winamp/Src/external_dependencies/openmpt-trunk/soundlib/Load_ptm.cpp
2024-09-24 14:54:57 +02:00

290 lines
7.8 KiB
C++

/*
* Load_ptm.cpp
* ------------
* Purpose: PTM (PolyTracker) module loader
* Notes : (currently none)
* Authors: Olivier Lapicque
* OpenMPT Devs
* The OpenMPT source code is released under the BSD license. Read LICENSE for more details.
*/
#include "stdafx.h"
#include "Loaders.h"
OPENMPT_NAMESPACE_BEGIN
struct PTMFileHeader
{
char songname[28]; // Name of song, asciiz string
uint8le dosEOF; // 26
uint8le versionLo; // 03 version of file, currently 0203h
uint8le versionHi; // 02
uint8le reserved1; // Reserved, set to 0
uint16le numOrders; // Number of orders (0..256)
uint16le numSamples; // Number of instruments (1..255)
uint16le numPatterns; // Number of patterns (1..128)
uint16le numChannels; // Number of channels (voices) used (1..32)
uint16le flags; // Set to 0
uint8le reserved2[2]; // Reserved, set to 0
char magic[4]; // Song identification, 'PTMF'
uint8le reserved3[16]; // Reserved, set to 0
uint8le chnPan[32]; // Channel panning settings, 0..15, 0 = left, 7 = middle, 15 = right
uint8le orders[256]; // Order list, valid entries 0..nOrders-1
uint16le patOffsets[128]; // Pattern offsets (*16)
};
MPT_BINARY_STRUCT(PTMFileHeader, 608)
struct PTMSampleHeader
{
enum SampleFlags
{
smpTypeMask = 0x03,
smpPCM = 0x01,
smpLoop = 0x04,
smpPingPong = 0x08,
smp16Bit = 0x10,
};
uint8le flags; // Sample type (see SampleFlags)
char filename[12]; // Name of external sample file
uint8le volume; // Default volume
uint16le c4speed; // C-4 speed (yep, not C-5)
uint8le smpSegment[2]; // Sample segment (used internally)
uint32le dataOffset; // Offset of sample data
uint32le length; // Sample size (in bytes)
uint32le loopStart; // Start of loop
uint32le loopEnd; // End of loop
uint8le gusdata[14];
char samplename[28]; // Name of sample, ASCIIZ
char magic[4]; // Sample identification, 'PTMS'
// Convert an PTM sample header to OpenMPT's internal sample header.
SampleIO ConvertToMPT(ModSample &mptSmp) const
{
mptSmp.Initialize(MOD_TYPE_S3M);
mptSmp.nVolume = std::min(volume.get(), uint8(64)) * 4;
mptSmp.nC5Speed = c4speed * 2;
mptSmp.filename = mpt::String::ReadBuf(mpt::String::maybeNullTerminated, filename);
SampleIO sampleIO(
SampleIO::_8bit,
SampleIO::mono,
SampleIO::littleEndian,
SampleIO::deltaPCM);
if((flags & smpTypeMask) == smpPCM)
{
mptSmp.nLength = length;
mptSmp.nLoopStart = loopStart;
mptSmp.nLoopEnd = loopEnd;
if(mptSmp.nLoopEnd > mptSmp.nLoopStart)
mptSmp.nLoopEnd--;
if(flags & smpLoop) mptSmp.uFlags.set(CHN_LOOP);
if(flags & smpPingPong) mptSmp.uFlags.set(CHN_PINGPONGLOOP);
if(flags & smp16Bit)
{
sampleIO |= SampleIO::_16bit;
sampleIO |= SampleIO::PTM8Dto16;
mptSmp.nLength /= 2;
mptSmp.nLoopStart /= 2;
mptSmp.nLoopEnd /= 2;
}
}
return sampleIO;
}
};
MPT_BINARY_STRUCT(PTMSampleHeader, 80)
static bool ValidateHeader(const PTMFileHeader &fileHeader)
{
if(std::memcmp(fileHeader.magic, "PTMF", 4)
|| fileHeader.dosEOF != 26
|| fileHeader.versionHi > 2
|| fileHeader.flags != 0
|| !fileHeader.numChannels
|| fileHeader.numChannels > 32
|| !fileHeader.numOrders || fileHeader.numOrders > 256
|| !fileHeader.numSamples || fileHeader.numSamples > 255
|| !fileHeader.numPatterns || fileHeader.numPatterns > 128
)
{
return false;
}
return true;
}
static uint64 GetHeaderMinimumAdditionalSize(const PTMFileHeader &fileHeader)
{
return fileHeader.numSamples * sizeof(PTMSampleHeader);
}
CSoundFile::ProbeResult CSoundFile::ProbeFileHeaderPTM(MemoryFileReader file, const uint64 *pfilesize)
{
PTMFileHeader fileHeader;
if(!file.ReadStruct(fileHeader))
{
return ProbeWantMoreData;
}
if(!ValidateHeader(fileHeader))
{
return ProbeFailure;
}
