the red star object selected - it will look like
this:

What do you think will happen?

26

25

$this.spin(-70);	 //make this object rotate at a speed of -70

The red star spins around the blue and yellow stars. Actually, since
the red star is inside redStarGroup, it is the group that is spinning
and the red star object is just going along for the ride. Can we give
commands to objects inside groups? Yes we can!

24

Click on and see what happens.

Click on

22

23

You can probably guess what the red star will do, right?21

Copyright © Code Ninjas, LLC 27

It looks like the red star is staying still while it is moving around
the yellow and blue stars. That’s because the red star is spinning at
exactly the opposite rate as redStarGroup. So everytime the group
turns one way, the red star inside it makes the same turn in the
opposite direction, making it look like it’s not turning at all.

Go ahead and try different numbers for the star’s spinning and see
what happens.

29

30

Click on and see what happens.

Click on

27

28

28 Code Ninjas Beginning Javascript - v1r5

Let’s open a new scene. Go back to the Beginning Javascript path.
The next scene is called “Clock” Open it by clicking on the “play”
button:

This new scene should look like the image below. We’re going to
make a working clock by changing the rotation of the clock hands.

The difference between spin and rotation is like the difference
between moveX and x. One makes the object move while the other
simply changes the object’s position.

1

2

3

Activity 4

Clock

Copyright © Code Ninjas, LLC 29

Our clock needs 3 hands for hour, minute and seconds. They will all
start out as rectangle objects.

Make sure the scene is selected and click on ADD TO SCENE and click
on “Add Rectangle.” A randomly colored rectangle will be placed in
the center of the stage.

Add 2 more retangles to the scene. They will all be placed at the
same position in the center, so you will only be able to see the one on
top.

Select the last rectangle that you added (the one on top). This will be
our second hand. Change the name of the rectangle to “sHand” and
change its width to 10 and its height to 289.

With “sHand” still selected, change the OFFSET X to 5. You can
change the object’s background color to any color you like.

4

5

6

7

8

30 Code Ninjas Beginning Javascript - v1r5

Why did we change the x offset? The pivot of the hand was still on
the upper left corner and we wanted to move it to the center of the
top. Since the object is 10 pixels wide, an offset of 5 would put us
right in the center.

Now that you have completed the second hand, it’s time to move on
to the hour hand. Select the next rectangle and change the name to
“hHand,” change the width to 20 and the height to 150.

We want to change the offset on this as well. Since this object is 20
pixels wide, the x offset should be half that, or 10.

You can change the background color of this object as well. Pick any
color you like as long as it’s different from the color of the second
hand.

There should be one rectangle left, the minute hand. Select the last
rectangle and change its name to “mHand” and change the width to
20 and the height to 250.

The minute hand has the same width as the hour hand, so it gets the
same x offset of 10. Feel free to change the background color of this
object to anything you like as long as it is not the same color as the
minute or hour hands.

Now you should have something that looks like this:

9

10

11

12

13

14

Copyright © Code Ninjas, LLC 31

Make sure the Scene object is selected and select Events and Update
Every Frame. Add this code:

We’re using a special function to give us the current hours, minutes
and seconds and they are turned into the variables, “$this.scene.
second,” “$this.scene.minute,” and “$this.scene.hour.” So how do we
make sure the second hand is in the right place?

Every time the second hand finishes a complete circle around the
clock face it has taken 60 seconds. A circle has 360 degrees, so if we
divide 360 by 60, we get 6, or the exact number of degrees for each
position on the clock face.

The only problem is that the hand is pointing down instead of up (0
degrees in the Game Development Platform is straight down) so we
have to add half of 360, or 180, to the result to get the actual rotation
for the second hand.

Our code is the name of the object, “sHand” followed by the property
“rotation” and the formula of seconds times 6 plus 180 for the
rotation we need.

Now the clock has three hands - a short one for hours, a longer one
for minutes and a long, skinny one for seconds. Each hand has an
origin point at the top of the object so that when we rotate them,
they will turn around the clock as if they were pinned to the center.

Every second, the second hand rotates around the clock face. We
should be able to use the same formula for minutes as we used for
seconds.

16

15

19

//use the value of $this.scene.second times 6 plus 180 to make the
//rotation of the sHand object
sHand.rotation($this.scene.second*6 + 180);

Click on and see what happens.

Click on

17

18

32 Code Ninjas Beginning Javascript - v1r5

Make sure the Scene object is selected and select Events and Update
Every Frame. Add this code:

Make sure the Scene object is selected and select Events and Update
Every Frame. Add this code:

Our clock is almost finished! Let’s take care of the hour hand.

mHand is the name of the minute hand and we use the variable $this.
scene.minute to find out what the current minute is. Everything else
is exactly like the code we used for the second hand.

This formula is a little different from the minutes and seconds. There
are only 12 hours on a clock face, so 360 divided by 12 gives us 30,
which is the rotation for each number on the clock face. The next part
of the formula isn’t really necessary, but since the hour hand on an
analog clock moves a little bit forward each minute, there is a formula
to add that fraction to the rotation. Once again, we add 180 because
the hour hand is pointing down instead of up.

20

24

23

//use the value of $this.scene.minute times 6 plus 180 to make the
//rotation of the mHand object
mHand.rotation($this.scene.minute*6 + 180);

//use the value of $this.scene.hour times 30 plus $this.scene.minute
divided by 2.5 plus 180 to make the rotation of the hHand object
hHand.rotation($this.scene.hour*30 + ($this.scene.minute/2.5) + 180);

Click on and see what happens.

Click on and now you can see what time it is!

Click on

21

25

22

Copyright © Code Ninjas, LLC 33

On the first day, you were introduced to the Game
Development Platform (GDP), how it contains objects, how
those objects have properties and how the objects “listen” for
events to execute instructions written in “code.”

We learned about how the objects are on a stage and that
the stage has an x-axis and a y-axis starting at 0 in the upper
left corner. Objects that are placed on the stage are placed
at x and y locations based on how far they are from the left
edge and top of the stage. Finally, we learned that objects can
be moved on the stage and that the rate of movement and
direction is based on the speed assigned to that object.

BEGINNING JAVASCRIPT

DAY TWO

34 Code Ninjas Beginning Javascript - v1r5

To begin, we will open a scene that has already been set up for
us. Select the Beginning Javascript path. There are a few scenes
available under the “Activities” header. Open the scene, “Conditions,”
by clicking on the “play” button:

The scene looks familiar with a red rectangle right in the middle of
the screen.

If you click on Start Game, the rectangle moves toward the right
side of the screen, just like it did in “Moving Things,” yesterday. Even
though you can’t see it, the rectangle is still going and won’t stop
until you stop the game.

Stop the Game.

Click on the rectangle and click on Events and Update Every Frame.
This is what you will see:

The first thing you will notice is that instead of the rectangle name,
there is “$this.” We could have used the rectangle name and the
rectangle would hav moved just the same. However, by using
“$this,” we are telling the event to apply the code to the object it is
attatched to, in this case, the rectangle. If you had code attached
to a different object, such as the scene, then you would have to use
the object name so that the program knows which object you want
to send the command to. Later on we will see how the program can
create objects with their own code attached and using “$this” will be
essential to making that work.

1

2

3

4

5
//move this object along the x-axis at the default speed
$this.moveX();	

Activity 1

Conditions

Copyright © Code Ninjas, LLC 35

What would we do if we wanted the rectangle to change direction
when it reached the edge of the screen? We would write a command
that would tell the program “if the rectangle is at this location,
then execute this other command.” In javascript, this is known as a
conditional.

Here’s how it works. The statement contains an expression, such
as if(water is wet) and if (and only if) that expression is true, then
execute all of the code that is contained inside the brackets. If the
expression is false, then all of the code in the brackets are ignored.

Most of the time, you will be using a mathematical equation for
your expression, such as 2 > 1, 3 == 3, 4 + 1 <= 5. With that in mind,
how do we check to see if the rectangle is at the far right side of the
stage?

Remember the chart from yesterday where we showed the x-axis and
the y-axis? Looking at the chart, we can see that the far right of the
screen is x:800.

6

7

8

9

//if “water is wet” is true, do the following
if(water is wet){
	 do this	 //whatever command is here gets executed
}

800x-axis

x:78 y:360

y-axis

600

0

36 Code Ninjas Beginning Javascript - v1r5

So if the x of the rectangle is higher than 800, it has reached the right
side of the screen and we need to change the direction.

