mirror of
https://github.com/WinampDesktop/winamp.git
synced 2024-12-11 17:41:23 -05:00
524 lines
16 KiB
C++
524 lines
16 KiB
C++
|
/**************************************************************************
|
||
|
* This code is based on Szymon Stefanek public domain AES implementation *
|
||
|
**************************************************************************/
|
||
|
#include "rar.hpp"
|
||
|
|
||
|
#ifdef USE_SSE
|
||
|
#include <wmmintrin.h>
|
||
|
#endif
|
||
|
|
||
|
static byte S[256]=
|
||
|
{
|
||
|
99, 124, 119, 123, 242, 107, 111, 197, 48, 1, 103, 43, 254, 215, 171, 118,
|
||
|
202, 130, 201, 125, 250, 89, 71, 240, 173, 212, 162, 175, 156, 164, 114, 192,
|
||
|
183, 253, 147, 38, 54, 63, 247, 204, 52, 165, 229, 241, 113, 216, 49, 21,
|
||
|
4, 199, 35, 195, 24, 150, 5, 154, 7, 18, 128, 226, 235, 39, 178, 117,
|
||
|
9, 131, 44, 26, 27, 110, 90, 160, 82, 59, 214, 179, 41, 227, 47, 132,
|
||
|
83, 209, 0, 237, 32, 252, 177, 91, 106, 203, 190, 57, 74, 76, 88, 207,
|
||
|
208, 239, 170, 251, 67, 77, 51, 133, 69, 249, 2, 127, 80, 60, 159, 168,
|
||
|
81, 163, 64, 143, 146, 157, 56, 245, 188, 182, 218, 33, 16, 255, 243, 210,
|
||
|
205, 12, 19, 236, 95, 151, 68, 23, 196, 167, 126, 61, 100, 93, 25, 115,
|
||
|
96, 129, 79, 220, 34, 42, 144, 136, 70, 238, 184, 20, 222, 94, 11, 219,
|
||
|
224, 50, 58, 10, 73, 6, 36, 92, 194, 211, 172, 98, 145, 149, 228, 121,
|
||
|
231, 200, 55, 109, 141, 213, 78, 169, 108, 86, 244, 234, 101, 122, 174, 8,
|
||
|
186, 120, 37, 46, 28, 166, 180, 198, 232, 221, 116, 31, 75, 189, 139, 138,
|
||
|
112, 62, 181, 102, 72, 3, 246, 14, 97, 53, 87, 185, 134, 193, 29, 158,
|
||
|
225, 248, 152, 17, 105, 217, 142, 148, 155, 30, 135, 233, 206, 85, 40, 223,
|
||
|
140, 161, 137, 13, 191, 230, 66, 104, 65, 153, 45, 15, 176, 84, 187, 22
|
||
|
};
|
||
|
|
||
|
static byte S5[256];
|
||
|
|
||
|
// Round constants. 10 items are used by AES-128, 8 by AES-192, 7 by AES-256.
|
||
|
static byte rcon[]={0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80,0x1b,0x36};
|
||
|
|
||
|
static byte T1[256][4],T2[256][4],T3[256][4],T4[256][4];
|
||
|
static byte T5[256][4],T6[256][4],T7[256][4],T8[256][4];
|
||
|
static byte U1[256][4],U2[256][4],U3[256][4],U4[256][4];
|
||
|
|
||
|
inline void Xor128(void *dest,const void *arg1,const void *arg2)
|
||
|
{
|
||
|
#ifdef ALLOW_MISALIGNED
|
||
|
((uint32*)dest)[0]=((uint32*)arg1)[0]^((uint32*)arg2)[0];
|
||
|
((uint32*)dest)[1]=((uint32*)arg1)[1]^((uint32*)arg2)[1];
|
||
|
((uint32*)dest)[2]=((uint32*)arg1)[2]^((uint32*)arg2)[2];
|
||
|
((uint32*)dest)[3]=((uint32*)arg1)[3]^((uint32*)arg2)[3];
|
||
|
#else
|
||
|
for (int I=0;I<16;I++)
|
||
|
((byte*)dest)[I]=((byte*)arg1)[I]^((byte*)arg2)[I];
