winamp/Src/Wasabi/bfc/draw/gradient.cpp
2024-09-24 14:54:57 +02:00

309 lines
7.9 KiB
C++

#include <precomp.h>
#include "gradient.h"
#include <math.h>//floor
#include <bfc/ptrlist.h>
#include <bfc/parse/pathparse.h>
#define DEFAULT_GRAD_MODE L"linear"
template<class T> inline void SWAP(T &a, T &b) {
T c = a;
a = b;
b = c;
}
inline unsigned int LERPu(unsigned int a, unsigned int b, double p) {
// ASSERT(p >= 0);
// ASSERT(p <= 1.f);
unsigned int ret = (unsigned int)((double)b * p + (double)a * (1. - p));
return ret;
}
inline float LERPf(double a, double b, float p) {
// ASSERT(p >= 0);
// ASSERT(p <= 1.f);
return (float)(b * p + a * (1. - p));
}
Gradient::Gradient() :
gammagroup(L"")
{
gradient_x1 = 0.0f;
gradient_y1 = 0.0f;
gradient_x2 = 1.0f;
gradient_y2 = 1.0f;
reverse_colors = 0;
antialias = 0;
mode = DEFAULT_GRAD_MODE;
list.addItem(new GradientPoint(0.0f, 0xff00ff00));
list.addItem(new GradientPoint(.5, 0x000000ff));
list.addItem(new GradientPoint(1.0f, 0xffff0000));
}
Gradient::~Gradient() {
list.deleteAll();
}
void Gradient::setX1(float x1) {
gradient_x1 = x1;
onParamChange();
}
void Gradient::setY1(float y1) {
gradient_y1 = y1;
onParamChange();
}
void Gradient::setX2(float x2) {
gradient_x2 = x2;
onParamChange();
}
void Gradient::setY2(float y2) {
gradient_y2 = y2;
onParamChange();
}
void Gradient::clearPoints() {
list.deleteAll();
onParamChange();
}
void Gradient::addPoint(float pos, ARGB32 color)
{
list.addItem(new GradientPoint(pos, color, gammagroup));
onParamChange();
}
void Gradient::setPoints(const wchar_t *pointlist)
{
clearPoints();
if (pointlist == NULL || *pointlist == '\0') return;
// 0.5=233,445,245,123;
PathParserW pp(pointlist, L";");
if (pp.getNumStrings() <= 0) return;
for (int i = 0; i < pp.getNumStrings(); i++)
{
PathParserW rp(pp.enumString(i), L"=");
if (rp.getNumStrings() != 2)
continue;
float pos = (float)WTOF(rp.enumString(0));
ARGB32 color = (ARGB32)WASABI_API_SKIN->parse(rp.enumString(1), L"coloralpha");
addPoint(pos, color);
}
}
void Gradient::setReverseColors(int c) {
reverse_colors = c;
}
void Gradient::setAntialias(int c) {
antialias = c;
}
void Gradient::setMode(const wchar_t *_mode) {
mode = _mode;
if (mode.isempty())
mode = DEFAULT_GRAD_MODE;
}
void Gradient::setGammaGroup(const wchar_t *group) {
gammagroup = group;
// reset our points
foreach(list)
list.getfor()->color.setColorGroup(group);
endfor
}
static inline ARGB32 colorLerp(ARGB32 color1, ARGB32 color2, double pos) {
unsigned int a1 = (color1>>24) & 0xff;
unsigned int a2 = (color2>>24) & 0xff;
unsigned int r1 = (color1>>16) & 0xff;
unsigned int r2 = (color2>>16) & 0xff;
unsigned int g1 = (color1>>8) & 0xff;
unsigned int g2 = (color2>>8) & 0xff;
unsigned int b1 = (color1) & 0xff;
unsigned int b2 = (color2) & 0xff;
return (LERPu(a1, a2, pos)<<24) | (LERPu(r1, r2, pos) << 16) | (LERPu(g1,g2,pos)<<8) | LERPu(b1, b2, pos);
}
void Gradient::renderGrad(ARGB32 *ptr, int len, int *positions) {
int npos = list.getNumItems();
ASSERT(npos >= 2);
ARGB32 color1, color2;
for (int i = 0; i < npos-1; i++) {
color1 = list.q(i)->color.getColor();
color2 = list.q(i+1)->color.getColor();
if (reverse_colors) {
color1 = BGRATOARGB(color1);
color2 = BGRATOARGB(color2);
}
int x1 = positions[i];
int x2 = positions[i+1];
if (x1 == x2) continue;
// hflip if need be
if (x1 > x2) {
SWAP(x1, x2);
SWAP(color1, color2);
}
float c = 0;
float segment_len = (float)((x2 - x1)+1);
if (x1 < 0) { // clip left
c += -x1;
x1 = 0;
}
for (int x = x1; x < x2; x++, c += 1.0f) {
if (x >= len) break; // clip right
ptr[x] = colorLerp(color1, color2, c / segment_len);
}
}
#if 0//later
// fill in left if needed