What would you do to check if the rectangle has reached the left side
of the stage? Try it yourself before going to the next page.

Click on the rectangle, click on Events and select Update Every
Frame. Add this code:

Our expression checks to see where the rectangle is on the stage.
If it is greater than or equal to 800, then the rectangle’s speed x
is changed. Remember, a negative speed goes in the opposite
direction. We’re keeping the speed the same, just changing the
direction.

10

14

11
//if the x value of this object is greater than or equal to 800, do this
if($this.x() >= 800){
	 //make the speedX of this object negative of what it was
	 $this.speedX(-$this.speedX());
}

Start the Game. What does the rectangle do when it reaches the
right edge? Unfortunately, now the rectangle goes off the left edge.

Stop the Game.

12

13

Copyright © Code Ninjas, LLC 37

You would need another conditional, this time checking to see if the
rectangle x value was less than or equal to 0.

So far, we’ve been just moving the rectangle left and right on the
x-axis. What would you do if you also wanted to move it up and down
on the y-axis? Try it on your own before checking the answer on the
next page.

Click on the rectangle, click on Events and select Update Every
Frame. Add this code:

Notice that we’re using the exact same code in both conditionals to
reverse the direction of the rectangle. That’s because the opposite
of a negative number is a positive number and the new speed of the
rectangle would have it going to the right again.

15

19

16
//if the x value of this object is less than or equal to 0, do this
if($this.x() <= 0){
	 //make the speedX of this object negative of what it was
	 $this.speedX(-$this.speedX());
}

Start the Game. Now the rectangle never goes off the stage, always
changing directions when it reaches the edge.

Stop the Game.

17

18

HINT: The stage height is 600.

38 Code Ninjas Beginning Javascript - v1r5

The command to move the rectangle up and down is the same as the
command to move it left and right, except that it is moveY instead of
moveX.

Stop the game and try different values for the speedX and speedY of
the rectangle. Remember, there are three ways that you can adjust
the speed property of an object. See what different speeds does to
the direction that the rectangle travels!

Click on the rectangle, click on Events and select Update Every
Frame. Your code should look something like this:

20

24

21
//move this object along the x-axis at the default speed
$this.moveX();
//if the x value of this object is greater than or equal to 800, do this
if($this.x() >= 800){
	 //make the speedX of this object negative of what it was
	 $this.speedX(-$this.speedX());
}
//if the x value of this object is less than or equal to 0, do this
if($this.x() <= 0){
	 //make the speedX of this object negative of what it was
	 $this.speedX(-$this.speedX());
}

//move this object along the y-axis at the default speed
$this.moveY();
//if the y value of this object is greater than or equal to 600, do this
if($this.y() >= 600){
	 //make the speedY of this object negative of what it was
	 $this.speedY(-$this.speedY());
}
//if the y value of this object is less than or equal to 0, do this
if($this.y() <= 0){
	 //make the speedY of this object negative of what it was
	 $this.speedY(-$this.speedY());
}

Start the Game. 22

Copyright © Code Ninjas, LLC 39

Now it’s time to take what you’ve learned so far and make a game.
Go back to the Beginning Javascript path. Open the scene, “Dodge,”
by clicking on the “play” button:

Your scene will look like this:

The object of the game is to move the ninja from the bottom of the
screen to the green rectangle at the top of the screen while avoiding
the throwing star. If the ninja makes it to the top, he scores a point
and starts again at the bottom. If he is hit by the throwing star, he is
sent back to the bottom without getting any points.

1

2

3

Activity 2

Dodge!

40 Code Ninjas Beginning Javascript - v1r5

The ninja and the throwing star have already been programmed.
Start the Game and move the ninja by using the AWSD keys on your
keyboard. At the moment, nothing happens if the ninja touches the
throwing star or the green rectangle.

Stop the Game.

First of all, how do we detect if the ninja has been hit by the throwing
star? We want to use a conditional, but what do we use for our
expression?

Fortunately, there is a game function in the Game Development
Platform designed specifically for this purpose. It is called
“isTouching” and it is used like this:

Click on the throwing star (shuriken) in the center of the stage and
select Events and click on Update Every Frame and add this:

Just as we are constantly checking to see if the throwing star has
reached the edges of the stage, we now also check to see if the
throwing star object has made contact with the ninja object. Every
time that they touch, the ninja is set back to the starting position at
the bottom of the screen.

4

5

6

7

8

//anytime object1 is touching object2, do the following
if(object1.isTouching(object2){
	 do this	 //execute this command
}

//if this object is touching the ninja object, do the following
if($this.isTouching(ninja)){
	 ninja.x(400);	 //place the ninja object at x:400
	 ninja.y(555);		 //place the ninja object at y:555
}

Copyright © Code Ninjas, LLC 41

Start the Game and see what happens when the ninja is hit by the
throwing star.

Stop the Game.

Click on the green rectangle at the top of the stage and select Events
and click on Update Every Frame and add this:

The game is almost complete, except for one thing. There isn’t any
way to keep track of the score.

To make the score work, we need to create something to store what
the current score is, and then we need to display that information on
the stage.

We will store the score in a variable. A variable is like a container
for numbers, text or anything else you need to keep track of in your
program. Variables can be changed often while the program is being
run. When a command is given that includes a variable, whatever the
variable is holding at that time is used.

Select the green rectangle, click on Events and Initialize When Scene
Starts and add this:

We’re creating a variable called gameScore and everytime the scene
starts, we are setting its value to 0. Now we can use it in all events
that are part of the green rectangle.

9

10

11

12

13

14

15

//if this object is touching the ninja object, do the following
if($this.isTouching(ninja)){
	 ninja.x(400);	 //place the ninja object at x:400
	 ninja.y(555);		 //place the ninja object at y:555
}

$this.gameScore = 0;	 //the variable “gameScore” equals 0

42 Code Ninjas Beginning Javascript - v1r5

Click on the green rectangle and select Events and click on Update
Every Frame and change the code to look like this:

Start the Game and see how quickly you can reach 10 points!

Now every time the ninja reaches the green rectangle, not only is
the ninja being sent back to the bottom, but we are adding 1 to the
gameScore variable. Then we send a command to the score object (a
text object in the upper right of the screen) to change its text to be
whatever is in the gameScore variable.

16

17

if($this.isTouching(ninja)){
 	 ninja.x(400);
 	 ninja.y(555);
	 //”gameScore” is equal to the value of gameScore plus 1
 	 $this.gameScore = $this.gameScore+1;
	 //the text value of the text object “score” is the current value of
	 //”gameScore”
 	 score.text($this.gameScore);
}

Copyright © Code Ninjas, LLC 43

Let’s open a new scene. Go back to the Beginning Javascript path.
The next scene is called “Padlock” Open it by clicking on the “play”
button:

This new scene should look like the image below. By pressing the left
or right arrow keys, we’re going to turn the wheel of the padlock and
confirm the number that is shown on the wheel.

We have learned a little about spin and rotation from the Clock and
Round and Round activities. We will use spin to turn the wheel of
the padlock. But how do we know what number is at the top of the
wheel? We can find that out by using the rotation property of the
wheel.

1

2

3

Activity 3

Padlock

44 Code Ninjas Beginning Javascript - v1r5

Make sure the Scene object is selected and select Events and Update
Every Frame. Add this code:

What do we do with a variable that is true or false? We use it in a
condition. While still in Scene, Events, Update Every Frame. add this
code:

Here we have two variables, leftPressed and rightPressed. Instead
of being given a number or true or false, the values of these two
variables depend on the “isKeyPressed” function. This function
checks to see if the indicated key on the keyboard is being pressed
and if so, the variable is true. If the key isn’t being pressed, the
variable is false.

As long as the left arrow key is being pressed, the condition is true
and the padlock wheel (plWheel) spins counter clockwise.

4

5

//if the left arrow key is pressed, then the variable leftPressed is true
var leftPressed = isKeyPressed(Keys.leftArrow);
//if the right arrow is pressed, then the variable rightPressed is true
var rightPressed = isKeyPressed(Keys.rightArrow);

//if leftPressed is true, then do the following
if(leftPressed){
 plWheel.spin(-40); 	 //spin the object plWheel at a speed of -40
}

Start the Game and turn the wheel by pressing the left arrow key.

Stop the Game.

