SpaceCadetPinball/SpaceCadetPinball/imgui_sdl.cpp
Muzychenko Andrey b4cb827d73 winmain: reworked main loop for smoother frame times.
imgui_sdl: added handling for device lost.
midi: load PINBALL.MID in uppercase and using absolute path.
Added UPS/FPS options, by default 120/60.
2021-09-28 08:14:18 +03:00

712 lines
24 KiB
C++

#include "imgui_sdl.h"
#include "SDL.h"
#include "imgui.h"
#include <map>
#include <list>
#include <cmath>
#include <array>
#include <vector>
#include <memory>
#include <iostream>
#include <algorithm>
#include <functional>
#include <unordered_map>
namespace
{
// make_unique is C++14
template<typename T, typename... Args>
std::unique_ptr<T> make_unique(Args&&... args)
{
return std::unique_ptr<T>(new T(std::forward<Args>(args)...));
}
struct Device* CurrentDevice = nullptr;
namespace TupleHash
{
template <typename T> struct Hash
{
std::size_t operator()(const T& value) const
{
return std::hash<T>()(value);
}
};
template <typename T> void CombineHash(std::size_t& seed, const T& value)
{
seed ^= TupleHash::Hash<T>()(value) + 0x9e3779b9 + (seed << 6) + (seed >> 2);
}
template <typename Tuple, std::size_t Index = std::tuple_size<Tuple>::value - 1> struct Hasher
{
static void Hash(std::size_t& seed, const Tuple& tuple)
{
Hasher<Tuple, Index - 1>::Hash(seed, tuple);
CombineHash(seed, std::get<Index>(tuple));
}
};
template <typename Tuple> struct Hasher<Tuple, 0>
{
static void Hash(std::size_t& seed, const Tuple& tuple)
{
CombineHash(seed, std::get<0>(tuple));
}
};
template <typename... T> struct Hash<std::tuple<T...>>
{
std::size_t operator()(const std::tuple<T...>& value) const
{
std::size_t seed = 0;
Hasher<std::tuple<T...>>::Hash(seed, value);
return seed;
}
};
}
template <typename Key, typename Value, std::size_t Size> class LRUCache
{
public:
bool Contains(const Key& key) const
{
return Container.find(key) != Container.end();
}
const Value& At(const Key& key)
{
assert(Contains(key));
const auto location = Container.find(key);
Order.splice(Order.begin(), Order, location->second);
return location->second->second;
}
void Insert(const Key& key, Value value)
{
const auto existingLocation = Container.find(key);
if (existingLocation != Container.end())
{
Order.erase(existingLocation->second);
Container.erase(existingLocation);
}
Order.push_front(std::make_pair(key, std::move(value)));
Container.insert(std::make_pair(key, Order.begin()));
Clean();
}
void Reset()
{
Order.clear();
Container.clear();
}
private:
void Clean()
{
while (Container.size() > Size)
{
auto last = Order.end();
last--;
Container.erase(last->first);
Order.pop_back();
}
}
std::list<std::pair<Key, Value>> Order;
std::unordered_map<Key, decltype(Order.begin()), TupleHash::Hash<Key>> Container;
};
struct Color
{
const float R, G, B, A;
explicit Color(uint32_t color)
: R(((color >> 0) & 0xff) / 255.0f), G(((color >> 8) & 0xff) / 255.0f), B(((color >> 16) & 0xff) / 255.0f), A(((color >> 24) & 0xff) / 255.0f) { }
Color(float r, float g, float b, float a) : R(r), G(g), B(b), A(a) { }
Color operator*(const Color& c) const { return Color(R * c.R, G * c.G, B * c.B, A * c.A); }
Color operator*(float v) const { return Color(R * v, G * v, B * v, A * v); }
Color operator+(const Color& c) const { return Color(R + c.R, G + c.G, B + c.B, A + c.A); }
uint32_t ToInt() const
{
return ((static_cast<int>(R * 255) & 0xff) << 0)
| ((static_cast<int>(G * 255) & 0xff) << 8)
| ((static_cast<int>(B * 255) & 0xff) << 16)
| ((static_cast<int>(A * 255) & 0xff) << 24);
}
void UseAsDrawColor(SDL_Renderer* renderer) const
{
SDL_SetRenderDrawColor(renderer,
static_cast<uint8_t>(R * 255),
static_cast<uint8_t>(G * 255),
static_cast<uint8_t>(B * 255),
static_cast<uint8_t>(A * 255));
}
};
struct Device
{
SDL_Renderer* Renderer;
bool CacheWasInvalidated = false;
struct ClipRect
{
int X, Y, Width, Height;
} Clip;
struct TriangleCacheItem
{
SDL_Texture* Texture = nullptr;
int Width = 0, Height = 0;
~TriangleCacheItem() { if (Texture) SDL_DestroyTexture(Texture); }
};
// You can tweak these to values that you find that work the best.
