winamp/Src/external_dependencies/openmpt-trunk/soundlib/XMTools.cpp
2024-09-24 14:54:57 +02:00

431 lines
12 KiB
C++

/*
* XMTools.cpp
* -----------
* Purpose: Definition of XM file structures and helper functions
* Notes : (currently none)
* Authors: OpenMPT Devs
* The OpenMPT source code is released under the BSD license. Read LICENSE for more details.
*/
#include "stdafx.h"
#include "Loaders.h"
#include "XMTools.h"
#include "Sndfile.h"
#include "../common/version.h"
#include <algorithm>
OPENMPT_NAMESPACE_BEGIN
// Convert OpenMPT's internal envelope representation to XM envelope data.
void XMInstrument::ConvertEnvelopeToXM(const InstrumentEnvelope &mptEnv, uint8le &numPoints, uint8le &flags, uint8le &sustain, uint8le &loopStart, uint8le &loopEnd, EnvType env)
{
numPoints = static_cast<uint8>(std::min(std::size_t(12), static_cast<std::size_t>(mptEnv.size())));
// Envelope Data
for(uint8 i = 0; i < numPoints; i++)
{
switch(env)
{
case EnvTypeVol:
volEnv[i * 2] = std::min(mptEnv[i].tick, uint16_max);
volEnv[i * 2 + 1] = std::min(mptEnv[i].value, uint8(64));
break;
case EnvTypePan:
panEnv[i * 2] = std::min(mptEnv[i].tick, uint16_max);
panEnv[i * 2 + 1] = std::min(mptEnv[i].value, uint8(63));
break;
}
}
// Envelope Flags
if(mptEnv.dwFlags[ENV_ENABLED]) flags |= XMInstrument::envEnabled;
if(mptEnv.dwFlags[ENV_SUSTAIN]) flags |= XMInstrument::envSustain;
if(mptEnv.dwFlags[ENV_LOOP]) flags |= XMInstrument::envLoop;
// Envelope Loops
sustain = std::min(uint8(12), mptEnv.nSustainStart);
loopStart = std::min(uint8(12), mptEnv.nLoopStart);
loopEnd = std::min(uint8(12), mptEnv.nLoopEnd);
}
// Convert OpenMPT's internal sample representation to an XMInstrument.
uint16 XMInstrument::ConvertToXM(const ModInstrument &mptIns, bool compatibilityExport)
{
MemsetZero(*this);
// FFF is maximum in the FT2 GUI, but it can also accept other values. MilkyTracker just allows 0...4095 and 32767 ("cut")
volFade = static_cast<uint16>(std::min(mptIns.nFadeOut, uint32(32767)));
// Convert envelopes
ConvertEnvelopeToXM(mptIns.VolEnv, volPoints, volFlags, volSustain, volLoopStart, volLoopEnd, EnvTypeVol);
ConvertEnvelopeToXM(mptIns.PanEnv, panPoints, panFlags, panSustain, panLoopStart, panLoopEnd, EnvTypePan);
// Create sample assignment table
auto sampleList = GetSampleList(mptIns, compatibilityExport);
for(std::size_t i = 0; i < std::size(sampleMap); i++)
{
if(mptIns.Keyboard[i + 12] > 0)
{
auto sample = std::find(sampleList.begin(), sampleList.end(), mptIns.Keyboard[i + 12]);
if(sample != sampleList.end())
{
// Yep, we want to export this sample.
sampleMap[i] = static_cast<uint8>(sample - sampleList.begin());
}
}
}
if(mptIns.nMidiChannel != MidiNoChannel)
{
midiEnabled = 1;
midiChannel = (mptIns.nMidiChannel != MidiMappedChannel ? (mptIns.nMidiChannel - MidiFirstChannel) : 0);
}
midiProgram = (mptIns.nMidiProgram != 0 ? mptIns.nMidiProgram - 1 : 0);
pitchWheelRange = std::min(mptIns.midiPWD, int8(36));
return static_cast<uint16>(sampleList.size());
}
// Get a list of samples that should be written to the file.