6

7

Copyright © Code Ninjas, LLC 45

We can use similar code for turnung the wheel to the right. Make
sure the Scene object is selected and select Events and Update Every
Frame. Add this code:

The last thing we need to do is confirm which number is pointing
up on the wheel. We will use rotation for that. While still in Scene,
Events, Update Every Frame. add this code:

Now the left arrow spins the wheel counter clockwise and the right
arrow spins it clockwise.

8

9

//if rightPressed is true, then do the following
if(rightPressed){
 plWheel.spin(40); 	 //spin the object plWheel at a speed of 40
}

//give the variable “wheelNumber” the value of 360 minus the rotation
//value of plWheel divided by 9, rounded to the closest whole number
var wheelNumber = Math.round((360 - plWheel.rotation())/9);

46 Code Ninjas Beginning Javascript - v1r5

The rotation of the wheel is a number between 0 and 360. Since
there are 40 numbers on the wheel (0 and 40 are the same), each
number on the wheel is 9 degrees apart (360 divided by 40 equals
9). When we turn the wheel to the right, it starts counting down
from 40. When we turn the wheel to the left, it counts up from 0. In
order to get the correct number from the wheel’s rotation, we have to
subtract the rotation from 360 and divide the result by 9.

We don’t want any fractions, so we use Math.round to round the
result to the closest whole number.

Start the Game and turn the wheel by pressing the left and right
arrow keys. Do the numbers match up? This is not much of a game
yet, but it has lots of posibilities.

11

We still have to confirm that we have the right number. While still in
Scene, Events, Update Every Frame. add this code:

“lockNumber” is the text object at the top of the screen. When
wheelNumber changes, that number is displayed in the lockNumber
text object.

10
//set the text value of the object “lockNumber” to the value of
//”wheelNumber”
lockNumber.text(wheelNumber);

Copyright © Code Ninjas, LLC 47

Let’s open a new scene. Go back to the Beginning Javascript path.
The next scene is called “Number Match” Open it by clicking on the
“play” button:

This new scene should look like the image below. We’re going to take
what we’ve built with the Padlock and make it into a game where you
have to turn the wheel to match the number given on the left.

In this activity, we’re going to expand on what we know about
conditionals and also learn something about random numbers. Right
now, the number on the wheel shows all the time. We could easily
match the number just by holding down the left or right arrow key
forever. Instead, we want the number to update only when neither
key is being pressed. If the wheel is stopped on the same number as
the match number, then the player scores a point and a new match
number is chosen.

1

2

3

Activity 4

Number Match

48 Code Ninjas Beginning Javascript - v1r5

How do we tell if either key is being pressed? With a condition. Make
sure the Scene object is selected and select Events and Update Every
Frame. Add this code below the “add code here” comment:

You may have noticed that our condition is still open as we have not
closed off the brackets. If we ran the program now, it would not run
correctly because of this error.

4

5

//if either leftPressed OR rightPressed is true, do what follows
if(leftPressed || rightPressed){

Left Statement Operator Right Statement Result
true || false true

true || true true

false || true true

false || false false

true && false false

true && true true

false && true false

false && false false

Remember, a condition checks to see if an expression is true before
executing the code within it. In this case, we have two expressions:
leftPressed and rightPressed with the symbols “||” between them.
The “||” means OR. So if either leftPressed is true or rightPressed is
true, then the whole condition is true. If either button is pressed (or
both buttons) then the code is executed. If neither button is pressed
then the condition is false. Multiple expressions can be combined in
a condition using the “||” (OR) operator or the “&&” (AND) operator.
Refer to the chart below to see how to use these operators to
combine expressions.

Copyright © Code Ninjas, LLC 49

Beneath the code you just entered are the two conditions for
turning the wheel. So if either leftPressed or rightPressed is true, the
program then executes the code for turning the wheel depending on
which key is pressed. But what we really want to know is if neither
key is being pressed. In that case, we expand our condition with an
else statement.

Make sure the Scene object is selected and select Events and Update
Every Frame. Add this code underneath the left and right wheel
turning conditions:

Underneath the “} else {“ statement is the code we used to calculate
and display the wheel number. Below that, we need to add another
bracket to properly close the condition. Your code should look like
this:

Now we can execute one set of commands if either left or right arrow
is pressed and another set if they are not.

6

7

8

//if neither leftPressed or rightPressed is true, do what follows
} else {

if(leftPressed || rightPressed){
	 if(leftPressed){
 		 plWheel.spin(-40);
 	 }
 	 if(rightPressed){
 		 plWheel.spin(40);
 	 }
} else {
 	 var wheelNumber = Math.round((360 - plWheel.rotation())/9);
 	 if(wheelNumber === 0){
 		 lockNumber.text(“0”);
 	 } else {
 		 lockNumber.text(wheelNumber);
 	 }
}	 //close off the bracket

50 Code Ninjas Beginning Javascript - v1r5

The code for displaying the wheelNumber has changed a little bit. In
JavaScript, the number 0 by itself is not displayed, so we have to trick
it by telling it to display the character “0” instead. Again, we are using
an “else” statement so that if wheelNumber equals 0, we will display
“0” and if it equals anything else, we display that number.

Start the Game. Notice that the number for the wheel above the lock
is only updated when the wheel is not being turned.

Stop the Game.

9

10
We still need to check to see if the lockNumber matches the
matchNumber. While still in Scene, Events, Update Every Frame. add
this code before the last bracket of our condition statement:

11

//if the value of matchNumber equals the value of wheelNumber, do
//the following
if($this.scene.matchNumber == wheelNumber){
	 //add 1 to the total value of gameScore
	 $this.scene.gameScore = $this.scene.gameScore + 1;
	 //update the scoreNumTxt object	
 	 scoreNumTxt.text($this.scene.gameScore);	 	
	 //let matchNumber be a new random number between 0 and 39,
	 //rounded to the closest whole number
	 $this.scene.matchNumber = Math.round(random(39,0));
}

Copyright © Code Ninjas, LLC 51

Every time there is a correct match, we add one to the score and
display it. Then we need to select a new value for matchNumber.
To do this, we use a function called random to automatically pick
a number inside the range we specify for it. In this case we want a
number between 0 and 39. In JavaScript, random numbers include
fractions, so we use Math.round on the result to round it to the
nearest whole number.

Start the Game. See how quickly you can get a score of 10!12

52 Code Ninjas Beginning Javascript - v1r5

So far we’ve learned how to move things on the stage, how to
check when certain conditions are met and we built our first
game.

Now that you know the basics, we will be introducing some
new ways to make games with Javascript. Don’t worry, all we
are doing is building on what you already know, giving you
more options to make the objects on the stage do what you
want them to do.

BEGINNING JAVASCRIPT

DAY THREE

Copyright © Code Ninjas, LLC 53

Select the Beginning Javascript path. Open the scene, “Buttons” by
clicking on the “play” button:

Your scene will look like the image below. When you click on any
of the buttons, something happens to the star in the middle. The
change color and reset buttons work, but the other buttons don’t do
anything.

Let’s start by looking at the star. Click on it and click on Events and
Update Every Frame. You should see this code:

1

2

3
//move this object along the x-axis at the rate of speedX
$this.moveX($this.speedX());
//spin this object at the rate of “spinSpeed”
$this.spin($this.spinSpeed);

Activity 1

Buttons

54 Code Ninjas Beginning Javascript - v1r5

Why isn’t the star moving? Remember, the object moves or spins at
the rate it has been given and at the moment, that rate is 0. We can
use the buttons to change that rate to what ever we want.

Clicking on the Move Left button changes the star’s speedX to -150
and it moves left. What about the Move Right button?

Click on the “Move Left” button in the upper left corner. Make sure
you have the object named “Left” selected - you may have to click on
the button a second time to select it. Click on Events and choose the
Mouse Click event from the pull down menu. Add this code:

Start the game. What happens?

Start the game and click on the Move Left button. Does the star
move?

Stop the game.

Stop the game.

Every frame the star is told to move along the x-axis and spin.

6

10

7

4

8

5

9

//make the value of the star object’s speedX -150
star.speedX(-150);

Copyright © Code Ninjas, LLC 55

Click on the “Move Right button in the lower left corner. Make sure
you have the object named “Right” selected - again, you may have
to click on the button a second time to select it. Click on Events and
choose the Mouse Click event from the pull down menu. Add this
code:

Can you guess what you need to do to make the buttons that spin
the star work? Remember that the star already has a spin command,
but the variable is set to 0. Think about it and try it on your own
before turning the page.

