winamp/Src/external_dependencies/openmpt-trunk/include/r8brain/r8butil.h
2024-09-24 14:54:57 +02:00

306 lines
7.4 KiB
C++
Vendored

//$ nobt
//$ nocpp
/**
* @file r8butil.h
*
* @brief The inclusion file with several utility functions.
*
* This file includes several utility functions used by various utility
* programs like "calcErrorTable.cpp".
*
* r8brain-free-src Copyright (c) 2013-2021 Aleksey Vaneev
* See the "LICENSE" file for license.
*/
#ifndef R8BUTIL_INCLUDED
#define R8BUTIL_INCLUDED
#include "r8bbase.h"
namespace r8b {
/**
* @param re Real part of the frequency response.
* @param im Imaginary part of the frequency response.
* @return A magnitude response value converted from the linear scale to the
* logarithmic scale.
*/
inline double convertResponseToLog( const double re, const double im )
{
return( 4.34294481903251828 * log( re * re + im * im + 1e-100 ));
}
/**
* An utility function that performs frequency response scanning step update
* based on the current magnitude response's slope.
*
* @param[in,out] step The current scanning step. Will be updated on
* function's return. Must be a positive value.
* @param curg Squared magnitude response at the current frequency point.
* @param[in,out] prevg_log Previous magnitude response, log scale. Will be
* updated on function's return.
* @param prec Precision multiplier, affects the size of the step.
* @param maxstep The maximal allowed step.
* @param minstep The minimal allowed step.
*/
inline void updateScanStep( double& step, const double curg,
double& prevg_log, const double prec, const double maxstep,
const double minstep = 1e-11 )
{
double curg_log = 4.34294481903251828 * log( curg + 1e-100 );
curg_log += ( prevg_log - curg_log ) * 0.7;
const double slope = fabs( curg_log - prevg_log );
prevg_log = curg_log;
if( slope > 0.0 )
{
step /= prec * slope;
step = max( min( step, maxstep ), minstep );
}
}
/**
* Function locates normalized frequency at which the minimum filter gain
* is reached. The scanning is performed from lower (left) to higher
* (right) frequencies, the whole range is scanned.
*
* Function expects that the magnitude response is always reducing from lower
* to high frequencies, starting at "minth".
*
* @param flt Filter response.
* @param fltlen Filter response's length in samples (taps).
* @param[out] ming The current minimal gain (squared). On function's return
* will contain the minimal gain value found (squared).
* @param[out] minth The normalized frequency where the minimal gain is
* currently at. On function's return will point to the normalized frequency
* where the new minimum was found.
* @param thend The ending frequency, inclusive.
*/
inline void findFIRFilterResponseMinLtoR( const double* const flt,
const int fltlen, double& ming, double& minth, const double thend )
{
const double maxstep = minth * 2e-3;
double curth = minth;
double re;
double im;
calcFIRFilterResponse( flt, fltlen, R8B_PI * curth, re, im );
double prevg_log = convertResponseToLog( re, im );
double step = 1e-11;
while( true )
{
curth += step;
if( curth > thend )
{
break;
}
calcFIRFilterResponse( flt, fltlen, R8B_PI * curth, re, im );
const double curg = re * re + im * im;
if( curg > ming )
{
ming = curg;
minth = curth;
break;
}
ming = curg;
minth = curth;
updateScanStep( step, curg, prevg_log, 0.31, maxstep );
}
}
/**
* Function locates normalized frequency at which the maximal filter gain
* is reached. The scanning is performed from lower (left) to higher
* (right) frequencies, the whole range is scanned.
*
* Note: this function may "stall" in very rare cases if the magnitude
* response happens to be "saw-tooth" like, requiring a very small stepping to
* be used. If this happens, it may take dozens of seconds to complete.
*
* @param flt Filter response.
* @param fltlen Filter response's length in samples (taps).
* @param[out] maxg The current maximal gain (squared). On function's return
* will contain the maximal gain value (squared).
* @param[out] maxth The normalized frequency where the maximal gain is
* currently at. On function's return will point to the normalized frequency
* where the maximum was reached.
* @param thend The ending frequency, inclusive.
*/
inline void findFIRFilterResponseMaxLtoR( const double* const flt,
const int fltlen, double& maxg, double& maxth, const double thend )
{
const double maxstep = maxth * 1e-4;
double premaxth = maxth;
double premaxg = maxg;
double postmaxth = maxth;
double postmaxg = maxg;
double prevth = maxth;
double prevg = maxg;
double curth = maxth;
double re;
double im;
calcFIRFilterResponse( flt, fltlen, R8B_PI * curth, re, im );
double prevg_log = convertResponseToLog( re, im );
double step = 1e-11;
bool WasPeak = false;
int AfterPeakCount = 0;
while( true )
{
curth += step;
if( curth > thend )
{
break;
}
calcFIRFilterResponse( flt, fltlen, R8B_PI * curth, re, im );
const double curg = re * re + im * im;
if( curg > maxg )
{
premaxth = prevth;
premaxg = prevg;
maxg = curg;
maxth = curth;
WasPeak = true;
AfterPeakCount = 0;
}
else
if( WasPeak )
{
if( AfterPeakCount == 0 )
{
postmaxth = curth;
postmaxg = curg;
}
if( AfterPeakCount == 5 )
{
// Perform 2 approximate binary searches.
int k;
for( k = 0; k < 2; k++ )
{
double l = ( k == 0 ? premaxth : maxth );
double curgl = ( k == 0 ? premaxg : maxg );
double r = ( k == 0 ? maxth : postmaxth );
double curgr = ( k == 0 ? maxg : postmaxg );
while( true )
{
const double c = ( l + r ) * 0.5;
calcFIRFilterResponse( flt, fltlen, R8B_PI * c,
re, im );
const double curg = re * re + im * im;
if( curgl > curgr )
{
r = c;
curgr = curg;
}
else
{
l = c;
curgl = curg;
}
if( r - l < 1e-11 )
{
if( curgl > curgr )
{
maxth = l;
maxg = curgl;
}
else
{
maxth = r;
maxg = curgr;
}
break;
}
}
}
break;
}
AfterPeakCount++;
}
prevth = curth;
prevg = curg;
updateScanStep( step, curg, prevg_log, 1.0, maxstep );
}
}
/**
* Function locates normalized frequency at which the specified maximum
* filter gain is reached. The scanning is performed from higher (right)
* to lower (left) frequencies, scanning stops when the required gain
* value was crossed. Function uses an extremely efficient binary search and
* thus expects that the magnitude response has the "main lobe" form produced
* by windowing, with a minimal pass-band ripple.
*
* @param flt Filter response.
* @param fltlen Filter response's length in samples (taps).
* @param maxg Maximal gain (squared).
* @param[out] th The current normalized frequency. On function's return will
* point to the normalized frequency where "maxg" is reached.
* @param thend The leftmost frequency to scan, inclusive.
*/
inline void findFIRFilterResponseLevelRtoL( const double* const flt,
const int fltlen, const double maxg, double& th, const double thend )
{
// Perform exact binary search.
double l = thend;
double r = th;
while( true )
{
const double c = ( l + r ) * 0.5;
if( r - l < 1e-14 )
{
th = c;
break;
}
double re;
double im;
calcFIRFilterResponse( flt, fltlen, R8B_PI * c, re, im );
const double curg = re * re + im * im;
if( curg > maxg )
{
l = c;
}
else
{
r = c;
}
}
}
} // namespace r8b
#endif // R8BUTIL_INCLUDED