mirror of
https://github.com/WinampDesktop/winamp.git
synced 2024-12-04 13:41:02 -05:00
320 lines
No EOL
10 KiB
C++
320 lines
No EOL
10 KiB
C++
/*
|
|
LICENSE
|
|
-------
|
|
Copyright 2005-2013 Nullsoft, Inc.
|
|
All rights reserved.
|
|
|
|
Redistribution and use in source and binary forms, with or without modification,
|
|
are permitted provided that the following conditions are met:
|
|
|
|
* Redistributions of source code must retain the above copyright notice,
|
|
this list of conditions and the following disclaimer.
|
|
|
|
* Redistributions in binary form must reproduce the above copyright notice,
|
|
this list of conditions and the following disclaimer in the documentation
|
|
and/or other materials provided with the distribution.
|
|
|
|
* Neither the name of Nullsoft nor the names of its contributors may be used to
|
|
endorse or promote products derived from this software without specific prior written permission.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
|
|
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
|
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
|
|
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
|
|
OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <math.h>
|
|
#include <memory.h>
|
|
#include "fft.h"
|
|
|
|
#define PI 3.141592653589793238462643383279502884197169399f
|
|
|
|
#define SafeDeleteArray(x) { if (x) { delete [] x; x = 0; } }
|
|
|
|
/*****************************************************************************/
|
|
|
|
FFT::FFT()
|
|
{
|
|
NFREQ = 0;
|
|
|
|
envelope = 0;
|
|
equalize = 0;
|
|
bitrevtable = 0;
|
|
cossintable = 0;
|
|
temp1 = 0;
|
|
temp2 = 0;
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
|
|
FFT::~FFT()
|
|
{
|
|
CleanUp();
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
|
|
void FFT::Init(int samples_in, int samples_out, int bEqualize, float envelope_power)
|
|
{
|
|
// samples_in: # of waveform samples you'll feed into the FFT
|
|
// samples_out: # of frequency samples you want out; MUST BE A POWER OF 2.
|
|
// bEqualize: set to 1 if you want the magnitude of the basses and trebles
|
|
// to be roughly equalized; 0 to leave them untouched.
|
|
// envelope_power: set to -1 to disable the envelope; otherwise, specify
|
|
// the envelope power you want here. See InitEnvelopeTable for more info.
|
|
|
|
CleanUp();
|
|
|
|
m_samples_in = samples_in;
|
|
NFREQ = samples_out*2;
|
|
|
|
InitBitRevTable();
|
|
InitCosSinTable();
|
|
if (envelope_power > 0)
|
|
InitEnvelopeTable(envelope_power);
|
|
if (bEqualize)
|
|
InitEqualizeTable();
|
|
temp1 = new float[NFREQ];
|
|
temp2 = new float[NFREQ];
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
|
|
void FFT::CleanUp()
|
|
{
|
|
SafeDeleteArray(envelope);
|
|
SafeDeleteArray(equalize);
|
|
SafeDeleteArray(bitrevtable);
|
|
SafeDeleteArray(cossintable);
|
|
SafeDeleteArray(temp1);
|
|
SafeDeleteArray(temp2);
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
|
|
void FFT::InitEqualizeTable()
|
|
{
|
|
int i;
|
|
float scaling = -0.02f;
|
|
float inv_half_nfreq = 1.0f/(float)(NFREQ/2);
|
|
|
|
equalize = new float[NFREQ/2];
|
|
|
|
for (i=0; i<NFREQ/2; i++)
|
|
equalize[i] = scaling * logf( (float)(NFREQ/2-i)*inv_half_nfreq );
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
|
|
void FFT::InitEnvelopeTable(float power)
|
|
{
|
|
// this precomputation is for multiplying the waveform sample
|
|
// by a bell-curve-shaped envelope, so we don't see the ugly
|
|
// frequency response (oscillations) of a square filter.
|
|
|
|
// a power of 1.0 will compute the FFT with exactly one convolution.