static constexpr std::size_t UniformColorTriangleCacheSize = 512;
static constexpr std::size_t GenericTriangleCacheSize = 64;
// Uniform color is identified by its color and the coordinates of the edges.
using UniformColorTriangleKey = std::tuple<uint32_t, int, int, int, int, int, int>;
// The generic triangle cache unfortunately has to be basically a full representation of the triangle.
// This includes the (offset) vertex positions, texture coordinates and vertex colors.
using GenericTriangleVertexKey = std::tuple<int, int, double, double, uint32_t>;
using GenericTriangleKey = std::tuple<GenericTriangleVertexKey, GenericTriangleVertexKey, GenericTriangleVertexKey>;
LRUCache<UniformColorTriangleKey, std::unique_ptr<TriangleCacheItem>, UniformColorTriangleCacheSize> UniformColorTriangleCache;
LRUCache<GenericTriangleKey, std::unique_ptr<TriangleCacheItem>, GenericTriangleCacheSize> GenericTriangleCache;
Device(SDL_Renderer* renderer) : Renderer(renderer) { }
void SetClipRect(const ClipRect& rect)
{
Clip = rect;
const SDL_Rect clip = { rect.X, rect.Y, rect.Width, rect.Height };
SDL_RenderSetClipRect(Renderer, &clip);
}
void EnableClip() { SetClipRect(Clip); }
void DisableClip() { SDL_RenderSetClipRect(Renderer, nullptr); }
void SetAt(int x, int y, const Color& color)
{
color.UseAsDrawColor(Renderer);
SDL_RenderDrawPoint(Renderer, x, y);
}
SDL_Texture* MakeTexture(int width, int height)
{
SDL_Texture* texture = SDL_CreateTexture(Renderer, SDL_PIXELFORMAT_RGBA32, SDL_TEXTUREACCESS_TARGET, width, height);
SDL_SetTextureBlendMode(texture, SDL_BLENDMODE_BLEND);
return texture;
}
void UseAsRenderTarget(SDL_Texture* texture)
{
SDL_SetRenderTarget(Renderer, texture);
if (texture)
{
SDL_SetRenderDrawColor(Renderer, 0, 0, 0, 0);
SDL_RenderClear(Renderer);
}
}
};
struct Texture
{
SDL_Surface* Surface;
SDL_Texture* Source;
~Texture()
{
SDL_FreeSurface(Surface);
SDL_DestroyTexture(Source);
}
Color Sample(float u, float v) const
{
const int x = static_cast<int>(std::round(u * (Surface->w - 1) + 0.5f));
const int y = static_cast<int>(std::round(v * (Surface->h - 1) + 0.5f));
const int location = y * Surface->w + x;
assert(location < Surface->w * Surface->h);
return Color(static_cast<uint32_t*>(Surface->pixels)[location]);
}
};
template <typename T> class InterpolatedFactorEquation
{
public:
InterpolatedFactorEquation(const T& value0, const T& value1, const T& value2, const ImVec2& v0, const ImVec2& v1, const ImVec2& v2)
: Value0(value0), Value1(value1), Value2(value2), V0(v0), V1(v1), V2(v2),
Divisor((V1.y - V2.y) * (V0.x - V2.x) + (V2.x - V1.x) * (V0.y - V2.y)) { }