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
|
||
|
inline void Xor128(byte *dest,const byte *arg1,const byte *arg2,
|
||
|
const byte *arg3,const byte *arg4)
|
||
|
{
|
||
|
#ifdef ALLOW_MISALIGNED
|
||
|
(*(uint32*)dest)=(*(uint32*)arg1)^(*(uint32*)arg2)^(*(uint32*)arg3)^(*(uint32*)arg4);
|
||
|
#else
|
||
|
for (int I=0;I<4;I++)
|
||
|
dest[I]=arg1[I]^arg2[I]^arg3[I]^arg4[I];
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
|
||
|
inline void Copy128(byte *dest,const byte *src)
|
||
|
{
|
||
|
#ifdef ALLOW_MISALIGNED
|
||
|
((uint32*)dest)[0]=((uint32*)src)[0];
|
||
|
((uint32*)dest)[1]=((uint32*)src)[1];
|
||
|
((uint32*)dest)[2]=((uint32*)src)[2];
|
||
|
((uint32*)dest)[3]=((uint32*)src)[3];
|
||
|
#else
|
||
|
for (int I=0;I<16;I++)
|
||
|
dest[I]=src[I];
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
|
||
|
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||
|
// API
|
||
|
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||
|
|
||
|
Rijndael::Rijndael()
|
||
|
{
|
||
|
if (S5[0]==0)
|
||
|
GenerateTables();
|
||
|
CBCMode = true; // Always true for RAR.
|
||
|
}
|
||
|
|
||
|
|
||
|
void Rijndael::Init(bool Encrypt,const byte *key,uint keyLen,const byte * initVector)
|
||
|
{
|
||
|
#ifdef USE_SSE
|
||
|
// Check SSE here instead of constructor, so if object is a part of some
|
||
|
// structure memset'ed before use, this variable is not lost.
|
||
|
int CPUInfo[4];
|
||
|
__cpuid(CPUInfo, 0x80000000); // Get the maximum supported cpuid function.
|
||
|
if ((CPUInfo[0] & 0x7fffffff)>=1)
|
||
|
{
|
||
|
__cpuid(CPUInfo, 1);
|
||
|
AES_NI=(CPUInfo[2] & 0x2000000)!=0;
|
||
|
}
|
||
|
else
|
||
|
AES_NI=false;
|
||
|
#endif
|
||
|
|
||
|
// Other developers asked us to initialize it to suppress "may be used
|
||
|
// uninitialized" warning in code below in some compilers.
|
||
|
uint uKeyLenInBytes=0;
|
||
|
|
||
|
switch(keyLen)
|
||
|
{
|
||
|
case 128:
|
||
|
uKeyLenInBytes = 16;
|
||
|
m_uRounds = 10;
|
||
|
break;
|
||
|
case 192:
|
||
|
uKeyLenInBytes = 24;
|
||
|
m_uRounds = 12;
|
||
|
break;
|
||
|
case 256:
|
||
|
uKeyLenInBytes = 32;
|
||
|
m_uRounds = 14;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
byte keyMatrix[_MAX_KEY_COLUMNS][4];
|
||
|
|
||
|
for(uint i = 0; i < uKeyLenInBytes; i++)
|
||
|
keyMatrix[i >> 2][i & 3] = key[i];
|
||
|
|
||
|
if (initVector==NULL)
|
||
|
memset(m_initVector, 0, sizeof(m_initVector));
|
||
|
else
|
||
|
for(int i = 0; i < MAX_IV_SIZE; i++)
|
||
|
m_initVector[i] = initVector[i];
|
||
|
|
||
|
keySched(keyMatrix);
|
||
|
|
||
|
if(!Encrypt)
|
||
|
keyEncToDec();
|
||
|
}
|
||
|
|
||
|
void Rijndael::blockEncrypt(const byte *input,size_t inputLen,byte *outBuffer)