Now you should be able to make the star move left and righ by
clicking on the buttons. Let’s try it out.

11

14

//make the value of the star object’s speedX 150
star.speedX(150);

Start the game and click on either of the move buttons.

Stop the game.

12

13

56 Code Ninjas Beginning Javascript - v1r5

Click on the “Clockwise” button in the upper middle. Make sure you
have the object named “Clockwise” selected - again, you may have
to click on the button a second time to select it. Click on Events and
choose the Mouse Click event from the pull down menu. Add this
code:

Let’s finish this up by clicking on the “Counter-Clockwise” button
in the lower middle. Make sure you have the object named
“counterClockwise” selected - again, you may have to click on the
button a second time to select it. Click on Events and choose the
Mouse Click event from the pull down menu. Add this code:

15

16

//make the value of “star.spinSpeed” equal to 70
star.spinSpeed = 70;

//make the value of “star.spinSpeed” equal to -70
star.spinSpeed = -70;

Start the game and try all of the buttons.

The change color button uses a special function to randomly select
colors. Clicking on that button uses the function. Can you guess how
the reset button works? After you stop the game, take a look at the
Mouse Click event for that object and see what it does. Did you guess
right?

17

18

Copyright © Code Ninjas, LLC 57

Select the Beginning Javascript path. Open the scene, “Ricochet,” by
clicking on the “play” button:

Your scene will look like the image below. The goal is for the ninja to
hit the bug by throwing the throwing star. Since there’s a wall in the
way, the ninja will have to bounce it off the sides to reach the bug.

Most of the programming is already set up for moving the throwing
star and for when the bug is hit by the throwing star. When the game
is being played, the throwing star is positioned behind the ninja. But
we have placed it above the ninja so you can see it and select it.

1

2

3

Activity 2

Ricochet

58 Code Ninjas Beginning Javascript - v1r5

Select the throwing star and click on Events and Initialize When
Scene Starts. Inside the event are two variables. The first is called
“bounceCount” and it is used to keep track of how many walls the
throwing star bounces off of. We are starting it at 0. When the star
hits three walls, it is returned to the ninja.

Why did we make a variable that is only true or false? Remember
that a conditional uses an expression that must be true or false. This
way, any other object in the scene can immediately see if the star is
thrown or not and execute code depending on the result.

What we want to do is click on the scene and send the star traveling
in the direction of where we clicked, but ONLY if the star has not
been thrown yet.

Make sure the scene is selected by double clicking on any object
in the scene. Click on Events and Mouse Click. As you might
have guessed, Mouse Click is an event that is triggered each time
someone clicks on that object - in this case, the scene.

The second variable is a little different for two reasons. The first
reason is that we are making it part of the star object by adding
“$this.” to the variable name. This way, other objects in the scene
can refer to the variable by looking at “star.thrown.” By setting this
variable to equal “false,” we are limitting it to only two values -
thrown can either be “true” or “false,” nothing else.

4

5

6

7

$this.bounceCount = 0;	 //the variable “bounceCount” is equal to 0
//this object has a variable called “thrown” with a value of false
$this.thrown = false;

Copyright © Code Ninjas, LLC 59

The first thing we want to do is check if the star has been thrown or
not. So we will start with a conditional. Add this to the event:

If star.thrown is false, then we find out where the player clicked and
use that to set up the direction of the throwing star. Add this code:

The next step is to compare where the player clicked with the
location of the ninja, which is where the star always starts.
Remember, a negative speed goes up and to the left while a positive
speed goes down and to the right. By subtracting the x and y of pos
from the x and y of the ninja, we get the speedx and speedy for the
star.

Underneath the code you just entered, add this:

So if you click to the left of the ninja, the star’s speedX is a negative
number and the star uses that speed with a moveX command to
move to the left. If you click to the right of the ninja, the star moves
to the right. Same for clicking above the ninja with the y value. No
matter where you click, the combined speedX and speedY of the
star will send it in that direction. The last command changes the star.
thrown variable to true, meaning that the star can now move.

We’re creating a variable called “pos” and using “getPointerPos()” to
give the current x and y of the pointer to the variable.

8

9

10

11

//if the variable star.thrown is false, then this condition is true and any
//code that follows is executed.
if(star.thrown === false){

//the x and y values of the pointer are given to the variable “pos”
var pos = getPointerPos();

 	 //speedX of the object star is the x value of pos minus the x
	 //value of the ninja object
	 star.speedX(pos.x() - ninja.x());
	 //speedY of the object star is the y value of pos minus the y
	 //value of the ninja object
 	 star.speedY(pos.y() - ninja.y());
	 //the variable called “thrown” in the star object is now true
 	 star.thrown = true;		
}

60 Code Ninjas Beginning Javascript - v1r5

Here’s what the completed code should look like:

Start the Game and click where you want the star to go. If it doesn’t
hit the bug after hitting three walls, you can try again.

You may have noticed that once you learn where to position the
pointer to hit the bug, you can keep hitting the bug without moving
the pointer again. We can make this a little more interesting by
making the bug move to a different position each time it is hit.

Select the bug and select Events and Update Every Frame. We have
already programmed the bug to change a variable called “move”
from false to true every time the bug is hit. Let’s use that variable in a
condition. Add this code:

Stop the Game.

12

13

15

16

14

if(star.thrown === false){
 	 var pos = getPointerPos();
 	 star.speedX(pos.x() - ninja.x());
 	 star.speedY(pos.y() - ninja.y());
 	 star.thrown = true;
}

//if “move” is true, execute the following code
if($this.move){
 	 //change the x value of this object to a random number from
	 //250 to 550
	 $this.x(random(550,250));
	 //change the y value of this object to a random number from
	 //50 to 200
 	 $this.y(random(200,50));
 	 $this.move = false;		 //the variable “move” is now false
}

Copyright © Code Ninjas, LLC 61

Start the Game and see what happens when the bug is hit. Now the
game should be a little bit more challenging.

Every time the bug is hit, it changes the “move” variable to true,
which generates random x and y positions for the bug. The random
numbers are in a range to keep the bug mostly behind the yellow
wall. Finally, the move variable is set to false until the next time the
bug is hit.

17

62 Code Ninjas Beginning Javascript - v1r5

So far we have been using moveX and moveY to move objects on
the stage. But we can also steer an object and move it where it is
pointing as you will see in this next game. Go back to the Beginning
Javascript path. Open the scene, “Driving” by clicking on the “play”
button:

Your scene will look like this:

In this game, the coin moves to a random location in the stage. You
must then steer the car by using the left and right arrow keys and
make it move forward by pressing the up arrow key to pick up the
coin. You score a point and the coin moves to another location.

1

2

3

Activity 3

Driving

Copyright © Code Ninjas, LLC 63

Let’s set up the arrow keys to steer the car. Click on the car, click on
Events and Update Every Frame and add this code:

With that in mind, we can easily come up with a conditional for each
key. Add this code:

So how exactly do we get the car to turn? Every object has a rotation
property that has a value from 0 to 360. A positive rotation turns
the object clockwise, a negative rotation turns the object counter-
clockwise. The center of the rotation is the object’s origin point,
which is the upper left corner of the object.. We have moved the
car’s origin point to the center of the car by adjusting the car’s offset
properties. To actively turn an object every frame, we must tell it to
spin.

Everytime you press one of those keys, the variable is given a value of
true. Otherwise, it is false.

4

5

6

//when the left arrow is pressed, “leftPressed” is true
var leftPressed = isKeyPressed(Keys.leftArrow);
//when the right arrow is pressed, “rightPressed” is true
var rightPressed = isKeyPressed(Keys.rightArrow);
//when the up arrow is pressed, “upPressed” is true
var upPressed = isKeyPressed(Keys.upArrow);

//if “leftPressed” is true, do the following
if(leftPressed){

}

//if “rightPressed” is true, do the following
if(rightPressed){

}

//if “upPressed” is true, do the following
if(upPressed){

}

64 Code Ninjas Beginning Javascript - v1r5

So when the right arrow is pressed, we want to spin the car clockwise
and when the left arrow is pressed, we want to spin the car counter-
clockwise. Add this to your code:

Start the Game and use the left and right arrow keys to turn it left
and right.

Stop the Game.

The number tells the object how fast to spin. A larger number makes
it spin faster.