if (positions[0] > 0) MEMFILL<ARGB32>(ptr, list.q(0)->color, positions[0]);
// and right if needed
int rpos = positions[npos-1];
if (rpos < len) MEMFILL<ARGB32>(ptr+rpos, list.getLast()->color, len-rpos);
#endif
}
void Gradient::renderGradient(ARGB32 *bits, int w, int h, int pitch)
{
if (pitch == 0)
pitch = w;
list.sort();
ARGB32 default_color = 0xffff00ff;
if (list.getNumItems() == 1) default_color = list.q(0)->color.getColor();
// blank it out to start
if (pitch == w)
MEMFILL<ARGB32>(bits, default_color, w * h);
else
{
for (int i=0;i<h;i++)
MEMFILL<ARGB32>(bits+i*pitch, default_color, w);
}
if (list.getNumItems() > 1) {
if (mode.iscaseequal(L"linear")) {
//FUCKO: not if endcaps are filled
// force non-vertical lines
if (ABS(gradient_x1 - gradient_x2) < 0.0005f) gradient_x2 = gradient_x1+0.0005f;
double px1 = gradient_x1 * w, py1 = gradient_y1 * h;
double px2 = gradient_x2 * w, py2 = gradient_y2 * h;
// convert to y = mx + b
double m = (py2 - py1)/(px2 - px1);
m = -1.f/m; // invert the slope
int nitems = list.getNumItems();
// get the in-pixels x and y for points on the gradient
for (int i = 0; i < nitems; i++) {
GradientPoint *gp = list.q(i);
// need x and y given pos
gp->x = LERPf(px1, px2, gp->pos);
gp->y = LERPf(py1, py2, gp->pos);
}
MemBlock<int> positions(nitems);
for (int _y = 0; _y < h; _y++) {
// project all the color points onto this scanline
for (int i = 0; i < nitems; i++) {
GradientPoint *gp = list.q(i);
// y = mx + b
// b = y - mx;
double newb = gp->y - m * gp->x;
// y = mx + newb
// y - newb = mx
// (y - newb)/m = x
double xxx = (_y - newb)/m;
positions[i] = (int)floor(xxx+0.5f);
}
renderGrad(bits+_y*pitch, w, positions);
}
} else if (mode.iscaseequal(L"circular")) {
double tot = SQRT(SQR(gradient_x1 - gradient_x2) + SQR(gradient_y1 - gradient_y2));
foreach(list)
GradientPoint *gp = list.getfor();
gp->dist = gp->pos * tot;
endfor
ARGB32 *dst = bits;
for (int y = 0; y < h; y++) {
for (int x = 0; x < w; x++) {
ARGB32 c;
if (antialias) {
double fx = (((double)x)-0.5f) / (double)w;
double fy = (((double)y)-0.5f) / (double)h;
ARGB32 ul = getPixelCirc(fx, fy);
fx = (((double)x)+0.5f) / (double)w;
fy = (((double)y)-0.5f) / (double)h;
ARGB32 ur = getPixelCirc(fx, fy);
fx = (((double)x)+0.5f) / (double)w;
fy = (((double)y)+0.5f) / (double)h;
ARGB32 lr = getPixelCirc(fx, fy);
fx = (((double)x)-0.5f) / (double)w;
fy = (((double)y)+0.5f) / (double)h;
ARGB32 ll = getPixelCirc(fx, fy);
c = colorLerp(colorLerp(ll, lr, 0.5f), colorLerp(ul, ur, 0.5f), 0.5);
} else {
double fy = (double)y / (double)h;
double fx = (double)x / (double)w;
c = getPixelCirc(fx, fy);
}
*dst++ = c;
}
dst += (pitch-w);
}
}
}//list.getNumItems()>1
if (pitch == w)
premultiplyARGB32(bits, w * h);
else
{
for (int i=0;i<h;i++)
premultiplyARGB32(bits+i*pitch, w);
}
}
ARGB32 Gradient::getPixelCirc(double fx, double fy) {
int nitems = list.getNumItems();
//double dist = SQR(fx - gradient_x1) + SQR(fy - gradient_y1);
double dist = SQRT(SQR(fx - gradient_x1) + SQR(fy - gradient_y1));
ARGB32 c = 0xff00ff00;
if (dist <= list.q(0)->dist)
c = list.q(0)->color.getColor();
else if (dist >= list.getLast()->dist)
c = list.getLast()->color.getColor();
else for (int i = 0; i < nitems-1; i++) {
if (list.q(i)->dist <= dist && list.q(i+1)->dist >= dist) {
double pdist = list.q(i+1)->dist - list.q(i)->dist;
double pp = dist - list.q(i)->dist;
pp /= pdist;
if (list.q(i)->color.getColor() == list.q(i+1)->color.getColor())
c = list.q(i)->color.getColor();
else
c = colorLerp(list.q(i)->color.getColor(), list.q(i+1)->color.getColor(), pp);
break;
}
}
if (reverse_colors) c = BGRATOARGB(c);
return c;
}