std::vector<SAMPLEINDEX> XMInstrument::GetSampleList(const ModInstrument &mptIns, bool compatibilityExport) const
{
std::vector<SAMPLEINDEX> sampleList; // List of samples associated with this instrument
std::vector<bool> addedToList; // Which samples did we already add to the sample list?
uint8 numSamples = 0;
for(std::size_t i = 0; i < std::size(sampleMap); i++)
{
const SAMPLEINDEX smp = mptIns.Keyboard[i + 12];
if(smp > 0)
{
if(smp > addedToList.size())
{
addedToList.resize(smp, false);
}
if(!addedToList[smp - 1] && numSamples < (compatibilityExport ? 16 : 32))
{
// We haven't considered this sample yet.
addedToList[smp - 1] = true;
numSamples++;
sampleList.push_back(smp);
}
}
}
return sampleList;
}
// Convert XM envelope data to an OpenMPT's internal envelope representation.
void XMInstrument::ConvertEnvelopeToMPT(InstrumentEnvelope &mptEnv, uint8 numPoints, uint8 flags, uint8 sustain, uint8 loopStart, uint8 loopEnd, EnvType env) const
{
mptEnv.resize(std::min(numPoints, uint8(12)));
// Envelope Data
for(uint32 i = 0; i < mptEnv.size(); i++)
{
switch(env)
{
case EnvTypeVol:
mptEnv[i].tick = volEnv[i * 2];
mptEnv[i].value = static_cast<EnvelopeNode::value_t>(volEnv[i * 2 + 1]);
break;
case EnvTypePan:
mptEnv[i].tick = panEnv[i * 2];
mptEnv[i].value = static_cast<EnvelopeNode::value_t>(panEnv[i * 2 + 1]);
break;
}
if(i > 0 && mptEnv[i].tick < mptEnv[i - 1].tick && !(mptEnv[i].tick & 0xFF00))
{
// libmikmod code says: "Some broken XM editing program will only save the low byte of the position
// value. Try to compensate by adding the missing high byte."
// Note: MPT 1.07's XI instrument saver omitted the high byte of envelope nodes.
// This might be the source for some broken envelopes in IT and XM files.
mptEnv[i].tick |= mptEnv[i - 1].tick & 0xFF00;
if(mptEnv[i].tick < mptEnv[i - 1].tick)
mptEnv[i].tick += 0x100;
}
}
// Envelope Flags
mptEnv.dwFlags.reset();
if((flags & XMInstrument::envEnabled) != 0 && !mptEnv.empty()) mptEnv.dwFlags.set(ENV_ENABLED);
// Envelope Loops
if(sustain < 12)
{
if((flags & XMInstrument::envSustain) != 0) mptEnv.dwFlags.set(ENV_SUSTAIN);
mptEnv.nSustainStart = mptEnv.nSustainEnd = sustain;
}
if(loopEnd < 12 && loopEnd >= loopStart)
{
if((flags & XMInstrument::envLoop) != 0) mptEnv.dwFlags.set(ENV_LOOP);
mptEnv.nLoopStart = loopStart;
mptEnv.nLoopEnd = loopEnd;
}
}
// Convert an XMInstrument to OpenMPT's internal instrument representation.
void XMInstrument::ConvertToMPT(ModInstrument &mptIns) const
{
mptIns.nFadeOut = volFade;
// Convert envelopes
ConvertEnvelopeToMPT(mptIns.VolEnv, volPoints, volFlags, volSustain, volLoopStart, volLoopEnd, EnvTypeVol);
ConvertEnvelopeToMPT(mptIns.PanEnv, panPoints, panFlags, panSustain, panLoopStart, panLoopEnd, EnvTypePan);
// Create sample assignment table
for(std::size_t i = 0; i < std::size(sampleMap); i++)
{
mptIns.Keyboard[i + 12] = sampleMap[i];
}
if(midiEnabled)
{
mptIns.nMidiChannel = midiChannel + MidiFirstChannel;
Limit(mptIns.nMidiChannel, uint8(MidiFirstChannel), uint8(MidiLastChannel));
mptIns.nMidiProgram = static_cast<uint8>(std::min(static_cast<uint16>(midiProgram), uint16(127)) + 1);
}
mptIns.midiPWD = static_cast<int8>(pitchWheelRange);
}
// Apply auto-vibrato settings from sample to file.