|
|
// a power of 2.0 is like doing it twice; the resulting frequency
|
|
// output will be smoothed out and the peaks will be "fatter".
|
|
// a power of 0.5 is closer to not using an envelope, and you start
|
|
// to get the frequency response of the square filter as 'power'
|
|
// approaches zero; the peaks get tighter and more precise, but
|
|
// you also see small oscillations around their bases.
|
|
|
|
int i;
|
|
float mult = 1.0f/(float)m_samples_in * 6.2831853f;
|
|
|
|
envelope = new float[m_samples_in];
|
|
|
|
if (power==1.0f)
|
|
for (i=0; i<m_samples_in; i++)
|
|
envelope[i] = 0.5f + 0.5f*sinf(i*mult - 1.5707963268f);
|
|
else
|
|
for (i=0; i<m_samples_in; i++)
|
|
envelope[i] = powf(0.5f + 0.5f*sinf(i*mult - 1.5707963268f), power);
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
|
|
void FFT::InitBitRevTable()
|
|
{
|
|
int i,j,m,temp;
|
|
bitrevtable = new int[NFREQ];
|
|
|
|
for (i=0; i<NFREQ; i++)
|
|
bitrevtable[i] = i;
|
|
|
|
for (i=0,j=0; i < NFREQ; i++)
|
|
{
|
|
if (j > i)
|
|
{
|
|
temp = bitrevtable[i];
|
|
bitrevtable[i] = bitrevtable[j];
|
|
bitrevtable[j] = temp;
|
|
}
|
|
|
|
m = NFREQ >> 1;
|
|
|
|
while (m >= 1 && j >= m)
|
|
{
|
|
j -= m;
|
|
m >>= 1;
|
|
}
|
|
|
|
j += m;
|
|
}
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
|
|
void FFT::InitCosSinTable()
|
|
{
|
|
|
|
int i,dftsize,tabsize;
|
|
float theta;
|
|
|
|
dftsize = 2;
|
|
tabsize = 0;
|
|
while (dftsize <= NFREQ)
|
|
{
|
|
tabsize++;
|
|
dftsize <<= 1;
|
|
}
|
|
|
|
cossintable = new float[tabsize][2];
|
|
|
|
dftsize = 2;
|
|
i = 0;
|
|
while (dftsize <= NFREQ)
|
|
{
|
|
theta = (float)(-2.0f*PI/(float)dftsize);
|
|
cossintable[i][0] = (float)cosf(theta);
|
|
cossintable[i][1] = (float)sinf(theta);
|
|
i++;
|
|
dftsize <<= 1;
|
|
}
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
|
|
void FFT::time_to_frequency_domain(float *in_wavedata, float *out_spectraldata)
|
|
{
|
|
// Converts time-domain samples from in_wavedata[]
|
|
// into frequency-domain samples in out_spectraldata[].
|
|
// The array lengths are the two parameters to Init().
|
|
|
|
// The last sample of the output data will represent the frequency
|
|
// that is 1/4th of the input sampling rate. For example,
|
|
// if the input wave data is sampled at 44,100 Hz, then the last
|
|
// sample of the spectral data output will represent the frequency
|
|
// 11,025 Hz. The first sample will be 0 Hz; the frequencies of
|
|
// the rest of the samples vary linearly in between.
|
|
// Note that since human hearing is limited to the range 200 - 20,000
|
|
// Hz. 200 is a low bass hum; 20,000 is an ear-piercing high shriek.
|
|
// Each time the frequency doubles, that sounds like going up an octave.
|
|
// That means that the difference between 200 and 300 Hz is FAR more
|
|
// than the difference between 5000 and 5100, for example!
|
|
// So, when trying to analyze bass, you'll want to look at (probably)
|
|
// the 200-800 Hz range; whereas for treble, you'll want the 1,400 -
|
|
// 11,025 Hz range.