|
||
|
{
|
||
|
if (inputLen <= 0)
|
||
|
return;
|
||
|
|
||
|
size_t numBlocks = inputLen/16;
|
||
|
#ifdef USE_SSE
|
||
|
if (AES_NI)
|
||
|
{
|
||
|
blockEncryptSSE(input,numBlocks,outBuffer);
|
||
|
return;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
byte *prevBlock = m_initVector;
|
||
|
for(size_t i = numBlocks;i > 0;i--)
|
||
|
{
|
||
|
byte block[16];
|
||
|
if (CBCMode)
|
||
|
Xor128(block,prevBlock,input);
|
||
|
else
|
||
|
Copy128(block,input);
|
||
|
|
||
|
byte temp[4][4];
|
||
|
|
||
|
Xor128(temp,block,m_expandedKey[0]);
|
||
|
Xor128(outBuffer, T1[temp[0][0]],T2[temp[1][1]],T3[temp[2][2]],T4[temp[3][3]]);
|
||
|
Xor128(outBuffer+4, T1[temp[1][0]],T2[temp[2][1]],T3[temp[3][2]],T4[temp[0][3]]);
|
||
|
Xor128(outBuffer+8, T1[temp[2][0]],T2[temp[3][1]],T3[temp[0][2]],T4[temp[1][3]]);
|
||
|
Xor128(outBuffer+12,T1[temp[3][0]],T2[temp[0][1]],T3[temp[1][2]],T4[temp[2][3]]);
|
||
|
|
||
|
for(int r = 1; r < m_uRounds-1; r++)
|
||
|
{
|
||
|
Xor128(temp,outBuffer,m_expandedKey[r]);
|
||
|
Xor128(outBuffer, T1[temp[0][0]],T2[temp[1][1]],T3[temp[2][2]],T4[temp[3][3]]);
|
||
|
Xor128(outBuffer+4, T1[temp[1][0]],T2[temp[2][1]],T3[temp[3][2]],T4[temp[0][3]]);
|
||
|
Xor128(outBuffer+8, T1[temp[2][0]],T2[temp[3][1]],T3[temp[0][2]],T4[temp[1][3]]);
|
||
|
Xor128(outBuffer+12,T1[temp[3][0]],T2[temp[0][1]],T3[temp[1][2]],T4[temp[2][3]]);
|
||
|
}
|
||
|
Xor128(temp,outBuffer,m_expandedKey[m_uRounds-1]);
|
||
|
outBuffer[ 0] = T1[temp[0][0]][1];
|
||
|
outBuffer[ 1] = T1[temp[1][1]][1];
|
||
|
outBuffer[ 2] = T1[temp[2][2]][1];
|
||
|
outBuffer[ 3] = T1[temp[3][3]][1];
|
||
|
outBuffer[ 4] = T1[temp[1][0]][1];
|
||
|
outBuffer[ 5] = T1[temp[2][1]][1];
|
||
|
outBuffer[ 6] = T1[temp[3][2]][1];
|
||
|
outBuffer[ 7] = T1[temp[0][3]][1];
|
||
|
outBuffer[ 8] = T1[temp[2][0]][1];
|
||
|
outBuffer[ 9] = T1[temp[3][1]][1];
|
||
|
outBuffer[10] = T1[temp[0][2]][1];
|
||
|
outBuffer[11] = T1[temp[1][3]][1];
|
||
|
outBuffer[12] = T1[temp[3][0]][1];
|
||
|
outBuffer[13] = T1[temp[0][1]][1];
|
||
|
outBuffer[14] = T1[temp[1][2]][1];
|
||
|
outBuffer[15] = T1[temp[2][3]][1];
|
||
|
Xor128(outBuffer,outBuffer,m_expandedKey[m_uRounds]);
|
||
|
prevBlock=outBuffer;
|
||
|
|
||
|
outBuffer += 16;
|
||
|
input += 16;
|
||
|
}
|
||
|
Copy128(m_initVector,prevBlock);
|
||
|
}
|
||
|
|
||
|
|
||
|
#ifdef USE_SSE
|
||
|
void Rijndael::blockEncryptSSE(const byte *input,size_t numBlocks,byte *outBuffer)
|
||
|
{
|
||
|
__m128i v = _mm_loadu_si128((__m128i*)m_initVector);
|
||
|
__m128i *src=(__m128i*)input;
|
||
|
__m128i *dest=(__m128i*)outBuffer;
|
||
|
__m128i *rkey=(__m128i*)m_expandedKey;
|
||
|
while (numBlocks > 0)
|
||
|
{
|
||
|