7

8

9

if(leftPressed){
	 //as long as leftPressed is true, spin this object at the rate of -40
	 $this.spin(-40);
}

if(rightPressed){
	 //as long as rightPressed is true, spin this object at the rate of
	 //40
	 $this.spin(40);
}

Copyright © Code Ninjas, LLC 65

Now that we can steer the car, it is time to move it forward. There is
a command called moveForwardByRotation that takes the current
rotation of the object and moves it in that direction. Select the car,
click on Events and Update Every Frame and add this code:

10

if(upPressed){
	 //as long as upPressed is true, move this object in the direction
	 //it is rotated
	 $this.moveForwardByRotation();

}

Start the Game and take the car for a spin! What happens when you
drive off the edge?

Stop the Game.

11

12
It’s kind of hard to steer a car when you can’t see it. Instead, if the car
goes off the edge of the scene, let’s have it reappear on the other
side. Select the car, click on Events and Update Every Frame and add
this code:

13

if($this.y()>600){	 //if this object’s y value is greater than 600
 $this.y(0);		 //place this object at y:0
}

if($this.y()<0){	 //if this object’s y value is less than 0
 $this.y(600);	 //place this object at y:600
}

if($this.x()>800){	 //if this object’s x value is greater than 800
 $this.x(0);		 //place this object at x:0
}

if($this.x()<0){	 //if this object’s x value is less than 0
 $this.x(800);	 //place this object at x:800
}

66 Code Ninjas Beginning Javascript - v1r5

We still need to set up the coin to move to a new location and
increase the score when the car touches it.

Select the coin and select Events and Update Every Frame. Add this
code:

Start the Game and see how long it takes you to collect 25 coins!

14

15

16

//if this object is touching the carHit object, do the following
if($this.isTouching(carHit)){
	 //place this object at a random x location between 0 and 750
 	 $this.x(random(750,0));
	 //place this object at a random y location between 0 and 550
 	 $this.y(random(550,0));
 	 $this.score +=1;//add 1 to the total value of the “score” variable
	 //update the text object “labelScore” with the value of “score”
 	 labelScore.text($this.score);
}

Copyright © Code Ninjas, LLC 67

One thing you might not have noticed about the Game
Development Platform is that everything happens as soon as
it can. The code is executed for all objects and only waits if
conditions for triggering an action have not yet been met. To
force the program to wait, we must create a timer.

Also, in today’s activities we will be re-using objects by making
copies of them with clone. And finally, we let the computer
do a little bit of the work for us by letting it create random
numbers.

BEGINNING JAVASCRIPT

DAY FOUR

68 Code Ninjas Beginning Javascript - v1r5

Select the Beginning Javascript path. Open the scene, “Space Flight”
by clicking on the “play” button:

Your scene will look like the image below. In this activity, we’re going
to have this spaceship fly through an endless field of stars and give
you the ability to make it climb or dive.

Notice the white dot in the upper right corner? We’re going to tell the
Game Development Platform to copy it over and over again to make a
field of stars. To do so, we will be using the clone command.

1

2

3

Activity 1

Space Flight

Copyright © Code Ninjas, LLC 69

With the scene selected, click on Events and Initialize When Scene
Starts. You will see this code:

As we mentioned before, we want to make a clone of the star. Add
this line right under the second line:

The first line makes sure that the code only runs when the game is
actually being played and not while it is stopped. The second line is a
timer that executes any code that follows every 0.2 seconds. We’ll be
explaining timers a little bit later. Right now, we’re concerned with the
code that the timer executes.

4

5

//Wait until the game has started before doing anything
if($this.scene.state() == “PLAY”){
	 //the createTimer function executes the following code every
	 //0.2 seconds (200 milliseconds)
 	 createTimer(200, function(){

 	 });
}

//the variable “nstar” represents a clone of the star object
var nstar = star.clone();

70 Code Ninjas Beginning Javascript - v1r5

The only properties our cloned stars need are an x and y location, and
a speed. Add this underneath the code you just entered:

As you can see, each cloned star begins on the right side of the stage
at x: 800. However, the y and speedX values are a little different.
Instead of giving a specific number, we are telling the program to pick
a random number for us between the highest value and the lowest
value. So the clone y will be somewhere between 0 and 600 and the
clone speedX will be somewhere between 100 and 700.

What this line does is create a clone of the object “star” and we’re
using the variable nstar to give properties to that clone. Every 0.2
seconds, a new clone will be made and each new clone will be
assigned to the same variable. How does that work? The properties
for each clone belong to that clone only, even after a new clone is
made.

6
//place the cloned object at x:800
nstar.x(800);
//place the cloned object at a random y location between 0 and 600
nstar.y(random(600,0));
//give the cloned object a random speedX between 100 and 700
nstar.speedX = random(700,100);

Copyright © Code Ninjas, LLC 71

The star itself has instructions to move based on its speedX and
every clone will have those instructions as well. Start the Game. Now
the stars are moving from right to left and making the rocket look like
it’s flying.

Stop the Game.

We want the rocket to dive and climb as it flies through space. Select
the rocket, select Events and Update Every Frame. Add this code:

Remember, getPointerPos gets the location in the scene of where
ever the pointer is. However, if the pointer is outside of the scene,
then there is no data for the function to get.

7

8

9
//assign the current x and y values of the pointer to the variable “pos”
var pos = getPointerPos();

If there is no data, the program will give us an error. To avoid that, add
this line under what you just entered:

This way, the next part of code will only be executed if there actually
is a value for pos.

10
//if “pos” has a value, execute the following code
if(pos){

72 Code Ninjas Beginning Javascript - v1r5

If the pointer is above the rocket, we want to move it up. If it is below
the rocket, we want to move it down. Let’s start with moving it up.
Add this beneath the code you just entered:

Remember, if we want to move something upwards, it needs a
negative speedY. The remainder of the code rotates the rocket
upwards based on how far the pointer is from the rocket. This makes
the climbing of the rocket look more natural.

11

//if the y value of “pos” is less than the y value of this object, do this
if(pos.y < $this.y()){
	 //move this object on the y axis at a rate of negative speedY
 	 $this.moveY(-$this.speedY());
	 //the value of variable “rot” is the difference between pos.y and this
	 //object’s y, divided by 4
 	 var rot = (pos.y-$this.y())/4;
	 //if the value of “rot” is less than -35, do this
 	 if(rot < -35){
 		 rot = -35;	 //the value of “rot” is -35
 	 }
 	 $this.rotation(rot); //rotate this object by the value of “rot”
}

Copyright © Code Ninjas, LLC 73

Now to move the rocket down. We’ll be using the same code, but
using a positive speedX instead. Add this code beneath the code you
just entered and don’t forget to close off your brackets!

Start the game. Notice how the rocket climbs and dives as you move
the pointer? But flying alone in space isn’t very exciting. We’ll make
things more interesting in the next activity.

12

13

	 //if the y value of “pos” is greater than the y value of this object, do
	 //do the following
	 if(pos.y > $this.y()){
		 //move this object on the y axis at a rate of speedY
 		 $this.moveY($this.speedY());
		 //the value of variable “rot” is the difference between pos.y
		 //and this object’s y, divided by 4
 		 var rot = (pos.y-$this.y())/4;
		 //if the value of “rot” is greater than 35, do this
 		 if(rot > 35){
 			 rot = 35;	 //the value of “rot” is 35
 		 }
 		 $this.rotation(rot); //rotate this object by the value of “rot”
 	 }
}

74 Code Ninjas Beginning Javascript - v1r5

Go back to the Beginning Javascript path. Open the scene, “Space
Rescue” by clicking on the “play” button:

Your scene will look like this:

In addition to what was added in the Space Flight game, there are
now two new objects plus a score display. In this game, the goal is
to rescue the astronauts by flying into them with your rocket while
avoiding the blue rockets.