T Evaluate(float x, float y) const
{
const float w1 = ((V1.y - V2.y) * (x - V2.x) + (V2.x - V1.x) * (y - V2.y)) / Divisor;
const float w2 = ((V2.y - V0.y) * (x - V2.x) + (V0.x - V2.x) * (y - V2.y)) / Divisor;
const float w3 = 1.0f - w1 - w2;
return static_cast<T>((Value0 * w1) + (Value1 * w2) + (Value2 * w3));
}
private:
const T Value0;
const T Value1;
const T Value2;
const ImVec2& V0;
const ImVec2& V1;
const ImVec2& V2;
const float Divisor;
};
struct Rect
{
float MinX, MinY, MaxX, MaxY;
float MinU, MinV, MaxU, MaxV;
bool IsOnExtreme(const ImVec2& point) const
{
return (point.x == MinX || point.x == MaxX) && (point.y == MinY || point.y == MaxY);
}
bool UsesOnlyColor() const
{
const ImVec2& whitePixel = ImGui::GetIO().Fonts->TexUvWhitePixel;
return MinU == MaxU && MinU == whitePixel.x && MinV == MaxV && MaxV == whitePixel.y;
}
static Rect CalculateBoundingBox(const ImDrawVert& v0, const ImDrawVert& v1, const ImDrawVert& v2)
{
return Rect{
std::min({ v0.pos.x, v1.pos.x, v2.pos.x }),
std::min({ v0.pos.y, v1.pos.y, v2.pos.y }),
std::max({ v0.pos.x, v1.pos.x, v2.pos.x }),
std::max({ v0.pos.y, v1.pos.y, v2.pos.y }),
std::min({ v0.uv.x, v1.uv.x, v2.uv.x }),
std::min({ v0.uv.y, v1.uv.y, v2.uv.y }),
std::max({ v0.uv.x, v1.uv.x, v2.uv.x }),
std::max({ v0.uv.y, v1.uv.y, v2.uv.y })
};
}
};
struct FixedPointTriangleRenderInfo
{
int X1, X2, X3, Y1, Y2, Y3;
int MinX, MaxX, MinY, MaxY;
static FixedPointTriangleRenderInfo CalculateFixedPointTriangleInfo(const ImVec2& v1, const ImVec2& v2, const ImVec2& v3)
{
static constexpr float scale = 16.0f;
const int x1 = static_cast<int>(std::round(v1.x * scale));
const int x2 = static_cast<int>(std::round(v2.x * scale));
const int x3 = static_cast<int>(std::round(v3.x * scale));
const int y1 = static_cast<int>(std::round(v1.y * scale));
const int y2 = static_cast<int>(std::round(v2.y * scale));
const int y3 = static_cast<int>(std::round(v3.y * scale));
int minX = (std::min({ x1, x2, x3 }) + 0xF) >> 4;
int maxX = (std::max({ x1, x2, x3 }) + 0xF) >> 4;
int minY = (std::min({ y1, y2, y3 }) + 0xF) >> 4;
int maxY = (std::max({ y1, y2, y3 }) + 0xF) >> 4;
return FixedPointTriangleRenderInfo{ x1, x2, x3, y1, y2, y3, minX, maxX, minY, maxY };
}
};
void DrawTriangleWithColorFunction(const FixedPointTriangleRenderInfo& renderInfo, const std::function<Color(float x, float y)>& colorFunction, Device::TriangleCacheItem* cacheItem)
{
// Implementation source: https://web.archive.org/web/20171128164608/http://forum.devmaster.net/t/advanced-rasterization/6145.
// This is a fixed point implementation that rounds to top-left.