__m128i d = _mm_loadu_si128(src++);
|
||
|
if (CBCMode)
|
||
|
v = _mm_xor_si128(v, d);
|
||
|
else
|
||
|
v = d;
|
||
|
__m128i r0 = _mm_loadu_si128(rkey);
|
||
|
v = _mm_xor_si128(v, r0);
|
||
|
|
||
|
for (int i=1; i<m_uRounds; i++)
|
||
|
{
|
||
|
__m128i ri = _mm_loadu_si128(rkey + i);
|
||
|
v = _mm_aesenc_si128(v, ri);
|
||
|
}
|
||
|
|
||
|
__m128i rl = _mm_loadu_si128(rkey + m_uRounds);
|
||
|
v = _mm_aesenclast_si128(v, rl);
|
||
|
_mm_storeu_si128(dest++,v);
|
||
|
numBlocks--;
|
||
|
}
|
||
|
_mm_storeu_si128((__m128i*)m_initVector,v);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
|
||
|
void Rijndael::blockDecrypt(const byte *input, size_t inputLen, byte *outBuffer)
|
||
|
{
|
||
|
if (inputLen <= 0)
|
||
|
return;
|
||
|
|
||
|
size_t numBlocks=inputLen/16;
|
||
|
#ifdef USE_SSE
|
||
|
if (AES_NI)
|
||
|
{
|
||
|
blockDecryptSSE(input,numBlocks,outBuffer);
|
||
|
return;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
byte block[16], iv[4][4];
|
||
|
memcpy(iv,m_initVector,16);
|
||
|
|
||
|
for (size_t i = numBlocks; i > 0; i--)
|
||
|
{
|
||
|
byte temp[4][4];
|
||
|
|
||
|
Xor128(temp,input,m_expandedKey[m_uRounds]);
|
||
|
|
||
|
Xor128(block, T5[temp[0][0]],T6[temp[3][1]],T7[temp[2][2]],T8[temp[1][3]]);
|
||
|
Xor128(block+4, T5[temp[1][0]],T6[temp[0][1]],T7[temp[3][2]],T8[temp[2][3]]);
|
||
|
Xor128(block+8, T5[temp[2][0]],T6[temp[1][1]],T7[temp[0][2]],T8[temp[3][3]]);
|
||
|
Xor128(block+12,T5[temp[3][0]],T6[temp[2][1]],T7[temp[1][2]],T8[temp[0][3]]);
|
||
|
|
||
|
for(int r = m_uRounds-1; r > 1; r--)
|
||
|
{
|
||
|
Xor128(temp,block,m_expandedKey[r]);
|
||
|
Xor128(block, T5[temp[0][0]],T6[temp[3][1]],T7[temp[2][2]],T8[temp[1][3]]);
|
||
|
Xor128(block+4, T5[temp[1][0]],T6[temp[0][1]],T7[temp[3][2]],T8[temp[2][3]]);
|
||
|
Xor128(block+8, T5[temp[2][0]],T6[temp[1][1]],T7[temp[0][2]],T8[temp[3][3]]);
|
||
|
Xor128(block+12,T5[temp[3][0]],T6[temp[2][1]],T7[temp[1][2]],T8[temp[0][3]]);
|
||
|
}
|
||
|
|
||
|
Xor128(temp,block,m_expandedKey[1]);
|
||
|
block[ 0] = S5[temp[0][0]];
|
||
|
block[ 1] = S5[temp[3][1]];
|
||
|
block[ 2] = S5[temp[2][2]];
|
||
|
block[ 3] = S5[temp[1][3]];
|
||
|
block[ 4] = S5[temp[1][0]];
|
||
|
block[ 5] = S5[temp[0][1]];
|
||
|
block[ 6] = S5[temp[3][2]];
|
||
|
block[ 7] = S5[temp[2][3]];
|
||
|
block[ 8] = S5[temp[2][0]];
|
||
|
block[ 9] = S5[temp[1][1]];
|
||
|
block[10] = S5[temp[0][2]];
|
||
|
block[11] = S5[temp[3][3]];
|
||
|
block[12] = S5[temp[3][0]];
|
||
|
block[13] = S5[temp[2][1]];
|
||
|
block[14] = S5[temp[1][2]];
|
||
|
block[15] = S5[temp[0][3]];
|
||
|
Xor128(block,block,m_expandedKey[0]);
|
||
|
|
||
|
if (CBCMode)
|
||
|
Xor128(block,block,iv);
|
||
|
|
||
|
Copy128((byte*)iv,input);