void XMInstrument::ApplyAutoVibratoToXM(const ModSample &mptSmp, MODTYPE fromType)
{
vibType = mptSmp.nVibType;
vibSweep = mptSmp.nVibSweep;
vibDepth = mptSmp.nVibDepth;
vibRate = mptSmp.nVibRate;
if((vibDepth | vibRate) != 0 && !(fromType & MOD_TYPE_XM))
{
if(mptSmp.nVibSweep != 0)
vibSweep = mpt::saturate_cast<decltype(vibSweep)::base_type>(Util::muldivr_unsigned(mptSmp.nVibDepth, 256, mptSmp.nVibSweep));
else
vibSweep = 255;
}
}
// Apply auto-vibrato settings from file to a sample.
void XMInstrument::ApplyAutoVibratoToMPT(ModSample &mptSmp) const
{
mptSmp.nVibType = static_cast<VibratoType>(vibType.get());
mptSmp.nVibSweep = vibSweep;
mptSmp.nVibDepth = vibDepth;
mptSmp.nVibRate = vibRate;
}
// Write stuff to the header that's always necessary (also for empty instruments)
void XMInstrumentHeader::Finalise()
{
size = sizeof(XMInstrumentHeader);
if(numSamples > 0)
{
sampleHeaderSize = sizeof(XMSample);
} else
{
// TODO: FT2 completely ignores MIDI settings (and also the less important stuff) if not at least one (empty) sample is assigned to this instrument!
size -= sizeof(XMInstrument);
sampleHeaderSize = 0;
}
}
// Convert OpenMPT's internal sample representation to an XMInstrumentHeader.
void XMInstrumentHeader::ConvertToXM(const ModInstrument &mptIns, bool compatibilityExport)
{
numSamples = instrument.ConvertToXM(mptIns, compatibilityExport);
mpt::String::WriteBuf(mpt::String::spacePadded, name) = mptIns.name;
type = mptIns.nMidiProgram; // If FT2 writes crap here, we can do so, too! (we probably shouldn't, though. This is just for backwards compatibility with old MPT versions.)
}
// Convert an XMInstrumentHeader to OpenMPT's internal instrument representation.
void XMInstrumentHeader::ConvertToMPT(ModInstrument &mptIns) const
{
instrument.ConvertToMPT(mptIns);
// Create sample assignment table
for(std::size_t i = 0; i < std::size(instrument.sampleMap); i++)
{
if(instrument.sampleMap[i] < numSamples)
{
mptIns.Keyboard[i + 12] = instrument.sampleMap[i];
} else
{
mptIns.Keyboard[i + 12] = 0;
}
}
mptIns.name = mpt::String::ReadBuf(mpt::String::spacePadded, name);
// Old MPT backwards compatibility
if(!instrument.midiEnabled)
{
mptIns.nMidiProgram = type;
}
}
// Convert OpenMPT's internal sample representation to an XIInstrumentHeader.
void XIInstrumentHeader::ConvertToXM(const ModInstrument &mptIns, bool compatibilityExport)
{
numSamples = instrument.ConvertToXM(mptIns, compatibilityExport);
memcpy(signature, "Extended Instrument: ", 21);
mpt::String::WriteBuf(mpt::String::spacePadded, name) = mptIns.name;
eof = 0x1A;
const std::string openMptTrackerName = mpt::ToCharset(mpt::Charset::CP437, Version::Current().GetOpenMPTVersionString());
mpt::String::WriteBuf(mpt::String::spacePadded, trackerName) = openMptTrackerName;
version = 0x102;
}
// Convert an XIInstrumentHeader to OpenMPT's internal instrument representation.
void XIInstrumentHeader::ConvertToMPT(ModInstrument &mptIns) const
{
instrument.ConvertToMPT(mptIns);
// Fix sample assignment table
for(std::size_t i = 12; i < std::size(instrument.sampleMap) + 12; i++)
{
if(mptIns.Keyboard[i] >= numSamples)
{
mptIns.Keyboard[i] = 0;
}
}
mptIns.name = mpt::String::ReadBuf(mpt::String::spacePadded, name);
}
// Convert OpenMPT's internal sample representation to an XMSample.