1

2

3

Activity 2

Space Rescue

Copyright © Code Ninjas, LLC 75

Make sure the scene (“Space Rescue”) is selected either by double
clicking anywhere in the scene or by selecting it from the GAME
OBJECTS menu in the lower left corner. Just as we did with the stars
in the Space Flight game, we’re going to make clones of the bad
ship and the astronaut. Let’s start with the bad ship. With the scene
selected, click on Events and Initialize When Scene Starts and add
this below the code for the starTimer:

Next is the astronaut. With the scene selected, click on Events and
Initialize When Scene Starts and add this below the code for the
shipTimer:

4

5

 	 //the variable “shipTimer” is a timer that every two seconds does this
	 shipTimer = createTimer(2000, function(){
		 //nship is a new clone of the badShip object
 		 var nship = badShip.clone();
		 //place this clone at x:850
 		 nship.x(850);
		 //place this clone at a random y value between 50 and 550
 		 nship.y(random(550,50));
		 //set the speedX of this clone at -200
 		 nship.speedX(-200);
		 //make this clone visible
 		 nship.visible(true);
 	 });

 	 //the variable “astroTimer” is a timer that every 5 1/2 seconds does this
 	 astroTimer = createTimer(5500, function(){
		 //nastro is a new clone of the flyingNinja object
 		 var nastro = flyingNinja.clone();
		 //place this clone at x:900
 		 nastro.x(900);
		 //place this clone at a random y value between 100 and 500
 		 nastro.y(random(500,100));
		 //set the speedX of this clone at -100
 		 nastro.speedX(-100);
		 //make this clone visible
 		 nastro.visible(true);
 	 });

76 Code Ninjas Beginning Javascript - v1r5

Now there are three createTimer commands, each with their own
name so that they each act independently. The first timer should look
familiar. It’s the code to move the stars. The second timer clones a
blue ship every 2 seconds (2000 milliseconds) and the last one clones
a pink ninja every 5 and a half seconds. And each timer will be doing
this again and again as long as the game is running.

Copyright © Code Ninjas, LLC 77

Select the blue rocket, click on Events and Update Every Frame and
add this:

In the first line, we check to see if the blue rocket is visible. Making
the clone visible is the last thing we do when the clone is created.
If it’s vixible, we move it based on it’s speedX. All of the stars have
different speeds, but we’re keeping this one constant. Then we check
to see if the rocket has moved off the left side of the scene. If so, we
use the remove command to destroy the clone - we don’t need it any
more. Also, if the blue rocket is touching the hit area of the orange
rocket (rocketHit), we remove them both, ending the game. Stay
away from the blue rockets, okay?

6
//as long as this object is visible, do the following
if($this.visible()){
 	 $this.moveX();	 //move this object on the x-axis at speedX
}

//if this object has an x value less than -50, do this
if($this.x() < -50){
 	 $this.remove();	 //remove this object
}

//if this object is touching the rocketHit object, do the following
if($this.isTouching(rocketHit)){
 	 $this.remove();	 //remove this object
 	 rocket.remove();	 //remove the rocket object
	 //reset all of the running timers
	 $this.scene.cleanupTimers();
}

78 Code Ninjas Beginning Javascript - v1r5

Start the game. Now there are blue rockets flying towards you. Use
the mouse to move your ship out of the way.

You might be wondering what is a hit area and how does the orange
rocket have one? If we look at the orange rocket the way isTouching
sees it, we would see a large rectangle that stretches out to contain
all of the rocket, even the parts that are empty. And when the
rocket rotates, that rectangle gets even larger. Behind the rocket is a
rectangle called “rocketHit.” It is smaller than the rocket so that other
objects have to get closer to rocketHit before the isTouching function
shows that they are in contact. Every frame, rocketHit is always in the
same location as the rocket. You don’t see it, but it helps make the
game more fun.

Stop the game.

8

7

9
We need do the same thing for our astronaut. Click on it, click on
Events and Update Every Frame and add this:10

//as long as this object is visible, do the following
if($this.visible()){
 	 $this.moveX();	 //move this object on the x-axis at speedX
 	 $this.spin(40);	 //spin this object at the rate of 40
}

//if this object has an x value less than -100, do this
if($this.x() < -100){
 	 $this.remove();	 //remove this object
}

//if this object is touching the rocketHit object, do the following
if($this.isTouching(rocketHit)){
 	 $this.remove();	 //remove this object
	 //take score.text, convert it to a number, add 1 to that number
	 //and have score.text display that new number.
 	 score.text(parseInt(score.text()+1));
}

Touching Not Touching

Copyright © Code Ninjas, LLC 79

This looks a lot like the code for the blue rocket with a couple of
exceptions. First, we’re telling the astronaut to spin in addition to
moving. Spin makes the object rotate around it’s origin point. A
positive number spins it to the right (clockwise) and an negative
number spins it to the left (counter-clockwise). We still remove
the clone if it touches the rocket or leaves the edge of the scene.
However, when it touches the rocket, we also increase the score
by one. Since “score” is a text object, by giving it a text command,
we can change what it displays. What we’re doing is taking what
is already in score, converting it to a number, and adding 1 to that
number before displaying the new number as text.

Start the game. Try to rescue some astronauts. Does it look like
they’re disappearing before they touch the rocket?

Stop the game.

11

12
When detecting if the astronaut is touching the rocket, the code is
counting a lot of empty space outside of the astronaut as part of
the astronaut. However, we know that the front end of the rocket is
always at x:367. We can use that to make things a bit more precise.

13

80 Code Ninjas Beginning Javascript - v1r5

Click on the astronaut, click on Events and Update Every Frame and
add this:

The && tells the if statement not to do anything unless both
arguments are true. So even if the astronaut is touching the rocket,
nothing happens until it is both touching the rocket and past the
nose of the rocket at x:367.

Start the game. See how many astronauts you can rescue!

14

15

if($this.visible()){
 	 $this.moveX();
 	 $this.spin(40);
}

if($this.x() < -100){
 	 $this.remove();
}

//only do the following if this object’s x value is less than 367 AND this
//object is touching the rocket object
if($this.x() < 367 && $this.isTouching(rocketHit)){
 	 $this.remove();
 	 score.text(parseInt(score.text()+1));
}

Copyright © Code Ninjas, LLC 81

Go back to the Beginning Javascript path. Open the scene,
“Combination” by clicking on the “play” button:

Your scene will look like this:

This game is a bit of an expansion to the “Number Match” game. In
this game, you have to spin the wheel in the proper direction (right or
left) to match each of the three numbers and unlock the safe. If you
get any of the three numbers wrong, you have to start over.

The first thing to do is randomly select 3 numbers for our
combination at the start of the game.

1

2

3

4

Activity 3

Combination

82 Code Ninjas Beginning Javascript - v1r5

Make sure the scene (“Combination”) is selected either by double
clicking anywhere in the scene or by selecting it from the GAME
OBJECTS menu in the lower left corner. With the scene selected, click
on Events and Initialize When Scene Starts and add this:

Creating the random numbers should look familiar from the “Number
Match” game. But what about the next 3 lines? We are adding
the letter “R” or “L” to our matchnumbers to tell the player which
direction to turn the wheel. When we want to combine text and the
value of a variable, we simply use a “+” to add them together. When
doing this, remember that the program ignores any spaces unless
they are inside quotes like this: “ “

5

//make sure the game has started before executing the following code
if($this.scene.state() == “PLAY”){
	 //choose a random number between 0 and 39 for
	 //“matchNumber1”
 	 $this.matchNumber1 = Math.round(random(39,0));
	 //choose a random number between 0 and 39 for
	 // “matchNumber2”
 	 $this.matchNumber2 = Math.round(random(39,0));
	 //choose a random number between 0 and 39 for
	 //“matchNumber3”
 	 $this.matchNumber3 = Math.round(random(39,0));

 	 //have the text object “match_1” display “R “ and the value of
	 //matchNumber1
	 match_1.text(“R “+$this.matchNumber1);
	 //have the text object “match_2” display “L “ and the value of
	 //matchNumber2
 	 match_2.text(“L “+$this.matchNumber2);
 	 //have the text object “match_3” display “R “ and the value of
	 //matchNumber3
 	 match_3.text(“R “+$this.matchNumber3);
	 //variable “numMatch” is equal to 1
 	 $this.numMatch = 1;
}

Copyright © Code Ninjas, LLC 83

//this part of the code is already written
if(leftPressed || rightPressed){

 	 if(leftPressed){
 		 plWheel.spin(-40);
		 //add this code to set the value of variable “direction” to
		 //”L”
 		 $this.direction = “L”;
 	 }
 	 if(rightPressed){
 		 plWheel.spin(40);
		 //add this code to set the value of variable “direction” to
		 //”R”
 		 $this. direction = “R”;
 	 }
	 //add this code to set the value of variable “turning” to true
	 $this.turning = true;

} else {

In the “Number Match” game, we only had one random number to
check for a match and when that match was made, we simply forgot
about it and made a new random number. However, we can’t do that
in this game. We have to have some way of telling the computer
which number the player is attempting to match. Also, we need to
know if they are turning the wheel right or left.