|
||
|
Copy128(outBuffer,block);
|
||
|
|
||
|
input += 16;
|
||
|
outBuffer += 16;
|
||
|
}
|
||
|
|
||
|
memcpy(m_initVector,iv,16);
|
||
|
}
|
||
|
|
||
|
|
||
|
#ifdef USE_SSE
|
||
|
void Rijndael::blockDecryptSSE(const byte *input, size_t numBlocks, byte *outBuffer)
|
||
|
{
|
||
|
__m128i initVector = _mm_loadu_si128((__m128i*)m_initVector);
|
||
|
__m128i *src=(__m128i*)input;
|
||
|
__m128i *dest=(__m128i*)outBuffer;
|
||
|
__m128i *rkey=(__m128i*)m_expandedKey;
|
||
|
while (numBlocks > 0)
|
||
|
{
|
||
|
__m128i rl = _mm_loadu_si128(rkey + m_uRounds);
|
||
|
__m128i d = _mm_loadu_si128(src++);
|
||
|
__m128i v = _mm_xor_si128(rl, d);
|
||
|
|
||
|
for (int i=m_uRounds-1; i>0; i--)
|
||
|
{
|
||
|
__m128i ri = _mm_loadu_si128(rkey + i);
|
||
|
v = _mm_aesdec_si128(v, ri);
|
||
|
}
|
||
|
|
||
|
__m128i r0 = _mm_loadu_si128(rkey);
|
||
|
v = _mm_aesdeclast_si128(v, r0);
|
||
|
|
||
|
if (CBCMode)
|
||
|
v = _mm_xor_si128(v, initVector);
|
||
|
initVector = d;
|
||
|
_mm_storeu_si128(dest++,v);
|
||
|
numBlocks--;
|
||
|
}
|
||
|
_mm_storeu_si128((__m128i*)m_initVector,initVector);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
|
||
|
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||
|
// ALGORITHM
|
||
|
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||
|
|
||
|
|
||
|
void Rijndael::keySched(byte key[_MAX_KEY_COLUMNS][4])
|
||
|
{
|
||
|
int j,rconpointer = 0;
|
||
|
|
||
|
// Calculate the necessary round keys
|
||
|
// The number of calculations depends on keyBits and blockBits
|
||
|
int uKeyColumns = m_uRounds - 6;
|
||
|
|
||
|
byte tempKey[_MAX_KEY_COLUMNS][4];
|
||
|
|
||
|
// Copy the input key to the temporary key matrix
|
||
|
|
||
|
memcpy(tempKey,key,sizeof(tempKey));
|
||
|
|
||
|
int r = 0;
|
||
|
int t = 0;
|
||
|
|
||
|
// copy values into round key array
|
||
|
for(j = 0;(j < uKeyColumns) && (r <= m_uRounds); )
|
||
|
{
|
||
|
for(;(j < uKeyColumns) && (t < 4); j++, t++)
|
||
|
for (int k=0;k<4;k++)
|
||
|
m_expandedKey[r][t][k]=tempKey[j][k];
|
||
|
|
||
|
if(t == 4)
|
||
|
{
|
||
|
r++;
|
||
|
t = 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
while(r <= m_uRounds)
|
||
|
{
|
||
|
tempKey[0][0] ^= S[tempKey[uKeyColumns-1][1]];
|
||
|
tempKey[0][1] ^= S[tempKey[uKeyColumns-1][2]];
|
||
|
tempKey[0][2] ^= S[tempKey[uKeyColumns-1][3]];
|
||
|
tempKey[0][3] ^= S[tempKey[uKeyColumns-1][0]];
|
||
|
tempKey[0][0] ^= rcon[rconpointer++];
|
||
|
|
||
|
if (uKeyColumns != 8)
|
||
|
for(j = 1; j < uKeyColumns; j++)
|
||
|
for (int k=0;k<4;k++)
|
||
|
tempKey[j][k] ^= tempKey[j-1][k];
|
||
|
else
|
||
|
{
|
||
|
for(j = 1; j < uKeyColumns/2; j++)
|
||
|
for (int k=0;k<4;k++)
|
||
|
tempKey[j][k] ^= tempKey[j-1][k];