|
|
// If you want to get 3 bands, try it this way:
|
|
// a) 11,025 / 200 = 55.125
|
|
// b) to get the number of octaves between 200 and 11,025 Hz, solve for n:
|
|
// 2^n = 55.125
|
|
// n = log 55.125 / log 2
|
|
// n = 5.785
|
|
// c) so each band should represent 5.785/3 = 1.928 octaves; the ranges are:
|
|
// 1) 200 - 200*2^1.928 or 200 - 761 Hz
|
|
// 2) 200*2^1.928 - 200*2^(1.928*2) or 761 - 2897 Hz
|
|
// 3) 200*2^(1.928*2) - 200*2^(1.928*3) or 2897 - 11025 Hz
|
|
|
|
// A simple sine-wave-based envelope is convolved with the waveform
|
|
// data before doing the FFT, to emeliorate the bad frequency response
|
|
// of a square (i.e. nonexistent) filter.
|
|
|
|
// You might want to slightly damp (blur) the input if your signal isn't
|
|
// of a very high quality, to reduce high-frequency noise that would
|
|
// otherwise show up in the output.
|
|
|
|
int j, m, i, dftsize, hdftsize, t;
|
|
float wr, wi, wpi, wpr, wtemp, tempr, tempi;
|
|
|
|
if (!bitrevtable) return;
|
|
//if (!envelope) return;
|
|
//if (!equalize) return;
|
|
if (!temp1) return;
|
|
if (!temp2) return;
|
|
if (!cossintable) return;
|
|
|
|
// 1. set up input to the fft
|
|
if (envelope)
|
|
{
|
|
for (i=0; i<NFREQ; i++)
|
|
{
|
|
int idx = bitrevtable[i];
|
|
if (idx < m_samples_in)
|
|
temp1[i] = in_wavedata[idx] * envelope[idx];
|
|
else
|
|
temp1[i] = 0;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for (i=0; i<NFREQ; i++)
|
|
{
|
|
int idx = bitrevtable[i];
|
|
if (idx < m_samples_in)
|
|
temp1[i] = in_wavedata[idx];// * envelope[idx];
|
|
else
|
|
temp1[i] = 0;
|
|
}
|
|
}
|
|
memset(temp2, 0, sizeof(float)*NFREQ);
|
|
|
|
// 2. perform FFT
|
|
float *real = temp1;
|
|
float *imag = temp2;
|
|
dftsize = 2;
|
|
t = 0;
|
|
while (dftsize <= NFREQ)
|
|
{
|
|
wpr = cossintable[t][0];
|
|
wpi = cossintable[t][1];
|
|
wr = 1.0f;
|
|
wi = 0.0f;
|
|
hdftsize = dftsize >> 1;
|
|
|
|
for (m = 0; m < hdftsize; m+=1)
|
|
{
|
|
for (i = m; i < NFREQ; i+=dftsize)
|
|
{
|
|
j = i + hdftsize;
|
|
tempr = wr*real[j] - wi*imag[j];
|
|
tempi = wr*imag[j] + wi*real[j];
|
|
real[j] = real[i] - tempr;
|
|
imag[j] = imag[i] - tempi;
|
|
real[i] += tempr;
|
|
imag[i] += tempi;
|
|
}
|
|
|
|
wr = (wtemp=wr)*wpr - wi*wpi;
|
|
wi = wi*wpr + wtemp*wpi;
|
|
}
|
|
|
|
dftsize <<= 1;
|
|
t++;
|
|
}
|
|
|
|
// 3. take the magnitude & equalize it (on a log10 scale) for output
|
|
if (equalize)
|
|
for (i=0; i<NFREQ/2; i++)
|
|
out_spectraldata[i] = equalize[i] * sqrtf(temp1[i]*temp1[i] + temp2[i]*temp2[i]);
|
|
else
|
|
for (i=0; i<NFREQ/2; i++)
|
|
out_spectraldata[i] = sqrtf(temp1[i]*temp1[i] + temp2[i]*temp2[i]);
|
|
}
|
|
|
|
/*****************************************************************************/ |