With the scene still selected, click on Events and Update Every
Frame. Here the code used in “Number Match” is still there, ready
for us to modify it for the new game. Inside the “if(leftPressed ||
rightPressed)” statement, add this to the code:

6

7

84 Code Ninjas Beginning Javascript - v1r5

Now we determine if the player has matched the first number. With
the scene still selected, click on Events and Update Every Frame.
Below the “} else {“ statement is the code we used to find where the
wheel was pointing. Beneath that, add this to the code:

When the player presses the left arrow key, the value of “direction” is
“L” and when they press the right arrow key, the value of “direction”
is “R.” Variables can contain words just as easily as they contain
numbers. Lastly, when the player presses either arrow key, the value
of “turning” is true. Now we know if the player has turned the wheel
and what direction they turned it.

8

//this part of the code is already written
} else {

 	 var wheelNumber = Math.round((360 - plWheel.rotation())/9);

 	 if(wheelNumber === 0){
 		 lockNumber.text(“0”);
 	 } else {
 		 lockNumber.text(wheelNumber);
 	 }

	 //add this code
 	 //if the value of “numMatch” is equal to 1, do this
 	 if($this.numMatch == 1){
		 //if the wheelNumber equals matchNumber1 AND the
		 //value of “direction” is “R”, do the following
 		 if(wheelNumber == $this.matchNumber1 && $this.direction == “R”){
 			 //have the light_1 sprite display frameIndex 1,
			 //turning it from red to green.
			 light_1.frameIndex(1);
			 //numMatch is now equal to 2, setting it up for
			 //the second number in the combination
 			 $this.numMatch = 2;
			 //turning is now false because the player needs to
			 //turn the wheel again
 			 $this.turning = false;
		 //if wheelNumber and matchNumber1 do not match OR
		 //the value of “direction” is not “R”, do this
 		 } else {
			 //have the light_1 sprite display frameIndex 0,
			 //making it red
 			 light_1.frameIndex(0);
 		 }
 	 }

Copyright © Code Ninjas, LLC 85

We will be using very much the same code for matching the second
and third numbers of the combination.

If the value of “numMatch” is 1, then check to see if the wheelNumber
is equal to matchNumber1 AND if the value of “direction” is “R” then
the player has successfully pressed the right arrow key and stopped
it on the correct number. We show that they’ve made a match by
turning the light from red to green and advance “numMatch” to 2 so
the user can turn the wheel and match the next number.

9

86 Code Ninjas Beginning Javascript - v1r5

Beneath the code you just entered, add this:10
 	 //if the value of “numMatch” is equal to 2 AND “turning” is
	 //true, do this
 	 if($this.numMatch == 2 && $this. turning){
		 //if the wheelNumber equals matchNumber2 AND the
		 //value of “direction” is “L”, do the following
 		 if(wheelNumber == $this.matchNumber2 && $this. direction == “L”)
{
 			 //have the light_2 sprite display frameIndex 1,
			 //turning it from red to green.
			 light_2.frameIndex(1);
			 //numMatch is now equal to 3, setting it up for
			 //the third number in the combination
 			 $this.numMatch = 3;
			 //turning is now false because the player needs to
			 //turn the wheel again
 			 $this.turning = false;
		 //if wheelNumber and matchNumber2 do not match OR
		 //the value of “direction” is not “L”, do this
 		 } else {
			 //have the light_1 sprite display frameIndex 0,
			 //making it red
 			 light_1.frameIndex(0);
			 //have the light_2 sprite display frameIndex 0,
			 //making it red
 			 light_2.frameIndex(0);
			 //numMatch is now equal to 1, forcing the player
			 //to start over
 			 $this.numMatch = 1;
 		 }
 	 }

Copyright © Code Ninjas, LLC 87

Beneath the code you just entered, add this:11
 	 //if the value of “numMatch” is equal to 3 AND “turning” is
	 //true, do this
 	 if($this.numMatch == 3 && $this.turning){
		 //if the wheelNumber equals matchNumber3 AND the
		 //value of “direction” is “R”, do the following
 		 if(wheelNumber == $this.matchNumber3 && $this.direction == “R”){
 			 //have the light_3 sprite display frameIndex 1,
			 //turning it from red to green.
			 light_3.frameIndex(1);
		 //if wheelNumber and matchNumber3 do not match OR
		 //the value of “direction” is not “R”, do this
 		 } else {
			 //have the light_1 sprite display frameIndex 0,
			 //making it red
 			 light_1.frameIndex(0);
			 //have the light_2 sprite display frameIndex 0,
			 //making it red
 			 light_2.frameIndex(0);
			 //have the light_3 sprite display frameIndex 0,
			 //making it red
 			 light_3.frameIndex(0);
			 //numMatch is now equal to 1, forcing the player
			 //to start over
 			 $this.numMatch = 1;
 		 }
 	 }
}

88 Code Ninjas Beginning Javascript - v1r5

Start the game. How quickly can you solve the combination?

Right now, there’s nothing you can do when you match the last
number of the combination. What if you could get a new 3 number
combination by turning the wheel after completing a combination?

12

Bonus Step

Copyright © Code Ninjas, LLC 89

By this time you should have a good understanding of how
you can use JavaScript to make all kinds of computer games.
Keep in mind that even the most complicated game can be
broken down to basic statements and conditions. A computer
sees something as either true or false. There’s nothing in
between.

Today’s activity has you defending a base against incoming
missiles that get faster and faster. Let’s get started.

BEGINNING JAVASCRIPT

DAY FIVE

90 Code Ninjas Beginning Javascript - v1r5

Select the Beginning Javascript path. Open the scene, “Missile
Defense” by clicking on the “play” button:

When we’re done, your scene will look something like the image
below. Your goal will be to use the mouse to aim the gun to shoot
down the incoming missiles before they hit the ground. But right
now, the scene is empty. Let’s build our scene.

1

2

Right now, the stage is empty. Let’s add our first object. Click on the
Search Assets menu You will see something like this: 3

Activity 1

Missile Defense

Copyright © Code Ninjas, LLC 91

Select the “Backgrounds” menu on the left and search for the “Red
Sky Background” and click on “add” and close the Search Assets
menu by clicking on the X in the upper right corner. The background
image is placed in the middle of the stage.

The background isn’t meant to be in the middle of the stage. Select
the background, select properties and change it so that it is at x:0,
y:0, and z:0

By now you should have a good understanding of x and y, but what
is z? Imagine that your computer monitor is z:0. Then start stacking
things up so that there are more and more things between the
computer monitor and your face. The things closest to your face are
farthest from the monitor (which is z:0) so they have a higher z value.
The background is as far back as we want to stack things so it is z:0.
Everything that we want to be stacked in front of the background are
z:1, z:2 and so on.

4

5

92 Code Ninjas Beginning Javascript - v1r5

Next we want to add what we’re going to be shooting at the missiles.
Click on the Search Assets menu again and this time, choose
“Things” from the menu on the left and search for “shot.” Click on add
to add it to the scene, but don’t close the search assets menu yet. We
have a couple more things to add.

Also in the “Things” menu is “Gun Barrel.” Add that to your scene and
find “missile” and add that to your scene. Finally, search for “Turret”
and add that to your scene. Now you can close the Search Assets
menu.

Now you have a bunch of assets in the middle of your stage. Time to
move them where they belong. The Turret should be the last object
you added, so select that and under properties, change the x to 349
and the y to 500. Leave the z as it is.

The missile is going to be doing a lot of flying around, so where it
goes isn’t critical. Just drag it to the upper right of the screen so it’s
out of the way.

All that’s left are the gun and the shot which will be placed behind
the turret. Since you added them to the scene before the turret, they
should already have a lower z than what the turret has.

Both the gun and the shot need to be at the same location on the
stage. So click either one of them, set that object’s properties to x:
400 and y: 543 and then do the same for the other object.

6

7

8

9

10

11

Copyright © Code Ninjas, LLC 93

If the turret object is not in front of the gun and the shot, then select
it and give it a higher value for z.

Now it’s time to make our game work. Let’s start by selecting the
gun object. If you have difficulty selecting it from the stage, use the
GAME OBJECTS menu to select it.Click on Events and Update Every
Frame and add this code:

What does that do? Start the Game and move the cursor around the
stage. The gun barrel follows the cursor as long as it is on the stage.

Stop the Game.