const int deltaX12 = renderInfo.X1 - renderInfo.X2;
const int deltaX23 = renderInfo.X2 - renderInfo.X3;
const int deltaX31 = renderInfo.X3 - renderInfo.X1;
const int deltaY12 = renderInfo.Y1 - renderInfo.Y2;
const int deltaY23 = renderInfo.Y2 - renderInfo.Y3;
const int deltaY31 = renderInfo.Y3 - renderInfo.Y1;
const int fixedDeltaX12 = deltaX12 << 4;
const int fixedDeltaX23 = deltaX23 << 4;
const int fixedDeltaX31 = deltaX31 << 4;
const int fixedDeltaY12 = deltaY12 << 4;
const int fixedDeltaY23 = deltaY23 << 4;
const int fixedDeltaY31 = deltaY31 << 4;
const int width = renderInfo.MaxX - renderInfo.MinX;
const int height = renderInfo.MaxY - renderInfo.MinY;
if (width == 0 || height == 0) return;
int c1 = deltaY12 * renderInfo.X1 - deltaX12 * renderInfo.Y1;
int c2 = deltaY23 * renderInfo.X2 - deltaX23 * renderInfo.Y2;
int c3 = deltaY31 * renderInfo.X3 - deltaX31 * renderInfo.Y3;
if (deltaY12 < 0 || (deltaY12 == 0 && deltaX12 > 0)) c1++;
if (deltaY23 < 0 || (deltaY23 == 0 && deltaX23 > 0)) c2++;
if (deltaY31 < 0 || (deltaY31 == 0 && deltaX31 > 0)) c3++;
int edgeStart1 = c1 + deltaX12 * (renderInfo.MinY << 4) - deltaY12 * (renderInfo.MinX << 4);
int edgeStart2 = c2 + deltaX23 * (renderInfo.MinY << 4) - deltaY23 * (renderInfo.MinX << 4);
int edgeStart3 = c3 + deltaX31 * (renderInfo.MinY << 4) - deltaY31 * (renderInfo.MinX << 4);
SDL_Texture* cache = CurrentDevice->MakeTexture(width, height);
CurrentDevice->DisableClip();
CurrentDevice->UseAsRenderTarget(cache);
for (int y = renderInfo.MinY; y < renderInfo.MaxY; y++)
{
int edge1 = edgeStart1;
int edge2 = edgeStart2;
int edge3 = edgeStart3;
for (int x = renderInfo.MinX; x < renderInfo.MaxX; x++)
{
if (edge1 > 0 && edge2 > 0 && edge3 > 0)
{
CurrentDevice->SetAt(x - renderInfo.MinX, y - renderInfo.MinY, colorFunction(x + 0.5f, y + 0.5f));
}
edge1 -= fixedDeltaY12;
edge2 -= fixedDeltaY23;
edge3 -= fixedDeltaY31;
}
edgeStart1 += fixedDeltaX12;
edgeStart2 += fixedDeltaX23;
edgeStart3 += fixedDeltaX31;
}
CurrentDevice->UseAsRenderTarget(nullptr);
CurrentDevice->EnableClip();
cacheItem->Texture = cache;
cacheItem->Width = width;
cacheItem->Height = height;
}
void DrawCachedTriangle(const Device::TriangleCacheItem& triangle, const FixedPointTriangleRenderInfo& renderInfo)
{
const SDL_Rect destination = { renderInfo.MinX, renderInfo.MinY, triangle.Width, triangle.Height };
SDL_RenderCopy(CurrentDevice->Renderer, triangle.Texture, nullptr, &destination);
}
void DrawTriangle(const ImDrawVert& v1, const ImDrawVert& v2, const ImDrawVert& v3, const Texture* texture)
{
// The naming inconsistency in the parameters is intentional. The fixed point algorithm wants the vertices in a counter clockwise order.
const auto& renderInfo = FixedPointTriangleRenderInfo::CalculateFixedPointTriangleInfo(v3.pos, v2.pos, v1.pos);
// First we check if there is a cached version of this triangle already waiting for us. If so, we can just do a super fast texture copy.
const auto key = std::make_tuple(
std::make_tuple(static_cast<int>(std::round(v1.pos.x)) - renderInfo.MinX, static_cast<int>(std::round(v1.pos.y)) - renderInfo.MinY, v1.uv.x, v1.uv.y, v1.col),
std::make_tuple(static_cast<int>(std::round(v2.pos.x)) - renderInfo.MinX, static_cast<int>(std::round(v2.pos.y)) - renderInfo.MinY, v2.uv.x, v2.uv.y, v2.col),
std::make_tuple(static_cast<int>(std::round(v3.pos.x)) - renderInfo.MinX, static_cast<int>(std::round(v3.pos.y)) - renderInfo.MinY, v3.uv.x, v3.uv.y, v3.col));
if (CurrentDevice->GenericTriangleCache.Contains(key))
{
const auto& cached = CurrentDevice->GenericTriangleCache.At(key);
DrawCachedTriangle(*cached, renderInfo);
return;
}
const InterpolatedFactorEquation<float> textureU(v1.uv.x, v2.uv.x, v3.uv.x, v1.pos, v2.pos, v3.pos);
const InterpolatedFactorEquation<float> textureV(v1.uv.y, v2.uv.y, v3.uv.y, v1.pos, v2.pos, v3.pos);
const InterpolatedFactorEquation<Color> shadeColor(Color(v1.col), Color(v2.col), Color(v3.col), v1.pos, v2.pos, v3.pos);
auto cached = make_unique<Device::TriangleCacheItem>();
DrawTriangleWithColorFunction(renderInfo, [&](float x, float y) {
const float u = textureU.Evaluate(x, y);
const float v = textureV.Evaluate(x, y);
const Color sampled = texture->Sample(u, v);
const Color shade = shadeColor.Evaluate(x, y);
return sampled * shade;
}, cached.get());
if (!cached->Texture) return;
const SDL_Rect destination = { renderInfo.MinX, renderInfo.MinY, cached->Width, cached->Height };
SDL_RenderCopy(CurrentDevice->Renderer, cached->Texture, nullptr, &destination);
CurrentDevice->GenericTriangleCache.Insert(key, std::move(cached));
}
void DrawUniformColorTriangle(const ImDrawVert& v1, const ImDrawVert& v2, const ImDrawVert& v3)
{
const Color color(v1.col);
// The naming inconsistency in the parameters is intentional. The fixed point algorithm wants the vertices in a counter clockwise order.