void XMSample::ConvertToXM(const ModSample &mptSmp, MODTYPE fromType, bool compatibilityExport)
{
MemsetZero(*this);
// Volume / Panning
vol = static_cast<uint8>(std::min(mptSmp.nVolume / 4u, 64u));
pan = static_cast<uint8>(std::min(mptSmp.nPan, uint16(255)));
// Sample Frequency
if((fromType & (MOD_TYPE_MOD | MOD_TYPE_XM)))
{
finetune = mptSmp.nFineTune;
relnote = mptSmp.RelativeTone;
} else
{
std::tie(relnote, finetune) = ModSample::FrequencyToTranspose(mptSmp.nC5Speed);
}
flags = 0;
if(mptSmp.uFlags[CHN_PINGPONGLOOP])
flags |= XMSample::sampleBidiLoop;
else if(mptSmp.uFlags[CHN_LOOP])
flags |= XMSample::sampleLoop;
// Sample Length and Loops
length = mpt::saturate_cast<uint32>(mptSmp.nLength);
loopStart = mpt::saturate_cast<uint32>(mptSmp.nLoopStart);
loopLength = mpt::saturate_cast<uint32>(mptSmp.nLoopEnd - mptSmp.nLoopStart);
if(mptSmp.uFlags[CHN_16BIT])
{
flags |= XMSample::sample16Bit;
length *= 2;
loopStart *= 2;
loopLength *= 2;
}
if(mptSmp.uFlags[CHN_STEREO] && !compatibilityExport)
{
flags |= XMSample::sampleStereo;
length *= 2;
loopStart *= 2;
loopLength *= 2;
}
}
// Convert an XMSample to OpenMPT's internal sample representation.
void XMSample::ConvertToMPT(ModSample &mptSmp) const
{
mptSmp.Initialize(MOD_TYPE_XM);
// Volume
mptSmp.nVolume = vol * 4;
LimitMax(mptSmp.nVolume, uint16(256));
// Panning
mptSmp.nPan = pan;
mptSmp.uFlags = CHN_PANNING;
// Sample Frequency
mptSmp.nFineTune = finetune;
mptSmp.RelativeTone = relnote;
// Sample Length and Loops
mptSmp.nLength = length;
mptSmp.nLoopStart = loopStart;
mptSmp.nLoopEnd = mptSmp.nLoopStart + loopLength;
if((flags & XMSample::sample16Bit))
{
mptSmp.nLength /= 2;
mptSmp.nLoopStart /= 2;
mptSmp.nLoopEnd /= 2;
}
if((flags & XMSample::sampleStereo))
{
mptSmp.nLength /= 2;
mptSmp.nLoopStart /= 2;
mptSmp.nLoopEnd /= 2;
}
if((flags & (XMSample::sampleLoop | XMSample::sampleBidiLoop)) && mptSmp.nLoopEnd > mptSmp.nLoopStart)
{
mptSmp.uFlags.set(CHN_LOOP);
if((flags & XMSample::sampleBidiLoop))
{
mptSmp.uFlags.set(CHN_PINGPONGLOOP);
}
}
mptSmp.filename = "";
}
// Retrieve the internal sample format flags for this instrument.
SampleIO XMSample::GetSampleFormat() const
{
if(reserved == sampleADPCM && !(flags & (XMSample::sample16Bit | XMSample::sampleStereo)))
{
// MODPlugin :(
return SampleIO(SampleIO::_8bit, SampleIO::mono, SampleIO::littleEndian, SampleIO::ADPCM);
}
return SampleIO(
(flags & XMSample::sample16Bit) ? SampleIO::_16bit : SampleIO::_8bit,
(flags & XMSample::sampleStereo) ? SampleIO::stereoSplit : SampleIO::mono,
SampleIO::littleEndian,
SampleIO::deltaPCM);
}
OPENMPT_NAMESPACE_END