|
||
|
|
||
|
tempKey[uKeyColumns/2][0] ^= S[tempKey[uKeyColumns/2 - 1][0]];
|
||
|
tempKey[uKeyColumns/2][1] ^= S[tempKey[uKeyColumns/2 - 1][1]];
|
||
|
tempKey[uKeyColumns/2][2] ^= S[tempKey[uKeyColumns/2 - 1][2]];
|
||
|
tempKey[uKeyColumns/2][3] ^= S[tempKey[uKeyColumns/2 - 1][3]];
|
||
|
for(j = uKeyColumns/2 + 1; j < uKeyColumns; j++)
|
||
|
for (int k=0;k<4;k++)
|
||
|
tempKey[j][k] ^= tempKey[j-1][k];
|
||
|
}
|
||
|
for(j = 0; (j < uKeyColumns) && (r <= m_uRounds); )
|
||
|
{
|
||
|
for(; (j < uKeyColumns) && (t < 4); j++, t++)
|
||
|
for (int k=0;k<4;k++)
|
||
|
m_expandedKey[r][t][k] = tempKey[j][k];
|
||
|
if(t == 4)
|
||
|
{
|
||
|
r++;
|
||
|
t = 0;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void Rijndael::keyEncToDec()
|
||
|
{
|
||
|
for(int r = 1; r < m_uRounds; r++)
|
||
|
{
|
||
|
byte n_expandedKey[4][4];
|
||
|
for (int i = 0; i < 4; i++)
|
||
|
for (int j = 0; j < 4; j++)
|
||
|
{
|
||
|
byte *w=m_expandedKey[r][j];
|
||
|
n_expandedKey[j][i]=U1[w[0]][i]^U2[w[1]][i]^U3[w[2]][i]^U4[w[3]][i];
|
||
|
}
|
||
|
memcpy(m_expandedKey[r],n_expandedKey,sizeof(m_expandedKey[0]));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
static byte gmul(byte a, byte b) // Galois field "peasant's algorithm" multiplication.
|
||
|
{
|
||
|
const byte poly=0x1b; // Lower byte of AES 0x11b irreducible polynomial.
|
||
|
byte result = 0;
|
||
|
while (b>0)
|
||
|
{
|
||
|
if ((b & 1) != 0)
|
||
|
result ^= a;
|
||
|
a = (a & 0x80) ? (a<<1)^poly : a<<1;
|
||
|
b >>= 1;
|
||
|
}
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
|
||
|
// 2021-09-24: changed to slower and simpler code without interim tables.
|
||
|
// It is still fast enough for our purpose.
|
||
|
void Rijndael::GenerateTables()
|
||
|
{
|
||
|
for (int I=0;I<256;I++)
|
||
|
S5[S[I]]=I;
|
||
|
|
||
|
for (int I=0;I<256;I++)
|
||
|
{
|
||
|
byte s=S[I];
|
||
|
T1[I][1]=T1[I][2]=T2[I][2]=T2[I][3]=T3[I][0]=T3[I][3]=T4[I][0]=T4[I][1]=s;
|
||
|
T1[I][0]=T2[I][1]=T3[I][2]=T4[I][3]=gmul(s,2);
|
||
|
T1[I][3]=T2[I][0]=T3[I][1]=T4[I][2]=gmul(s,3);
|
||
|
|
||
|
byte b=S5[I];
|
||
|
U1[b][3]=U2[b][0]=U3[b][1]=U4[b][2]=T5[I][3]=T6[I][0]=T7[I][1]=T8[I][2]=gmul(b,0xb);
|
||
|
U1[b][1]=U2[b][2]=U3[b][3]=U4[b][0]=T5[I][1]=T6[I][2]=T7[I][3]=T8[I][0]=gmul(b,0x9);
|
||
|
U1[b][2]=U2[b][3]=U3[b][0]=U4[b][1]=T5[I][2]=T6[I][3]=T7[I][0]=T8[I][1]=gmul(b,0xd);
|
||
|
U1[b][0]=U2[b][1]=U3[b][2]=U4[b][3]=T5[I][0]=T6[I][1]=T7[I][2]=T8[I][3]=gmul(b,0xe);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
#if 0
|
||
|
static void TestRijndael();
|
||
|
struct TestRij {TestRij() {TestRijndael();exit(0);}} GlobalTestRij;
|
||
|
|
||
|
// Test CBC encryption according to NIST 800-38A.