const auto& renderInfo = FixedPointTriangleRenderInfo::CalculateFixedPointTriangleInfo(v3.pos, v2.pos, v1.pos);
const auto key =std::make_tuple(v1.col,
static_cast<int>(std::round(v1.pos.x)) - renderInfo.MinX, static_cast<int>(std::round(v1.pos.y)) - renderInfo.MinY,
static_cast<int>(std::round(v2.pos.x)) - renderInfo.MinX, static_cast<int>(std::round(v2.pos.y)) - renderInfo.MinY,
static_cast<int>(std::round(v3.pos.x)) - renderInfo.MinX, static_cast<int>(std::round(v3.pos.y)) - renderInfo.MinY);
if (CurrentDevice->UniformColorTriangleCache.Contains(key))
{
const auto& cached = CurrentDevice->UniformColorTriangleCache.At(key);
DrawCachedTriangle(*cached, renderInfo);
return;
}
auto cached = make_unique<Device::TriangleCacheItem>();
DrawTriangleWithColorFunction(renderInfo, [&color](float, float) { return color; }, cached.get());
if (!cached->Texture) return;
const SDL_Rect destination = { renderInfo.MinX, renderInfo.MinY, cached->Width, cached->Height };
SDL_RenderCopy(CurrentDevice->Renderer, cached->Texture, nullptr, &destination);
CurrentDevice->UniformColorTriangleCache.Insert(key, std::move(cached));
}
void DrawRectangle(const Rect& bounding, SDL_Texture* texture, int textureWidth, int textureHeight, const Color& color, bool doHorizontalFlip, bool doVerticalFlip)
{
// We are safe to assume uniform color here, because the caller checks it and and uses the triangle renderer to render those.
const SDL_Rect destination = {
static_cast<int>(bounding.MinX),
static_cast<int>(bounding.MinY),
static_cast<int>(bounding.MaxX - bounding.MinX),
static_cast<int>(bounding.MaxY - bounding.MinY)
};
// If the area isn't textured, we can just draw a rectangle with the correct color.
if (bounding.UsesOnlyColor())
{
color.UseAsDrawColor(CurrentDevice->Renderer);
SDL_RenderFillRect(CurrentDevice->Renderer, &destination);
}
else
{
// We can now just calculate the correct source rectangle and draw it.
const SDL_Rect source = {
static_cast<int>(bounding.MinU * textureWidth),
static_cast<int>(bounding.MinV * textureHeight),
static_cast<int>((bounding.MaxU - bounding.MinU) * textureWidth),
static_cast<int>((bounding.MaxV - bounding.MinV) * textureHeight)
};
const SDL_RendererFlip flip = static_cast<SDL_RendererFlip>((doHorizontalFlip ? SDL_FLIP_HORIZONTAL : 0) | (doVerticalFlip ? SDL_FLIP_VERTICAL : 0));
SDL_SetTextureColorMod(texture, static_cast<uint8_t>(color.R * 255), static_cast<uint8_t>(color.G * 255), static_cast<uint8_t>(color.B * 255));
SDL_RenderCopyEx(CurrentDevice->Renderer, texture, &source, &destination, 0.0, nullptr, flip);
}
}
void DrawRectangle(const Rect& bounding, const Texture* texture, const Color& color, bool doHorizontalFlip, bool doVerticalFlip)
{
DrawRectangle(bounding, texture->Source, texture->Surface->w, texture->Surface->h, color, doHorizontalFlip, doVerticalFlip);
}
void DrawRectangle(const Rect& bounding, SDL_Texture* texture, const Color& color, bool doHorizontalFlip, bool doVerticalFlip)
{
int width, height;
SDL_QueryTexture(texture, nullptr, nullptr, &width, &height);
DrawRectangle(bounding, texture, width, height, color, doHorizontalFlip, doVerticalFlip);
}
}
namespace ImGuiSDL
{
static int ImGuiSDLEventWatch(void* userdata, SDL_Event* event) {
if (event->type == SDL_RENDER_TARGETS_RESET) {
// Device lost event, applies to DirectX and some mobile devices.