return ProbeAdditionalSize(file, pfilesize, GetHeaderMinimumAdditionalSize(fileHeader));
}
bool CSoundFile::ReadPTM(FileReader &file, ModLoadingFlags loadFlags)
{
file.Rewind();
PTMFileHeader fileHeader;
if(!file.ReadStruct(fileHeader))
{
return false;
}
if(!ValidateHeader(fileHeader))
{
return false;
}
if(!file.CanRead(mpt::saturate_cast<FileReader::off_t>(GetHeaderMinimumAdditionalSize(fileHeader))))
{
return false;
}
if(loadFlags == onlyVerifyHeader)
{
return true;
}
InitializeGlobals(MOD_TYPE_PTM);
m_songName = mpt::String::ReadBuf(mpt::String::maybeNullTerminated, fileHeader.songname);
m_modFormat.formatName = U_("PolyTracker");
m_modFormat.type = U_("ptm");
m_modFormat.madeWithTracker = MPT_UFORMAT("PolyTracker {}.{}")(fileHeader.versionHi.get(), mpt::ufmt::hex0<2>(fileHeader.versionLo.get()));
m_modFormat.charset = mpt::Charset::CP437;
m_SongFlags = SONG_ITCOMPATGXX | SONG_ITOLDEFFECTS;
m_nChannels = fileHeader.numChannels;
m_nSamples = std::min(static_cast<SAMPLEINDEX>(fileHeader.numSamples), static_cast<SAMPLEINDEX>(MAX_SAMPLES - 1));
ReadOrderFromArray(Order(), fileHeader.orders, fileHeader.numOrders, 0xFF, 0xFE);
// Reading channel panning
for(CHANNELINDEX chn = 0; chn < m_nChannels; chn++)
{
ChnSettings[chn].Reset();
ChnSettings[chn].nPan = ((fileHeader.chnPan[chn] & 0x0F) << 4) + 4;
}
// Reading samples
FileReader sampleHeaderChunk = file.ReadChunk(fileHeader.numSamples * sizeof(PTMSampleHeader));
for(SAMPLEINDEX smp = 0; smp < m_nSamples; smp++)
{
PTMSampleHeader sampleHeader;
sampleHeaderChunk.ReadStruct(sampleHeader);
ModSample &sample = Samples[smp + 1];
m_szNames[smp + 1] = mpt::String::ReadBuf(mpt::String::maybeNullTerminated, sampleHeader.samplename);
SampleIO sampleIO = sampleHeader.ConvertToMPT(sample);
if((loadFlags & loadSampleData) && sample.nLength && file.Seek(sampleHeader.dataOffset))
{
sampleIO.ReadSample(sample, file);
}
}
// Reading Patterns
if(!(loadFlags & loadPatternData))
{
return true;
}
Patterns.ResizeArray(fileHeader.numPatterns);
for(PATTERNINDEX pat = 0; pat < fileHeader.numPatterns; pat++)
{
if(!Patterns.Insert(pat, 64)
|| fileHeader.patOffsets[pat] == 0
|| !file.Seek(fileHeader.patOffsets[pat] << 4))
{
continue;
}
ModCommand *rowBase = Patterns[pat].GetpModCommand(0, 0);
ROWINDEX row = 0;
while(row < 64 && file.CanRead(1))
{
uint8 b = file.ReadUint8();
if(b == 0)
{
row++;
rowBase += m_nChannels;
continue;
}
CHANNELINDEX chn = (b & 0x1F);
ModCommand dummy = ModCommand();
ModCommand &m = chn < GetNumChannels() ? rowBase[chn] : dummy;
if(b & 0x20)
{
const auto [note, instr] = file.ReadArray<uint8, 2>();
m.note = note;
m.instr = instr;
if(m.note == 254)
m.note = NOTE_NOTECUT;
else if(!m.note || m.note > 120)
m.note = NOTE_NONE;
}
if(b & 0x40)
{
const auto [command, param] = file.ReadArray<uint8, 2>();
m.command = command;
m.param = param;
static constexpr EffectCommand effTrans[] = { CMD_GLOBALVOLUME, CMD_RETRIG, CMD_FINEVIBRATO, CMD_NOTESLIDEUP, CMD_NOTESLIDEDOWN, CMD_NOTESLIDEUPRETRIG, CMD_NOTESLIDEDOWNRETRIG, CMD_REVERSEOFFSET };
if(m.command < 0x10)
{
// Beware: Effect letters are as in MOD, but portamento and volume slides behave like in S3M (i.e. fine slides share the same effect letters)
ConvertModCommand(m);
} else if(m.command < 0x10 + std::size(effTrans))
{
m.command = effTrans[m.command - 0x10];
} else
{
m.command = CMD_NONE;
}
switch(m.command)
{
case CMD_PANNING8:
// Don't be surprised about the strange formula, this is directly translated from original disassembly...
m.command = CMD_S3MCMDEX;
m.param = 0x80 | ((std::max<uint8>(m.param >> 3, 1u) - 1u) & 0x0F);
break;
case CMD_GLOBALVOLUME:
m.param = std::min(m.param, uint8(0x40)) * 2u;
break;
}
}
if(b & 0x80)
{
m.volcmd = VOLCMD_VOLUME;
m.vol = file.ReadUint8();
}
}
}
return true;
}
OPENMPT_NAMESPACE_END