|
||
|
void TestRijndael()
|
||
|
{
|
||
|
byte IV[16]={0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0a,0x0b,0x0c,0x0d,0x0e,0x0f};
|
||
|
byte PT[64]={
|
||
|
0x6b,0xc1,0xbe,0xe2,0x2e,0x40,0x9f,0x96,0xe9,0x3d,0x7e,0x11,0x73,0x93,0x17,0x2a,
|
||
|
0xae,0x2d,0x8a,0x57,0x1e,0x03,0xac,0x9c,0x9e,0xb7,0x6f,0xac,0x45,0xaf,0x8e,0x51,
|
||
|
0x30,0xc8,0x1c,0x46,0xa3,0x5c,0xe4,0x11,0xe5,0xfb,0xc1,0x19,0x1a,0x0a,0x52,0xef,
|
||
|
0xf6,0x9f,0x24,0x45,0xdf,0x4f,0x9b,0x17,0xad,0x2b,0x41,0x7b,0xe6,0x6c,0x37,0x10,
|
||
|
};
|
||
|
|
||
|
byte Key128[16]={0x2b,0x7e,0x15,0x16,0x28,0xae,0xd2,0xa6,0xab,0xf7,0x15,0x88,0x09,0xcf,0x4f,0x3c};
|
||
|
byte Chk128[16]={0x3f,0xf1,0xca,0xa1,0x68,0x1f,0xac,0x09,0x12,0x0e,0xca,0x30,0x75,0x86,0xe1,0xa7};
|
||
|
byte Key192[24]={0x8e,0x73,0xb0,0xf7,0xda,0x0e,0x64,0x52,0xc8,0x10,0xf3,0x2b,0x80,0x90,0x79,0xe5,0x62,0xf8,0xea,0xd2,0x52,0x2c,0x6b,0x7b};
|
||
|
byte Chk192[16]={0x08,0xb0,0xe2,0x79,0x88,0x59,0x88,0x81,0xd9,0x20,0xa9,0xe6,0x4f,0x56,0x15,0xcd};
|
||
|
byte Key256[32]={0x60,0x3d,0xeb,0x10,0x15,0xca,0x71,0xbe,0x2b,0x73,0xae,0xf0,0x85,0x7d,0x77,0x81,0x1f,0x35,0x2c,0x07,0x3b,0x61,0x08,0xd7,0x2d,0x98,0x10,0xa3,0x09,0x14,0xdf,0xf4};
|
||
|
byte Chk256[16]={0xb2,0xeb,0x05,0xe2,0xc3,0x9b,0xe9,0xfc,0xda,0x6c,0x19,0x07,0x8c,0x6a,0x9d,0x1b};
|
||
|
byte *Key[3]={Key128,Key192,Key256};
|
||
|
byte *Chk[3]={Chk128,Chk192,Chk256};
|
||
|
|
||
|
Rijndael rij; // Declare outside of loop to test re-initialization.
|
||
|
for (uint L=0;L<3;L++)
|
||
|
{
|
||
|
byte Out[16];
|
||
|
wchar Str[sizeof(Out)*2+1];
|
||
|
|
||
|
uint KeyLength=128+L*64;
|
||
|
rij.Init(true,Key[L],KeyLength,IV);
|
||
|
for (uint I=0;I<sizeof(PT);I+=16)
|
||
|
rij.blockEncrypt(PT+I,16,Out);
|
||
|
BinToHex(Chk[L],16,NULL,Str,ASIZE(Str));
|
||
|
mprintf(L"\nAES-%d expected: %s",KeyLength,Str);
|
||
|
BinToHex(Out,sizeof(Out),NULL,Str,ASIZE(Str));
|
||
|
mprintf(L"\nAES-%d result: %s",KeyLength,Str);
|
||
|
if (memcmp(Out,Chk[L],16)==0)
|
||
|
mprintf(L" OK");
|
||
|
else
|
||
|
{
|
||
|
mprintf(L" FAILED");
|
||
|
getchar();
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
#endif
|