CurrentDevice->CacheWasInvalidated = true;
}
return 0;
}
void Initialize(SDL_Renderer* renderer, int windowWidth, int windowHeight)
{
ImGuiIO& io = ImGui::GetIO();
io.DisplaySize.x = static_cast<float>(windowWidth);
io.DisplaySize.y = static_cast<float>(windowHeight);
ImGui::GetStyle().WindowRounding = 0.0f;
ImGui::GetStyle().AntiAliasedFill = false;
ImGui::GetStyle().AntiAliasedLines = false;
ImGui::GetStyle().ChildRounding = 0.0f;
ImGui::GetStyle().PopupRounding = 0.0f;
ImGui::GetStyle().FrameRounding = 0.0f;
ImGui::GetStyle().ScrollbarRounding = 0.0f;
ImGui::GetStyle().GrabRounding = 0.0f;
ImGui::GetStyle().TabRounding = 0.0f;
// Loads the font texture.
unsigned char* pixels;
int width, height;
io.Fonts->GetTexDataAsRGBA32(&pixels, &width, &height);
static constexpr uint32_t rmask = 0x000000ff, gmask = 0x0000ff00, bmask = 0x00ff0000, amask = 0xff000000;
SDL_Surface* surface = SDL_CreateRGBSurfaceFrom(pixels, width, height, 32, 4 * width, rmask, gmask, bmask, amask);
Texture* texture = new Texture();
texture->Surface = surface;
texture->Source = SDL_CreateTextureFromSurface(renderer, surface);
io.Fonts->TexID = (void*)texture;
CurrentDevice = new Device(renderer);
SDL_AddEventWatch(ImGuiSDLEventWatch, nullptr);
}
void Deinitialize()
{
// Frees up the memory of the font texture.
ImGuiIO& io = ImGui::GetIO();
Texture* texture = static_cast<Texture*>(io.Fonts->TexID);
delete texture;
delete CurrentDevice;
SDL_DelEventWatch(ImGuiSDLEventWatch, nullptr);
}
void Render(ImDrawData* drawData)
{
if (CurrentDevice->CacheWasInvalidated) {
CurrentDevice->CacheWasInvalidated = false;
CurrentDevice->GenericTriangleCache.Reset();
CurrentDevice->UniformColorTriangleCache.Reset();
}
SDL_BlendMode blendMode;
SDL_GetRenderDrawBlendMode(CurrentDevice->Renderer, &blendMode);
SDL_SetRenderDrawBlendMode(CurrentDevice->Renderer, SDL_BLENDMODE_BLEND);
Uint8 initialR, initialG, initialB, initialA;
SDL_GetRenderDrawColor(CurrentDevice->Renderer, &initialR, &initialG, &initialB, &initialA);
SDL_bool initialClipEnabled = SDL_RenderIsClipEnabled(CurrentDevice->Renderer);
SDL_Rect initialClipRect;
SDL_RenderGetClipRect(CurrentDevice->Renderer, &initialClipRect);
SDL_Texture* initialRenderTarget = SDL_GetRenderTarget(CurrentDevice->Renderer);
ImGuiIO& io = ImGui::GetIO();
for (int n = 0; n < drawData->CmdListsCount; n++)
{
auto commandList = drawData->CmdLists[n];
auto vertexBuffer = commandList->VtxBuffer;
auto indexBuffer = commandList->IdxBuffer.Data;
for (int cmd_i = 0; cmd_i < commandList->CmdBuffer.Size; cmd_i++)
{
const ImDrawCmd* drawCommand = &commandList->CmdBuffer[cmd_i];
const Device::ClipRect clipRect = {
static_cast<int>(drawCommand->ClipRect.x),
static_cast<int>(drawCommand->ClipRect.y),
static_cast<int>(drawCommand->ClipRect.z - drawCommand->ClipRect.x),
static_cast<int>(drawCommand->ClipRect.w - drawCommand->ClipRect.y)
};
CurrentDevice->SetClipRect(clipRect);
if (drawCommand->UserCallback)
{
drawCommand->UserCallback(commandList, drawCommand);
}
else
{
const bool isWrappedTexture = drawCommand->TextureId == io.Fonts->TexID;
// Loops over triangles.