The gun fires the shot, but we haven’t set the code up for that yet.
And with the shot behind the turret, it’s going to be hard to select. In
cases like this, we can use the GAME OBJECTS menu in the lower left
corner. Click on it and select “masterShot”

12

13

14

15

16

//change the rotation of this object so it is pointing at the cursor
$this.pointToCursor();

94 Code Ninjas Beginning Javascript - v1r5

With masterShot selected, click on Events and Initialize When Scene
Starts and add this code:

With masterShot still selected, click on Events and Update Every
Frame and add this code:

If this object ever goes beyond the edges of the stage, it is removed.
Remember when we set this up to be invisible? When we make it
visible it will always move in the direction it is pointng.

Even though the shot is hidden behind the turret, we are still setting
it to hidden because it is the “master” that we are going to make the
clones that we are shooting at the missiles from.

17

18

//hide this object by making it invisible
$this.visible(false);
//make sure that the object does not move
$this.speedX(0);
$this.speedY(0);

//if this object has an x value greater than 800 OR less than 0 OR a y
//value greater than 600 OR less than 0, do the following
if($this.x()>800 || $this.x()<0 || $this.y()>600 || $this.y()<0){
 	 $this.remove();	 //remove this object
}
//if this object’s visibility is true, do the following
if($this.visible()){	
	 //move this object forward in the rotation direction it is pointing
 	 $this.moveForwardByRotation();
}

Copyright © Code Ninjas, LLC 95

We want the gun to fire a shot whenever the mouse button is clicked.
Make sure the Scene is selected and under Events, choose Mouse
Button Down and add this code:

The next step is to set up the missile.

Every time the mouse button is pressed, a clone of masterShot is
made, aimed in the direction of the cursor and made visible so that it
can shoot forward.

19

22

//make sure the game has started before doing the following
if($this.scene.state() == “PLAY”){
	 //the variable “shot” represents a clone of the masterShot object
 	 var shot = masterShot.clone();
	 //use pointToCursor to set the rotation for this clone
 	 shot.pointToCursor();
	 //modify the rotation by subtracting 90 so that the object is
	 //actually pointing at the cursor
 	 shot.rotation(shot.rotation()-90);
	 //make the clone visible so it will move
 	 shot.visible(true);
	 //set the velocity of the clone
	 shot.speedX(200);
	 shot.speedY(200);
}

Start the Game and click around the stage to fire the gun.

Stop the Game.

20

21

96 Code Ninjas Beginning Javascript - v1r5

Make sure the Scene is selected, and click on Events and Initialize
When Scene Starts and add this code:

When the game is started, createTimer makes a clone of the missile
object every one second. The clone is placed at y:0 and between x:50
and x:700. The clone object is made visible and given a speedY of 50
PLUS the current score so that the more missiles are shot, the faster
they will go. Each clone has a varible “hit” that is set to false. This is
used so that each missile is not hit multiple times by the same shot.
Finally, the score is initialized at 0.

23
//make sure the game has started before doing the following
if($this.scene.state() == “PLAY”){
	 //timer function that every 1 second does the following
 	 createTimer(1000, function(){
		 //make a clone of missile and assign it to “newMsl”
 		 var newMsl = missile.clone();
		 //place the clone at random x between 50 and 700
 		 newMsl.x(random(700,50));
		 //place the clone at y:0
 		 newMsl.y(0);
		 //make the clone visible
 		 newMsl.visible(true);
		 //set the clone speedY at 50 plus the value of “score”
 		 newMsl.speedY(50+$this.scene.score);
		 //make the variable “hit” equal to false
 		 newMsl.hit = false;
 	 });
 	 //attach the variable “score” to this scene and make it equal to 0
 	 $this.score = 0

}

Copyright © Code Ninjas, LLC 97

Select the missile object, and click on Events and Initialize When
Scene Starts and add this code:

With the missile object still selected, click on Events and Update
Every Frame and add this code:

Just like the masterShot object, the original missile is hidden so that
it doesn’t move during the game.

A sprite is like several images grouped together. However, the other
images are never shown until the sprite gets a command. In this case,
incrementAnimation has the sprite cycle through all of the images
over and over again. Just like the shot, this object moves only if it is
visible. In that case, it will move at the speedY rate set when it was
cloned. The game ends if the object reaches the bottom of the stage,
so we remove the object, stop the game and reset all of the timers.

24

25

//the original missle that is being cloned is hidden
$this.visible(false);

//update the sprite animation every frame
$this.incrementAnimation();
//if this object is visible, do the following
if($this.visible()){
	 //move this object at speedY (set when it was cloned)
 	 $this.moveY();
	 //if this object reaches the bottom of the stage, do this
 	 if($this.y()>600){
		 //remove the object
 		 $this.remove();
		 //STOP the game
 		 $this.scene.state(“STOP”);
		 //reset ALL timers to stop them
 		 $this.scene.cleanupTimers();
		 gameOver.visible(true); //show the game over message
 	 }
}

98 Code Ninjas Beginning Javascript - v1r5

Start the Game and you should be able to see the missles fly down.
Nothing happens when you shoot at them.

Select the missile object, and click on Events and Update Every
Frame and add this code beneath the code you just entered:

The remaining steps are what to do with the missile if it gets hit by a
bullet. So in the part where it says “this is where we will destroy the
missile above, add this code:

Stop the Game.

26

28

29

27

//there are multiple shots on the stage, so we have to check all of
//them all of the time and we don’t know their names. Every shot has
//a unique “role” of “projectile” so we find out how many are on the
//stage and check each one
for(shot=0;shot < $this.scene.findRoles(‘projectile’).length; shot++){
	 //each projectile is assigned to the variable “bullet” and we check them
	 //one by one
 	 var bullet = $this.scene.findRoles(‘projectile’)[shot];
 	 //only if there is actually a bullet object on the stage do the following
 	 if(bullet){
		 //if this object is touching the bullet object AND this object is
		 //visible AND the “hit” value for this object is false, do this
 		 if($this.isTouching(bullet) && $this.visible() && $this.hit === false){
			 //this is where we will destroy the missile
 		 }
 	 }
}

 			 //change the sprite animation to “explode”
			 $this.animation(‘explode’);
			 //add 1 to the total score
 			 $this.scene.score += 1;
			 //have the scoreLabel text object display “Score: “ plus the
			 //value of the score variable
 			 scoreLabel.text(“Score: “+$this.scene.score);
			 //change this object’s “hit” variable to true
 			 $this.hit = true;
			 //remove the bullet object
 			 bullet.remove();
			 //wait half a second for the explosion animation to play
			 //and then do the following
 			 $this.delay = createTimer(500, function(){
 			 $this.remove();	 //remove this object
			 //this timer is set to false so it is removed immediately
 			 },false);

Copyright © Code Ninjas, LLC 99

You may have noticed that there are a couple of text objects referred
to in the code that aren’t yet in the scene. Let’s fix that.

Make sure the Scene is selected and at the bottom of the menu, click
on ADD TO SCENE and select “Add Text.”

This places a new text object in the middle of the scene. Change the
name of the object to “scoreLabel” and change the background color
to white. Change the text of this to “Score: 0” and move it to the
lower left corner of the stage.

When the gun is fired, it can make several clones of the shot object
and we have no idea which is which. The shot object has the uniqie
role of “projectile” so we know that every projectile on the stage is
one of the shot clones. So we tell the computer to identify every
instance of “projectile” on the stage and then we check them one by
one.

If one of the shot clones hits the missile object and the object is
visible and the object has not yet been hit, then we have the missile
play its explosion animation for half a second, add 1 to the score and
mark the object as “hit.”

30

31

32

100 Code Ninjas Beginning Javascript - v1r5

Once again, make sure the Scene is selected and at the bottom of the
menu, click on ADD TO SCENE and select “Add Text.”

Change the name of this object to “gameOver” and also change the
background color to white.

Change the text to “GAME OVER” and change the font family to
Impact or any other font you like. Change the font size to 48 so it is
big and easy to see.

Move the gameOver object so it is in the middle of the stage.

33

34

35

36

Copyright © Code Ninjas, LLC 101

Select the gameOver object, and click on Events and Update Every
Frame and add this code:

We don’t want to display the game over message until the game has
stopped.

37

Start the Game and defend your base from the incoming missiles.
Can you make it to 50 points? To 100? 38

//only do this when the game has started
if($this.scene.state() == “PLAY”){
 	 $this.visible(false);		 //hide this object
}