for (unsigned int i = 0; i + 3 <= drawCommand->ElemCount; i += 3)
{
const ImDrawVert& v0 = vertexBuffer[indexBuffer[i + 0]];
const ImDrawVert& v1 = vertexBuffer[indexBuffer[i + 1]];
const ImDrawVert& v2 = vertexBuffer[indexBuffer[i + 2]];
const Rect& bounding = Rect::CalculateBoundingBox(v0, v1, v2);
const bool isTriangleUniformColor = v0.col == v1.col && v1.col == v2.col;
const bool doesTriangleUseOnlyColor = bounding.UsesOnlyColor();
// Actually, since we render a whole bunch of rectangles, we try to first detect those, and render them more efficiently.
// How are rectangles detected? It's actually pretty simple: If all 6 vertices lie on the extremes of the bounding box,
// it's a rectangle.
if (i + 6 <= drawCommand->ElemCount)
{
const ImDrawVert& v3 = vertexBuffer[indexBuffer[i + 3]];
const ImDrawVert& v4 = vertexBuffer[indexBuffer[i + 4]];
const ImDrawVert& v5 = vertexBuffer[indexBuffer[i + 5]];
const bool isUniformColor = isTriangleUniformColor && v2.col == v3.col && v3.col == v4.col && v4.col == v5.col;
if (isUniformColor
&& bounding.IsOnExtreme(v0.pos)
&& bounding.IsOnExtreme(v1.pos)
&& bounding.IsOnExtreme(v2.pos)
&& bounding.IsOnExtreme(v3.pos)
&& bounding.IsOnExtreme(v4.pos)
&& bounding.IsOnExtreme(v5.pos))
{
// ImGui gives the triangles in a nice order: the first vertex happens to be the topleft corner of our rectangle.
// We need to check for the orientation of the texture, as I believe in theory ImGui could feed us a flipped texture,
// so that the larger texture coordinates are at topleft instead of bottomright.
// We don't consider equal texture coordinates to require a flip, as then the rectangle is mostlikely simply a colored rectangle.
const bool doHorizontalFlip = v2.uv.x < v0.uv.x;
const bool doVerticalFlip = v2.uv.x < v0.uv.x;
if (isWrappedTexture)
{
DrawRectangle(bounding, static_cast<const Texture*>(drawCommand->TextureId), Color(v0.col), doHorizontalFlip, doVerticalFlip);
}
else
{
DrawRectangle(bounding, static_cast<SDL_Texture*>(drawCommand->TextureId), Color(v0.col), doHorizontalFlip, doVerticalFlip);
}
i += 3; // Additional increment to account for the extra 3 vertices we consumed.
continue;
}
}
if (isTriangleUniformColor && doesTriangleUseOnlyColor)
{
DrawUniformColorTriangle(v0, v1, v2);
}
else
{
// Currently we assume that any non rectangular texture samples the font texture. Dunno if that's what actually happens, but it seems to work.
assert(isWrappedTexture);
DrawTriangle(v0, v1, v2, static_cast<const Texture*>(drawCommand->TextureId));
}
}
}
indexBuffer += drawCommand->ElemCount;
}
}
CurrentDevice->DisableClip();
SDL_SetRenderTarget(CurrentDevice->Renderer, initialRenderTarget);
SDL_RenderSetClipRect(CurrentDevice->Renderer, initialClipEnabled ? &initialClipRect : nullptr);
SDL_SetRenderDrawColor(CurrentDevice->Renderer,
initialR, initialG, initialB, initialA);
SDL_SetRenderDrawBlendMode(CurrentDevice->Renderer, blendMode);
}
}